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CHAPTER 14

Time-Varying Volatility
and ARCH Models

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain the difference between a constant and a
time-varying variance of the error term.

2. Explain the term ‘‘conditionally normal.’’

3. Perform a test for ARCH effects.

4. Estimate an ARCH model.

5. Forecast volatility.

6. Explain the difference between ARCH and GARCH
specifications.

7. Explain the distinctive features of a T-GARCH
model and a GARCH-in-mean model.

K E Y W O R D S
ARCH
ARCH-in-mean
conditionally normal

GARCH
GARCH-in-mean
T-ARCH and T-GARCH

time-varying variance

In Chapter 12, our focus was on time-varying mean processes and macroeconomic time series.
We were concerned with stationary and nonstationary variables, and, in particular, macroe-
conomic variables like gross domestic product (GDP), inflation, and interest rates. The non-
stationary nature of the variables implied that they had means that change over time. In this
chapter, we are concerned with stationary series, but with conditional variances that change
over time. The model we focus on is called the autoregressive conditional heteroskedastic
(ARCH) model.

Nobel Prize winner Robert Engle’s original work on ARCH was concerned with the volatil-
ity of inflation. However, it was applications of the ARCH model to financial time series that
established and consolidated the significance of his contribution. For this reason, the examples
used in this chapter will be based on financial time series. As we will see, financial time series
have characteristics that are well represented by models with dynamic variances. The particular
aims of this chapter are to discuss the modeling of dynamic variances using the ARCH class of
models of volatility, the estimation of these models, and their use in forecasting.
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14.1 The ARCH Model 615

14.1 The ARCH Model
ARCH stands for autoregressive conditional heteroskedasticity. We have covered the concepts
of autoregressive and heteroskedastic errors in Chapters 9 and 8, respectively, so let us begin
with a discussion of the concepts of conditional and unconditional means and variances of the
error term.

Consider a model with an AR(1) error term
yt = ϕ + et (14.1a)

et = ρet−1 + vt, |ρ| < 1 (14.1b)

vt ∼ N
(
0, σ2

v
)

(14.1c)
For convenience of exposition, first perform some successive substitution to obtain et as the
sum of an infinite series of the error term vt. To do this, note that if et = ρet−1 + vt, then
et−1 = ρet−2 + vt−1 and et−2 = ρet−3 + vt−2, and so on. Hence et = vt + ρ2vt−2 + · · · + ρte0 where
the final term ρte0 is negligible.

The unconditional mean of the error is
E
[
et
]
= E

[
vt + ρvt−1 + ρ2vt−2 + · · ·

]
= 0

because E
[
vt−j

]
= 0 for all j, whereas the conditional mean for the error, conditional on infor-

mation prior to time t, is
E
[
et
||It−1

]
= E

[
ρet−1||It−1

]
+ E

[
vt
]
= ρet−1

The information set at time t − 1, It−1, includes knowing ρet−1. Put simply, “unconditional”
describes the situation when you have no information, whereas conditional describes the situation
when you have information, up to a certain point in time.

The unconditional variance of the error is
E
[
et − 0

]2 = E
[
vt + ρvt−1 + ρ2vt−2 + · · ·

]2

= E
[
v2

t + ρ
2v2

t−1 + ρ
4v2

t−2 + · · ·
]

= σv
2[1 + ρ2 + ρ4 + · · ·

]
=

σv
2

1 − ρ2

because E
[
vt−jvt−i

]
= σ2

v when i = j; E
[
vt−jvt−i

]
= 0 when i ≠ j and the sum of a geometric series[

1 + ρ2 + ρ4 + · · ·
]

is 1∕
(
1 − ρ2). The conditional variance for the error is

E
[(

et − ρet−1
)2|||It−1

]
= E

[
v2

t
||It−1

]
= σ2

v

Now notice, for this model, that the conditional mean of the error varies over time, while the
conditional variance does not. Suppose that instead of a conditional mean that changes over time,
we have a conditional variance that changes over time. To introduce this modification, consider
a variant of the above model

yt = β0 + et (14.2a)
et|It−1 ∼ N

(
0, ht

)
(14.2b)

ht = α0 + α1e2
t−1, α0 > 0, 0 ≤ α1 < 1 (14.2c)

Equations (14.2b and 14.2c) describe the ARCH class of models. The second equation (14.2b)
says that the error term is conditionally normal et|It−1 ∼ N

(
0, ht

)
where It−1 represents the infor-

mation available at time t − 1 with mean 0 and time-varying variance, denoted as ht, following
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popular terminology. The third equation (14.2c) models ht as a function of a constant term and
the lagged error squared e2

t−1.
The name ARCH conveys the fact that we are working with time-varying variances

(heteroskedasticity) that depend on (are conditional on) lagged effects (autocorrelation). This
particular example is an ARCH(1) model since the time-varying variance ht is a function of
a constant term

(
α0
)

plus a term lagged once, the square of the error in the previous period(
α1e2

t−1
)
. The coefficients, α0 and α1, have to be positive to ensure a positive variance. The

coefficient α1 must be less than 1, or ht will continue to increase over time, eventually exploding.
Conditional normality means that the normal distribution is a function of known information
at time t − 1; i.e., when t = 2, e2|I1 ∼ N

(
0, α0 + α1e2

1
)

and when t = 3, e3|I2 ∼ N
(
0, α0 + α1e2

2
)
,

and so on. In this particular case, conditioning on It−1 is equivalent to conditioning on the square
of the error in the previous period e2

t−1.
Note that while the conditional distribution of the error et is assumed to be normal, the uncon-

ditional distribution of the error et will not be normal. This is not an inconsequential consideration
given that a lot of real-world data appear to be drawn from non-normal distributions.

