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CHAPTER 12

Regression with
Time-Series Data:
Nonstationary Variables

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain the differences between stationary and
nonstationary time-series processes.

2. Describe the general behavior of an
autoregressive process and a random walk
process.

3. Explain why we need ‘‘unit root’’ tests, and state
implications of the null and alternative
hypotheses.

4. Explain what is meant by the statement that a
series is ‘‘integrated of order one’’ or I(1).

5. Perform Dickey–Fuller and augmented
Dickey–Fuller tests for stationarity.

6. Explain the meaning of a ‘‘spurious regression.’’

7. Explain the concept of cointegration and test
whether two series are cointegrated.

8. Explain how to choose an appropriate model for
regression analysis with time-series data.

K E Y W O R D S
autoregressive process
cointegration
Dickey–Fuller test
difference stationary
mean reversion
nonstationary

order of integration
random walks
random walk with drift
spurious regressions
stationary
stochastic process

stochastic trend
tau statistic
trend stationary
unit root tests

The analysis of time-series data is of vital interest to many groups, such as macroeconomists
studying the behavior of national and international economies, finance economists analyzing the
stock market, and agricultural economists predicting supplies and demands for agricultural prod-
ucts. For example, if we are interested in forecasting the growth of gross domestic product or
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inflation, we look at various indicators of economic performance and consider their behavior
over recent years. Alternatively, if we are interested in a particular business, we analyze the his-
tory of the industry in an attempt to predict potential sales. In each of these cases, we are analyzing
time-series data.

We worked with time-series data in Chapter 9 and discovered how regression models for
these data often have special characteristics designed to capture their dynamic nature. We saw
how including lagged values of the dependent variable or explanatory variables as regressors,
or considering lags in the errors, can be used to model dynamic relationships. We showed how
autoregressive distributed lag (ARDL) models can be used for forecasting and for computing
dynamic multpliers. An important assumption that was maintained throughout Chapter 9 was
that the variables are stationary and weakly dependent. They have means and variances that
do not change over time, and autocorrelations that depend on the time between observations, not
on the actual time of the observation. Also, their autocorrelations die out, eventually becoming
negligible, as the distance between observations increases. There are, however, many economic
time series that are not stationary—their means and/or variances change over time—and which
exhibit strong dependence—their autocorrelations do not die out or they decline very slowly. In
this chapter, we investigate the nature of nonstationary variables, examine the consequences
of using them in regression analysis, introduce tests for stationarity, and learn how to model
regression relationships that involve nonstationary variables. One important new concept that we
encounter and which has a bearing on our choice of a regression model is cointegration. The
widespread use of cointegration and its relevance for many economic time series led to a joint
award of the 2003 Nobel Prize in Economics to its developer Clive W.J. Granger.1

12.1 Stationary and Nonstationary Variables
To illustrate the characteristics of nonstationary variables and appreciate their widespread rele-
vance, we begin by examining some important economic variables for the U.S. economy.

E X A M P L E 12.1 Plots of Some U.S. Economic Time Series

On the left-hand side of Figure 12.1, we display plots of real
gross domestic product (a measure of aggregate economic
production), the annual inflation rate (INF) (a measure of
changes in the aggregate price level), the federal funds rate
(FFR) (the interest rate on overnight loans between banks),
and the three-year bond rate (BR) (interest rate on a financial
asset to be held for three years). The data on gross domestic
product (GDP) are quarterly from 1984Q1 to 2016Q4; they
can be found in the data file gdp5. The data on inflation and
the two interest rates are monthly from 1954M8 to 2016M12;
they are stored in the data file usdata5. FFR and BR are used
for several examples later in the Chapter. Observe how the
GDP variable displays upward trending behavior, while
the other series “wander up and down” with no discernable
pattern or trend.

The figures on the right-hand side of Figure 12.1 are
the changes of the corresponding variables on the left-hand

side. Recall that we used changes in variables for several of
our examples and exercises in Chapter 9. The change in a
variable is a particularly important concept used repeatedly
in this chapter; it is worth dwelling on its definition. The
change in a variable yt, also known as its first difference,
is given by Δyt = yt − yt−1. It is the change in the value of
the variable y from period t − 1 to period t. The time series
of the changes on the right-hand side of Figure 12.1 display
behavior that can be described as irregular ups and downs or
more like fluctuations. Changes in the inflation rate and the
two interest rates appear to fluctuate around a constant value,
approximately zero. Changes in the GDP variable appear to
fluctuate around a nonzero value, with a big dip at the time
of the global financial crisis. The first question we address
in this chapter is: Which data series represent stationary
variables and which are observations on nonstationary
variables?

............................................................................................................................................
1See https://www.britannica.com/biography/Clive-Granger. The corecipient of the 2003 Nobel Prize in Economics was
Robert F. Engle whose contribution we consider in Chapter 14.



❦

❦ ❦

❦

12.1 Stationary and Nonstationary Variables 565

6

8

10

12

14

16

18

84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16

(a) Real gross domestic product (GDP), $trillion (quarterly)

–0.4

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16

(b) Change in GDP (quarterly)

–4

0

4

8

12

16

55 60 65 70 75 80 85 90 95 00 05 10 15

(c) Inflation, percent (monthly)

–3

–2

–1

0

1

2

3

55 60 65 70 75 80 85 90 95 00 05 10 15

(d ) Change in inflation (monthly)

0

4

8

12

16

20

55 60 65 70 75 80 85 90 95 00 05 10 15

(e) Federal funds rate, percent (monthly)

FFR

INF

–8

–6

–4

–2

0

2

4

55 60 65 70 75 80 85 90 95 00 05 10 15

( f ) Change in the federal funds rate (monthly)

0

4

8

12

16

20

55 60 65 70 75 80 85 90 95 00 05 10 15

(g ) Three-year bond rate, percent (monthly)

BR

–3

–2

–1

0

1

2

55 60 65 70 75 80 85 90 95 00 05 10 15

(h ) Change in the bond rate (monthly)

FIGURE 12.1 U.S. Economic Time Series.
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Recall that a stationary time series yt has mean and variance that are constant over time, and
that the covariance (and autocorrelations) between two values from the series depends only on
the length of time separating the two values, and not on the actual times at which the values are
observed, that is,

E
(
yt
)
= μ (constant mean) (12.1a)

var
(
yt
)
= σ2 (constant variance) (12.1b)

cov
(
yt, yt+s

)
= cov

(
yt, yt−s

)
= γs (covariance depends on s, not t) (12.1c)

Let us focus on the first condition, that of a constant mean. To investigate whether the means
of the series in Figure 12.1 change over time, we divide the observations into two approximately
equal subsamples, and compute the sample means for each of these subsamples. They are reported
in Table 12.1. Examining the entries in this Table, as well as the plots in Figure 12.1, it is clear
that the means of the variables expressed in terms of their original levels do change over time. In
Figure 12.1(a), GDP exhibits a clear trend upward leading to a larger mean in the second half of the
sample. The other three variables (Figures 12.1(c), (e), and (g)) wander up and then down, making
the sample means very sensitive to the period selected. When the sample is divided into two equal
parts, more large values appear in the first half of the sample, making the means in that half larger
than those in the second half. These characteristics are typical of nonstationary variables. On the
other hand, the first differences of the variables (their changes) in Figures 12.1(b), (d), (f ), and
(h) do not exhibit obvious trends. Their means for the two subsamples are similar in magnitude,
particularly when viewed relative to magnitude of their quarter-to-quarter fluctuations. Having a
constant mean and fluctuations in the series that tend to return to the mean are characteristics of
stationary variables. They have the property of mean reversion.

Another characteristic of nonstationary variables is that their sample autocorrelations remain
large at long lags. Stationary weakly dependent series have autocorrelations that cut off or tend to
decline geometrically, dying out at long lags. The sample autocorrelations of nonstationary series
exhibit strong dependence. They decline linearly rather than geometrically and are still signif-
icant at long lags. As an example, in Figure 12.2, the correlograms for GDP and its change are
displayed. The autocorrelations for GDP decline very slowly and continue to be significant, well
above the 5% significance bound of 0.17, even at lag 24, an indication that GDP is nonstationary.
On the other hand, for the change in GDP, only the first two autocorrelations are significant before
the remainder become negligible, suggesting that ΔGDP is stationary.

T A B L E 12.1 Sample Means of Time Series Shown in Figure 12.1

Sample Periods
GDP 1948Q2 to 2000Q3 2000Q4 to 2016Q4
INF, BR,

Variable FFR 1954M8 to 1985M10 1985M11 to 2016M12
Real GDP (a) 9.56 14.68
Inflation rate (c) 4.42 2.59
Federal funds rate (e) 6.20 3.65
Bond rate (g) 6.56 4.29

Change in GDP (b) 0.083 0.065
Change in the inflation rate (d) 0.01 −0.003
Change in the federal funds rate (f ) 0.02 −0.02
Change in the bond rate (h) 0.02 −0.02
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FIGURE 12.2 Correlograms for GDP and the change in GDP.

Plotting a series, examining whether its mean changes over time, and checking its sample autocor-
relations give some indication of whether a series is stationary or nonstationary, but these checks
are not conclusive, and they lack the rigor of a formal hypothesis test. Also, our discovery that
series with nonstationary characteristics have stationary characteristics after first differencing is
a common occurrence, but it is not universal and it needs verification. Formal testing for station-
arity is introduced in Section 12.3. Before then, we discuss modeling series with trends and the
consequences of nonstationarity for least-squares regressions.

12.1.1 Trend Stationary Variables
In Example 12.1, we saw how GDP has a definite trend, making it nonstationary, and that the
other variables—inflation and the two interest rates—tend to wander up and down, another char-
acteristic of nonstationary variables. Nonstationary variables that wander up and down, trend-
ing in one direction and then the other, are said to possess a stochastic trend. Definite trends,
upward or downward, can be attributable to a stochastic trend or a deterministic trend, and
sometimes both. Variables that are stationary after “subtracting out” a deterministic trend are
called trend stationary. In this Section, we consider the notion of a deterministic trend, how it
relates to the concept of trend stationarity, and the modeling of regression relationships involving
trend stationary variables. Stochastic trends are introduced in Section 12.1.3.

The simplest model for a deterministic trend for a variable y is the linear trend model

yt = c1 + c2 t + ut (12.2)

where t = 1, 2,… ,T . If we focus just on the trend and assume any change in the error is zero(
Δut = ut − ut−1 = 0

)
, then the coefficient c2 gives the change in y from a one period to the next

yt − yt−1 =
(
c1 + c2 t

)
−
[
c1 + c2 (t − 1)

]
+ Δut = c2

The “time variable” t does not necessarily have to start at “1” and increase in increments of “1”.
Redefining it using a linear transformation, say t∗ = a + bt, simply changes the values for c1 and
c2 and changes the interpretation of c2 if b ≠ 0. The trend c1 + c2 t is called a deterministic trend
because it does not contain a stochastic (random) component. The variable yt is trend stationary
if its fluctuations around this trend are stationary. Since these fluctuations are given by changes
in the error term

ut = yt −
(
c1 + c2 t

)
(12.3)

yt is trend stationary if ut is stationary.
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When yt is trend stationary, we can use least squares to find estimates ĉ1 and ĉ2 from
(12.2) and then convert the trend stationary variable yt to a stationary variable ût by removing
the trend:

ût = yt −
(
ĉ1 + ĉ2 t

)
(12.4)

If we are considering a regression or an ARDL model involving two trend stationary variables,
say yt and xt, then, after their trends have been removed, making them stationary, their relationship
can be estimated within the framework of Chapter 9.

