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CHAPTER 11

Simultaneous Equations
Models

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain why estimation of a supply and demand
model requires an alternative to ordinary least
squares (OLS).

2. Explain the difference between exogenous and
endogenous variables.

3. Define the ‘‘identification’’ problem in
simultaneous equations models.

4. Define the reduced form of a simultaneous
equations model and explain its usefulness.

5. Explain why it is acceptable to estimate
reduced-form equations by least squares.

6. Describe the two-stage least squares estimation
procedure for estimating an equation in a
simultaneous equations model, and explain how
it resolves the estimation problem for least
squares.

K E Y W O R D S
contemporaneous correlation
endogenous variables
exogenous variables
first-stage equation
identification

instrumental variables (IV) estimator
instruments
predetermined variables
reduced-form equation
reduced-form errors

reduced-form parameters
simultaneous equations
structural parameters
two-stage least squares

For most of us, our first encounter with economic models comes through studying supply and
demand models, in which the market price and quantity of goods sold are jointly determined by
the equilibrium of supply and demand. In this chapter, we consider econometric models for data
that are jointly determined by two or more economic relations. These simultaneous equations
models differ from those we have considered in previous chapters because in each model there
are two or more dependent variables rather than just one.

Simultaneous equations models also differ from most of the econometric models we have
considered so far, because they consist of a set of equations. For example, price and quantity
are determined by the interaction of two equations, one for supply and the other for demand.
Simultaneous equations models, which contain more than one dependent variable and more than
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532 CHAPTER 11 Simultaneous Equations Models

one equation, require special statistical treatment. The least squares estimation procedure is not
appropriate in these models, and we must develop new ways to obtain reliable estimates of eco-
nomic parameters.

Some of the concepts in this chapter were introduced in Chapter 10. However, reading
Chapter 10 is not an absolute prerequisite for reading Chapter 11, which is largely self-contained.
If you have read Chapter 10, you will observe that much of what you learned there will carry
over to this chapter, including how simultaneous equations models fit into the big picture. If you
have not read Chapter 10, referring back to portions of it will provide a deeper understanding of
material presented in this chapter. This chapter on simultaneous equations is presented separately
because its treatment was the first major contribution of econometrics to the wider field of
statistics, and because of its importance in economic analysis.

11.1 A Supply and Demand Model
Supply and demand jointly determine the market price of a good and the quantity of it that is
sold. Graphically, you recall that market equilibrium occurs at the intersection of the supply and
demand curves, as shown in Figure 11.1. An econometric model that explains market price and
quantity should consist of two equations, one for supply and the other for demand. It will be a
simultaneous equations model, since both equations working together determine price and quan-
tity. A very simple model might look like the following:

Demand: Qi = α1Pi + α2Xi + edi (11.1)
Supply: Qi = β1Pi + esi (11.2)

Based on economic theory, we expect the supply curve to be positively sloped, β1 > 0, and
the demand curve to be negatively sloped, α1 < 0. In this model, we assume that the quantity
demanded (Q) is a function of price (P) and income (X). Quantity supplied is taken to be a func-
tion of only price. (We have omitted the intercepts to make the algebra easier. In practice, we
would include intercept terms in these models.) The observation index i = 1,…, N may represent
the market place at different points in time, or at different locations.

The point we wish to make very clear is that it takes two equations to describe the supply and
demand equilibrium. The two equilibrium values, for price and quantity, P* and Q*, respectively,
are determined at the same time. In this model, the variables P and Q are called endogenous
variables because their values are determined within the system we have created. The endogenous
variables P and Q are dependent variables and both are random variables. The income variable X
has a value that is determined outside this system. Such variables are said to be exogenous, and
these variables are treated like usual “x” explanatory variables.

Random errors are added to the supply and demand equations for the usual reasons.
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FIGURE 11.1 Supply and demand equilibrium.
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FIGURE 11.2 Influence diagrams for two
regression models.

We adopt assumption SR2 from Chapter 2 for both the demand and supply equations, given any
value of the exogenous variable Xi, i = 1,…, N. To simplify notation, we refer to all the values
of Xi as X, where X =

(
X1,X2 ,…, XN

)
. Then

E
(
edi|X

)
= 0, E

(
esi|X

)
= 0 (11.3)

In Section 2.10, we coined the term “strictly exogenous” for an exogenous variable like this.
It implies that E

(
edi

)
= E

(
esi
)
= 0; the unconditional expected value of each error equals zero.

It also implies that any value of the exogenous variable Xj is uncorrelated with the error terms
in the demand and supply equations, so cov

(
edi, Xj

)
= 0 and cov

(
esi, Xj

)
= 0. Further, the error

terms in the demand and supply equations are assumed to be homoskedastic, var
(
edi|X

)
= σ2

d,
and var

(
esi|X

)
= σ2

s . Finally, we also assume that there is no serial correlation and no correlation
between the error terms of the two equations.

Let us emphasize the difference between simultaneous equations models and regression mod-
els using influence diagrams. An “influence diagram” is a graphical representation of relationships
between model components. In the previous chapters, we would have modeled the supply and
demand relationships as separate regressions, implying the influence diagrams in Figure 11.2. In
this diagram the circles represent endogenous dependent variables and error terms. The squares
represent exogenous explanatory variables. In regression analysis, the direction of the influence is
one way: from the explanatory variable and the error term to the dependent variable. In this case
there is no equilibrating mechanism that will lead quantity demanded to equal quantity supplied
at a market-clearing price. For price to adjust to the market-clearing equilibrium, there must be
an influence running from P to Q and from Q to P.

Recognizing that price P and quantity Q are jointly determined, and that there is feedback
between them, suggests the influence diagram in Figure 11.3. In the simultaneous equations
model we see the two-way influence, or feedback, between P and Q because they are jointly
determined. The random error terms ed and es affect both P and Q, suggesting a correlation
between each of the endogenous variables and each of the random error terms. As we will see,
this leads to failure of the ordinary least squares (OLS) estimator in simultaneous equations
models. Income X is an exogenous variable that affects the endogenous variables, but there is no
feedback from P and Q to X.

The fact that P is an endogenous variable on the right-hand side of the supply and demand
equations means that we have an explanatory variable that is random. Not only is P random but it is

P

esed Q

X

FIGURE 11.3 Influence diagram for a simultaneous
equations model.
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also contemporaneously correlated with the random errors in the demand and supply equations,
that is, cov

(
Pi, edi

)
= E

(
Piedi

) ≠ 0 and cov
(
Pi, esi

)
= E

(
Piesi

) ≠ 0. When an explanatory variable
is contemporaneously correlated with the regression error term then the OLS estimator is biased
and inconsistent. We provide an intuitive argument for why this outcome is true in Section 11.3,
and we prove it in Section 11.3.1.

11.2 The Reduced-Form Equations
The two structural equations (11.1) and (11.2) can be solved to express the endogenous variables
P and Q as functions of the exogenous variable X. This reformulation of the model is called the
reduced form of the structural equation system. The reduced form is very important in its own
right, and also helps us understand the structural equation system. To find the reduced form, we
solve equations (11.1) and (11.2) simultaneously for P and Q.

To solve for P, set Q in the demand and supply equations to be equal,

β1Pi + esi = α1Pi + α2Xi + edi

Then solve for Pi,
Pi =

α2(
β1 − α1

)Xi +
edi − esi(
β1 − α1

) = π1Xi + v1i (11.4)

To solve for Qi, substitute the value of Pi in (11.4) into either the demand or supply equation.
The supply equation is simpler, so substitute Pi into (11.2) and simplify:

Qi = β1Pi + esi = β1

[
α2(

β1 − α1
)Xi +

edi − esi(
β1 − α1

)
]
+ esi

=
β1α2(
β1 − α1

)Xi +
β1edi − α1esi(
β1 − α1

) = π2Xi + v2i (11.5)

The parameters π1 and π2 in (11.4) and (11.5) are called reduced-form parameters. The errors
v1i and v2i are reduced-form errors. The reduced forms are predictive equations. We assume
that E

(
Pi|Xi

)
= π1Xi and E

(
Qi|Xi

)
= π2Xi. By definition E

(
v1i|Xi

)
= 0 and E

(
v2i|Xi

)
= 0, using

assumptions (11.3), and also they are homoskedastic and serially uncorrelated if the same holds
true for the structural equation errors edi and esi. Under these conditions, the ordinary least squares
(OLS) estimators of the reduced-form parameters π1 and π2 are consistent, and have approximate
normal distributions in large samples, whether the structural equation errors are normal or not.
The most important aspect of the OLS estimators for the reduced-form parameters is that they are
consistent estimators.

The reduced-form equations (11.4) and (11.5) have an endogenous variable on the left-hand
side and exogenous variables, and a random error term, on the right-hand side. These are
first-stage equations in the language of Chapter 10. We explain the term in Section 11.5 if
you have not read Chapter 10. The terms reduced-form equation and first-stage equation are
interchangeable.

The reduced-form equations are important for economic analysis. These equations relate the
equilibrium values of the endogenous variables to the exogenous variables. Thus, if there is an
increase in income X, π1 is the expected increase in price, after market adjustments lead to a new
equilibrium for P and Q. Similarly, π2 is the expected increase in the expected equilibrium value
of Q. (Question: how did we determine the directions of these changes?) Secondly, and using the
same logic, the estimated reduced-form equations can be used to predict values of equilibrium
price and quantity for different levels of income. Clearly CEOs and other market analysts are
interested in the ability to forecast both prices and quantities sold of their products. Estimating
the reduced-form equations makes such predictions possible.
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11.3 The Failure of Least Squares Estimation
In this section, we explain why the OLS estimator should not be used to estimate an equation in a
simultaneous equations model. For reasons that will become clear in the next section, we focus on
the supply equation. In the supply equation (11.2), the endogenous variable Pi on the right-hand
side of the equation is contemporaneously correlated with the error term esi. Suppose there is a
small change, or blip, in the error term esi, say Δesi. Trace the effect of this change through the
system. The blip Δesi in the error term of (11.2) is directly transmitted to the equilibrium value
of Pi. This follows from the reduced form (11.4) that has Pi on the left and esi on the right. Every
change in the supply equation error term, esi, has a direct effect on Pi. Because β1>0 and α1<0,
if Δesi > 0, then ΔPi < 0. Thus, every time there is a change in esi there is an associated change
in Pi in the opposite direction. Consequently, Pi and esi are negatively correlated.