We have noted that, conditional on e2
t−1, the mean and variance of the error term et are zero

and ht, respectively. To find the mean and variance of the unconditional distribution of et, we note
that, conditional on e2

t−1, the standardized errors are standard normal, that is,
(

et√
ht

||||||
It−1

)
= zt ∼ N(0, 1)

Because this distribution does not depend on e2
t−1, it follows that the unconditional distribution of

zt =
(
et
/√

ht

)
is also N(0, 1), and that zt and e2

t−1 are independent. Thus, we can write

E
(
et
)
= E

(
zt
)
E
(√

α0 + α1e2
t−1

)

and
E
(
e2

t
)
= E

(
z2

t
)
E
(
α0 + α1e2

t−1
)
= α0 + α1E

(
e2

t−1
)

From the first of these equations, we get E
(
et
)
= 0 because E

(
zt
)
= 0. From the second of the

equations, we get var
(
e2

t
)
= E

(
e2

t
)
= α0

/(
1 − α1

)
because E

(
z2

t
)
= 1 and E

(
e2

t
)
= E

(
e2

t−1
)
.

The ARCH model has become a very important econometric model because it is able to
capture stylized features of real-world volatility. Furthermore, in the context of the ARCH(1)
model, knowing the squared error in the previous period e2

t−1 improves our knowledge about the
likely magnitude of the variance in period t. This is useful for situations when it is important to
understand risk, as measured by the volatility of the variable.

14.2 Time-Varying Volatility
The ARCH model has become a popular one because its variance specification can capture com-
monly observed features of the time series of financial variables; in particular, it is useful for
modeling volatility and especially changes in volatility over time. To appreciate what we mean
by volatility and time-varying volatility, and how it relates to the ARCH model, let us look at
some stylized facts about the behavior of financial variables—for example, the returns to stock
price indices (also known as share price indices).
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E X A M P L E 14.1 Characteristics of Financial Variables

Figure 14.1 shows the time series of the monthly returns to
a number of stock prices; namely, the U.S. Nasdaq, the Aus-
tralian All Ordinaries, the Japanese Nikkei, and the UK FTSE
over the period 1988M1 to 2015M12 (data file returns5). The
values of these series change rapidly from period to period
in an apparently unpredictable manner; we say the series are
volatile. Furthermore, there are periods when large changes
are followed by further large changes and periods when small
changes are followed by further small changes. In this case
the series are said to display time-varying volatility as well
as “clustering” of changes.

Figure 14.2 shows the histograms of the returns. All
returns display non-normal properties. We can see this more
clearly if we draw normal distributions (using the respective
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FIGURE 14.1 Time series of returns to stock indices.

sample means and sample variances) on top of these
histograms. Note that there are more observations around the
mean and in the tails. Distributions with these properties—
more peaked around the mean and relatively fat tails—are
said to be leptokurtic.

Note that the assumption that the conditional distribu-
tion for

(
yt|It−1

)
is normal, an assumption that we made in

(14.2b), does not necessarily imply that the unconditional
distribution for yt is normal. When we collect empirical
observations on yt into a histogram, we are constructing an
estimate of the unconditional distribution for yt. What we
have observed is that the unconditional distribution for yt is
leptokurtic.
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FIGURE 14.2 Histograms of returns to stock indices.

E X A M P L E 14.2 Simulating Time-Varying Volatility

To illustrate how the ARCH model can be used to capture
changing volatility and the leptokurtic nature of the distribu-
tion for yt, we generate some simulated data for two models.
In both cases we set β0 = 0 so that yt = et. The left panel in
Figure 14.3 illustrates the case when α0 = 1, α1 = 0. These
values imply var

(
yt|It−1

)
= ht = 1 . This variance is constant,

and not time varying, because α1 = 0. The right panel in
Figure 14.3 illustrates the case when α0 = 1, α1 = 0.8, the
case of a time-varying variance given by var

(
yt|It−1

)
= ht =

α0 + α1e2
t−1 = 1 + 0.8e2

t−1. Note that relative to the series in

the left panel, volatility in the right panel is not constant;
rather, it changes over time and it clusters—there are periods
of small changes (e.g., around observation 100) and periods
of big changes (around observation 175).