To explore this notion further, suppose yt = c1 + c2 t + ut and xt = d1 + d2 t + vt are trend
stationary variables; both ut and vt are stationary. To estimate a relationship between yt and xt,
we first remove their trends: ỹt = yt −

(
ĉ1 + ĉ2 t

)
and x̃t = xt −

(
d̂1 + d̂2 t

)
where ĉ1, ĉ2, d̂1 and d̂2

are the least-squares estimates from the respective trends. We have used the notation ỹt and x̃t
instead of ût and v̂t in line with that used in the FWL theorem introduced in Section 5.2.4. If we
hypothesize that changes in y around its trend are related to changes in x around its trend, without
any lags, a suitable linear model is

ỹt = βx̃t + et (12.5)

An intercept can be omitted because ỹt and x̃t are OLS residuals with zero means. Now, we know
from the FWL theorem that the OLS estimate of β from (12.5) is identical to the OLS estimate
of β from the equation

yt = α1 + α2 t + βxt + et (12.6)

Thus, when y and x are trend stationary, we can estimate a relationship between them by first
removing the trends or by including a trend variable in the equation.

With trend stationary variables in more general ARDL models, we can proceed in a similar
way, estimating either

ỹt =
p∑

s=1
θsỹt−s +

q∑
r=0
δr x̃t−r + et (12.7)

or
yt = α1 + α2 t +

p∑
s=1
θsyt−s +

q∑
r=0
δr xt−r + et (12.8)

Assuming we create ỹt−s and x̃t−r by lagging ỹt and x̃t, not by separately detrending every lag of
y and x, there will be some slight differences in the estimates from (12.7) and (12.8).

Because trend stationary variables do not introduce any special problems providing a trend
is included or the variables are detrended, they are often simply referred to as “stationary,”
although, strictly speaking, they are not stationary because their means change over time. Also,
it is important not to ignore any trend. Estimating the model yt = α1 + βxt + et when both
yt and xt have deterministic trends can suggest a significant relationship between yt and xt even
when none exists.

It is useful to pause at this point to emphasize what we have established and what we have not
yet covered. We have discovered that regression relationships between trend stationary variables
can be modeled by removing the deterministic trend from the variables, making them stationary,
or by including the deterministic trend directly in the equation. What we have not yet covered is
how to distinguish between deterministic trends and stochastic trends and how to model regres-
sion relationships between nonstationary variables with stochastic trends. In Example 12.1, GDP
had an obvious trend. We do not yet know whether this trend is deterministic or stochastic, or how
it should be modeled within a regression framework. We address these questions in the upcom-
ing sections, but first it is useful to note that the linear trend in (12.2) is not the only possible
deterministic trend, and to give an example.
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Other Trends Another popular trend is one where, on average, a variable is growing at a
constant percentage rate. If we momentarily ignore the error term, then, for a proportional change
a2, we have yt = yt−1 + a2yt−1, or, in percentage terms,

100 ×
(yt − yt−1

yt−1

)
= 100a2

Recognizing that
(
yt − yt−1

)
∕yt−1 can be approximated by Δln

(
yt
)
= ln

(
yt
)
− ln

(
yt−1

)
, we have

ln
(
yt
)
− ln

(
yt−1

)
≅ %Δyt = 100a2

A model with this property, with an error term included, is
ln
(
yt
)
= a1 + a2 t + ut (12.9)

In this case. the deterministic trend for yt is exp
(
a1 + a2 t

)
, and ln(yt) will be trend stationary if

ut is stationary. This model was introduced earlier in Section 4.5.1 in the context of modeling
increases in wheat yield that are attributable to technological change. It may pay to go back and
reread that Section now; it will give you more insights into the constant growth rate model.

The deterministic trend models in (12.2) and (12.9) are the most common, but others are
possible. In Section 4.4.2, the cubic trend yt = β1 + β2 t3 + et was used to model wheat yield. In
Exercises 5.21 and 5.22, the interaction variable TREND × RAIN was included. A quadratic trend
was used to model a decreasing and then increasing income share in Exercises 6.28 and 6.29.
However, most deterministic trends tend to be continuously increasing or decreasing in which
case quadratic or cubic trends that eventually turn up or down may not be well suited. A restricted
range of the curve may fit the data well for the sample period, but outside this range a quadratic
or cubic may be unrealistic. For this reason, the deterministic trends implied by (12.2) and (12.9)
are the most popular.

E X A M P L E 12.2 A Deterministic Trend for Wheat Yield

Scientists are continually working on ways to increase global
food production to keep pace with a growing world popu-
lation. One small contribution to this effort is the work of
agronomists who develop new varieties of wheat to increase
wheat yield. In the Toodyay Shire of Western Australia,
we expect wheat yield to be trending upward over time
reflecting the development of new varieties. However, wheat
growing in Western Australia is a risky business. Its success
depends heavily on rainfall, which is not always reliable.

(a)  ln(YIELD) (b)  RAIN
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FIGURE 12.3 Plots of time series for wheat yield example.

Thus, we expect yield to fluctuate around an increasing trend.
Data on annual wheat yield and rainfall during the growing
season for the Toodyay Shire, from 1950 to 1997, can be
found in the data file toody5. For wheat yield, we use the
constant growth rate trend ln

(
YIELDt

)
= a1 + a2 t + ut. The

observations for ln(YIELDt) are plotted in Figure 12.3(a),
along with the linear trend line. The observations fluctuate
around the increasing trend with a particularly bad year
in 1969. Examining the rainfall data in Figure 12.3(b), we
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discover there is a slight downward trend and very little
rainfall in 1969.

It turns out that there are decreasing returns to rainfall
and so we include RAIN2 as well as RAIN in the model, lead-
ing to the following estimated equation

ln
(
YIELDt

)
= −2.510 + 0.01971t + 1.149RAINt

(se) (0.00252) (0.290)
− 0.1344RAIN2

t + êt
(0.0346) (12.10)

The other alternative is to detrend ln(YIELD), RAIN, and
RAIN2 and to estimate the detrended model. First, estimating
the trends, we obtain

ln
(
YIELDt

)⋀

= −0.1801 + 0.02044 t
(se) (0.00276)

RAIN
⋀

t = 4.408 − 0.01522 t
(se) (0.00891)

RAIN2
t

⋀

= 20.35 − 0.1356 t
(se) (0.0747)

The first two equations describe the trend lines in
Figure 12.3. After computing RRAINt = RAINt − RAIN

⋀

t,
RRAIN2 t = RAIN2

t − RAIN2
t

⋀

, and RLYIELDt = ln
(
YIELDt

)
−

ln
(
YIELDt

)⋀

, we obtain

RLYIELD
⋀

t = 1.149RRAINt − 0.1344RRAIN2 t
(se) (0.284) (0.0339) (12.11)

Notice the estimates in (12.10) and (12.11) are identical, but
the standard errors are not. The standard error discrepancy
arises from the different degrees of freedom used to estimate
the error variance. In (12.10), it is 48 − 4 = 44; in (12.11),
it is 48 − 2 = 46. We can correct the standard errors in
(12.11) by multiplying them by

√
46∕44 = 1.022. In large

samples, the difference will be negligible. The legitimacy
of the estimates in (12.10) and (12.11) depends on the
assumption that ln(YIELD), RAIN, and RAIN2 are trend
stationary. This assumption can be checked using the hypoth-
esis testing machinery that is developed in Section 12.3
(see Exercise 12.16).

12.1.2 The First-Order Autoregressive Model
To develop a framework for modeling nonstationary variables that possess a stochastic trend, we
begin by revising the first-order autoregressive AR(1) model that was introduced in Chapter 9.

The econometric model generating a time-series variable yt is called a stochastic or random
process. A sample of observed yt values is called a particular realization of the stochastic
process. It is one of many possible paths that the stochastic process could have taken. Univariate
time-series models are examples of stochastic processes where a single variable y is related
to past values of itself and current and past error terms. In contrast to regression modeling,
univariate time-series models do not contain any explanatory variables (no x’s).

The AR(1) model is a useful univariate time-series model for explaining the difference
between stationary and nonstationary series. We first consider an AR(1) model with a zero mean
given by

yt = ρyt−1 + vt, |ρ| < 1 (12.12)

where the errors vt are independent, with zero mean and constant variance σ2
v , and may be

normally distributed. In the context of time-series models, the errors are sometimes known as
“shocks” or “innovations.” As we will see, the assumption |ρ| < 1 implies that yt is stationary.
The AR(1) process shows that each realization of the random variable yt contains a proportion ρ
of last period’s value yt−1 plus an error vt drawn from a distribution with mean zero and variance
σ2

v . Since we are concerned with only one lag, the model is described as an autoregressive
model of order one. In general, an AR( p) model includes lags of the variable yt up to yt−p. An
example of an AR(1) time series with ρ = 0.7 and independent N(0, 1) random errors is shown
in Figure 12.4a. Note that the data have been artificially generated. Observe how the time series
fluctuates around zero and has no trend-like behavior, a characteristic of stationary series.



❦

❦ ❦

❦

12.1 Stationary and Nonstationary Variables 571

–6

–4

–2

0

2

4

6

50 100 150 200 250 300 350 400 450 500

(a) yt = 0.7yt–1 + vt

(e) yt = 0.1 + yt–1 + vt

(d) yt = yt–1 + vt

(b) yt = 1 +  0.7yt–1 + vt

–2

0

2

4

6

8

10

50 100 150 200 250 300 350 400 450 500

0

4

8

12

16

20

24

50 100 150 200 250 300 350 400 450 500
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FIGURE 12.4 Time-series models.

The value “zero” is the constant mean of the series, and it can be determined by doing some
algebra known as recursive substitution.2 Consider the value of y at time t = 1, then its value at
time t = 2, and so on. These values are

............................................................................................................................................
2An alternative to recursive substitution when the variable is stationary is to use the lag operator algebra discussed in
Section 9.5.4.
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y1 = ρy1 + v1
y2 = ρy1 + v2 = ρ

(
ρy0 + v1

)
+ v2 = ρ2y0 + ρv1 + v2

⋮
yt = vt + ρvt−1 + ρ2vt−2 + · · · + ρty0

The mean of yt is
E
(
yt
)
= E

(
vt + ρvt−1 + ρ2vt−2 + · · ·

)
= 0

since the error vt has zero mean, and the value of ρty0 is negligible for a large t. In Appendix 9B,
the variance was shown to be a constant σ2

v
/(

1 − ρ2), while the covariance between two errors
s periods apart γs is σ2

vρ
s/(1 − ρ2). Thus, the AR(1) model in (12.12) is a classic example of a

stationary process with a zero mean.
Real-world data rarely have a zero mean. We can introduce a nonzero mean μ by replacing

yt in (12.12) with
(
yt – μ

)
as follows:

(
yt − μ

)
= ρ

(
yt−1 − μ

)
+ vt

which can then be rearranged as

yt = α + ρyt−1 + vt, |ρ| < 1 (12.13)

where α = μ(1 – ρ), that is, we can accommodate a nonzero mean in yt by either working with
the “demeaned” variable

(
yt − μ

)
or introducing the intercept term α in the autoregressive pro-

cess of yt as in (12.13). Corresponding to these two ways, we describe the “de-meaned” variable(
yt – μ

)
as being stationary around zero, or the variable yt as stationary around its mean value

μ = α∕(1 – ρ).
An example of a time series that follows this model, with α = 1, ρ = 0.7 is shown in

Figure 12.4(b). We have used the same values of the error vt as in Figure 12.4(a), so the figure
shows the added influence of the constant term. Note that the series now fluctuates around a
nonzero value. This nonzero value is the constant mean of the series

E
(
yt
)
= μ = α∕(1 − ρ) = 1∕(1 − 0.7) = 3.33

Another extension to (12.12) is to consider an AR(1) model fluctuating around a linear trend
(μ + δt). In this case, we let the “detrended” series (yt – μ – δt) behave like an autoregressive
model (

yt − μ − δt
)
= ρ

[
yt−1 − μ − δ(t − 1)

]
+ vt, |ρ| < 1

which can be rearranged as
yt = α + ρyt−1 + λt + vt (12.14)

where α =
[
μ(1 – ρ) + ρδ

]
and λ = δ(1 – ρ). For |ρ| < 1, equation (12.14) is an example of a

trend-stationary process. Figure 12.4(c) displays a plot of this process for parameters ρ = 0.7,
α = 1, and λ = 0.01. The detrended series

(
yt − μ − δt

)
has a constant variance, and covariances

that depend only on the time separating observations, not the time at which they are observed.
In other words, the detrended series is stationary; yt is stationary around the deterministic trend
line μ + δt.