The failure of OLS estimation for the supply equation can be explained as follows: OLS
estimation of the relation between Qi and Pi gives “credit” to price (Pi ) for the effect of changes
in the error term (esi). This occurs because we do not observe the change in the error term, but
only the change in Pi resulting from its correlation with the error esi. The OLS estimator of β1
will understate the true parameter value in this model because of the negative contemporaneous
correlation between the endogenous variable Pi and the error term esi. This occurs because we do
not observe the change in the error term, but only the change in Pi resulting from its correlation
with the error esi. The least squares estimator of β1 will understate the true parameter value in this
model because of the negative contemporaneous correlation between the endogenous variable
Pi and the error term esi. In large samples, the least squares estimator will tend to be negatively
biased in this model. This bias persists even if the sample size goes to infinity, and thus the least
squares estimator is inconsistent. This means that the probability distribution of the least squares
estimator will ultimately “collapse” about a point that is not the true parameter value as the sample
size N→∞. See Section 5.7 for a general discussion of “large sample” properties of estimators.
Here, we summarize by saying:

The least squares estimator of parameters in a structural simultaneous equation is biased and
inconsistent because of the contemporaneous correlation between the random error and the
endogenous variables on the right-hand side of the equation.

11.3.1 Proving the Failure of OLS
Consider the supply and demand model in (11.1) and (11.2). To explain the failure of the OLS
estimator of the supply equation, let us first obtain the conditional covariance between Pi and esi.

cov
(
Pi, esi|X

)
= E

{[
Pi − E

(
Pi|X

)][
esi − E

(
esi|X

)]|||X
}

= E
(
Piesi|X

) [
since E

(
esi|X

)
= 0

]

= E
[(
π1Xi + v1i

)
esi|X

] [
substitute for Pi

]

= E
[(edi − esi
β1 − α1

)
esi
||||X

] [
since π1Xi is fixed

]

=
−E

(
e2

si|X
)

β1 − α1

[
since ed, es assumed uncorrelated

]

=
−σ2

s
β1 − α1

< 0
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What impact does the negative contemporaneous covariance have on the least squares estimator?
The OLS estimator of the supply equation (11.2) (which does not have an intercept term) is

b1 =
∑

PiQi∑
P2

i

Substitute for Q from the reduced-form equation (11.5) and simplify,

b1 =
∑

Pi
(
β1Pi + esi

)
∑

P2
i

= β1 +
∑(

Pi∑
P2

i

)
esi

The expected value of the least squares estimator is

E
(
b1|X

)
= β1 + E

[
∑
(

Pi∑
P2

i

)
esi

||||X
]
= β1 + E

[
∑
(

Piesi∑
P2

i

)
||||X

]
[move error to numerator]

= β1 +
∑
[

E
(

Piesi∑
P2

i

)
||||X

]
[expected value of the sum is sum of expected values]

≠ β1 [expected value terms in the sum are not zero]
In the final step, we have E

[(
Piesi

/∑
P2

i
)||X

]
= E

[
g
(
Pi
)
esi
||X

] ≠ 0, where g
(
Pi
)
= Pi

/∑
P2

i .
When finding the covariance between Pi and the random error esi, we showed that
E
(
Piesi|X

)
= E

(
Piesi

)
= −σ2

s
/(
β1 − α1

)
< 0 and thus we suspect that E

[(
Piesi

/∑
P2

i
)||X

]
< 0,

because ∑
P2

i > 0, so that we suspect the least squares estimator exhibits a negative bias.
However, the expected value of the ratio is not the ratio of expected values, so all we can really
conclude is that the least squares estimator is biased, because esi and Pi are contemporaneously
correlated.

This bias does not disappear in larger samples, so the OLS estimator of the supply equation
is inconsistent as well. The OLS estimator converges to a value less than β1 and this is easier to
show using asymptotic analysis similar to that in Chapter 5, equation (5.41). Rewrite the OLS
estimators

b1 = β1 +
∑(

Pi∑
P2

i

)
esi = β1 +

∑
Piesi∑
P2

i
= β1 +

∑
Piesi∕N

∑
P2

i
/

N
= β1 +

E
(
Piesi

)⋀

E
(
P2

i
)⋀

Using the Law of Large Numbers, sample moments (averages) converge to population moments
(expected values), so that

E
(
Piesi

)⋀

p
−−→E

(
Piesi

)
= −σ2

s
/(
β1 − α1

)
< 0

and
E
(
P2

i
)⋀

p
−−→E

(
P2

i
)
> 0

Therefore
b1

p
−−→ β1 −

σ2
s
/(
β1 − α1

)

E
(
P2

i
) < β1

11.4 The Identification Problem
In the supply and demand model given by (11.1) and (11.2),
• The parameters of the demand equation, α1 and α2, cannot be consistently estimated by any

estimation method.
• The slope of the supply equation, β1, can be consistently estimated.
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FIGURE 11.4 The effect of changing income.

How are we able to make such statements? The answer is quite intuitive, and it can be illustrated
graphically. What happens when income X changes? The demand curve shifts and a new
equilibrium price and quantity are created. In Figure 11.4 we show the demand curves d1, d2,
and d3 and equilibria, at points a, b, and c, for three levels of income. As income changes,
data on price and quantity will be observed around the intersections of supply and demand.
The random errors ed and es cause small shifts in the supply and demand curves, creating
equilibrium observations on price and quantity that are scattered about the intersections at points
a, b, and c.

The data values will trace out the supply curve, suggesting that we can fit a line through them
to estimate the slope β1. The data values fall along the supply curve because income is present
in the demand curve and absent from the supply curve. As income changes, the demand curve
shifts but the supply curve remains fixed, resulting in observations along the supply curve.

There are no data values falling along any of the demand curves, and there is no way to
estimate their slope. Any one of the infinite number of demand curves passing through the
equilibrium points could be correct. Given the data, there is no way to distinguish the true
demand curve from all the rest. Through the equilibrium point a we have drawn a few demand
curves, each of which could have generated the data we observe.

The problem lies with the model that we are using. There is no variable in the supply equation
that will shift it relative to the demand curve. If we were to add a variable to the supply curve, say
W, then each time W is changed, the supply curve would shift, and the demand curve would stay
fixed. The shifting of supply relative to a fixed demand curve (since W is absent from the demand
equation) would create equilibrium observations along the demand curve, making it possible to
estimate the slope of the demand curve and the effect of income on demand.

It is the absence of variables in one equation that are present in another equation that
makes parameter estimation possible. A general rule, which is called a necessary condition for
identification of an equation, is this:

A Necessary Condition for Identification
In a system of M simultaneous equations, which jointly determine the values of M endoge-
nous variables, at least M − 1 variables must be absent from an equation for estimation of its
parameters to be possible. When estimation of an equation’s parameters is possible, then the
equation is said to be identified, and its parameters can be estimated consistently. If fewer
than M − 1 variables are omitted from an equation, then it is said to be unidentified, and its
parameters cannot be consistently estimated.
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In our supply and demand model there are M = 2 equations, so we require at least M − 1 = 1
variable to be omitted from an equation to identify it. There are a total of three variables: P, Q,
and X. In the demand equation none of the variables are omitted; thus it is unidentified and its
parameters cannot be estimated consistently. In the supply equation, one variable, income (X), is
omitted; the supply curve is identified, and its parameter can be estimated.

The identification condition must be checked before trying to estimate an equation. If an
equation is not identified, then changing the model must be considered before it is estimated.
However, changing the model should not be done in a haphazard way; no important variable
should be omitted from an equation just to identify it. The structure of a simultaneous equations
model should reflect your understanding of how equilibrium is achieved and should be consistent
with economic theory. Creating a false model is not a good solution to the identification problem.

This paragraph is for those who have read Chapter 10. The necessary condition for identi-
fication can be expressed in an alternative but equivalent fashion. The two-stage least squares
estimation procedure was developed in Chapter 10 and shown to be an instrumental variables
estimator. This procedure is developed further in the next section. The number of instrumen-
tal variables (IVs) required for estimation of an equation within a simultaneous equations model
is equal to the number of right-hand side endogenous variables. In a typical equation within a
simultaneous equations model, several exogenous variables appear on the right-hand side. Thus
instruments must come from those exogenous variables omitted from the equation in ques-
tion. Consequently, identification requires that the number of excluded exogenous variables in
an equation be at least as large as the number of included right-hand side endogenous variables.
This ensures an adequate number of IVs.

11.5 Two-Stage Least Squares Estimation
The most widely used method for estimating the parameters of an identified structural equation
is called two-stage least squares, which is often abbreviated as 2SLS or TSLS. The name comes
from the fact that it can be calculated using two OLS regressions. We will explain how it works
by considering the supply equation in (11.2). Recall that we should not apply the usual OLS
procedure to estimate β1 in this equation because the endogenous variable Pi on the right-hand
side of the equation is contemporaneously correlated with the error term esi, causing the OLS
estimator to be biased and inconsistent.

The variable Pi is composed of a systematic part, which is its expected value E
(
Pi|Xi

)
, and a

random part, which is the reduced-form random error v1i, that is,
Pi = E

(
Pi|Xi

)
+ v1i (11.6)

In the supply equation (11.2), the portion of Pi that causes problems for the OLS estimator is v1i,
the random part. It is v1i that causes Pi to be correlated with the error term esi. If we knew E

(
Pi|Xi

)
,

then we could replace Pi in (11.2) by (11.6) to obtain
Qi = β1

[
E
(
Pi|Xi

)
+ v1i

]
+ esi = β1E

(
Pi|Xi

)
+
(
β1v1i + esi

)
(11.7)

In (11.7) the explanatory variable on the right-hand side is E
(
Pi|Xi

)
. It depends only on the exoge-

nous variable, and it is not correlated with the error term. We could apply OLS to (11.7) to
consistently estimate β1.

Of course, we cannot use the variable E
(
Pi|Xi

)
in place of Pi since we do not know it. How-

ever, we can consistently estimate E
(
Pi|Xi

)
. Let π̂1 come from the fitted OLS estimation of the

reduced-form equation for Pi. A consistent estimator for E
(
Pi|Xi

)
is

P̂i = π̂1Xi

Using P̂i as a replacement for E
(
Pi|Xi

)
in (11.7), we obtain

Qi = β1P̂i + ê∗i (11.8)
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In large samples, P̂i and the random error ê∗i are uncorrelated, and consequently the parameter β1
can be consistently estimated by applying OLS to (11.8).

The OLS estimator of (11.8) is the two-stage least squares estimator of β1, which is con-
sistent and asymptotically normal. Because the two-stage least squares estimator is consistent it
converges to the true value in large samples. That the estimator is asymptotically normal means
that if we have a large sample, the usual tests and confidence interval estimators can be used.
To summarize, the two stages of the estimation procedure are:

1. OLS estimation of the reduced-form equation for Pi and the calculation of its predicted
value, P̂i

2. OLS estimation of the structural equation in which the right-hand side endogenous variable
Pi is replaced by its predicted value P̂i

1

In practice always use software that is designed for 2SLS, so that standard errors and t-values will
be calculated correctly.