In Figure 14.4, we present histograms of yt for the two
cases. The top panel is the histogram for the constant vari-
ance case where

(
yt|It−1

)
and yt have the same distribution,

namely the noise process yt ∼ N(0, 1) because ht = 1. The
bottom panel is the histogram for the time-varying variance
case. We know that the conditional distribution for

(
yt|It−1

)
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is N
(
0, ht

)
. But what about the unconditional distribution for

yt? Again, we can check for normality by superimposing a
normal distribution on top of the histogram. In this case, to
allow for a meaningful comparison with the histogram in the
top panel, we plot the standardized observations of yt. That
is, for each observation we subtract the sample mean and
divide by the sample standard deviation. This transforma-
tion ensures that the distribution will have a zero mean and
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FIGURE 14.3 Simulated examples of constant and time-varying variances.
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FIGURE 14.4 Frequency distributions of the simulated models.

variance one, but it preserves the shape of the distribution.
Comparing the two panels, we note that the second distri-
bution has higher frequencies around the mean (zero) and
higher frequencies in the tails (outside ± 3). This feature of
time series with ARCH errors—the unconditional distribu-
tion of yt is non-normal—is consistent with what we observed
in the stock return series.
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Thus, the ARCH model is intuitively appealing because it seems sensible to explain volatility as
a function of the errors et. These errors are often called “shocks” or “news” by financial analysts.
They represent the unexpected! According to the ARCH model, the larger the shock, the greater
the volatility in the series. In addition, this model captures volatility clustering, as big changes in
et are fed into further big changes in ht via the lagged effect et−1. The simulations show how well
the ARCH model mimics the behavior of financial time series shown in Figure 14.1, including
their non-normal distributions.

14.3 Testing, Estimating, and Forecasting
A Lagrange multiplier (LM) test is often used to test for the presence of ARCH effects. To
perform this test, first estimate the mean equation, which can be a regression of the variable
on a constant (like 14.1) or may include other variables. Then save the estimated residuals êt
and obtain their squares ê2

t . To test for first-order ARCH, regress ê2
t on the squared residuals

lagged ê2
t−1,

ê2
t = γ0 + γ1ê2

t−1 + vt (14.3)

where vt is a random term. The null and alternative hypotheses are

H0∶γ1 = 0 H1∶γ1 ≠ 0

If there are no ARCH effects, then γ1 = 0 and the fit of (14.3) will be poor, and the equation R2

will be low. If there are ARCH effects, we expect the magnitude of ê2
t to depend on its lagged

values, and the R2 will be relatively high. The LM test statistic is (T − q)R2 where T is the sample
size, q is the number of ê2

t−j terms on the right-hand side of (14.3), and R2 is the coefficient of
determination. If the null hypothesis is true, then the test statistic (T − q)R2 is distributed (in large
samples) as χ2

(q), where q is the order of lag, and T − q is the number of complete observations;
in this case, q = 1. If (T − q)R2 ≥ χ2

(1−α, q), then we reject the null hypothesis that γ1 = 0 and
conclude that ARCH effects are present.

E X A M P L E 14.3 Testing for ARCH in BrightenYourDay (BYD) Lighting

To illustrate the test, consider the returns from buying shares
in the hypothetical company BYD Lighting. The time series
and histogram of the returns are shown in Figure 14.5 (data
file byd). The time series shows evidence of time-varying
volatility and clustering, and the unconditional distribution
is non-normal.

To perform the test for ARCH effects, first estimate a
mean equation that in this example is rt = β0 + et, where rt
is the monthly return on shares of BYD. Second, retrieve the
estimated residuals. Third, estimate (14.3). The results for the

ARCH test are
ê2

t = 0.908 + 0.353ê2
t−1 R2 = 0.124

(t) (8.409)
The t-statistic suggests a significant first-order coeffi-
cient. The sample size is 500, giving an LM test value of
(T − q)R2 = 61.876. Comparing the computed test value to
the 5% critical value of a χ2

(1) distribution
(
χ2
(0.95,1) = 3.841

)

leads to the rejection of the null hypothesis. In other words,
the residuals show the presence of ARCH(1) effects.
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FIGURE 14.5 Time series and histogram of returns for BYD lighting.

E X A M P L E 14.4 ARCH Model Estimates for BrightenYourDay (BYD) Lighting

ARCH models are estimated by the maximum likelihood
method. Estimation details are beyond the scope of this book,
but the maximum likelihood method (see Appendix C.8) is
programmed in most econometric software.

Equation (14.4) shows the results from estimating an
ARCH(1) model applied to the monthly returns from buying
shares in BrightenYourDay Lighting. The estimated mean of
the series is described in (14.4a), while the estimated vari-
ance is given in (14.4b).

r̂t = β̂0 = 1.063 (14.4a)

ĥt = α̂0 + α̂1ê2
t−1 = 0.642 + 0.569ê2

t−1
(t) (5.536) (14.4b)

The t-statistic of the first-order coefficient (5.536) suggests
a significant ARCH(1) coefficient. Recall that one of the
requirements of the ARCH model is that α0 > 0 and α1 > 0,
so that the implied variances are positive. Note that the
estimated coefficients α̂0 and α̂1 satisfy this condition.