12.1.3 Random Walk Models
Consider the special case of ρ = 1 in (12.12):

yt = yt−1 + vt (12.15)
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This model is known as the random walk model. Equation (12.15) shows that each realization
of the random variable yt contains last period’s value yt−1 plus an error vt. An example of a time
series that can be described by this model is shown in Figure 12.4(d). These time series are called
random walks because they appear to wander slowly upward or downward with no real pattern;
the values of sample means calculated from subsamples of observations will be dependent on the
sample period, a characteristic of nonstationary series.

We can understand the “wandering” behavior of random walk models by doing some recur-
sive substitution.

y1 = y0 + v1

y2 = y1 + v2 =
(
y0 + v1

)
+ v2 = y0 +

2∑
s=1

vs

⋮

yt = yt−1 + vt = y0 +
t∑

s=1
vs

The random walk model contains an initial value y0 (often set to zero because it is so far in the
past that its contribution to yt is negligible) plus a component that is the sum of the past stochastic
terms ∑t

s=1vs. This latter component is called the stochastic trend. This term arises because a
stochastic component vt is added for each time t, and because it causes the time series to trend in
unpredictable directions. If the variable yt is subjected to a sequence of positive shocks, vt > 0,
followed by a sequence of negative shocks, vt < 0, it will have the appearance of wandering
upward, then downward.

We have used the fact that yt is a sum of errors to explain graphically the nonstationary nature
of the random walk. We can also use it to show algebraically that the conditions for stationarity
do not hold. Recognizing that the vt are independent with zero means and identical variances σ2

v ,
taking the expectation and the variance of yt yields, for a fixed initial value y0,

E
(
yt
)
= y0 + E

(
v1 + v2 + · · · + vt

)
= y0

var
(
yt
)
= var

(
v1 + v2 + · · · + vt

)
= tσ2

v

The random walk has a mean equal to its initial value and a variance that increases over time,
eventually becoming infinite. Although the mean is constant, the increasing variance implies that
the series may not return to its mean, and so sample means taken for different periods are not
the same.

Another nonstationary model is obtained by adding a constant term to (12.15):

yt = δ + yt−1 + vt (12.16)

This model is known as the random walk with drift. Equation (12.16) shows that each realization
of the random variable yt contains an intercept (the drift component δ) plus last period’s value yt−1
plus the error vt. An example of a time series that can be described by this model (with δ = 0.1)
is shown in Figure 12.4(e). Notice how the time-series data appear to be “wandering” as well as
“trending” upward. In general, random walk with drift models show definite trends either upward
(when the drift δ is positive) or downward (when the drift δ is negative).

Again, we can get a better understanding of this behavior by applying recursive substitution:

y1 = δ + y0 + v1

y2 = δ + y1 + v2 = δ +
(
δ + y0 + v1

)
+ v2 = 2δ + y0 +

2∑
s=1

vs

⋮

yt = δ + yt−1 + vt = tδ + y0 +
t∑

s=1
vs

The value of y at time t is made up of an initial value y0, the stochastic trend component
(∑t

s=1vs
)
,

and now a deterministic trend component tδ. It is called a deterministic trend because a fixed value
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δ is added for each time t. The variable y wanders up and down as well as increases by a fixed
amount at each time t. The mean and variance of yt are

E
(
yt
)
= tδ + y0 + E

(
v1 + v2 + v3 + · · · + vt

)
= tδ + y0

var
(
yt
)
= var

(
v1 + v2 + v3 + · · · + vt

)
= tσ2

v

In this case, both the constant mean and constant variance conditions for stationarity are violated.
We can extend the random walk model even further by adding a time trend:

yt = α + δt + yt−1 + vt (12.17)

An example of a time series that can be described by this model (with α = 0.1; δ = 0.01) is shown
in Figure 12.4(f). Note how the addition of a time-trend variable t strengthens the trend behavior.
We can see the amplification using the same algebraic manipulation as before:

y1 = α + δ + y0 + v1

y2 = α + δ2 + y1 + v2 = α + 2δ +
(
α + δ + y0 + v1

)
+ v2 = 2α + 3δ + y0 +

2∑
s=1

vs

⋮

yt = α + δt + yt−1 + vt = tα +
(

t(t + 1)
2

)
δ + y0 +

t∑
s=1

vs

where we have used the formula for a sum of an arithmetic progression,

1 + 2 + 3 + · · · + t = t(t + 1)∕2

The additional term has the effect of strengthening the trend behavior.
To recap, we have considered the autoregressive class of models and have shown that they

display properties of stationarity when |ρ| < 1. We have also discussed the random walk class of
models when ρ = 1. We showed that random walk models display properties of nonstationarity.
Now, go back and compare the real-world data in Figure 12.1 with those in Figure 12.4. Ask
yourself what models might have generated the different data series in Figure 12.1. In the next
few sections we shall consider how to test which series in Figure 12.1 exhibit properties associated
with stationarity, as well as which series exhibit properties associated with nonstationarity.

12.2 Consequences of Stochastic Trends
In Section 12.1.2, we noted that regressions involving variables with a deterministic trend, and
no stochastic trend, did not present any difficulties providing the trend was included in the regres-
sion relationship, or the variables were detrended. Allowing for the trend was important because
excluding it could lead to omitted variable bias. Now we consider the implications of estimating
regressions involving variables with stochastic trends. In this context, because stochastic trends
are the most prevalent source of nonstationarity, and they introduce special problems, when we
refer to nonstationary variables, we will generally mean variables that are neither stationary nor
trend stationary.

A consequence of proceeding with the regression involving nonstationary variables with
stochastic trends is that OLS estimates no longer have approximate normal distributions in large
samples. That means interval estimates and hypothesis tests will no longer be valid. Precision of
estimation may not be what it seems to be and conclusions about relationships between variables
could be wrong. One particular hazard is that two totally independent random walks can appear
to have a strong linear relationship when none exists. Outcomes of this nature have been given
the name spurious regressions.
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E X A M P L E 12.3 A Regression with Two Random Walks

To illustrate the spurious regression problem, consider the
following two independent random walks:

rw1∶yt = yt−1 + v1t

rw2∶xt = xt−1 + v2t

where v1t and v2t are independent N(0, 1) random errors. Two
such series are shown in Figure 12.5(a)—the data are in the
data file spurious. These series were generated independently
and, in truth, have no relation to one another, yet when we plot
them, as we have done in Figure 12.5(b), we see a positive
relationship between them. If we estimate a simple regres-
sion of series one (rw1) on series two (rw2), we obtain the
following results:

rw1t = 17.818 + 0.842rw2t, R2 = 0.70
(t) (40.837)
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FIGURE 12.5 Time series and scatter plot of two random walk
variables.

This result suggests that the simple regression model fits
the data well (R2 = 0.70) and that the estimated slope is
significantly different from zero. In fact, the t-statistic is
huge! These results are, however, completely meaningless,
or spurious. The apparent significance of the relationship
is false. It results from the fact that we have related one
series with a stochastic trend to another series with another
stochastic trend. In fact, these series have nothing in
common, nor are they causally related in any way. Similar
and more dramatic results are obtained when random walk
with drift series are used in regressions. Typically the
residuals from such regressions will be highly correlated.
For this example, the LM test value to test for first-order
autocorrelation ( p-value in parenthesis) is 682.958 (0.000);
a sure sign that there is a problem with the regression.
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To summarize, when nonstationary time series are used in a regression model, the results may
spuriously indicate a significant relationship when there is none. In these cases the least-squares
estimator and least-squares predictor do not have their usual properties, and t-statistics are not
reliable. Since many macroeconomic time series are nonstationary, it is particularly important to
take care when estimating regressions with macroeconomic variables.

There are also important policy considerations for distinguishing between stationary and non-
stationary variables. With nonstationary variables each error or shock vt has a lasting effect, and
these shocks accumulate. With stationary variables the effect of a shock eventually dies out and
the variable returns to its mean. Whether a change in a macroeconomic variable has a permanent
or transitory effect is essential information for policy makers.

How then can we test whether a series is stationary or nonstationary, and how do we conduct
regression analysis with nonstationary data? The former is discussed in Section 12.3, while the
latter is considered in Section 12.4.

12.3 Unit Root Tests for Stationarity
There are many tests for assessing whether a series is stationary or nonstationary. The most pop-
ular one, and the one that we discuss in detail, is the Dickey–Fuller test for a unit root. What do
we mean by a “unit root”? Because you will hear this term frequently when nonstationary time
series are being discussed, it is useful to digress for a moment to explain its origin.

12.3.1 Unit Roots
We have seen that in the AR(1) model yt = α + ρyt−1 + vt, yt is stationary if |ρ| < 1 and nonsta-
tionary if ρ = 1. We also say that yt has a unit root if ρ = 1, but to appreciate the origin of the term,
we need to consider the more general AR(p) model yt = α + θ1yt−1 + θ2yt−2 + · · · + θpyt−p + vt.
In this model, yt is stationary if the roots of the polynomial equation

φ(z) = 1 − θ1z − θ2z2 − · · · − θpzp (12.18)

are greater than one in absolute value. The roots are the values of z that satisfy the equation
φ(z) = 0. When p = 1 and yt = α + θ1yt−1 + vt, we have φ(z) = 1 − θ1z = 0, and z = 1∕θ1. The
condition for stationarity is |z| > 1, which is the same as ||θ1|| < 1. If, in (12.18), one of the roots
is equal to one, then yt is said to have a unit root. It has a stochastic trend and is nonstationary.
When p = 1 and φ(z) = 1 − θ1z = 0, then z = 1 implies θ1 = 1. Note that we have used θ1 and
ρ interchangeably for the AR(1) model. It is convenient to use θ1 when considering the AR(1)
process as a special case of an AR(p) process. Using ρ emphasizes that the coefficient of yt−1 in
an AR(1) process is the first-order autocorrelation.

To summarize, if yt has a unit root, it is nonstationary. For yt to be stationary, the roots
of (12.18) must be greater than one in absolute value. In the AR(1) model yt = α + ρyt−1 + vt,
these conditions translate into ρ = 1 for the unit root and |ρ| < 1 for stationarity. In higher-order
AR models, the conditions for a unit root and for stationarity, written in terms of the parame-
ters θ1, θ2, … , θp, are more complicated. We explore these conditions for the AR(2) model in
Exercise 12.1.

You might be wondering what happens if one of the roots of φ(z) is less than one in absolute
value. Or, in particular, what happens if ρ > 1 in the AR(1) process. In this case, yt is non-
stationary and explosive. Empirically, we do not observe time series that explode and so we
restrict ourselves to unit roots and roots that imply a stationary process. In the Dickey–Fuller
tests that follow the null hypothesis is that yt has a unit root and the alternative is that yt is
stationary.
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12.3.2 Dickey–Fuller Tests
There are three variations of the Dickey–Fuller test, each one designed for a different alternative
hypothesis.