11.5.1 The General Two-Stage Least Squares Estimation
Procedure

The two-stage least squares estimation procedure can be used to estimate the parameters of
any identified equation within a simultaneous equations system. In a system of M simultaneous
equations, let the endogenous variables be yi1, yi2,…, yiM. There must always be as many
equations in a simultaneous system as there are endogenous variables. Let there be K exogenous
variables, xi1, xi2,…, xiK. To illustrate, suppose M = 3 and the first structural equation within this
system is

yi1 = α2yi2 + α3yi3 + β1xi1 + β2xi2 + ei1 (11.9)
If this equation is identified, then its parameters can be estimated in two steps:

1. Use OLS to estimate the parameters of the reduced-form equations
yi2 = π12xi1 + π22xi2 + · · · + πK2xiK + vi2

yi3 = π13xi1 + π23xi2 + · · · + πK3xiK + vi3

Obtain the predicted values
ŷi2 = π̂12xi1 + π̂22xi2 + · · · + π̂K2xiK

ŷi3 = π̂13xi1 + π̂23xi2 + · · · + π̂K3xiK (11.10)
2. Replace the endogenous variables, yi2 and yi3, on the right-hand side of the structural (11.9)

by their predicted values from (11.10)
yi1 = α2ŷi2 + α3ŷi3 + β1xi1 + β2xi2 + e∗i1

Estimate the parameters of this equation by OLS.
In practice, we should always use software designed for 2SLS or IV estimation. It will correctly
carry out the calculations of the 2SLS estimates and their standard errors.

Equation (11.9) has two right-hand side endogenous variables and two exogenous variables.
K is the total number of exogenous variables. How large must K be so that equation (11.9)
is identified? The identification “necessary” condition is that in a system of M equations at

............................................................................................................................................
1The discussion above is an intuitive explanation of the two-stage least squares estimator. For a general explanation
of this estimation method, see Section 10.3. There we derive the two-stage least squares estimator and discuss its
properties.



❦

❦ ❦

❦

540 CHAPTER 11 Simultaneous Equations Models

least M − 1 variables that appear elsewhere in the system must be omitted from each equation.
There are M = 3 equations so M − 1 = 2 variables must be omitted from each equation. Let
K = K1 + K∗

1 , where K1 = 2 is the number of included exogenous variables in the first structural
equation, and K∗

1 is the number of exogenous variables excluded from the first structural equation.
Identification of the first equation requires K∗

1 ≥ 2 and K ≥ 4. In Chapter 10’s terminology, K∗
1 is

the number of instrumental variables for the first equation.
The alternative description of the condition for identification is that the number of

omitted exogenous variables, K∗
1 , must be greater than, or equal to, the number of included,

right-hand side endogenous variables. Let M = 1 + M1 + M∗
1 , where M1 = 2 is the number of

included right-hand side endogenous variables, and M∗
1 is the number of endogenous variables

excluded from the first equation. In this example, M∗
1 = 0 because the first equation contains all

three endogenous variables, including the left-hand side variable y1. The identification rule is
that K∗

1 ≥ M1. In Chapter 10’s language, there must be as many instrumental variables, K∗
1 , as

endogenous variables on the right-hand side of the equation, M1.

Remark
Simultaneous equations models were developed in the early 1940s and for many years
were the cornerstone of econometric analysis. The subject of Chapter 10 is regression
equations with endogenous variables, which can be thought of as one equation from a
system of equations. Because building and estimating complete systems are difficult, more
researchers in recent years have relied on estimating individual equations by 2SLS∕IV ,
which is why the content of Chapter 10 precedes this treatment of simultaneous equations.
However, the concepts and methods used in Chapters 10 and 11 are the same. Just keep in
mind that:

1. Two-stage least squares and instrumental variables estimation are identical.
2. IVs, or just instruments, are exogenous variables that do not appear in the equation.

Instruments are excluded exogenous variables.
3. The reduced-form equations in simultaneous equations modeling are the first-stage

equations in instrumental variables, two-stage least squares, estimation.

11.5.2 The Properties of the Two-Stage Least
Squares Estimator

We have described how to obtain estimates for structural equation parameters in identified
equations. The properties of the two-stage least squares estimator are as follows:

• The 2SLS estimator is a biased estimator, but it is consistent.
• In large samples the 2SLS estimator is approximately normally distributed.
• The variances and covariances of the 2SLS estimator are unknown in small samples, but for

large samples, we have expressions for them that we can use as approximations. These formu-
las are built into econometric software packages, which report standard errors and t-values,
just like an OLS regression program.

• If you obtain 2SLS estimates by applying two least squares regressions using OLS regression
software, the standard errors and t-values reported in the second regression are not correct for
the 2SLS estimator. Always use specialized 2SLS or IV software when obtaining estimates
of structural equations.
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E X A M P L E 11.1 Supply and Demand for Truffles

Truffles are a gourmet delight. They are edible fungi that
grow below the ground. In France they are often located by
collectors who use pigs to sniff out the truffles and “point”
to them. Actually the pigs dig frantically for the truffles
because pigs have an insatiable taste for them, as do the
French, and they must be restrained from “pigging out” on
them. Consider a supply and demand model for truffles:

Demand: Qi = α1 + α2Pi + α3PSi + α4DIi + edi (11.11)
Supply: Qi = β1 + β2Pi + β3PFi + esi (11.12)

In the demand equation Q is the quantity of truffles traded in
a particular French marketplace, indexed by i, P is the market
price of truffles, PS is the market price of a substitute for real
truffles (another fungus much less highly prized), and DI is
per capita monthly disposable income of local residents. The
supply equation contains the market price and quantity sup-
plied. Also it includes PF, the price of a factor of production,
which in this case is the hourly rental price of truffle-pigs used
in the search process. In this model, we assume that P and Q
are endogenous variables. The exogenous variables are PS,
DI, PF, and the intercept.

Identification
Before thinking about estimation, check the identification
of each equation. The rule for identifying an equation is that
in a system of M equations at least M − 1 variables must be
omitted from each equation in order for it to be identified.
In the demand equation the variable PF is not included; thus
the necessary M − 1 = 1 variable is omitted. In the supply
equation both PS and DI are absent; more than enough to sat-
isfy the identification condition. Note too that the variables
that are omitted are different for each equation, ensuring that
each contains at least one shift variable not present in the
other. We conclude that each equation in this system is iden-
tified and can thus be estimated by two-stage least squares.

Why are the variables omitted from their respective
equations? Because economic theory says that the price of
a factor of production should affect supply but not demand,
and that the price of substitute goods and income should
affect demand and not supply. The specifications we used are
based on the microeconomic theory of supply and demand.

The reduced-form equations

The reduced-form equations express each endogenous vari-
able, P and Q, in terms of the exogenous variables PS, DI,
PF, and the intercept, plus an error term. They are

Qi = π11 + π21PSi + π31DIi + π41PFi + vi1

Pi = π12 + π22PSi + π32DIi + π42PFi + vi2

We can estimate these equations by OLS since the right-hand
side variables are exogenous and contemporaneously
uncorrelated with the random errors vi1 and vi2. The data file

truffles contains 30 observations on each of the endogenous
and exogenous variables. The units of measurement are $
per ounce for price P, ounces for Q, $ per ounce for PS, and
thousands of dollars for DI; PF is the hourly rental rate ($)
for a truffle-finding pig. A few of the observations are shown
in Table 11.1. The results of the least squares estimations
of the reduced-form equations for Q and P are reported in
Tables 11.2a and 11.2b.

In Table 11.2a, we see that the estimated coefficients
are statistically significant, and thus we conclude that the
exogenous variables affect the quantity of truffles traded,
Q, in this reduced-form equation. The R2 = 0.697, and
the overall F-statistic is 19.973, which has a p-value of
less than 0.0001. In Table 11.2b the estimated coefficients

T A B L E 11.1 Representative Truffle Data

OBS P Q PS DI PF
1 29.64 19.89 19.97 2.103 10.52
2 40.23 13.04 18.04 2.043 19.67
3 34.71 19.61 22.36 1.870 13.74
4 41.43 17.13 20.87 1.525 17.95
5 53.37 22.55 19.79 2.709 13.71

Summary Statistics
Mean 62.72 18.46 22.02 3.53 22.75
Std. Dev. 18.72 4.61 4.08 1.04 5.33

T A B L E 11.2a
Reduced Form for Quantity of
Truffles (Q)

Variable Coefficient Std. Error t-Statistic Prob.
C 7.8951 3.2434 2.4342 0.0221
PS 0.6564 0.1425 4.6051 0.0001
DI 2.1672 0.7005 3.0938 0.0047
PF −0.5070 0.1213 −4.1809 0.0003

T A B L E 11.2b
Reduced Form for Price of
Truffles (P)

Variable Coefficient Std. Error t-Statistic Prob.
C −32.5124 7.9842 −4.0721 0.0004
PS 1.7081 0.3509 4.8682 0.0000
DI 7.6025 1.7243 4.4089 0.0002
PF 1.3539 0.2985 4.5356 0.0001
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are statistically significant, indicating that the exogenous
variables have an effect on market price P. The R2 = 0.889
implies a good fit of the reduced-form equation to the data.
The overall F-statistic value is 69.189 that has a p-value of
less than 0.0001, indicating that the model has statistically
significant explanatory power.

The structural equations

The reduced-form equations are used to obtain P̂ that will
be used in place of P on the right-hand side of the supply
and demand equations in the second stage of two-stage least
squares. From Table 11.2b, we have

P̂i = π̂12 + π̂22PSi + π̂32DIi + π̂42PFi

= −32.512 + 1.708PSi + 7.603DIi + 1.354PFi

The 2SLS results are given in Tables 11.3a and 11.3b. The
estimated demand curve results are in Table 11.3a. Note that
the coefficient of price is negative, indicating that as the mar-
ket price rises, the quantity demanded of truffles declines,
as predicted by the law of demand. The standard errors that
are reported are obtained from 2SLS software. They and the
t-values are valid in large samples. The p-value indicates that
the estimated slope of the demand curve is significantly dif-
ferent from zero. Increases in the price of the substitute for
truffles increase the demand for truffles, which is a charac-
teristic of substitute goods. Finally the effect of income is
positive, indicating that truffles are a normal good. All of

T A B L E 11.3a
2SLS Estimates for Truffle
Demand

Variable Coefficient Std. Error t-Statistic Prob.
C −4.2795 5.5439 −0.7719 0.4471
P −0.3745 0.1648 −2.2729 0.0315
PS 1.2960 0.3552 3.6488 0.0012
DI 5.0140 2.2836 2.1957 0.0372

T A B L E 11.3b 2SLS Estimates for Truffle Supply

Variable Coefficient Std. Error t-Statistic Prob.
C 20.0328 1.2231 16.3785 0.0000
P 0.3380 0.0249 13.5629 0.0000
PF −1.0009 0.0825 −12.1281 0.0000

these variables have statistically significant coefficients and
thus have an effect upon the quantity demanded.