E X A M P L E 14.5 Forecasting BrightenYourDay (BYD) Volatility

Once we have estimated the model, we can use it to fore-
cast next period’s return rt+1 and the conditional volatility
ht+1. When one invests in shares (or stocks), it is important to

choose them not just on the basis of their mean returns, but
also on the basis of their risk. Volatility gives us a measure
of their risk.
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For our case study of investing in BYD Lighting, the
forecast return and volatility are

r̂t+1 = β̂0 = 1.063 (14.5a)

ĥt+1 = α̂0 + α̂1

(
rt − β̂0

)2
= 0.642 + 0.569

(
rt − 1.063

)2

(14.5b)

Equation (14.5a) gives the estimated return that—because
it does not change over time—is both the conditional and
unconditional mean return. The estimated error in period t,
given by êt = rt − r̂t, can then be used to obtain the esti-
mated conditional variance (14.5b). The time series of the
conditional variance does change over time and is shown
in Figure 14.6. Note how the conditional variance around
observation 370 coincides with the period of large changes
in returns as shown in Figure 14.5.
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FIGURE 14.6 Plot of conditional variance.

14.4 Extensions
The ARCH(1) model can be extended in a number of ways. One obvious extension is to allow
for more lags. In general, an ARCH(q) model that includes lags ê2

t−1,… , ê2
t−q has a conditional

variance function that is given by
ht = α0 + α1e2

t−1 + α2e2
t−2 · · · + αqe2

t−q (14.6)
In this case the variance or volatility in a given period depends on the magnitudes of the squared
errors in the past q periods. Testing, estimating, and forecasting, are natural extensions of the case
with one lag.

14.4.1 The GARCH Model—Generalized ARCH
One of the shortcomings of an ARCH(q) model is that there are q + 1 parameters to estimate.
If q is a large number, we may lose accuracy in the estimation. The generalized ARCH model, or
GARCH, is an alternative way to capture long lagged effects with fewer parameters. It is a special
generalization of the ARCH model and it can be derived as follows. First, consider (14.6) but write
it as

ht = α0 + α1e2
t−1 + β1α1e2

t−2 + β
2
1α1e2

t−3 + · · ·

In other words, we have imposed a geometric lag structure on the lagged coefficients of the form
αs = α1βs−1

1 . Next, add and subtract β1α0 and rearrange terms as follows:
ht =

(
α0 − β1α0

)
+ α1e2

t−1 + β1
(
α0 + α1e2

t−2 + β1α1e2
t−3 + · · ·

)

Then, since ht−1 = α0 + α1e2
t−2 + β1α1e2

t−3 + β
2
1α1e2

t−4 + · · ·, we may simplify to
ht = δ + α1e2

t−1 + β1ht−1 (14.7)
where δ =

(
α0 − β1α0

)
. This generalized ARCH model is denoted as GARCH(1, 1). It can be

viewed as a special case of the more general GARCH (p, q) model, where p is the number of
lagged h terms and q is the number of lagged e2 terms. We also note that we need α1 + β1 < 1 for
stationarity; if α1 + β1 ≥ 1 we have a so-called “integrated GARCH” process, or IGARCH.

The GARCH(1, 1) model is a very popular specification because it fits many data series well.
It tells us that the volatility changes with lagged shocks

(
e2

t−1
)

but there is also momentum in
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the system working via ht−1. One reason why this model is so popular is that it can capture
long lags in the shocks with only a few parameters. A GARCH(1, 1) model with three param-
eters

(
δ, α1, and β1

)
can capture similar effects to an ARCH(q) model requiring the estimation of

(q + 1) parameters, where q is large, say q ≥ 6.

E X A M P L E 14.6 A GARCH Model for BrightenYourDay

To illustrate the GARCH(1, 1) specification, consider again
the returns to our shares in BYD Lighting, which we
re-estimate (by maximum likelihood) under the new model.
The results are

r̂t = 1.049
ĥt = 0.401 + 0.492 ê2

t−1 + 0.238 ĥt−1

(t) (4.834) (2.136)
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FIGURE 14.7 Estimated mean and variance of GARCH model.

The significance of the coefficient in front of ĥt−1 suggests
that the GARCH(1, 1) model is better than the ARCH(1)
results shown in (14.4). Plots of the mean equation and the
time-varying variance are shown in Figures 14.7(a) and (b),
respectively.

14.4.2 Allowing for an Asymmetric Effect
A standard ARCH model treats bad “news”

(
negative et−1 < 0

)
and good “news”

(
positive

et−1 > 0
)

symmetrically, that is, the effect on the volatility ht is the same
(
α1e2

t−1
)
. However, the

effects of good and bad news may have asymmetric effects on volatility. In general, when negative
news hits a financial market, asset prices tend to enter a turbulent phase and volatility increases,
but with positive news volatility tends to be small and the market enters a period of tranquility.