1. The alternative hypothesis is that yt is stationary around a nonzero mean. An example of
such a series is that depicted in Figure 12.4(b). In this case, the test equation includes an
intercept but no trend term.

2. The alternative hypothesis is that yt is stationary around a linear deterministic trend, like that
depicted in Figure 12.4(d). Here, the test equation includes both intercept and trend terms.

3. The alternative hypothesis is that yt is stationary around a zero mean as illustrated in
Figure 12.4(a). Both intercept and trend are excluded from the test equation in this case.

The choice between these tests can be guided by the nature of the data, revealed by plotting the
series against time. If it is not obvious from a plot which test is the most relevant—and it will
not always be obvious—more than one test equation can be used to check the robustness of a test
conclusion.

12.3.3 Dickey–Fuller Test with Intercept and No Trend
Consider a time series yt that has no definite continuous trend upward or downward, and that is not
obviously centered around zero. Suppose we wish to test whether this series is better represented
by a stationary AR(1) process like that in Figure 12.4(b) or a nonstationary random walk like that
in Figure 12.4(d). The nonstationary random walk is set up as the null hypothesis

H0∶yt = yt−1 + vt (12.19)
and the stationary AR(1) process becomes the alternative hypothesis

H1∶yt = α + ρyt−1 + vt |ρ| < 1 (12.20)
Throughout, we assume the vt are independent random errors with mean zero and variance σ2

v ,
and that they are uncorrelated with the past values yt−1, yt−2,… . Under H1, the series fluctuates
around a constant mean. Under H0, it wanders upward and downward but does not exhibit a clear
trend in either direction and does not tend to return to a constant mean.

An obvious way to specify the null hypothesis in terms of the parameters in the unrestricted
alternative is H0∶α = 0, ρ = 1. A test for this purpose has been developed,3 but it has become
more common to simply specify the null as H0∶ρ = 1. One way to justify omission of α = 0 from
H0 is to recall that α = μ(1 − ρ). If ρ = 1, then α = 0, and so one can argue that testing H0∶ρ = 1
is sufficient. Thus, we test for nonstationary in the AR(1) model yt = α + ρyt−1 + vt, by testing
H0∶ρ = 1 against the alternative H1∶|ρ| < 1, or simply H1∶ρ < 1. This one-sided (left tail) test
is put into a more convenient form by subtracting yt−1 from both sides of (12.20) to obtain:

yt − yt−1 = α + ρyt−1 − yt−1 + vt

Δyt = α +(ρ − 1) yt−1 + vt

= α + γyt−1 + vt (12.21)
where γ = ρ − 1 and Δyt = yt − yt−1. Then, the hypotheses can be written either in terms of ρ or
in terms of γ:

H0∶ρ = 1 ⇐⇒ H0∶γ = 0
H1∶ρ < 1 ⇐⇒ H1∶γ < 0 (12.22)

............................................................................................................................................
3An advanced reference is Hamilton, J.D. (1994), Time Series Analysis, Princeton, p. 494.
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T A B L E 12.2 Critical Values for the Dickey–Fuller Test

Model 1% 5% 10%
Δyt = γyt−1 + vt −2.56 −1.94 −1.62
Δyt = α + γyt−1 + vt −3.43 −2.86 −2.57
Δyt = α + λt + γyt−1 + vt −3.96 −3.41 −3.13

Standard normal critical values −2.33 −1.65 −1.28

Note: These critical values are taken from R. Davidson and J. G. MacKinnon, Estimation and Inference in
Econometrics, New York: Oxford University Press, 1993, p. 708.

Rejection of the null hypothesis that γ = 0 implies the series is stationary. A failure to reject H0
suggests the series could be nonstationary, and we must be careful not to proceed to estimate a
spurious regression.

To test the hypothesis in (12.22), we estimate the test equation (12.21) by OLS and exam-
ine the t-statistic for the hypothesis that γ = 0. Unfortunately, this t-statistic no longer has the
t-distribution that we have used previously to test zero null hypotheses for regression coeffi-
cients. The problem arises because, when the null hypothesis is true, yt is nonstationary and has
a variance that increases as the sample size increases. This increasing variance alters the distri-
bution of the usual t-statistic when H0 is true. To recognize this fact, the statistic is often called a
! (tau) statistic, and its value must be compared to specially generated critical values. The criti-
cal values are different for each of the variations of the test described in Section 12.3.2. They are
tabulated in Table 12.2.4 Those for test equation (12.21) are given in the middle row. We reject
H0∶γ = 0 if τ ≤ τc, where τ = γ̂∕se

(
γ̂
)

is the OLS “t”-value for H0∶γ = 0, and τc is a critical
value from Table 12.2. In other words, we conclude yt is stationary if τ is a sufficiently large
negative number. Note that the Dickey–Fuller critical values are more negative than the standard
normal critical values (shown in the last row). Thus, the τ-statistic must take larger (negative)
values than usual for the null hypothesis of nonstationarity (γ = 0) to be rejected in favor of the
alternative of stationarity (γ < 0).

There are many stationary series that are not adequately modeled by an AR(1) process.
A natural question is how do we test for a unit root in a higher-order AR process. It can be shown5

that testing for a unit root in the AR(p) process

yt = α + θ1yt−1 + θ2yt−2 + · · · + θpyt−p + vt

against the alternative that yt is stationary, is equivalent to testing H0∶γ = 0 against the alternative
H1∶γ < 0 in the model

Δyt = α + γyt−1 +
p−1∑
s=1

asΔyt−s + vt (12.23)

The original test equation is augmented by the lagged first differences Δyt−1 =
(
yt−1 − yt−2

)
,

Δyt−2 =
(
yt−2 − yt−3

)
, … , Δyt−p+1 =

(
yt−p+1 − yt−p

)
. The test procedure for this case uses

(12.23) as the test equation but otherwise proceeds just as before, rejecting H0∶γ = 0 when
τ = γ̂∕se

(
γ̂
) ≤ τc. The critical values are the same as those in Table 12.2. The test is referred

to as the augmented Dickey–Fuller test. The choice for p can be based on similar criteria to

............................................................................................................................................
4Originally these critical values were tabulated by the statisticians David Dickey and Wayne Fuller. The values have
since been refined, but in deference to the seminal work, unit root tests using these critical values have become known
as Dickey–Fuller tests.
5See Exercise 12.1.
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those described in Chapter 9 for choosing the order of an AR process. Sufficient lags should be
included to eliminate autocorrelation in the errors. We can also use significance of the estimates
of the as, which have their usual large-sample normal distributions, and the AIC and SC variable
selection criteria. In practice, we always use the augmented Dickey–Fuller test (rather than the
nonaugmented version) to ensure the errors are uncorrelated.

E X A M P L E 12.4 Checking the Two Interest Rate Series for Stationarity

As an example, consider the two interest rate series—the
federal funds rate FFRt and the three-year bond rate
BRt—plotted in Figures 12.1(e) and (g), respectively. Both
series exhibit wandering behavior, wandering up and then
down with no discernible trend in either direction. We
therefore suspect that they may be nonstationary variables.
Using OLS to estimate the test equation (12.23) for each of
these variables yields

ΔFFRt

⋀

= 0.0580 − 0.0118FFRt−1 + 0.444ΔFFRt−1

(τ and t) (−2.47) (12.30)
−0.147ΔFFRt−2

(−4.05)

ΔBRt

⋀

= 0.0343 − 0.00635BRt−1 + 0.426ΔBRt−1

(τ and t) (−1.70) (11.95)
− 0.230ΔBRt−2

(−6.43)

Two augmentation terms have been included for both
variables. For FFR the number of augmentation terms that
minimized the SC was 13—a very large number. However,
checking the correlogram of the residuals, we find that
including two lags of ΔFFR was sufficient to eliminate any
major autocorrelation in the errors. For BR, two augmenta-
tion terms minimized the SC and were sufficient to eliminate
any substantial error autocorrelation. The usual t or normal
distributions can be used to assess the significance of the
coefficients of the augmentation terms. Their large t-values
confirm the decision to include two lags.

However, for checking stationarity, the usual t critical
values and p-values cannot be used. Instead, we compare the
two τ-values, τ = −2.47 and τ = −1.70 for the coefficients
of FFRt−1 and BRt−1, respectively, with a critical value from
Table 12.2. For a 5% significance level, the relevant critical
value is τ0.05 = −2.86. The test for stationarity is a one-tail
test with the null hypothesis of nonstationarity being rejected
if τ ≤ −2.86. Since −2.47 > −2.86 and –1.70 > −2.86, in
both cases, we fail to reject H0. There is insufficient evidence
to suggest that FFR and BR are stationary.

12.3.4 Dickey–Fuller Test with Intercept and Trend
In Sections 12.1.2 and 12.1.3, we introduced two models where a time series yt has a trend upward
or downward. In one, illustrated in Figure 12.4(c), yt was stationary around a linear trend and
described by the process

yt = α + ρyt−1 + λt + vt |ρ| < 1 (12.24)
A time series that can be described by (12.24) is called trend stationary. The other model was a
random walk with drift, illustrated in Figure 12.4(e):

yt = α + yt−1 + vt (12.25)
In this case yt is nonstationary. The Dickey–Fuller test with intercept and trend is designed to
discriminate between these two models. Equation (12.25) becomes the null hypothesis (H0), and
equation (12.24) is the alternative hypothesis (H1). If the null hypothesis is rejected, we conclude
yt is trend stationary. Failure to reject H0 suggests yt is nonstationary, or at least there is insufficient
evidence to prove otherwise.

Comparing (12.24) and (12.25) suggests a relevant null hypothesis is H0∶ρ = 1, λ = 0.
However, like in Section 12.3.3, it has become more common to simply test H0∶ρ = 1 against
the alternative H1∶ρ < 1. A rationale for doing so can be found by going back and checking
equation (12.14). There we noted an alternative way of writing (12.24) is

(
yt − μ − δt

)
= ρ

(
yt−1 − μ − δ(t − 1)

)
+ vt, |ρ| < 1
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where μ + δt is the deterministic trend, α = μ(1 – ρ) + ρδ and λ = δ(1 – ρ). With these definitions
of α and λ, setting ρ = 1 implies α = δ and λ = 0, giving the random walk with drift in (12.25).
As before, the test equation is obtained by subtracting yt−1 from both sides of (12.24) and adding
augmentation terms to obtain

Δyt = α + γyt−1 + λt +
p−1∑
s=1

asΔyt−s + vt (12.26)

We use the left-tail test H0∶γ = 0 versus H1∶γ < 0, rejecting H0 when τ = γ̂∕se
(
γ̂
)

is less than
or equal to a critical value selected from the third row of Table 12.2.

E X A M P L E 12.5 Is GDP Trend Stationary?

From Figure 12.1(a), we noted that GDP shows a definite
upward trend. We now ask whether it can be modeled as
stationary around a linear deterministic trend, or whether it
contains a stochastic trend component. Using these data to
estimate (12.26) yields6

ΔGDPt

⋀

= 0.269 + 0.00249t − 0.0330GDPt−1

(τ and t) (−2.00)
+ 0.312ΔGDPt−1 + 0.202ΔGDPt−2

(3.58) (2.28)

Two augmentation terms minimized the SC, eliminated
major autocorrelation in the residuals, and had coefficient
estimates significant at a 5% level. For assessing stationarity,
we find τ = −2.00, which is greater than the 5% critical value
τ0.05 = −3.41. Thus, we cannot reject the null hypothesis
that GDP follows a nonstationary random walk with drift.
There is insufficient evidence to conclude that GDP is trend
stationary.