The supply equation results appear in Table 11.3b.
As anticipated, increases in the price of truffles increase
the quantity supplied, and increases in the rental rate for
truffle-seeking pigs, which is an increase in the cost of a
factor of production, reduces supply. Both of these variables
have statistically significant coefficient estimates.

E X A M P L E 11.2 Supply and Demand at the Fulton Fish Market

The Fulton Fish Market has operated in New York City for
over 150 years. The prices for fish are determined daily by
the forces of supply and demand. Kathryn Graddy2 collected
daily data on the price of whiting (a common type of fish),
quantities sold, and weather conditions during the period
December 2, 1991, to May 8, 1992. These data are in the file
fultonfish. Fresh fish arrive at the market about midnight. The
wholesalers, or dealers, sell to buyers for retail shops and
restaurants. The first interesting feature of this example is to
consider whether prices and quantities are simultaneously
determined by supply and demand at all.3 We might consider
this a market with a fixed, perfectly inelastic supply. At the
start of the day, when the market is opened, the supply of
fish available for the day is fixed. If supply is fixed, with a
vertical supply curve, then price is demand-determined, with
higher demand leading to higher prices but no increase in the

quantity supplied. If this is true, then the feedback between
prices and quantities is eliminated. Such models are said
to be recursive and the demand equation can be estimated
by OLS rather than the more complicated two-stage least
squares procedure.

However whiting fish can be kept for several days before
going bad, and dealers can decide to sell less, and add to their
inventory, or buffer stock, if the price is judged too low, in
hope for better prices the next day. Or, if the price is unusually
high on a given day, then sellers can increase the day’s catch
with additional fish from their buffer stock. Thus despite the
perishable nature of the product, and the daily resupply of
fresh fish, daily price is simultaneously determined by supply
and demand forces. The key point here is that “simultaneity”
does not require that events occur at a simultaneous moment
in time.

............................................................................................................................................
2See Kathryn Graddy (2006), “The Fulton Fish Market,” Journal of Economic Perspectives, 20(2), 207–220.
3See Kathryn Graddy and Peter E. Kennedy (2010), “When Are Supply and Demand Determined Recursively Rather
than Simultaneously?,” Eastern Economic Journal, 36, 188–197.



❦

❦ ❦

❦

11.5 Two-Stage Least Squares Estimation 543

Let us specify the demand equation for this market as

ln
(
QUANt

)
= α1 + α2 ln

(
PRICEt

)
+ α3MONt + α4TUEt

+ α5WEDt + α6THUt + edt (11.13)

where QUANt is the quantity sold, in pounds, and PRICEt
is the average daily price per pound. Note that we are using
the subscript “t” to index observations for this relationship
because of the time series nature of the data. The remaining
variables are indicator variables for the days of the week, with
Friday being omitted. The coefficient α2 is the price elasticity
of demand, which we expect to be negative. The daily indica-
tor variables capture day-to-day shifts in demand. The supply
equation is

ln
(
QUANt

)
= β1 + β2 ln

(
PRICEt

)
+ β3STORMYt + est

(11.14)
The coefficient β2 is the price elasticity of supply. The

variable STORMY is an indicator variable indicating stormy
weather during the previous three days. This variable is
important in the supply equation because stormy weather
makes fishing more difficult, reducing the supply of fish
brought to market.

Identification
Prior to estimation, we must determine whether the supply
and demand equation parameters are identified. The nec-
essary condition for an equation to be identified is that in
this system of M = 2 equations, it must be true that at least
M – 1 = 1 variable must be omitted from each equation.
In the demand equation the weather variable STORMY is
omitted, and it does appear in the supply equation. In the
supply equation, the four daily indicator variables that are
included in the demand equation are omitted. Thus the
demand equation shifts daily, while the supply remains fixed
(since the supply equation does not contain the daily indi-
cator variables), thus tracing out the supply curve, making
it identified, as shown in Figure 11.4. Similarly, stormy
conditions shift the supply curve relative to a fixed demand,
tracing out the demand curve and making it identified.

The reduced-form equations

The reduced-form equations specify each endogenous vari-
able as a function of all exogenous variables

ln
(
QUANt

)
= π11 + π21MONt + π31TUEt + π41WEDt

+ π51THUt + π61STORMYt + vt1 (11.15)
ln
(
PRICEt

)
= π12 + π22MONt + π32TUEt + π42WEDt

+ π52THUt + π62STORMYt + vt2 (11.16)

These reduced-form equations can be estimated by OLS
because the right-hand side variables are all exogenous
and uncorrelated with the reduced-form errors vt1 and vt2.

Using the Graddys’ data ( fultonfish), we estimate these
reduced-form equations and report them in Tables 11.4a
and 11.4b. Estimation of the reduced-form equations is the
first step of two-stage least squares estimation of the supply
and demand equations. It is a requirement for successful
two-stage least squares estimation that the estimated coeffi-
cients in the reduced form for the right-hand side endogenous
variable be statistically significant. We have specified the
structural equations (11.13) and (11.14) with ln(QUANt) as
the left-hand side variable and ln(PRICEt) as the right-hand
side endogenous variable. Thus the key reduced-form
equation is (11.16) for ln(PRICEt). In this equation

• To identify the supply curve, the daily indicator variables
must be jointly significant. This implies that at least one
of their coefficients is statistically different from zero,
meaning that there is at least one significant shift vari-
able in the demand equation, which permits us to reliably
estimate the supply equation.

• To identify the demand curve, the variable STORMYt
must be statistically significant, meaning that supply
has a significant shift variable, so that we can reliably
estimate the demand equation.

Why is this so? The identification discussion in Section 11.4
requires only the presence of shift variables, not their signif-
icance. The answer comes from a great deal of econometric
research in the past decade, which shows that the two-stage
least squares estimator performs very poorly if the shift
variables are not strongly significant.4 Recall that to
implement two-stage least squares we take the predicted
value from the reduced-form regression and include it in
the structural equations in place of the right-hand side
endogenous variable, that is, we calculate

ln
(
PRICEt

)⋀

= π̂12 + π̂22MONt + π̂32TUEt + π̂42WEDt

+ π̂52THUt + π̂62STORMYt

where π̂k2 are the least squares estimates of the reduced-form
coefficients, and then replace ln(PRICEt) with ln

(
PRICEt

)⋀

.
To illustrate our point, let us focus on the problem of estimat-
ing the supply equation (11.14) and take the extreme case
that π̂22 = π̂32 = π̂42 = π̂52 = 0, meaning that the coefficients
on the daily indicator variables are all identically zero. Then

ln
(
PRICEt

)⋀

= π̂12 + π̂62STORMYt

If we replace ln(PRICEt) in the supply equation (11.14)
with this predicted value, there will be exact collinearity
between ln

(
PRICEt

)⋀

and the variable STORMYt, which is
already in the supply equation, and two-stage least squares
will fail. If the coefficient estimates on the daily indicator

............................................................................................................................................
4See Section 10.3.9 for further discussion of this point.
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variables are not exactly zero, but are jointly insignificant, it
means there will be severe collinearity in the second stage,
and although the two-stage least squares estimates of the
supply equation can be computed, they will be unreliable.
In Table 11.4b, showing the reduced-form estimates for
(11.16), none of the daily indicator variables are statistically
significant. Also, the joint F-test of significance of the daily
indicator variables has p-value 0.65, so that we cannot reject
the null hypothesis that all these coefficients are zero.5 In
this case the supply equation is not identified in practice, and
we will not report estimates for it.

T A B L E 11.4a
Reduced Form for ln(Quantity)
Fish

Variable Coefficient Std. Error t-Statistic Prob.
C 8.8101 0.1470 59.9225 0.0000
STORMY −0.3878 0.1437 −2.6979 0.0081
MON 0.1010 0.2065 0.4891 0.6258
TUE −0.4847 0.2011 −2.4097 0.0177
WED −0.5531 0.2058 −2.6876 0.0084
THU 0.0537 0.2010 0.2671 0.7899

T A B L E 11.4b Reduced Form for ln(Price) Fish

Variable Coefficient Std. Error t-Statistic Prob.
C −0.2717 0.0764 −3.5569 0.0006
STORMY 0.3464 0.0747 4.6387 0.0000
MON −0.1129 0.1073 −1.0525 0.2950
TUE −0.0411 0.1045 −0.3937 0.6946
WED −0.0118 0.1069 −0.1106 0.9122
THU 0.0496 0.1045 0.4753 0.6356

However, STORMYt is statistically significant in
Table 11.4b, meaning that the demand equation may be
reliably estimated by two-stage least squares. An advantage
of two-stage least squares estimation is that each equation
can be treated and estimated separately, so the fact that the
supply equation is not reliably estimable does not mean that
we cannot proceed with estimation of the demand equation.
The check of statistical significance of the sets of shift
variables for the structural equations should be carried out
each time a simultaneous equations model is formulated.

Two-stage least squares estimation of fish
demand
Applying two-stage least squares estimation to the demand
equation we obtain the results as given in Table 11.5.
The price elasticity of demand is estimated to be −1.12,
meaning that a 1% increase in fish price leads to about a
1.12% decrease in the quantity demanded; this estimate is
statistically significant at the 5% level. The indicator variable
coefficients are negative and statistically significant for
Tuesday and Wednesday, meaning that demand is lower on
these days relative to Friday.

T A B L E 11.5 2SLS Estimates for Fish Demand

Variable Coefficient Std. Error t-Statistic Prob.
C 8.5059 0.1662 51.1890 0.0000
ln(PRICE) −1.1194 0.4286 −2.6115 0.0103
MON −0.0254 0.2148 −0.1183 0.9061
TUE −0.5308 0.2080 −2.5518 0.0122
WED −0.5664 0.2128 −2.6620 0.0090
THU 0.1093 0.2088 0.5233 0.6018

E X A M P L E 11.3 Klein’s Model I

One of the most widely used econometric examples in the
past 50 years is the small, three equation, macroeconomic
model of the U.S. economy proposed by Lawrence Klein,
the 1980 Nobel Prize winner in Economics.6 The model has

three equations, which are estimated, and then a number of
macroeconomic identities, or definitions, to complete the
model. In all, there are eight endogenous variables and eight
exogenous variables.