The threshold ARCH model, or T-ARCH, is one example where positive and negative news
are treated asymmetrically. In the T-GARCH version of the model, the specification of the con-
ditional variance is

ht = δ + α1e2
t−1 + γdt−1e2

t−1 + β1ht−1

dt =
{

1 et < 0 (bad news)
0 et ≥ 0 (good news)

(14.8)

where γ is known as the asymmetry or leverage term. When γ = 0, the model collapses to the
standard GARCH form. Otherwise, when the shock is positive (i.e., good news) the effect on
volatility is α1, but when the news is negative (i.e., bad news) the effect on volatility is α1 + γ.
Hence, if γ is significant and positive, negative shocks have a larger effect on ht than positive
shocks.
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E X A M P L E 14.7 A T-GARCH Model for BYD

The returns to our shares in BYD Lighting were re-estimated
with a T-GARCH(1,1) specification:

r̂t = 0.994
ĥt = 0.356 + 0.263ê2

t−1 + 0.492dt−1ê2
t−1 + 0.287ĥt−1

(t) (3.267) (2.405) (2.488)
These results show that when the market observes good news(
positive et

)
, the contribution of e2

t to volatility ht+1 is by
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FIGURE 14.8 Estimated mean and variance of T-GARCH model.

a factor 0.263, whereas when the market observes bad news(
negative et

)
, the contribution of e2

t to volatility ht+1 is by
a factor (0.263 + 0.492). Overall, negative shocks create
greater volatility in financial markets. The mean and variance
are displayed in Figures 14.8(a) and (b). Note that, relative
to Figure 14.7(b), the T-GARCH model has highlighted
the period around observation 200 as another period of
turbulence.

14.4.3 GARCH-in-Mean and Time-Varying Risk Premium
Another popular extension of the GARCH model is the GARCH-in-mean model. The positive
relationship between risk (often measured by volatility) and return is one of the basic tenets of
financial economics. As risk increases, so does the mean return. Intuitively, the return to risky
assets tends to be higher than the return to safe assets (low variation in returns) to compen-
sate an investor for taking on the risk of buying the volatile share. However, while we have
estimated the mean equation to model returns, and have estimated a GARCH model to cap-
ture time-varying volatility, we have not used the risk to explain returns. This is the aim of the
GARCH-in-mean models.

The equations of a GARCH-in-mean model are shown below:

yt = β0 + θht + et (14.9a)
et|It−1 ∼ N

(
0, ht

)
(14.9b)

ht = δ + α1e2
t−1 + β1ht−1, δ > 0, 0 ≤ α1 < 1, 0 ≤ β1 < 1 (14.9c)

The first equation is the mean equation; it now shows the effect of the conditional variance on the
dependent variable. In particular, note that the model postulates that the conditional variance ht
affects yt by a factor θ. The other two equations are as before.
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E X A M P L E 14.8 A GARCH-in-Mean Model for BYD

The returns to shares in BYD Lighting were reestimated as a
GARCH-in-mean model:

r̂t = 0.818 + 0.196ht

(t) (2.915)
ĥt = 0.370 + 0.295ê2

t−1 + 0.321dt−1ê2
t−1 + 0.278ĥt−1

(t) (3.426) (1.979) (2.678)
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(a) GARCH-in-mean: E(rt) = 0.818 + 0.196ht (b) GARCH-in-mean:
 ht = 0.370 + (0.295 + 0.321dt–1)e2   + 0.278ht–1 t–1

FIGURE 14.9 Estimated mean and variance of GARCH-in-mean model.

The results show that as volatility increases, the returns
correspondingly increase by a factor of 0.196. In other words,
this result supports the usual view in financial markets—high
risk, high return. The GARCH-in-mean model is shown in
Figures 14.9(a) and (b). Note that the expected mean return
is no longer a constant value, but rather has high values
(e.g., around observation 200) that coincide with higher
conditional variances.

One last point before we leave this section. The first equation of the GARCH-in-mean model
is sometimes written as a function of the time-varying standard deviation

√
ht, that is,

yt = β0 + θ
√

ht + et. This is because both measures—variance and standard deviation—are used
by financial analysts to measure risk. There are no hard-and-fast rules about which measure to
use. Exercise 14.8 illustrates the case when we use

√
ht. A standard t-test of significance is often

used to decide which is the more suitable measure.

14.4.4 Other Developments
The GARCH, T-GARCH, and GARCH-in-mean models are three important extensions of the
original ARCH concept developed by Engle in 1982. There have also been numerous other
variations, developed to handle complexities noted in the data, especially in high frequency
financial data. One variation, exponential GARCH (EGARCH), has stood the test of time.
This model is

ln
(
ht
)
= δ + β1 ln

(
ht−1

)
+ α

||||||

et−1√
ht−1

||||||
+ γ

(
et−1√
ht−1

)

where
(
et−1

/√
ht−1

)
are the standardized residuals. The model uses a log specification, which

ensures the estimated variance remains positive. It also includes two standardized residual terms,
with one of them in absolute form to facilitate the testing of the leverage effect. The leverage effect
refers to the generally observed negative correlation between an asset return and its volatility
changes. One potential explanation for this observation is that bad news has a bigger effect on



❦

❦ ❦

❦

626 CHAPTER 14 Time-Varying Volatility and ARCH Models

variance than good news. If γ ≠ 0, the effects of good/bad news are asymmetric; if γ < 0, negative
shocks have larger effects.