E X A M P L E 12.6 Is Wheat Yield Trend Stationary?

In Example 12.2, we model wheat yield in the Toodyay
Shire of Western Australia with a deterministic trend. To
see whether this choice was justified we estimate the test
equation

Δln
(
YIELDt

)⋀

= −0.158 + 0.0167 t − 0.745ln
(
YIELDt−1

)

(τ) (−5.24)

In this case, no augmentation terms were necessary.
The value τ = −5.24 is less than the 5% critical value
τ0.05 = −3.41 and so, at this level of significance, we reject
a null hypothesis of nonstationarity and conclude that
ln(YIELD) is trend stationary.

12.3.5 Dickey–Fuller Test with No Intercept and No Trend
In its simplest form with no augmentation terms, this test is designed to test the null hypothesis
of a random walk H0∶yt = yt−1 + vt against the stationary AR(1) alternative H1∶yt = ρyt−1 + vt,||ρ||< 1. Since yt has a zero mean when H1 is true, it is designed for series that are centered around
zero, like that in Figure 12.4(a). The test equation is

Δyt = γyt−1 +
p−1∑
s=1

asΔyt−s + vt (12.27)

............................................................................................................................................
6The trend term takes the values 0, 1, 2, …,132 with 1984Q1 = 0.
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T A B L E 12.3 AR Processes and the Dickey–Fuller Tests

AR Processes: |"| < 1 Setting " = 1 Dickey–Fuller Tests
yt = ρyt−1 + ut yt = yt−1 + ut Test with no constant and no trend

yt = α + ρyt−1 + vt yt = yt−1 + vt Test with constant and no trend
α = μ(1 – ρ) α = 0

yt = α + ρyt−1 + λt + vt yt = δ + yt−1 + vt Test with constant and trend
α = μ(1 – ρ) + ρδ α = δ
λ = δ(1 – ρ) λ = 0

We test H0∶γ = 0 against H1∶γ < 0 as described previously, and the critical values are given in
the first row of Table 12.2.

Most time series measured in terms of their original levels do not have a zero mean. However,
their first differences Δyt = yt – yt−1 may turn out to have a zero mean. For example, the first
difference of the random walk yt = yt−1 + vt is Δyt = vt which has a zero mean. Testing whether
first differences are stationary has relevance for finding the order of integration of a series which
we consider in Section 12.3.6.

In Table 12.3, we summarize the models under H0 and H1 for each of the three tests, omitting
the augmentation terms to avoid cluttering the table.

12.3.6 Order of Integration
Up to this stage, we have discussed only whether a series is stationary or nonstationary. We can
take the analysis another step forward and consider a concept called the “order of integration.”
Recall that if yt follows a random walk, then γ = 0 and the first difference of yt becomes

Δyt = yt − yt−1 = vt

An interesting feature of the series Δyt = yt – yt−1 is that it is stationary since vt, being an inde-
pendent

(
0, σ2

v
)

random variable, is stationary. Series like yt, which can be made stationary by
taking the first difference, are said to be integrated of order one, and denoted as I(1). Stationary
series are said to be integrated of order zero, I(0). In general, the order of integration of a series
is the minimum number of times it must be differenced to make it stationary.

E X A M P L E 12.7 The Order of Integration of the Two Interest Rate Series

In Example 12.4, we concluded that the two interest rate
series FFR and BR were nonstationary. To find their order
of integration, we ask the next question: are their first dif-
ferences, ΔFFRt = FFRt – FFRt−1 and ΔBRt = BRt – BRt−1
stationary? Their plots, in Figures 12.1(f) and (h), suggest
stationarity. Given these plots appear to fluctuate around
zero, we use the Dickey–Fuller test equation with no
intercept and no trend, to obtain the following results.

Δ
(
ΔFFRt

)⋀

= −0.715ΔFFRt−1 + 0.157Δ
(
ΔFFRt−1

)

(τ and t) (−17.76) (4.33)

Δ
(
ΔBRt

)⋀

= −0.811ΔBRt−1 + 0.235Δ
(
ΔBRt−1

)

(τ and t) (−19.84) (6.58)

where Δ
(
ΔFFRt

)
= ΔFFRt − ΔFFRt−1 and Δ

(
ΔBRt

)
=

ΔBRt – ΔBRt−1. In both cases, one augmentation term was
sufficient to eliminate serial correlation in the errors. Note
that the null hypotheses are that the variables ΔF and ΔB are
not stationary. The large negative values of the τ-statistic,
τ = −17.76 for ΔFFR and τ = −19.84 for ΔBR, are much
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less and the 5% critical value τ0.05 = −1.94. We therefore
reject null hypotheses that ΔFFR and ΔBR have unit roots
and conclude they are stationary.

These results imply that, while the levels of the two
interest rates are nonstationary, their first differences are

stationary. We say that the series FFRt and BRt are I(1)
because they had to be differenced once to make them
stationary

[
ΔFFRt and ΔBRt are I(0)

]
. In the Sections 12.4

and 12.5, we investigate the implications of these results for
regression modeling.

12.3.7 Other Unit Root Tests
While augmented Dickey–Fuller tests remain the most popular tests for unit roots, the power of the
tests is low in the sense that they often cannot distinguish between a highly persistent stationary
process (where ρ is very close but not equal to 1) and a nonstationary process (where ρ = 1).
The power of the test also diminishes as deterministic terms constant and trend are included in
the test equation. Here we briefly mention other tests that have been developed with a view to
improving the power of the test: the Elliot, Rothenberg, and Stock (ERS), Phillips and Perron
(PP), Kwiatkowski, Phillips, Schmidt, and Shin (KPSS), and Ng and Perron (NP) tests.7 Each
test carries an abbreviation from the names of its developers.

The ERS test proposes removing the constant/trend effects from the data and performing
the unit root test on the residuals. The distribution of the t-statistic is now devoid of deterministic
terms (i.e., the constant and/or trend). The PP test adopts a nonparametric approach that assumes a
general autoregressive moving-average structure and uses spectral methods to estimate the stan-
dard error of the test correlation. Instead of specifying a null hypothesis of nonstationary, the
KPSS test specifies a null hypothesis that the series is stationary or trend stationary. NP tests
suggest various modifications of the PP and ERS tests.

12.4 Cointegration
As a general rule, to avoid the problem of spurious regression, nonstationary time-series variables
should not be used in regression models. However, there is an exception to this rule. If yt and xt
are nonstationary I(1) variables, then we expect their difference, or any linear combination of
them, such as et = yt – β1 – β2xt,8 to be I(1) as well. However, there is an important case when
et = yt – β1 – β2xt is a stationary I(0) process. In this case, yt and xt are said to be cointegrated.
Cointegration implies that yt and xt share similar stochastic trends, and, since the difference et is
stationary, they never diverge too far from each other.

A natural way to test whether yt and xt are cointegrated is to test whether the errors
et = yt – β1 – β2xt are stationary. Since we cannot observe et, we test the stationarity of the OLS
residuals, êt = yt − b1 − b2xt using a Dickey–Fuller test. The test for cointegration is effectively
a test of the stationarity of the residuals. If the residuals are stationary, then yt and xt are said to
be cointegrated; if the residuals are nonstationary, then yt and xt are not cointegrated, and any
apparent regression relationship between them is said to be spurious.

The test for stationarity of the residuals is based on the test equation

Δêt = γêt−1 + vt (12.28)

whereΔêt = êt − êt−1. As before, we examine the t (or tau) statistic for the estimated slope coeffi-
cient. Note that the regression has no constant term because the mean of the regression residuals

............................................................................................................................................
7More details can be found in William Greene, Econometric Analysis, 8th ed., Chapter 21, 2018, Pearson.
8A linear combination of x and y is a new variable z = a0 + a1x + a2y. Here we set the constants a0 = −β1, a1 = −β2,
and a2 = 1 and call z the series e.
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T A B L E 12.4 Critical Values for the Cointegration Test

Regression Model 1% 5% 10%
(1) yt = βxt + et −3.39 −2.76 −2.45
(2) yt = β1 + β2xt + et −3.96 −3.37 −3.07
(3) yt = β1 + δt + β2xt + et −3.98 −3.42 −3.13

Note: These critical values are taken from J. Hamilton, Time Series Analysis, Princeton University Press, 1994, p. 766.

is zero. Also, since we are basing this test upon estimated values of the residuals, the critical
values will be different from those in Table 12.2. The proper critical values for a test of cointegra-
tion are given in Table 12.4. The test equation can also include extra terms like Δêt−1,Δêt−2,…
on the right-hand side if they are needed to eliminate autocorrelation in vt.

There are three sets of critical values. Which set we use depends on whether the residuals
êt are derived from a regression equation without a constant term

[
like (12.29a)

]
or a regression

equation with a constant term [like (12.29b)], or a regression equation with a constant and a time
trend [like (12.29c)].

Equation 1∶ êt = yt − bxt (12.29a)
Equation 2∶ êt = yt − b2xt − b1 (12.29b)
Equation 3∶ êt = yt − b2xt − b1 − δ̂t (12.29c)

E X A M P L E 12.8 Are the Federal Funds Rate and Bond Rate Cointegrated?

To illustrate, let us test whether yt = BRt and xt = FFRt, as
plotted in Figures 12.1(e) and (g), are cointegrated. We have
already shown that both series are nonstationary. The esti-
mated least-squares regression between these variables is

BRt

⋀

= 1.328 + 0.832FFRt R2 = 0.908
(t) (85.72) (12.30)

The estimated test equation for stationarity in the OLS resid-
uals êt = BRt − 1.328 − 0.832 FFRt is

Δêt

⋀

= −0.0817 êt−1 + 0.223Δêt−1 − 0.177Δêt−2

(τ and t) (−5.53) (6.29) (−4.90)
Note that this is the augmented Dickey–Fuller version of the
test with two lagged termsΔet−1 andΔet−2 to correct for auto-
correlation. Since there is a constant term in (12.30), we use
the equation (2) critical values in Table 12.4.

The null and alternative hypotheses in the test for coin-
tegration are

H0∶ the series are not cointegrated
⇐⇒ residuals are nonstationary

H1∶ the series are cointegrated
⇐⇒ residuals are stationary

Similar to the one-tail unit root tests, we reject the null
hypothesis of no cointegration if τ ≤ τc, and we do not
reject the null hypothesis that the series are not cointegrated
if τ > τc. The tau statistic in this case is −5.53 which
is less than the critical value −3.37 at the 5% level of
significance. Thus, we reject the null hypothesis that the
least-squares residuals are nonstationary and conclude that
they are stationary. This implies that the bond rate and the
federal funds rate are cointegrated. In other words, there is
a fundamental relationship between these two variables (the
estimated regression relationship between them is valid and
not spurious) and the estimated values of the intercept and
slope are 1.328 and 0.832, respectively.

The result—that the federal funds and bond rates
are cointegrated—has major economic implications! It
means that when the Federal Reserve implements mone-
tary policy by changing the federal funds rate, the bond
rate will also change thereby ensuring that the effects of
monetary policy are transmitted to the rest of the economy.
In contrast, the effectiveness of monetary policy would be
severely hampered if the bond and federal funds rates were
spuriously related as this implies that their movements,
fundamentally, have little to do with each other.
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12.4.1 The Error Correction Model
In Section 12.4, we discussed the concept of cointegration as the relationship between I(1) vari-
ables such that the residuals are I(0). A relationship between I(1) variables is also often referred
to as a long-run relationship while a relationship between I(0) variables is often referred to as a
short-run relationship. In this section, we describe a dynamic relationship between I(0) variables,
which embeds a cointegrating relationship, known as the short-run error correction model.