............................................................................................................................................
5Even if the variables are jointly significant, there may be a problem. The significance must be “strong.” An
F-value <10 is cause for concern. This problem is the same as that of weak instruments in instrumental variables
estimation (see Section 10.3.9).
6Our presentation follows Ernst R. Berndt (1991), The Practice of Econometrics: Classic and Contemporary,
Addison-Wesley Publishing, Section 10.5.
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The first equation is a consumption function, in which
aggregate consumption in year t, CNt is related to total
wages earned by all workers, Wt. Total wages are divided
into wages of workers earned in the private sector, W1t, and
wages of workers earned in the public sector, W2t, so that
total wages Wt = W1t + W2t. Private sector wages W1t are
endogenous and determined within the structure of the
model, as we will see below. Public sector wages W2t
are exogenous. In addition, consumption expenditures are
related to nonwage income (profits) in the current year, Pt,
which are endogenous, and profits from the previous year,
Pt−1. Thus, the consumption function is

CNt = α1 + α2
(
W1t + W2t

)
+ α3Pt + α4Pt−1 + e1t (11.17)

Now refer back to equation (5.44) in Section 5.7.3. There
we introduced the term contemporaneously uncorrelated
to describe the situation in which an explanatory variable
observed at time t, xtk is uncorrelated with the random error
at time t, et. In the terminology of Chapter 10, the variable
xtk is exogenous if it is contemporaneously uncorrelated with
the random error et. And the variable xtk is endogenous if
it is contemporaneously correlated with the random error et.
In the consumption equation, W1t and Pt are endogenous and
contemporaneously correlated with the random error et. On
the other hand, wages in the public sector, W2t, are set by
public authority and are assumed exogenous and uncorrelated
with the current period random error e1t. What about profits
in the previous year, Pt−1? They are not correlated with the
random error occurring one year later. Lagged endogenous
variables are called predetermined variables and are treated
just like exogenous variables.

The second equation in the model is the investment
equation. Net investment, It, is specified to be a function of

current and lagged profits, Pt and Pt−1, as well as the capital
stock at the end of the previous year, Kt−1. This lagged
variable is predetermined and treated as exogenous. The
investment equation is

It = β1 + β2Pt + β3Pt−1 + β4Kt−1 + e2t (11.18)

Finally, there is an equation for wages in the private sector,
W1t. Let Et = CNt + It +

(
Gt – W2t

)
, where Gt is government

spending. Consumption and investment are endogenous
and government spending and public sector wages are
exogenous. The sum, Et, total national product minus public
sector wages, is endogenous. Wages are taken to be related
to Et and the predetermined variable Et−1, plus a time trend
variable, TIMEt = YEARt − 1931, which is exogenous. The
wage equation is

W1t = γ1 + γ2Et + γ3Et−1 + γ4TIMEt + e3t (11.19)

Because there are eight endogenous variables in the entire
system there must also be eight equations. Any system
of M endogenous variables must have M equations to be
complete. In addition to the three equations (11.17)–(11.19),
which contain five endogenous variables, there are five other
definitional equations to complete the system that introduce
three further endogenous variables. In total, there are eight
exogenous and predetermined variables, which can be used
as IVs. The exogenous variables are government spending,
Gt, public sector wages, W2t, taxes, TXt, and the time trend
variable, TIMEt. Another exogenous variable is the constant
term, the “intercept” variable in each equation, X1t ≡ 1. The
predetermined variables are lagged profits, Pt−1, the lagged
capital stock, Kt−1, and the lagged total national product
minus public sector wages, Et−1.

11.6 Exercises

11.6.1 Problems
11.1 Our aim is to estimate the parameters of the simultaneous equations model

y1 = α1y2 + e1

y2 = α2y1 + β1x1 + β2x2 + e2

We assume that x1 and x2 are exogenous and uncorrelated with the error terms e1 and e2.
a. Solve the two structural equations for the reduced-form equation for y2, that is,

y2 = π1x1 + π2x2 + v2. Express the reduced-form parameters in terms of the structural
parameters and the reduced-form error in terms of the structural parameters and e1 and e2. Show
that y2 is correlated with e1.

b. Which equation parameters are consistently estimated using OLS? Explain.
c. Which parameters are “identified,” in the simultaneous equations sense? Explain your reasoning.
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d. To estimate the parameters of the reduced-form equation for y2 using the method of moments
(MOM), which was introduced in Section 10.3, the two moment equations are

N−1∑ xi1
(
y2 − π1xi1 − π2xi2

)
= 0

N−1∑ xi2
(
y2 − π1xi1 − π2xi2

)
= 0

Explain why these two moment conditions are a valid basis for obtaining consistent estimators of
the reduced-form parameters.

e. Are the MOM estimators in part (d) the same as the OLS estimators? Form the sum of squared
errors function for y2 = π1x1 + π2x2 + v2 and find the first derivatives. Set these to zero and show
that they are equivalent to the two equations in part (d).

f. Using ∑
x2

i1 = 1, ∑x2
i2 = 1, ∑ xi1xi2 = 0, ∑ xi1y1i = 2, ∑ xi1y2i = 3, ∑ xi2y1i = 3, ∑xi2y2i = 4,

and the two moment conditions in part (d) show that the MOM/OLS estimates of π1 and π2 are
π̂1 = 3 and π̂2 = 4.

g. The fitted value ŷ2 = π̂1x1 + π̂2x2. Explain why we can use the moment condition∑
ŷi2

(
yi1 − α1yi2

)
= 0 as a valid basis for consistently estimating α1. Obtain the IV estimate

of α1.
h. Find the 2SLS estimate of α1 by applying OLS to y1 = α1ŷ2 + e∗1. Compare your answer to that in

part (g).
11.2 Consider a supply and demand model written in its most general implicit form, using capital Greek

letters for the unknown parameters and Ei for the random errors,

Demand: Γ11q + Γ21p + B11 + B21x + E1 = 0
Supply: Γ12q + Γ22p + B12 + B22x + E2 = 0

a. Multiply each equation by 3. Do they remain true?
b. Multiply the demand equation by −1∕Γ11. Does it remain true?
c. Define α21 = −Γ21∕Γ11, β11 = −B11∕Γ11, β21 = −B21∕Γ11, e1 = −E1∕Γ11 and write the demand

equation with q on the left-hand side and the remaining terms on the right-hand side. By choosing
q to be on the left-hand side of the equation, we have chosen a normalization rule.

d. Repeat the process for the supply equation, beginning by multiplying through by −1∕Γ22, and
obtain the normalized supply curve with

α12 = −Γ12∕Γ22, β12 = −B12∕Γ22, β22 = −B22∕Γ22, and e2 = −E2∕Γ22

Write the normalized supply equation with p on the left-hand side and the remaining terms on the
right side.

e. Mathematically, in a system of jointly determined variables, it does not matter which variable
appears on the left side of each normalized equation. True or false?

11.3 Consider a supply and demand model written in its most general implicit form, using capital Greek
letters for the unknown parameters and Ei for the random errors:

Demand: Γ11q + Γ21p + B11 + B21x + E1 = 0
Supply: Γ12q + Γ22p + B12 + B22x + E2 = 0

a. Find the reduced-form equation for p, p = π1 + π2x + v. Express π1 and π2 in terms of parameters
Γij and Bij.

b. Suppose we replace the “true” demand equation with an equation that is a mixture of the demand
and supply equations, that is, multiply through the demand equation by 3 and the supply equation
by 2 and then add the two equations together to obtain

(
3Γ11 + 2Γ12

)
q +

(
3Γ21 + 2Γ22

)
p +

(
3B11 + 2B12

)
+
(
3B21 + 2B22

)
x +

(
3E1 + 2E2

)
= 0

or Γ′11q + Γ′21p + B′
11 + B′

21x + E′1 = 0, with ′ denoting the new parameters. Using the new
demand equation, and the original supply equation, find the reduced-form equation for p,
p = π∗1 + π

∗
2x + v∗. Express π∗1 and π∗2 in terms of parameters Γij and Bij. Compare the solution to

that in (a).
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11.4 Consider the supply and demand model below:

Demand: q = −p + 3 + 2x + e1

Supply: p = q + 1 + x + e2

a. Find the reduced-form equations for p and q as a function of the exogenous variable x.
b. Now suppose that the demand equation is q = −5p + 11 + 8x + e∗1. Find the reduced-form

equations for p and q using this demand equation and the original supply equation.
c. Show that the new demand equation is a mixture of the original supply and demand equations.

Specifically, it is three times the original demand equation plus two times the supply equation.
[Hint: It is simpler to put the demand and supply equations into implicit form, with everything on
the left side and zero on the right side, before doing the multiplying and adding.]

d. If we have N observations on p, q, and x, can we consistently estimate the demand equation by
OLS? Why?

e. If we have N observations on p, q, and x, can we consistently estimate the reduced-form equations
by OLS? Why?

f. Given the true reduced-form equations, can we deduce whether q = −p + 3 + 2x + e1 or
q = −5p + 11 + 8x + e∗1 is the true demand equation?

g. Is the demand equation “identified” using the necessary condition?
11.5 Consider the supply and demand model below:

Demand: q = −p + 3 + 2x + e1

Supply: p = q + 1 + e2

a. Find the reduced-form equations for p and q as a function of the exogenous variable x.
b. Now suppose that the demand equation is q = −5p + 11 + 6x + e∗1. Find the reduced-form

equations for p and q using this demand equation and the original supply equation.
c. Show that the new demand equation is a mixture of the original supply and demand equations.

Specifically, it is three times the original demand equation plus two times the supply equation.
[Hint: It is simpler to put the demand and supply equations into implicit form, with everything on
the left side and zero on the right side, before doing the multiplying and adding.]

d. If we have N observations on p, q, and x, can we consistently estimate the supply equation by
OLS? Why?

e. If we have N observations on p, q, and x, can we consistently estimate the reduced-form equations
by OLS? Why?

f. Given the economic supply and demand model proposed in the question, is it possible for the
mixture equation q = −5p + 11 + 6x + e∗1 to be a supply curve? Explain.

g. Is the demand equation “identified” using the necessary condition? Is the supply equation “iden-
tified” using the necessary condition?

11.6 Consider the supply and demand model below, where x is exogenous.

Demand: q = α1p + α2 + α3x + e1

Supply: p = β1q + β2 + e2

a. Find the reduced-form equations for p and q, q = π11 + π21x + v1 and p = π12 + π22x + v2,
expressing the reduced-form parameters in terms of α’s and β’s.

b. Suppose π11 = 1∕5, π21 = 3∕5, π12 = 2∕5, and π22 = 6∕5. Solve for as many of the α’s and β’s as
you can.