Another significant development is to allow the conditional distribution of the error term to
be non-normal. Because empirical distributions of financial returns generally exhibit fat tails and
clustering around zero, the t-distribution has become a popular alternative to the assumption of
normality. Also, regressors have been introduced in the variance equation to allow volatility to
depend on exogenous or predetermined variables. Shift (dummy) variables are especially popular
and have been used to allow for changes in political regimes.

14.5 Exercises

14.5.1 Problems
14.1 The ARCH model is sometimes presented in the following multiplicative form:

yt = β0 + et

et = zt
√

ht, zt ∼ N(0, 1)
ht = α0 + α1e2

t−1, α0 > 0, 0 ≤ α1 < 1

This form describes the distribution of the standardized residuals et
/√

ht as standard normal zt.
However, the properties of et are not altered.
a. Show that the conditional mean E

(
et|It−1

)
= 0.

b. Show that the conditional variance E
(
e2

t |It−1
)
= ht.

c. Show that et|It−1 ∼ N
(
0, ht

)
.

14.2 The equations of an ARCH-in-mean model are shown below:

yt = β0 + θht + et

et|It−1 ∼ N
(
0, ht

)

ht = δ + α1e2
t−1, δ > 0, 0 ≤ α1 < 1

Let yt represent the return from a financial asset and let et represent “news” in the financial market.
Now use the third equation to substitute out ht in the first equation, to express the return as

yt = β0 + θ
(
δ + α1e2

t−1
)
+ et

a. If θ is zero, what is Et
(
yt+1

)
, the conditional mean of yt+1? In other words, what do you expect

next period’s return to be, given information today?
b. If θ is not zero, what is Et

(
yt+1

)
? What extra information have you used here to forecast the return?

14.3 Consider the following T-ARCH model:

ht = δ + α1e2
t−1 + γdt−1e2

t−1

dt =
{

1 et < 0 (bad news)
0 et ≥ 0 (good news)

a. If γ is zero, what are the values of ht when et−1 = −1, when et−1 = 0, and when et−1 = 1?
b. If γ is not zero, what are the values of ht when et−1 = −1, when et−1 = 0, and when et−1 = 1? What

is the key difference between the case γ = 0 and γ ≠ 0?
14.4 The GARCH(1, 1) model shown below can also be reexpressed as an ARCH(q) model, where q is

a large number (in fact, infinity). Derive the ARCH form of a GARCH model using the method of
recursive substitution.

ht = δ + α1e2
t−1 + β1ht−1
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14.5 a. Let It−1 =
{

et−1, et−2,…
}

. Use the law of iterated iterations to show that E
(
et|It−1

)
= 0 implies

E
(
et
)
= 0.

b. Consider the variance model ht = E
(
e2

t |It−1
)
= α0 + α1e2

t−1. Use the law of iterated iterations to
show that, for 0 < α1 < 1, E

(
e2

t
)
= α0∕

(
1 − α1

)
.

c. Consider the variance model ht = E
(
e2

t |It−1
)
= δ + α1e2

t−1 + β1ht−1. Use the law of iterated itera-
tions to show that for 0 < α1 + β1 < 1, E

(
e2

t
)
= δ∕

(
1 − α1− β1

)
.

14.6 The estimates for the five models in Table 14.1 were obtained using monthly observations on returns
to U.S. Nasdaq stock prices from 1985M1 to 2015M12. Use each of the models to estimate the mean
and variance of returns for 2016M1.

T A B L E 14.1 Estimates from ARCH Models for U.S. Nasdaq Returns

Mean function
Constant 1.4567 1.1789 1.098 1.078 0.931
ht 0.006
Variance function
Constant 23.35 19.35 2.076 2.351 2.172
e2

t−1 0.4694 0.3429 0.1329 0.124 0.136
e2

t−2 0.1973
ht−1 0.8147 0.8006 0.8089
dt−1e2

t−1 0.0293

End-of-sample estimates
ê2015M12 −3.4388 −3.1610 −3.0803 −3.0605 −3.0760
ê2015M11 −0.3700 −0.0922 −0.0115 0.0083 −0.0296
ĥ2015M12 23.42 32.64 27.10 27.39 27.27

14.5.2 Computer Exercises
14.7 The data file share contains time-series data on the Straits Times share price index of Singapore.

a. Compute the time series of returns using the formula rt = 100 ln(yt∕yt−1), where yt is the share
price index. Generate the correlogram of returns up to at least order 12, since the frequency of the
data is monthly. Is there evidence of autocorrelation? If so, it indicates the presence of significant
lagged mean effects.

b. Square the returns and generate the correlogram of squared returns. Is there evidence of significant
lagged effects? If so, it indicates the presence of significant lagged variance effects.