As discussed in Chapter 9, when one is working with time-series data, it is quite common,
and in fact, quite important to allow for dynamic effects. To derive the error correction model
requires a bit of algebra, but we shall persevere as this model offers a coherent way to combine
the long- and short-run effects.

Let us start with a general model that contains lags of y and x, namely the ARDL model
introduced in Chapter 9, except that now the variables are nonstationary:

yt = δ + θ1yt−1 + δ0xt + δ1xt−1 + vt

For simplicity, we shall consider lags up to order one, but the following analysis holds for any
order of lags. Now recognize that if y and x are cointegrated, it means that there is a long-run
relationship between them. To derive this exact relationship, we set yt = yt−1 = y, xt = xt−1 = x
and vt = 0 and then, imposing this concept in the ARDL, we obtain

y
(
1 − θ1

)
= δ +

(
δ0 + δ1

)
x

This equation can be rewritten as y = β1 + β2x where β1 = δ
/(

1 – θ1
)

and β2 =
(
δ0 + δ1

)/(
1 – θ1

)
.

To repeat, we have now derived the implied cointegrating relationship between y and x; alterna-
tively, we have derived the long-run relationship that holds between the two I(1) variables.

We will now manipulate the ARDL to see how it embeds the cointegrating relation. First,
add the term −yt−1 to both sides of the equation:

yt − yt−1 = δ +
(
θ1 − 1

)
yt−1 + δ0xt + δ1xt−1 + vt

Second, add the term –δ0xt−1 + δ0xt−1 to the right-hand side to obtain
Δyt = δ +

(
θ1 − 1

)
yt−1 + δ0

(
xt − xt−1

)
+
(
δ0 + δ1

)
xt−1 + vt

where Δyt = yt – yt−1. If we then manipulate the equation to look like

Δyt =
(
θ1 − 1

)
(

δ(
θ1 − 1

) + yt−1 +
(
δ0 + δ1

)
(
θ1 − 1

) xt−1

)
+ δ0Δxt + vt

where Δxt = xt – xt−1, and do a bit more tidying, using the definitions β1 and β2, we get
Δyt = −α

(
yt−1 − β1 − β2xt−1

)
+ δ0Δxt + vt (12.31)

where α =
(
1 – θ1

)
. As you can see, the expression in parenthesis is the cointegrating relation-

ship. In other words, we have embedded the cointegrating relationship between y and x in a general
ARDL framework.

Equation (12.31) is called an error correction equation because (a) the expression(
yt−1 – β1 – β2xt−1

)
shows the deviation of yt−1 from its long-run value, β1 + β2xt−1—in other

words, the “error” in the previous period—and (b) the term
(
θ1 − 1

)
shows the “correction”

of Δyt to the “error.” More specifically, if the error in the previous period is positive so that
yt−1 >

(
β1 + β2xt−1

)
, then yt should fall and Δyt should be negative; conversely, if the error

in the previous period is negative so that yt−1 <
(
β1 + β2xt−1

)
, then yt should rise and Δyt

should be positive. This means that if a cointegrating relationship between y and x exists, so
that adjustments always work to “error-correct,” then empirically we should also find that(
1 – θ1

)
> 0, which implies that θ1 < 1. If there is no evidence of cointegration between the

variables, then the estimate for θ1 would be insignificant.
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The error correction model is a very popular model because it allows for the existence of
an underlying or fundamental link between variables (the long-run relationship) as well as for
short-run adjustments (i.e., changes) between variables, including adjustments toward the coin-
tegrating relationship. It also shows that we can work with I(1) variables

(
yt−1, xt−1

)
and I(0)

variables
(
Δyt,Δxt

)
in the same equation provided that (y, x) are cointegrated, meaning that the

term
(
yt−1 – β0 – β1xt−1

)
contains stationary residuals. In fact, this formulation can also be used

to test for cointegration between y and x.
To estimate (12.31) we can proceed in one of two ways: we can estimate the equation with

yt−1 – β1 – β2xt−1 replaced by êt−1, or we can find new estimates of β1 and β2 at the same time as
we estimate α and δ0. For the latter approach, we can estimate the parameters directly by applying
nonlinear least squares to (12.31), or we can use OLS to estimate the equation

Δyt = β∗1 + α
∗yt−1 + β∗2xt−1 + δ0Δxt−1 + vt

and retrieve the parameters in equation (12.31) from α = −α∗, β1 = −β∗1
/
α∗ and β2 = −β∗2

/
α∗.

The nonlinear least squares and the retrieved OLS estimates will be identical. However, they will
differ slightly from the two-step estimates obtained by replacing yt−1 – β1 – β2xt−1 with êt−1.

E X A M P L E 12.9 An Error Correction Model for the Bond
and Federal Funds Rates

For an error correction model relating changes in the bond
rate to the lagged cointegrating relationship and changes in
the federal funds rate, it turns out that up to four lags ofΔFFRt
are relevant and two lags of ΔBRt are needed to eliminate
serial correlation in the error. The equation estimated directly
using nonlinear least squares is

ΔBRt

⋀

= −0.0464
(
BRt−1 − 1.323 − 0.833FFRt−1

)

(t) (3.90)
+ 0.272ΔBRt−1 − 0.242ΔBRt−2

(7.27) (−6.40)
+ 0.342ΔFFRt − 0.105ΔFFRt−1 + 0.099ΔFFRt−2

(14.22) (−3.83) (3.62)
− 0.066ΔFFRt−3 + 0.056ΔFFRt−4

(−2.69) (2.46) (12.32)

Notice that the estimates β̂1 = 1.323 and β̂2 = 0.833 are
very similar to those obtained from direct OLS estimation
of the cointegrating relationship in (12.30). The relationship
between all the coefficients in (12.32) and its corresponding
ARDL model are explored in Exercise 12.18.

If we use the residuals êt = BRt – 1.323 – 0.833FFRt,
obtained from the estimates in (12.32), to test for cointegra-
tion, we get a similar result to our earlier one

Δet

⋀

= −0.0819êt−1 + 0.224Δêt−1 − 0.177Δêt−2

(τ and t) (−5.53) (6.29) (−4.90)

As before, the null hypothesis is that (BR, FFR) are not
cointegrated (the residuals are nonstationary). Since the
cointegrating relationship includes a constant, the critical
value from Table 12.4 is −3.37. Comparing the actual
value τ = −5.53 with the critical value, we reject the null
hypothesis and conclude that (BR, FFR) are cointegrated.

12.5 Regression When There Is No Cointegration
Thus far, we have shown that regression with I(1) variables is acceptable providing those vari-
ables are cointegrated, allowing us to avoid the problem of spurious results. We also know that
regression with stationary I(0) variables, that we studied in Chapter 9, is acceptable. What hap-
pens when there is no cointegration between I(1) variables? In this case, the sensible thing to do
is to convert the nonstationary series to stationary series and to use the techniques discussed in
Chapter 9 to estimate dynamic relationships between the stationary variables. However, we stress
that this step should be taken only when we fail to find cointegration between the I(1) variables.
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Regression with cointegrated I(1) variables makes the least-squares estimator “super-consistent”9

and, moreover, it is economically useful to establish relationships between the levels of economic
variables.

How we convert nonstationary series to stationary series, and the kind of model we estimate,
depend on whether the variables are difference stationary or trend stationary. In the former
case, we convert the nonstationary series to its stationary counterpart by taking first differences.
We dealt with the latter case in Section 12.1.1 where we converted the nonstationary series to a
stationary series by detrending, or we included a trend term in the regression relationship. We now
consider how to estimate regression relationships with nonstationary variables that are neither
cointegrated nor trend stationary.

Recall that an I(1) variable is one that is stationary after differencing once. Another name for
variables with this characteristic is that they are first-difference stationary. Specifically, if yt is
nonstationary with a stochastic trend and its first difference Δyt = yt – yt−1 is stationary, then yt
is I(1) and first-difference stationary. If Dickey–Fuller tests reveal that two variables, y and x, that
you would like to relate in a regression, are first difference stationary and not cointegrated, then a
suitable regression involving only stationary variables is one that relates changes in y to changes
in x, with relevant lags included. If yt and xt behave like random walks with no obvious trend,
then an intercept can be omitted. For example, using one lagged Δyt and a current and lagged
Δxt, we have:

Δyt = θΔyt−1 + β0Δxt + β1Δxt−1 + et (12.33)
If yt and xt behave like random walks with drift, then it is appropriate to include an intercept, an
example of which is

Δyt = α + θΔyt−1 + β0Δxt + β1Δxt−1 + et (12.34)
Note that a random walk with drift is such that Δyt = α + vt, implying an intercept should be
included, whereas a random walk with no drift becomes Δyt = vt. In line with Chapter 9, the
models in (12.33) and (12.34) are ARDL models with first-differenced variables. In general, since
there is often doubt about the role of the constant term, the usual practice is to include an intercept
term in the regression.

E X A M P L E 12.10 A Consumption Function in First Differences

In Chapter 9, there were a number of examples and
exercises involving first differences of variables. When
studying that chapter, you may have wondered why we
did not use variables in their levels. The reason is now
clear. It was to ensure the variables were stationary. In the
following example of a consumption function, we return
to the data file cons_inc, containing quarterly data on
Australian consumption expenditure and national disposable
income, used earlier in Example 9.16. We will use data
from 1985Q1 to 2016Q3. Plots of the series appear in
Figure 12.6.

Since both consumption (C) and income (Y) are clearly
trending, we include a trend term in the Dickey–Fuller test
equations to see if they should be treated as trend stationary

or difference stationary. The results from the test equations
are

ΔCt

⋀

= 1989.7 + 29.43 t − 0.0193Ct−1 + 0.244ΔCt−1

(τ and t) (2.03) (−1.70) (2.82)

ΔYt

⋀

= 5044.6 + 80.04 t − 0.0409Yt−1 + 0.248ΔYt−1

(τ and t) (2.27) (−2.14) (2.89)

From Table 12.2, the 5% critical value for test equations that
include a trend is τ0.05 = −3.41. The τ values for consump-
tion (−1.70) and income (−2.14) are both greater than τ0.05.
Hence, we are unable to conclude that C and Y are trend sta-
tionary.

............................................................................................................................................
9Consistency means that as T → ∞ the least squares estimator converges to the true parameter value. See Section 5.7.
Super-consistency means that it converges to the true value at a faster rate.
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FIGURE 12.6 Australian consumption and disposable income.

The next step is to see if C and Y are cointegrated. Because
they are trending, we include a trend term, and estimate the
following equation, saving the residuals.

Ĉt = −18746 + 420.4 t + 0.468Yt

(t) (9.92) (20.49) (12.35)

If the residuals are stationary, we conclude C and Y are coin-
tegrated and (12.35) is a valid regression. If the residuals are
nonstationary, then (12.35) could be a spurious regression.
The test equation for assessing the stationarity of the residu-
als is

Δê
⋀

t = −0.121êt−1 + 0.263Δêt−1

(τ and t) (−2.93) (2.94)

Comparing τ = −2.93 with the critical value of τ0.05 = −3.42
in the third row of Table 12.4, we fail to reject a null hypoth-
esis that the residuals are nonstationary (C and Y are not
cointegrated).