11.7 Consider the supply and demand model below, where x and w are exogenous.

Demand: q = α1p + α1x + α2w + e1

Supply: p = β1q + e2

a. Find the reduced-form equations for p and q, q = π11x + π21w + v1 and p = π12x + π22w + v2,
expressing the reduced-form parameters in terms of α’s and β’s.

b. Suppose π11 = 1∕5, π21 = 1∕5, π12 = 2∕5, and π22 = 2∕5. Solve for as many of the α’s and β’s as
you can.
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11.8 In macroeconomics, the simple “consumption function” relates national expenditure on consumption
goods, CONSUMPt = aggregate consumption, in period t to national income, INCOMEt = GNPt.
Specify the consumption function CONSUMPt = β1 + β2INCOMEt + et. Suppose that INVt is aggre-
gate investment. In the simplest model, the income identity is INCOMEt = CONSUMPt + INVt.
a. Substitute the income identity into the consumption function and solve for consumption in terms

of investment.
b. Find the covariance between INCOMEt and the random error et.
c. Find the covariance between INVt and INCOMEt.
d. Suppose INVt is uncorrelated with the random error et. Does it satisfy the conditions for an IV?

11.9 Consider the simultaneous equations model, where x is exogenous.

yi1 = α1yi2 + α2xi1 + ei1

yi2 = α2yi1 + β1xi1 + ei2

Assume that E
(
ei1|x1

)
= E

(
ei2|x1

)
= 0, var

(
ei1|x1

)
= σ2

1, var
(
ei2|x1

)
= σ2

2, and cov
(
ei1, ei2|x1

)
= σ12.

a. Substitute the second equation into the first and find the reduced-form equation for yi1.
b. Multiply the reduced-form equation for yi1 from part (a) by ei2 and find cov

(
yi1, ei2|x1

)
=

E
(
yi1ei2|x1

)
.

c. Show that cov
(
yi1, ei2|x1

)
= 0 if α1 = 0 and σ12 = 0. Such a system is said to be recursive.

d. Is the OLS estimator of the first equation consistent under the conditions in (c)? Explain.
e. Is the OLS estimator of the second equation consistent under the conditions in (c)? Explain.

11.10 Reconsider the Truffle supply and demand model in Example 11.1. Modify the demand equation
as Qi = α1 + α2Pi + α3PSi + ed

i , keeping the supply equation unchanged. The estimates are given in
Table 11.6.

T A B L E 11.6 Estimates for Exercise 11.10

(1) (2) (3) (4)
C 5.6169

(3.6256)
−40.5043
(10.0873)

0.4460
(4.1596)

19.9625
(1.2371)

PF −0.2762
(0.1097)

2.1635
(0.3053)

−1.0425
(0.0907)

PS 0.8685
(0.1434)

2.4522
(0.3991)

1.1815
(0.2765)

P −0.1277
(0.0671)

0.3542
(0.0288)

Standard errors in parentheses.

a. Are the demand and supply equations identified using the necessary condition in Section 11.4?
Explain.

b. Column (1) contains the OLS estimates of the reduced-form equation for Q, and column (2) con-
tains the OLS estimates of the reduced-form equation for P. Compute the first-stage F-test used to
decide upon instrument strength for each equation. Is the F-value greater than the rule of thumb
threshold, F > 10? [Hint: Recall the relationship between t- and F-tests.]

c. Using the estimates accurately sketch the supply and demand equations, with Q on the vertical
axis and P on the horizontal axis. For these sketches set the values of the exogenous variables, PS
and PF, to be PF* = 23 and PS* = 22.

d. What are the equilibrium values of P and Q from (c)?
e. On the graph from part (c) show the consequences of increasing the price of the factor of pro-

duction (the truffle-seeking pig’s rental rate) from PF* = 23 to PF* = 30, holding the value of PS
constant.
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f. Calculate the change in equilibrium price P and quantity Q in (d). What is the percentage change
in equilibrium quantity divided by the percentage change in PF?

g. Calculate a 95% interval estimate for the elasticity of Q with respect to PF using the reduced-form
equation estimates, at PF* = 23 and PS* = 22. Is the elasticity in (f) within the 95% interval
estimate?

11.11 Reconsider the Truffle supply and demand model in Example 11.1. Suppose we modify the supply
equation to be Qi = β1 + β2Pi + es

i , keeping the demand equation unchanged.
a. Are the supply and demand equations identified using the necessary condition in Section 11.4?

Explain.
b. The estimated first-stage, reduced form, equation becomes

P̂i = −13.50 + 1.47PSi + 12.41DIi F = 54.21
(t) (3.23) (6.95)

Do you judge the omitted exogenous variables (instruments) strong enough to estimate the iden-
tified equation(s)? Explain.

c. The estimated supply equation using 2SLS is

Q̂i = 8.6455 + 0.1564Pi
(se) (2.89) (0.045)

Verify that the point of the means (see Table 11.1) falls on the estimated supply curve.
d. Calculate the price elasticity of supply at the means and compare it to the elasticity computed

from the 2SLS estimates in Table 11.3b.
e. Comparing the results in parts (b) and (c) to those in Example 11.1, do you think we should

include PF in the supply equation? Explain.
11.12 Suppose you want to estimate a wage equation for married women of the form

ln(WAGE) = β1 + β2HOURS + β3EDUC + β4EXPER + β5EXPER2 + e1

where WAGE is the hourly wage, HOURS is number of hours worked per week, EDUC is years of
education, and EXPER is years of experience. Your classmate observes that higher wages can bring
forth increased work effort, and that married women with small children may reduce their hours of
work to take care of them. It may also be true that a husband’s wage rate has an effect on a wife’s
hours of work supplied, so that there may be an auxiliary relationship such as

HOURS = α1 + α2 ln(WAGE) + α3KIDS + α4 ln(HWAGE) + e2

where KIDS is the number of children under the age of six in the woman’s household and HWAGE is
her husband’s wage rate.
a. Can the wage equation be estimated satisfactorily using the OLS estimator? If not, why not?
b. Is the wage equation “identified”? What does the term identification mean in this context?
c. If you seek an alternative to least squares estimation for the wage equation, suggest an estimation

procedure and how (step by step, and NOT a computer command) it is carried out.
d. Other than the identification condition in part (b), are there any other conditions that must be met

so that we can confidently use the estimation procedure in part (c)? What are those conditions?
11.13 In the post-World War II period, monetary policy effects and the supply and demand for money were

important topics. Consider the following model, where M is the money stock, R is short-term rate of
interest, GNP is national income, and Rd is Federal Reserve’s discount rate, which it charges commer-
cial banks. The endogenous variables are the money supply, M, and the short-term rate of interest, R.
The exogenous variables are GNP and the Federal Reserve’s discount rate, Rd. The lagged money
stock Mt−1 is a predetermined variable. It is treated as an exogenous variable and uncorrelated with
the current period error. Using quarterly data from the post-war period, the 2SLS estimated money
demand, omitting seasonal and other dummy variables, is

M̂t = 23.06 + 0.0618GNPt − 0.0025
(
R × GNPt

)
+ 0.686Mt−1 + · · ·

(se) (0.0126) (0.0007) (0.0728)
The supply equation is taken to be proportional to the difference between the short-term interest rate
R and the discount rate, Rd, with the factor of proportionality being the maximum potential money
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stock, M*, which is a known constant. The estimated supply equation, omitting seasonal and other
dummy variables, is

M̂t = 0.8522 + 0.0751
[
M∗

t
(
Rt − Rd,t

)]
+ · · ·

(se) (0.0159)

a. If the preceding period’s money supply increases by one unit, what happens to the money demand
function? In a graph like Figure 11.4, with M on the vertical axis and R on the horizontal axis,
does the money demand curve shift right or left or not at all? Does the money supply curve shift
if ΔMt− 1 > 0? If so, which direction?

b. If GNP increases by one unit, what happens to the money demand function? In a graph like
Figure 11.4, does the money demand curve shift right or left or not at all? Does the money supply
curve shift if ΔGNPt > 0? If so, which direction?

c. If the discount rate, Rd, is increased does the money demand curve shift right or left or not at all?
Does the money supply curve shift if ΔRd,t > 0? If so, which direction?

d. Explain how your answers to (a), (b), and (c) imply that both the supply and demand for money
functions are identified.

11.14 Australian wine is popular in Australia and worldwide. Using annual data on wine grape transactions
Q(10,000 tonne units) and price P($AU100 per tonne) of wine produced in warm inland Australia,
an estimated demand equation is

Q̂t = −0.278Pt + 2.884INCOMEt − 3.131XRATEt − 2.766STOCKSt−1 + · · ·
(t) (−2.85) (6.34) (−3.04) (−2.24)

INCOME (US$1,000,000) is weighted household consumption expenditure, XRATE is the exchange
rate per $AU, and STOCKS (1000 million litres) are from the previous year. An estimated supply
equation is

Q̂t = 0.824Pt + 0.682Qt−4 + 0.598TIMEt − 1.688TEMPt + 1.793NONt− 4 − 1.570PREMt− 4 + · · ·
(t) (4.82) (3.68) (5.87) (−1.19) (4.21) (−2.42)

TEMP is mean January temperature (mid-summer “Down Under”), NONt− 4 is the price of the
regional wine grape relative to other non-premium grapes, lagged four years, and PREMt− 4 is
the price of the regional wine grapes relative to other premium wine grapes, lagged four years.
Production at time t − 4 is on the right-hand side reflecting the four years required between planting
grape vines and producing wine. This is a partial adjustment model as discussed in Exercise 9.30.
In both equations, we have omitted the intercept and indicator variables for specific regions.
a. Which variables in the model cause the demand equation to shift relative to the supply equation?
b. Which variables in the model cause the supply equation to shift relative to the demand equation?
c. Discuss the signs of the estimated coefficients in the demand equation.
d. Sample means of Q, P, and INCOME are Q = 4.98, P = 6.06, and INCOME = 1.66. Calculate

the price and income elasticity of demand at the means.
e. Discuss the signs of the estimated coefficients in the supply equation.
f. Calculate the elasticity of equilibrium supply with respect to price at the means.