14.8 The data file euro contains 204 monthly observations on the returns to the Euro share price index for
the period 1988M1 to 2004M12. A plot of the returns data is shown in Figure 14.10(a), together with
its histogram in Figure 14.10(b).
a. What do you notice about the volatility of returns? Identify the periods of big changes and the

periods of small changes.
b. Is the distribution of returns normal? Is this the unconditional, or conditional, distribution?
c. Perform a LM test for the presence of first-order ARCH and check that you obtain the following

results:
ê2

t = 20.509 + 0.237ê2
t−1 (T − 1)R2 = 11.431

(t) (3.463)

Is there evidence of ARCH effects?
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d. Estimate an ARCH(1) model and check that you obtain the following results:
r̂t = 0.879 ĥt = 20.604 + 0.230ê2

t−1
(t) (2.383) (10.968) (2.198)

Interpret the results.
e. A plot of the conditional variance is shown in Figure 14.10(c). Do the periods of high and low

conditional variance coincide with the periods of big and small changes in returns?

(b) Histogram of returns
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FIGURE 14.10 Graphs for Exercise 14.8.
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14.9 Monthly changes in the $US/$AUS exchange rate St for the period 1985M7 to 2010M6 are stored in
the file exrate5.
a. Plot the time series of the changes and their histogram. Are there periods of high volatility and

periods of low volatility? Does the unconditional distribution of the changes appear to be normally
distributed?

b. Estimate the GARCH(1, 1) model St = β0 + et,
(
et|It−1

)
∼ N

(
0, ht

)
and ht = δ + α1e2

t−1 + β1ht−1.
Comment on the results.

c. Estimate the conditional variance ht for each observation and create the series vt = êt

/√
ĥt where

êt are the residuals êt = St − β̂0. Create a histogram for the vt. Do they appear to be normally
distributed?

d. Forecast the conditional mean and variance for 2010M7 and 2010M8.
14.10 Figure 14.11 shows the weekly returns to the U.S. S&P 500 for the sample period January 1990 to

December 2004 (data file sp).
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FIGURE 14.11 Graphs for Exercise 14.10.

a. Estimate an ARCH(1) model and check that you obtain the following results:
r̂t = 0.197 ĥt = 3.442 + 0.253ê2

t−1
(t) (2.899) (22.436) (5.850)

What is the value of the conditional variance when the last period’s shock was positive,
et−1 = +1? What about when the last period’s shock was negative, et−1 = −1?
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b. Estimate a T-ARCH model and check that you obtain the following results:

r̂t = 0.147 ĥt = 3.437 +
(
0.123 + 0.268dt−1

)
ê2

t−1
(t) (2.049) (22.963) (2.330) (2.944)

c. What is the value of the conditional variance when the last period’s shock was positive,
et−1 = +1? When the last period’s shock was negative, et−1 = −1?

d. Is the asymmetric T-ARCH model better than the symmetric ARCH model in a financial econo-
metric sense? [Hint: Look at the statistical tests for significance.] Is the asymmetric T-ARCH
model better than the symmetric ARCH model in a financial economic sense? [Hint: Look at the
implications of the results.]

14.11 Figure 14.12 shows the daily term premiums between a 180-day bank bill rate and a 90-day bank rate
for the period July 1996 to December 1998 (data file term). Preliminary unit root tests confirm that
the series may be treated as a stationary series, although the value of ρ, the autocorrelation coefficient,
is quite high (about 0.9).
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FIGURE 14.12 Graphs for Exercise 14.11.
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a. Estimate a GARCH model and check that you obtain the following results:

r̂t = −2.272 ĥt = 1.729 + 0.719ê2
t−1 + 0.224ĥt−1

(t) (6.271) (6.282) (3.993)

b. Estimate a GARCH-in-mean model and check that you obtain the following results:

r̂t = −3.376 + 0.211
√

ht ĥt = 1.631 + 0.730ê2
t−1 + 0.231ĥt−1

(t) (2.807) (5.333) (6.327) (4.171)

What is the contribution of volatility to the term premium?
c. Is the GARCH-in-mean model better than the GARCH model in a financial econometric sense?

[Hint: Look at the statistical tests for significance.] Is the GARCH-in-mean model better than the
GARCH model in a financial economic sense? [Hint: Look at the implications of the results, in
particular the behavior of the term premium.] A plot of the expected term premium estimated for
parts (a) and (b) is shown in Figure 14.12.

14.12 The data file gold contains 200 daily observations on the returns to shares in a company specializing
in gold bullion for the period December 13, 2005, to September 19, 2006.
a. Plot the returns data. What do you notice about the volatility of returns? Identify the periods of

big changes and the periods of small changes.
b. Generate the histogram of returns. Is the distribution of returns normal? Is this the unconditional

or conditional distribution?
c. Perform a LM test for the presence of first-order ARCH.
d. Estimate a GARCH(1, 1) model. Are the coefficients of the correct sign and magnitude?
e. How would you use the estimated GARCH(1, 1) model to improve your forecasts of returns?