Having established that C and Y are not trend stationary
and not cointegrated, or at least that there is insufficient evi-
dence to suggest otherwise, the natural regression to estimate

relating the two variables is one in first differences. First,
however, we need to confirm that they are first-difference
stationary (integrated of order one). The unit-root test
equations for this purpose are

Δ
(
ΔCt

)⋀

= 844.0 − 0.689ΔCt−1

(τ) (−8.14)

Δ
(
ΔYt

)⋀

= 1,228.7 − 0.751ΔYt−1

(τ) (−8.68)

We include a constant in these equations because the unit-
root test for the variables in their levels included a trend. The
test values τ = −8.14 and τ = −8.68 are less than 5% critical
value τ0.05 = −2.86 from Table 12.2. We therefore conclude
that ΔC and ΔY are stationary and hence that C and Y are
first-difference stationary. Proceeding to estimate an ARDL
model for C and Y in first differences, we obtain

ΔCt

⋀

= 785.8 + 0.0573ΔYt + 0.282ΔCt−1

(t) (2.07) (3.34)

12.6 Summary
• If variables are stationary, or I(1) and cointegrated, we can estimate a regression relationship

between the levels of those variables without fear of encountering a spurious regression.
In the latter case, we can do this by estimating a least-squares equation between the I(1)
variables or by estimating a nonlinear least-squares error correction model which embeds
the I(1) variables.

• If the variables are I(1) and not cointegrated, we need to estimate a relationship in first dif-
ferences, with or without the constant term.
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Regressions with nonstationary variables

Stochastic trendTrend stationary
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FIGURE 12.7 Regression with time-series data: nonstationary variables.

• If they are trend stationary, we can either detrend the series first and then perform regres-
sion analysis with the stationary (detrended) variables or, alternatively, estimate a regression
relationship that includes a trend variable.

These options are shown in Figure 12.7.

12.7 Exercises

12.7.1 Problems
12.1 Consider the AR(2) model yt = δ + θ1yt−1 + θ2yt−2 + vt. Suppose that

1 − θ1z − θ2z2 =
(
1 − c1z

)(
1 − c2z

)

a. Show that c1 + c2 = θ1 and c1c2 = −θ2.
b. Prove that the AR(2) model has a unit root if and only if θ1 + θ2 − 1 = 0. [Hint: The roots of

1 − θ1z − θ2z2 = 0 are 1
/

c1 and 1
/

c2.]
c. Prove that θ1 + θ2 − 1 < 0 if the AR(2) process is stationary.
d. Prove that the AR(2) model yt = δ + θ1yt−1 + θ2yt−2 + vt can also be written as

Δyt = δ + γyt−1 + a1Δyt−1 + vt

where γ = θ1 + θ2 − 1 and a1 = −θ2. What are the implications of this result and the results in
parts (b) and (c) for unit root tests in an AR(2) model.

e. Show that an AR(p) model has a unit root if γ = θ1 + θ2 + · · · + θp − 1 = 0.
f. Show that setting γ = θ1 + θ2 + · · · + θp − 1 in equation (12.23) implies aj = −

∑p−1
r=j θr+1.

12.2 a. Consider the stationary AR(1) model yt = ρyt−1 + vt, |ρ| < 1. The vt are independent random
errors with mean zero and variance σ2

v . In Appendix 9B we showed that the autocorrelations for
this model are given by corr

(
yt, yt+s

)
= ρs. Given ρ = 0.9, find the autocorrelations for observa-

tions 1 period apart, 2 periods apart, etc., up to 10 periods apart.
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FIGURE 12.8 Time series for Exercise 12.3.

b. Consider the nonstationary random walk model yt = yt−1 + vt. Assuming a fixed y0 = 0, rewrite
yt as a function of all past errors vt−1, vt−2,…, v1.

c. Use the result in part (b) to find (i) the mean of yt, (ii) the variance of yt, and (iii) the covariance
between yt and yt+s.

d. Use the results from part (c) to show that corr
(
yt, yt+s

)
=
√

t∕(t + s).
e. Assume t = 100 (the random walk has been operating for 100 periods). Find the correlations

between y100 and y in each of the next 10 periods (up to y110). Compare these correlations with
those obtained in part (a).

f. Find corr(y100, y200) for each of the two models and comment on their magnitudes.
12.3 Figure 12.8 shows plots of four time series that are stored in the data file unit.

a. The results from Dickey–Fuller test equations for these four variables are given below. Explain
why these equations were chosen. No augmentation terms are included. What criteria would have
led to their omission?

ΔWt

⋀

= 0.778 − 0.0936Wt−1

(τ) (−3.23)
ΔYt

⋀

= 0.0304 − 0.0396Yt−1

(τ) (−1.98)
ΔXt

⋀

= 0.805 − 0.0939Xt−1 + 0.00928 t
(τ) (−3.13)
ΔZt

⋀

= 0.318 − 0.0355Zt−1 + 0.00306 t
(τ) (−1.87)
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b. Carry out Dickey–Fuller tests on each of the series. What do you conclude about their stationarity
properties?

c. The following estimated equation uses residuals êt from least-squares estimation of the model
Xt = β1 + δt + β2Zt + et. Can you conclude that Xt and Zt are cointegrated?

Δêt

⋀

= −0.0683êt−1

(τ) (−2.83)

d. Use the following equation and earlier results to assess the order of integration of Zt.

Δ
(
ΔZt

)⋀

= 0.174 − 0.987ΔZt−1

(τ) (−13.76)

12.4 A time-series process of the form yt = α + yt−1 + vt, vt ∼N(0, σ2) can be rearranged as yt – yt−1 =
Δyt = α + vt. This shows that yt is integrated of order one, since its first difference is stationary. Show
that a time series of the form yt = 2yt−1 – yt–2 + α + vt is integrated of order two.

12.5 In Chapter 9, we found that, given a time series of observations, IT =
{(

y1, x1
)
,
(
y2, x2

)
,…,

(
yT , xT

)}
,

the best one-period and two-period ahead forecasts for yT+1 and yT+2 were given by E
(
yT+1|IT

)
and

E
(
yT+2|IT

)
, respectively. Given that T = 29, yT = 10, yT−1 = 12, xT+2 = xT+1 = xT = 5, and xT−1 = 6,

find forecasts for yT+1 and yT+2 from each of the following models. In each case, assume that vt are
independent random errors distributed as N

(
0, σ2

v = 4
)
.

a. The random walk yt = yt−1 + vt.
b. The random walk with drift yt = 5 + yt−1 + vt.
c. The random walk ln

(
yt
)
= ln

(
yt−1

)
+ vt.

d. The deterministic trend model yt = 10 + 0.1 t + vt.
e. The ARDL model yt = 6 + 0.6yt−1 + 0.3xt + 0.1xt−1 + vt.
f. The error correction model Δyt = −0.4

(
yt−1 − 15 − xt−1

)
+ 0.3Δxt + vt. In addition, find the

long-run equilibrium value for y when x = 5.
g. The first difference model Δyt = 0.6Δyt−1 + 0.3Δxt + 0.1Δxt−1 + vt.

12.6 Increases in the mortgage interest rate increase the cost of owning a house and lower the demand for
houses. In this question we investigate the properties of two time series that could be used to model
this demand relationship: the number of new one-family houses sold in the U.S. (HOMES) and the
30-year conventional mortgage rate (IRATE). These series, along with their changes, DHOMES and
DIRATE, are plotted in Figure 12.9. The data are from January 1992 (1992M1) to September 2016
(2016M9). The units of measurement are thousands of new houses for HOMES and percentage points
for IRATE.

Use the following test equation results to test for unit roots. In each case give the null and alter-
native hypotheses, and draw a conclusion. In all cases use a 5% significance level. Based on the test
results, describe how you would set up a model for the demand relationship. (In each model, the OLS
standard errors do not reflect the true variance of the estimator γ̂ but, nevertheless, they can be used
to construct the τ-statistic.)

a. ΔHOMESt

⋀

= 7.051 − 0.0102HOMESt−1 − 0.280ΔHOMESt−1

(se) (0.0096) (0.056)

b. ΔHOMESt

⋀

= 16.36 − 0.0385 t − 0.0151HOMESt−1 − 0.279ΔHOMESt−1

(se) (0.0345) (0.0106) (0.056)

c. ΔIRATEt

⋀

= 0.0477 − 0.00985IRATEt−1 + 0.300ΔIRATEt−1

(se) (0.00679) (0.056)
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FIGURE 12.9 Time series for new houses and the mortgage rate and their changes.

d. ΔIRATEt

⋀

= 0.603 − 0.00120 t − 0.0710IRATEt−1 + 0.329ΔIRATEt−1

(se) (0.00033) (0.0181) (0.055)

e. ΔDHOMESt

⋀

= −0.254 − 1.285DHOMESt−1

(se) (0.056)

f. ΔDIRATEt

⋀

= −0.0151 − 0.816DIRATEt−1 + 0.151ΔDIRATEt−1

(se) (0.069) (0.058)

g. In the following test equation the êt are the residuals from estimating the equation HOMESt =
β1 + β2IRATEt + et.

Δêt

⋀

= −0.0191êt−1 − 0.181Δêt−1

(se) (0.0117) (0.057)

h. In the following test equation the ût are the residuals from estimating the equation HOMESt =
β1 + δt + β2IRATEt + ut.

Δût

⋀

= −0.0180ût−1 − 0.208Δût−1

(se) (0.0114) (0.057)
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12.7.2 Computer Exercises
12.7 The data file usmacro contains quarterly observations on the U.S. unemployment rate (U), the U.S.

GDP growth rate (G), and the U.S. inflation rate (INF) from 1948Q1 to 2016Q1. Plot these series and
perform unit root tests on them to assess whether or not they are stationary. In your answer, justify
your choice of a test equation, present the results from estimating that equation, state the null and
alternative hypotheses, and draw a conclusion. Use a 5% significance level. What are the orders of
integration of the three series?

12.8 The data file okun5_aus contains quarterly observations on the Australian unemployment rate (U),
and the Australian GDP growth rate (G) from 1978Q2 to 2016Q2. Plot these series and perform unit
root tests on them to assess whether or not they are stationary. In your answer, justify your choice
of a test equation, present the results from estimating that equation, state the null and alternative
hypotheses, and draw a conclusion. Use a 5% significance level. What are the orders of integration of
the two series?

12.9 The data file phillips5_aus contains quarterly observations on the Australian unemployment rate (U),
and the Australian inflation rate (INF) from 1987Q1 to 2016Q1. Plot these series and perform unit
root tests on them to assess whether or not they are stationary. In your answer, justify your choice
of a test equation, present the results from estimating that equation, state the null and alternative
hypotheses, and draw a conclusion. Use a 5% significance level. What are the orders of integration of
the two series?

12.10 The data file oil5 contains quarterly observations on the price of oil from 1980Q1 to 2016Q1.
a. Plot the observations.
b. Using data from 1980Q1 to 2015Q2, test whether the series is stationary or nonstationary. What

is its order of integration?
c. Using information from part (b), the sample period 1980Q1 to 2015Q2, and other relevant criteria,

specify and estimate an AR model for the price of oil.
d. Use the model estimated in part (c) to forecast the price of oil for 2015Q3, 2015Q4, and 2016Q1.
e. Find the percentage forecast errors for each of the forecasts made in part (d). Are your forecasts

accurate?
12.11 The data file freddie1 contains a monthly housing price index for the price of houses in Beckley, West

Virginia (BEKLY), and the monthly value of Australian exports to China (XCHINA), from 1988M1
to 2015M12.
a. Estimate the regression equation XCHINAt = β1 + β2 BEKLYt + et and comment on the results.
b. Plot the series BEKLY , XCHINA, and ln(XCHINA) and describe the graphs. Do they provide any

insights into the results from part (a)?
c. Estimate the equation ln(XCHINAt) = β1 + δt + β2 BEKLYt + et and comment on the results. Sug-

gest a reason why ln(XCHINA) rather than XCHINA was chosen as the left-hand-side variable.
d. Do unit root tests suggest ln(XCHINA) and BEKLY are stationary or trend stationary? Do the test

results provide any insights into the results in part (c)?
12.12 The data file freddie2 contains monthly housing price indices for the prices of houses in Champaign-

Urbana, Illinois (CHURB), and Charlottesville, Virginia (CHARV) from 1982M1 to 2015M12.
a. Plot the two series on the one graph and comment on the plots.
b. Using a 5% significance level, test each of the two series for unit roots and find the order of

integration of each series. Explain your choice of test equations. Are the series trend stationary?
Are the series first-difference stationary? Are the series second-difference stationary?

c. Using a 5% significance level, test whether CHURB and CHARV are cointegrated.
d. Plot the first differences of the two series on the one graph and comment on the plots.
e. Using a 5% significance level, test whether the first differences of CHURB and CHARV are

cointegrated.
12.13 The data file ozconfn contains quarterly data on Australian real consumption expenditure (CONS) and

real net national disposable income (INC) from 1975Q1 to 2010Q4.
a. Create the series LCONS = ln(CONS) and plot the series LCONS and INC. Comment on the

graphs.
b. Detrend each of the series by estimating the linear trends LCONSt = a1 + a2 t + u1t and

INCt = c1 + c2 t + u2t, and saving the residuals. Use values t = 0, 1,… , T − 1 for the trend term.
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c. Plot the detrended series and comment on the graphs.
d. From part (c), you will have noticed that there is a strong seasonal component in each series.