11.15 Consider the supply and demand for labor, and in particular that for married women. Wages and hours
worked are jointly determined by supply and demand. Let the supply equation be

HOURS = β1 + β2 ln(WAGE) + β3EDUC + β4AGE
+ β5KIDSL6 + β6KIDS618 + β7NWIFEINC + ee

KIDSL6 are the number of children less than 6 years old, KIDS618 are the number of children who
are 6 to 18 years old, NWIFEINC is household income other than the wife’s earnings. Let the demand
equation be

ln(WAGE) = α1 + α2HOURS + α3EDUC + α4EXPER + α5EXPER2 + ed

a. Imagine a supply and demand graph, like Figure 11.4, with HOURS on the vertical axis and
ln(WAGE) on the horizontal axis. Describe the anticipated effects on the graph of increases in
the number of small children on the woman’s supply and demand curves. What is the anticipated
effect on equilibrium wage and hours worked?
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b. Describe the anticipated effects on the graph of increases in experience on the woman’s supply
and demand curves. What is the anticipated effect on equilibrium wage and hours worked?

c. Does the necessary condition for identification appear to hold for the supply equation? What
are the IVs used in 2SLS? Write out the econometric form of the reduced-form equation for
ln(WAGE), letting the coefficients be denoted as π1, π2, etc. What hypotheses would you test to
evaluate the strength of IVs used in 2SLS estimation of the supply equation?

d. Does the necessary condition for identification appear to hold for the demand equation? What are
the IVs used in 2SLS? Write out the econometric form of the reduced-form equation for HOURS,
letting the coefficients be denoted as γ1, γ2, etc. What hypotheses would you test to evaluate the
strength of IVs used in 2SLS estimation of the demand equation?

11.16 Consider the following supply and demand model

Demand: Qi = α1 + α2Pi + edi, Supply: Qi = β1 + β2Pi + β3Wi + esi

where Q is the quantity, P is the price, and W is the wage rate, which is assumed exogenous. Data on
these variables are in Table 11.7.

T A B L E 11.7
Data for
Exercise 11.16

Q P W

4 2 2
6 4 3
9 3 1
3 5 1
8 8 3

a. Derive the algebraic form of the reduced-form equations, Q = θ1 + θ2W + v2 and
P = π1 + π2W + v1, expressing the reduced-form parameters in terms of the structural
parameters.

b. Which structural parameters can you solve for from the results in part (a)? Which equation is
“identified”?

c. The estimated reduced-form equations are Q̂ = 5 + 0.5W and P̂ = 2.4 + 1W. Solve for the iden-
tified structural parameters. This is the method of indirect least squares.

d. Obtain the fitted values from the reduced-form equation for P, and apply 2SLS to obtain estimates
of the demand equation.

11.17 Example 11.3 introduces Klein’s Model I.
a. Do we have an adequate number of IVs to estimate each equation? Check the necessary condition

for the identification of each equation. The necessary condition for identification is that in a system
of M equations at least M − 1 variables must be omitted from each equation.

b. An equivalent identification condition is that the number of excluded exogenous variables from the
equation must be at least as large as the number of included right-hand side endogenous variables.
Check that this condition is satisfied for each equation.

c. Write down in econometric notation the first-stage equation, the reduced form, for W1t, wages of
workers earned in the private sector. Call the parameters π1, π2,…

d. Describe the two regression steps of 2SLS estimation of the consumption function. This is not a
question about a computer software command.

e. Does following the steps in part (d) produce regression results that are identical to the 2SLS
estimates provided by software specifically designed for 2SLS estimation? In particular, will the
t-values be the same?

11.6.2 Computer Exercises
11.18 Example 11.3 introduces Klein’s Model I. Here we examine a simplified model that excludes the gov-

ernment sector and allows further practice with simultaneous equations models. Suppose the model is
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reduced to the following two equations, for two endogenous variables, consumption, CN, and invest-
ment, I. The two estimable equations are the consumption and investment functions:

CNt = α1 + α2It + α3TIMEt + e1t

It = β1 + β2CNt + β3Kt−1 + e2t

a. Check the identification of the consumption and investment functions.
b. Solve for the reduced-form equation for CN. Call the parameters π1, π2, π3 and express them in

terms of the structural parameters, similar to equations (11.4) and (11.5).
c. Using the data file klein, estimate each of the structural equations by OLS. Comment on the signs

and significance of the coefficients.
d. Estimate each of the structural equations by 2SLS. Comment on the signs and significance of the

coefficients.
e. Estimate the first-stage, reduced form, equation. In the reduced-form equation for consumption

is Kt−1 statistically significant? In the reduced-form equation for investment is TIMEt statistically
significant? Do these results help explain the differences in the OLS and 2SLS estimates?

11.19 The labor supply of married women has been a subject of a great deal of economic research. The data
file is mroz, and the variable definitions are in the file mroz.def . The data file contains information
on women who have worked in the previous year and those who have not. The variable indicating
whether a woman worked LFP, labor force participation, takes the value 1 if a woman worked and 0
if she did not.
a. Calculate the summary statistics for the variables: wife’s age, the number of less than 6-year-old

children, and the income from other sources than from the wife’s employment, NWIFEINC,
for the women who worked (LFP = 1) and those who did not (LFP = 0). Define NWIFEINC =
FAMINC – WAGE × HOURS. Comment on any differences you observe.

b. Consider the following supply equation specification:

HOURS = β1 + β2 ln(WAGE) + β3EDUC + β4AGE
+ β5KIDSL6 + β6KIDS618 + β7NWIFEINC + e

What signs do you expect each of the coefficients to have, and why? What does NWIFEINC
measure?

c. Estimate the supply equation in (b) using OLS regression on only the women who worked
(LFP = 1). Did things come out as expected? If not, why not?

d. Estimate the reduced-form equation by OLS for the women who worked, using work experience,
EXPER, as an additional exogenous variable.

ln(WAGE) = π1 + π2EDUC + π3AGE + π4KIDSL6 + π5KIDS618
+ π6NWIFEINC + π7EXPER + v

Based on the estimated reduced form, what is the effect upon wage of an additional year of
education?

e. Check the identification of the supply equation, considering the availability of instrument EXPER.
f. Estimate the supply equation by two-stage least squares, using software designed for this purpose.

Discuss the signs and significance of the estimated coefficients.
11.20 This exercise examines a supply and demand model for edible chicken, which the U.S. Department

of Agriculture calls “broilers.” The data for this exercise are in the file newbroiler, which is adapted
from the data provided by Epple and McCallum (2006). We consider the demand equation in this
exercise and the supply equation in Exercise 11.21.
a. Consider the demand equation:

ln
(
Qt
)
= α1 + α2ln

(
Pt
)
+ α3ln

(
Yt
)
+ α4ln

(
PBt

)
+ α5POPGROt + ed

t

where Q = per capita consumption of chicken, in pounds; Y = real per capita income; P = real
price of chicken; PB = real price of beef; and POPGRO = rate of population growth. What are
the endogenous variables? What are the exogenous variables?

b. Using data from 1960 to 1999, estimate the demand equation by OLS. Comment on the signs and
significance of the estimates.
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c. Test the OLS residuals from part (b) for serial correlation by constructing a correlogram and
carrying out the T × R2 test. What do you conclude about the presence of serial correlation?

d. Estimate the demand equation by 2SLS using as instruments ln(PFt), TIMEt = YEARt − 1949,
ln
(
QPRODt−1

)
, and ln

(
EXPTSt−1

)
. Compare and contrast these estimates to the OLS estimates

in part (a).
e. Estimate the reduced-form, first-stage, equation and test the joint significance of ln(PFt), TIMEt,

ln
(
QPRODt−1

)
, and ln

(
EXPTSt−1

)
. Can we conclude that at least one instrument is strong?

f. Test the reduced-form equation for serial correlation using the T × R2 test.
g. Estimate the reduced-form, first-stage, equation using HAC standard errors and test the joint sig-

nificance of ln(PFt), TIMEt, ln
(
QPRODt−1

)
, and ln

(
EXPTSt−1

)
.

h. Obtain the 2SLS residuals from part (d). Construct a correlogram. Is there evidence of serial
correlation? Obtain 2SLS estimates with HAC standard errors and compare the results to those
in (d).

i. Test the validity of the surplus instruments using the Sargan test, discussed in Section 10.4.3, and
the 2SLS estimates in part (d).

11.21 This exercise examines a supply and demand model for edible chicken, which the U.S. Department of
Agriculture calls “broilers.” The data for this exercise are in the file newbroiler, which is adapted
from the data provided by Epple and McCallum (2006). We considered the demand equation in
Exercise 11.20. The supply equation is

ln
(
QPRODt

)
= β1 + β2 ln

(
Pt
)
+ β3 ln

(
PFt

)
+ β4TIMEt + ln

(
QPRODt−1

)
+ es

t

where QPROD is the aggregate production of young chickens, PF is nominal price index of broiler
feed, and TIME = time index with 1950 = 1,… , 2001 = 52. This supply equation is dynamic, with
lagged production on the right-hand side. This predetermined variable is exogenous. TIME is included
to capture technical progress in production.
a. What are the endogenous variables? What are the exogenous variables? What is the interpretation

of the parameter β2? What signs do you expect for each of the parameters?
b. Using data from 1960 to 1999, estimate the supply equation by OLS. Comment on the signs and

significance of the estimates. Test the residuals for serial correlation. Is serial correlation present?
c. Estimate the reduced-form, first-stage, regression by OLS using the IVs ln(Yt), ln(PBt), POPGRO,

and ln
(
EXPTSt−1

)
. Test the joint significance of these variables. Can we conclude that we have at

least one strong instrument?
d. Estimate the supply equation by 2SLS using the instruments listed in part (c). Compare and

contrast these results to those in part (b).
e. Test the validity of the surplus instruments using the Sargan test, discussed in Section 10.4.3.