14.13 The seminal paper about ARCH by Robert Engle was concerned with the variance of UK inflation.
The data file uk contains seasonally adjusted data on the UK consumer price index (UKCPI) for the
sample period 1957M6 to 2006M6.
a. Compute the monthly rate of inflation (y) for the sample period 1957M7 to 2006M6 using the

formula
yt = 100

[UKCPIt − UKCPIt−1
UKCPIt−1

]

b. Estimate a T-GARCH-in-mean model and check that you obtain the following results:

ŷt = −0.407 + 1.983
√

ht

(t) (−2.862) (5.243)
ĥt = 0.022 +

(
0.211 − 0.221dt−1

)
e2

t−1 + 0.782ĥt−1

(t) (4.697) (8.952)(−8.728) (27.677)

c. The negative asymmetric effect (−0.221) suggests that negative shocks (such as falls in prices)
reduce volatility in inflation. Is this a sensible result for inflation?

d. What does the positive in-mean effect (1.983) tell you about inflation in the UK and volatility in
prices?

14.14 The data file warner contains daily returns to holding shares in Time Warner Inc. The sample period
is from January 3, 2008 to December 31, 2008 (260 observations), and a graph of the returns appears
in Figure 14.13.
a. Estimate a GARCH(1, 1) model and an ARCH(5) model. Which model would you prefer, and

why?
b. What is the expected return next period? The expected volatility next period?
c. Use your preferred model to forecast next period’s return and next period’s volatility.
d. Do good news and bad news have the same effect on return? On volatility?
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FIGURE 14.13 Returns to shares in Time Warner.

14.15 Consider the quarterly rates of growth contained in data file gfc used in Exercise 13.14. A researcher
in the Euro Area (this is the group of countries in Europe where the Euro currency is the legal tender)
is interested in testing the proposition that growth in the Euro region is affected by its own history,
growth in the United States, and shocks to economic activity.
a. Specify and estimate an econometric model for the Euro Area based only on its own history and

where the expected effect of shocks on the expected quarterly rate of growth is zero.
b. Specify and estimate an econometric model for the Euro Area based only on its own history and

where shocks may come from distributions with zero mean, but time-varying variances.
c. Specify and estimate an econometric model for the Euro Area based on its own history, the history

of growth in the United States, and where the expected effect of shocks on the expected quarterly
rate of growth is zero.

d. Specify and estimate an econometric model for the Euro Area based on its own history and allow
shocks in the Euro Area to have an effect of zero on the quarterly rate of growth.

e. Specify and estimate an econometric model for the Euro Area based on its own history, the history
of growth in the United States, and where shocks in the Euro Area and in the United States have
an effect on the expected quarterly rate of growth.

14.16 The data file shanghai contains data on the daily returns to the Shanghai Stock Exchange Composite
Index from July 7, 1995 to May 5, 2015.
a. Plot the time series of returns and their histogram. For what observations is volatility the great-

est? Describe the shape of the distribution of returns. Does the Jarque–Bera test reject the null
hypothesis that returns are normally distributed?

b. Estimate the GARCH model
yt = β0 + et

(
et|It−1

)
∼ N

(
0, ht

)
ht = δ + α1e2

t−1 + β1ht−1

Comment on the results. Plot the within-sample variance estimate ĥt. Have the variance estimates
captured the periods of high volatility noted in part (a)?

c. For the model estimated in part (b), compute the series zt = êt

/√
ĥt. Does a histogram for the zt

suggest the assumption zt ∼ N(0, 1) is valid? Does the Jarque–Bera test support this assumption?
d. When the normality assumption is violated, the ordinary standard errors are not valid. How-

ever, valid robust standard errors can be used.1 Re-estimate the model in part (b) using the
Bollerslev–Wooldridge robust standard errors. Does using these standard errors change any
conclusions are about the precision of estimation?

............................................................................................................................................................
1See Bollerslev, T. and Wooldridge, J. (1992), “Quasi-Maximum Likelihood Estimation and Inference in Dynamic
Models with Time Varying Covariances,” Econometric Reviews, 11, 143–172.
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e. Estimate the EGARCH model

yt = β0 + et
(
et|It−1

)
∼ N

(
0, ht

)
ln
(
ht
)
= δ + β1ln

(
ht−1

)
+ α

||||||

et−1√
ht−1

||||||
+ γ

(
et−1√
ht−1

)

Comment on the results. Plot the within-sample variance estimate ĥt. Have the variance estimates
captured the periods of high volatility noted in part (a)?

f. For the model estimated in part (e), compute the series zt = êt

/√
ĥt. Does a histogram for the zt

suggest the assumption zt ∼ N(0, 1) is valid? Does the Jarque–Bera test support this assumption?
g. Reestimate the model in part (e) using the Bollerslev–Wooldridge standard errors. Does using

these standard errors change any conclusions about the precision of estimation?
h. Find and compare estimates of E

(
yT+1|IT

)
and var

(
yT+1|IT

)
from the models in parts (b) and (e).

i. Using the model from part (b), and Bollerslev–Wooldridge variance and covariance estimates,
find 95% interval estimates for E

(
yT+1|IT

)
and var

(
yT+1|IT

)
.
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