Econometricians have developed several methods for removing a seasonal component or “season-
ally adjusting” the data. One very simple method is to subtract out the effect of seasonal dummy
variables. To use this method, and remove the trend at the same time, we estimate the equation

yt = π0 t + π1D1t + π2D2t + π3D3t + π4D4t + ut (XR12.13)

where Djt = 1 when t is an observation in quarter j, and 0 otherwise. Estimate (XR12.13) for both
LCONS and INC and save the residuals; call them LCONS∗ and INC∗.

e. Plot LCONS∗ and INC∗ and compare these graphs with those obtained in part (c).
f. Using a 5% significance level and the critical values in the third row of Table 12.2, test whether

LCONS∗ and INC∗ are stationary or first-difference stationary. Explain your choice of test
equation, and comment on the suitability of the critical values.

g. Estimate the following two equations and compare the estimates

LCONSt = δ t + ϕ1D1t + ϕ2D2t + ϕ3D3t + ϕ4D4t + β INCt + et

LCONS∗t = β INC∗
t + et

h. Using a 5% significance level, test whether the equation in part (g)—either equation—is a coin-
tegrating relationship. What critical value did you use?

i. Estimate an error correction model relating ΔLCONSt to ΔINCt and, if relevant, the lagged coin-
tegrating residuals from part (g).

12.14 The data file gdp5 contains the data on GDP displayed in Figure 12.1.
a. Is GDP stationary or nonstationary? Explain your choice of test equation.
b. What is the order of integration of GDP?
c. Construct and estimate a suitable model for forecasting GDP in 2017Q1. What is your forecast?

12.15 The data file usdata5 contains the data on inflation displayed in Figure 12.1.
a. Is inflation stationary or nonstationary? Explain your choice of test equation.
b. What is the order of integration of inflation?
c. Construct and estimate a suitable model for forecasting inflation in 2017M1. What is your

forecast?
12.16 In Example 12.2, using data from the data file toody5, we estimated the model

ln
(
YIELDt

)
= α1 + α2 t + β1RAINt + β2RAIN2

t + et

An assumption underlying this example was that ln (YIELD), RAIN, and RAIN2 are all trend stationary.
Test this assumption using a 5% significance level.

12.17 a. Using data from the data file toody5, estimate the following model. Comment on the results.

YIELDt = α1 + α2 t + β1RAINt + β2RAIN2
t + et

b. Plot the residuals from the model estimated in part (a) and check the residual correlogram. What
do you observe?

c. Estimate the following model and comment on the results.

YIELDt = α1 + α2 t + α3 t2 + β1RAINt + β2RAIN2
t + et

d. Plot the residuals from the model estimated in part (c) and check the residual correlogram. How
do the properties of the residuals differ from those in part (b)?

e. Using a 5% significance level, test whether YIELD, RAIN, and RAIN2 are trend stationary after
subtracting out the quadratic trend.

12.18 Consider the ARDL model

yt = δ +
3∑

s=1
θsyt−s +

5∑
r=0
δrxt−r + vt (XR12.18)

Assume that yt and xt are I(1) and cointegrated. Let the cointegrating relationship be described by the
equation yt = β1 + β2xt + et.
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a. Show that β1 = δ
/(

1 − θ1 − θ2 − θ3
)

and β2 =
∑5

r=0δr
/(

1 − θ1 − θ2 − θ3
)
.

b. Consider the corresponding error correction model

Δyt = −α
(
yt−1 − β1 − β2xt−1

)
+ ϕ1Δyt−1 + ϕ2Δyt−2 +

4∑
r=0
ηrΔxt−r + vt

Show that δ = αβ1, θ1 = 1− α + ϕ1, θ2 = ϕ2 − ϕ1, θ3 = −ϕ2, δ0 = η0, δ1 = αβ2 − η0 + η1,
δ2 = η2 − η1, δ3 = η3 − η2, δ4 = η4 − η3, and δ5 = −η4.

c. Using the data in usdata5, set yt = BRt and xt = FFRt and find least-squares estimates of the
parameters in equation (XR12.18).

d. Use nonlinear least squares to estimate equation (12.32) in Example 12.9.
e. Substitute the parameter estimates of equation (12.32) obtained in part (d) into the expressions

given in part (b) and compare the estimates you get with those obtained in part (c). What conclu-
sion can you draw from this comparison?

12.19 When we estimated an error correction model for the bond and federal funds rates in Example 12.9,
we estimated the coefficients of the cointegrating relationship BRt = β1 + β2FFRt + et at the
same time as we estimated the other coefficients. Return to that example and estimate the error
correction model with the cointegrating relationship replaced by the lagged residuals êt−1 = BRt−1 −
1.328 − 0.832FFRt−1. Compare your estimates with those obtained in Example 12.9, reported in
equation (12.32).

12.20 The data file canada6 contains monthly Canadian/U.S. exchange rates for the period 1971M1 to
2017M3. Split the observations into two sample periods—a 1971M1–1987M12 sample period and a
1988M1–2017M3 sample period.
a. Perform a unit root test on the data for each sample period. Which Dickey–Fuller tests did you

use?
b. Are the results for the two sample periods consistent?
c. Perform a unit root test for the full sample 1971M1–2017M3. What is the order of integration of

the data?
12.21 The data file csi contains the Consumer Sentiment Index (CSI) produced by the University of

Michigan for the sample period 1978M1–2006M12.
a. Perform all three Dickey–Fuller tests. Are the results consistent? If not, why not?
b. Based on a graphical inspection of the data, which test should you have used?
c. Does the CSI suggest that consumers “remember” and “retain” news information for a short time,

or for a long time?
12.22 The data file mexico contains real GDP for Mexico and the United States from the first quarter of

1980 to the third quarter of 2006. Both series have been standardized so that the average value in
2,000 is 100.
a. Perform the test for cointegration between Mexico and the Unites States using all three test

equations in (12.29). Are the results consistent?
b. The theory of convergence in economic growth suggests that the two GDPs should be propor-

tional and cointegrated. That is, there should be a cointegrating relationship that does not contain
an intercept or a trend. Do your results support this theory?

c. If the variables are not cointegrated, what should you do if you are interested in testing the rela-
tionship between Mexico and the United States?

12.23 The data file inter2 contains 300 observations of a generated I(2) process shown in Figure 12.10.
Show that the variable called inter2 is indeed an I(2) variable by conducting a number of unit
root tests—first on the level of the data, then on the first difference, and finally on the second
difference.

12.24 Prices around the world tend to move together. The data file ukpi contains information about the price
indices in the United Kingdom and in the Euro Area (the United Kingdom is a member of the European
Union, but not a member of the single European currency zone) for the period 1996M1–2009M12.
a. Plot the data. Are the series I(1) or I(0)?
b. Are prices in the UK and in the Euro Area cointegrated, or spuriously related? Use both the least

squares and the error correction method to test this proposition.
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FIGURE 12.10 A generated I(2) process.

12.25 The data file nasa contains annual data on sunspots and the rate of growth in real GDP in the U.S. for
the period 1950–2014. Jevons, a 19th century economist, suggested that there might be a relationship
between business cycles and sunspots because variations in sunspots indicate variations in weather
which in turn causes variation in agricultural output.
a. Plot each of the series. Do business cycles tend to follow sunspot activity?
b. Using a 5% significance level, test whether each series is stationary.
c. Set up an ARDL model to test the hypothesis that sunspots can be used to predict business cycles

in the U.S. Do your results support Jevons’ theory?
12.26 The data file shiller contains the stock market data in the book “Irrational Exuberance” by Robert

Shiller.10 They comprise the monthly price and dividends of the S&P Index (in logs) for the sample
period 1871M1–2015M9. Finance theory suggests a long-run relationship between dividends and the
stock price.
a. Plot each of the series. Do they appear to be moving together?
b. Carry out an empirical analysis to investigate whether there is evidence of a long-run relationship

between the two series. Use a 1% level of significance for all hypothesis tests.
12.27 How easy is it to forecast the Australian/U.S. dollar exchange rate? The data file iron contains monthly

data on the iron ore price and the exchange rate from 2010M1 to 2016M12. In the questions that
follow, use a 5% significance level for all hypothesis tests.
a. Plot the two series. Do they appear to move together?
b. Is the exchange rate stationary or nonstationary? What model best reflects the relationship between

current and past exchange rates?
c. Is the iron ore price stationary or nonstationary?
d. Financial commentators have suggested that, given Australia’s dependence on iron ore exports, its

exchange rate follows movements in the iron ore price. Is there evidence to suggest these financial
commentators are correct?

e. Can the iron ore price be used to help forecast the exchange rate?
12.28 The data file inflation contains quarterly observations on the inflation rates in Germany and France

from 1990Q1 to 2014Q4. For any hypothesis tests in the following questions, use a 5% significance
level.
a. Plot each of the series and comment on the plots.
b. Use unit root tests, checks for serial correlation in the errors and significance of coefficients to

specify and estimate an equation relating Germany’s current inflation rate to its past rates.

............................................................................................................................................................
10Robert Shiller, Irrational Exuberence, 3rd ed, 2016, Princeton University Press.
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c. Use unit root tests, checks for serial correlation in the errors and significance of coefficients to
specify and estimate an equation relating France’s current inflation rate to its past rates.

d. Are the inflation rates in France and Germany cointegrated?
e. Specify and estimate an equation relating Germany’s current exchange rate to past exchange rates

in France and Germany.
12.29 Reconsider Example 6.20 where a logistic growth curve for the share of U.S. steel produced by electric

arc furnace (EAF) technology was estimated. The data are stored in the data file steel. The curve is
given by the equation

yt =
α

1 + exp(−β − δ t) + et

a. Plot the series yt = EAFt. Does it give the appearance of being stationary or nonstationary?
Does the logistic growth curve appear to be a good model for modeling its trend?

b. Using a 5% significance level, test the series yt = EAFt for a unit root.
c. Estimate the equation by nonlinear least squares and plot the residuals. Do the residuals appear to

be stationary. Test the residuals for a unit root.
d. Using a 5% significance level, test the series Δyt = ΔEAFt for a unit root.
e. Estimate a first-differenced version of the model and plot the residuals. Do the residuals appear

to be stationary. Test the residuals for a unit root.
f. Based on your answers to the previous parts of this question, do you think yt = EAFt is trend

stationary? Compare the estimates from parts (c) and (e). Do you think the nonlinear least-squares
estimates in part (c) are reliable?
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