11.22 This exercise examines a supply and demand model for edible chicken, which the U.S. Department of
Agriculture calls “broilers.” The data for this exercise are in the file newbroiler, which is adapted
from the data provided by Epple and McCallum (2006). We considered the demand equation in
Exercise 11.20. It is

ln
(
Qt
)
= α1 + α2 ln

(
Pt
)
+ α3 ln

(
Yt
)
+ α4 ln

(
PBt

)
+ α5POPGROt + ed

t

where Q is the per capita consumption of chicken, in pounds; Y is real per capita income; P is real
price of chicken; PB is real price of beef, and POPGRO is rate of population growth. What are the
endogenous variables? What are the exogenous variables? The demand equation suffers from serial
correlation. In the AR(1) model ed

t = ρed
t−1 + vd

t the value of ρ is large. Epple and McCallum estimate
the model in “first difference” form:

ln
(
Qt
)
= α1 + α2 ln

(
Yt
)
+ α3 ln

(
Pt
)
+ α4 ln

(
PBt

)
+ ed

t

−
[
ln
(
Qt
)
= α1 + α2 ln

(
Yt
)
+ α3 ln

(
Pt
)
+ α4 ln

(
PBt

)
+ ed

t
]

Δln
(
Qt
)
= α2Δln

(
Yt
)
+ α3Δln

(
Pt
)
+ α4Δln

(
PBt

)
+ vd

t

a. Regarding this specification (i) what changes do you notice after this transformation? (ii) Are
the parameters of interest affected? (iii) If ρ = 1, have we solved the serial correlation problem?
(iv) What is the interpretation of the “Δ” variables like Δln(Qt)? [Hint: See Appendix A.4.6.]
(v) What is the interpretation of the parameter α2? (vi) What signs do you expect for each of the
coefficients? Explain.
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b. Using data from 1960 to 1999, estimate the reduced-form, first-stage, equation for Δln
(
Pt
)

using
instruments ln

(
PFt

)
, TIMEt, ln

(
QPRODt−1

)
, and ln

(
EXPTSt−1

)
. Can we conclude that at least one

instrument is strong?
c. Estimate the first-stage equation for Δln

(
Pt
)

using instruments Δln
(
PFt

)
, Δln

(
QPRODt−1

)
, and

Δln
(
EXPTSt−1

)
. Can we conclude that at least one instrument is strong? On logical grounds, why

might we prefer these instruments to those in (b)?
d. Estimate the first-stage equation for Δln

(
Pt
)

using instrument Δln
(
PFt

)
. Can we conclude that

the one instrument is strong?
e. Obtain the 2SLS estimates of the first-differenced demand equation using Δln

(
PFt

)
as the instru-

ment. In this estimation omit the constant term.
f. Obtain the 2SLS estimates of the first-differenced demand equation using Δln

(
PFt

)
as the instru-

ment including a constant term.
g. Compare the estimates of the key demand parameters in parts (e) and (f ). Are the signs consistent

with expectations? What are the interpretations of the estimated coefficients? Should an intercept
be included in the differenced demand equation? Explain.

h. Construct a correlogram for the 2SLS residuals in part (e). Is there any evidence of serial
correlation?

11.23 Reconsider Example 11.2 on the supply and demand for fish at the Fulton Fish Market. The data are
in the file fultonfish.
a. Obtain OLS estimates of the supply equation. Comment on the coefficient signs and significance.

Do you anticipate the OLS estimator to have a positive bias or a negative bias or no bias? Explain.
b. It is possible that bad weather on shore reduces attendance at restaurants, which in turn may reduce

the demand for fish at the market. Add the variables RAINY and COLD to the demand equation
in (11.13). Derive the algebraic reduced form for ln(PRICE) for this new specification.

c. Estimate the reduced-form equation in part (b). Test the joint significance of RAINY and COLD.
Are these variables jointly significant at the 5% level?

d. Using the estimates from part (c), test the joint significance of MON, TUE, WED, THU, RAINY ,
and COLD. Are these variables jointly significant at the α = 0.05 level?

e. Estimate the supply equation by 2SLS using instruments MON, TUE, WED, THU, RAINY , and
COLD. Compare these estimates to the OLS estimates in part (a). Given the results in part (d),
can we conclude that the supply equation is identified?

11.24 Reconsider Example 11.2 on the supply and demand for fish at the Fulton Fish Market. The data are
in the file fultonfish.
a. Add the variable MIXED, which indicates poor but not STORMY weather conditions, to the supply

equation in equation (11.14). Estimate the new reduced-form equation for ln(PRICE), adding the
variable MIXED to equation (11.16). Is it statistically significant at the 5% level? Test the joint
significance of STORMY and MIXED. Is the resulting F-value greater than 10?

b. Estimate the demand equation using STORMY and MIXED as IVs. Compare the coefficient esti-
mates to those in Table 11.5.

c. Test the validity of the surplus instrument using the Sargan test, discussed in Section 10.3.4.
d. In the reduced-form equation in part (a), test the joint significance of the indicator variables MON,

TUE, WED, and THU at the 5% level. What do you conclude? Are we now able to estimate the
supply equation by 2SLS with confidence in our procedure?

11.25 Reconsider Example 11.2 on the supply and demand for fish at the Fulton Fish Market. The data are
in the file fultonfish. In this exercise, we explore the behavior of the market on days in which changes
in fish inventories are large relative to those days on which inventory changes are small. Graddy
and Kennedy (2006) anticipate that prices and quantities will demonstrate simultaneity on days with
large changes in inventories, as these are days when sellers are demonstrating their responsiveness to
prices. On days when inventory changes are small, the anticipation is that feedback between prices
and quantities is broken, and simultaneity is no longer an issue.
a. Use the subset of data for days in which inventory change is large, as indicated by the variable

CHANGE = 1. Estimate the reduced-form equation (11.16) and test the significance of STORMY .
Discuss the importance of this test for the purpose of estimating the demand equation by two-stage
least squares.

b. Obtain the OLS residuals v̂t2 from the reduced-form equation estimated in (a). Carry out a
Hausman test, as discussed in Section 10.4.1, for the endogeneity of ln(PRICE) by adding v̂t2
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as an extra variable to the demand equation in (11.13), estimating the resulting model by OLS,
and testing the significance of v̂t2 using a standard t-test. If v̂t2 is a significant variable in this
augmented regression then we may conclude that ln(PRICE) is endogenous. Based on this test,
what do you conclude?

c. Estimate the demand equation using two-stage least squares and OLS using the data when
CHANGE = 1, and discuss these estimates. Compare them to the estimates in Table 11.5.

d. Estimate the reduced-form equation (11.16) for the data when CHANGE = 0. Compare these
reduced-form estimates to those in (a) and those in Table 11.4b.

e. Obtain the OLS residuals v̂t2 from the reduced-form equation estimated in (d). Carry out a
Hausman test for the endogeneity of ln(PRICE), as described in part (b). Based on this test, what
do you conclude?

f. Obtain the two-stage least squares and the OLS estimates for the demand equation for the data
when CHANGE = 0. Compare these estimates to each other and to the estimates in (c). Discuss
the relationships between them.

11.26 Use your computer software for two-stage least squares or IVs estimation, and the 30 observations in
the data file truffles to obtain 2SLS estimates of the system in equations (11.4) and (11.5). Compare
your results to those in Tables 11.3a and 11.3b.
a. Using the 2SLS estimated equations, compute the price elasticity of supply and demand “at the

means.” Comment on the signs and magnitudes of these elasticities.
b. Using the 2SLS estimates for the demand equation, obtain the squared 2SLS residuals, ê2

d. Carry
out the Breusch–Pagan NR2 test for heteroskedasticity using just the exogenous variables in the
variance function. Is there any evidence of heteroskedasticity?

c. Using the 2SLS estimates for the supply equation, obtain the squared 2SLS residuals, ê2
s . Carry

out the Breusch–Pagan NR2 test for heteroskedasticity using just the exogenous variables in the
variance function. Is there any evidence of heteroskedasticity?

d. Plot the squared supply equation residuals ê2
s versus each of the three exogenous variables. Discuss

the visual evidence of heteroskedasticity.
e. Obtain 2SLS estimates of the supply equation using robust standard errors. How do the t-statistic

values compare to those in Table 11.3b? Do you think it is a good idea to use robust standard
errors for this equation? Explain.

11.27 Estimate equations (11.4) and (11.5) by OLS, ignoring the fact that they form a simultaneous system.
Use the data file truffles. Compare your results to those in Table 11.3. Do the signs of the least squares
estimates agree with economic reasoning?

11.28 Supply and demand curves as traditionally drawn in economics principles classes have price (P) on
the vertical axis and quantity (Q) on the horizontal axis.
a. Rewrite the truffle demand and supply equations in (11.11) and (11.12) with price P on the

left-hand side. What are the anticipated signs of the parameters in this rewritten system of
equations?

b. Using the data in the file truffles, estimate the supply and demand equations that you have for-
mulated in (a) using two-stage least squares. Are the signs correct? Are the estimated coefficients
significantly different from zero?

c. Estimate the price elasticity of demand “at the means” using the results from (b).
d. Accurately sketch the supply and demand equations, with P on the vertical axis and Q on the hor-

izontal axis, using the estimates from part (b). For these sketches set the values of the exogenous
variables DI, PS, and PF to be DI* = 3.5, PF* = 23, and PS* = 22.

e. What are the equilibrium values of P and Q obtained in part (d)? Calculate the predicted equilib-
rium values of P and Q using the estimated reduced-form equations from Table 11.2, using the
same values of the exogenous variables. How well do they agree?

f. Estimate the supply and demand equations that you have formulated in (a) using OLS. Are the
signs correct? Are the estimated coefficients significantly different from zero? Compare the results
to those in part (b).

11.29 Example 11.3 introduces Klein’s Model I. Use the data file klein to answer the following questions.
a. Estimate the consumption function in equation (11.17) by OLS. Comment on the signs and sig-

nificance of the coefficients.
b. Estimate the reduced-form equation for wages of workers in the private sector, W1t, using all eight

exogenous and predetermined variables as explanatory variables. Test the joint significance of all
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the variables except wages of workers in the public sector, W2t, and lagged profits, Pt−1. Save the
residuals, v̂1t.

c. Estimate the reduced-form equation for profits, Pt, using all eight exogenous and predetermined
variables as explanatory variables. Test the joint significance of all the variables except wages of
workers in the public sector, W2t, and lagged profits, Pt−1. Save the residuals, v̂2t.

d. The Hausman test for the presence of endogenous explanatory variables is discussed in
Section 10.4.1. It is implemented by adding the reduced-form residuals to the structural equation
and testing their significance, that is, using OLS, estimate the model

CNt = α1 + α2
(
W1t + W2t

)
+ α3Pt + α4Pt−1 + δ1v̂1t + δ2v̂2t + e1t

Use an F-test for the null hypothesis H0∶δ1 = 0, δ2 = 0 at the 5% level of significance. By rejecting
the null hypothesis, we conclude that either W1t or Pt is endogenous, or both are endogenous.
What do we conclude from the test? In the context of this simultaneous equations model what
result should we find?

e. Obtain the 2SLS estimates of the consumption equation using all eight exogenous and predeter-
mined variables as IVs. Compare the estimates to the OLS estimates in part (a). Do you find any
important differences?

f. Let the 2SLS residuals from part (e) be ê1t. Regress these residuals on all the exogenous and pre-
determined variables. If these instruments are valid, then the R2 from this regression should be
low, and none of the variables are statistically significant. The Sargan test for instrument validity
is discussed in Section 10.4.3. The test statistic TR2 has a chi-square distribution with degrees
of freedom equal to the number of “surplus” IVs if the surplus instruments are valid. The con-
sumption equation includes three exogenous and/or predetermined variables of the total of eight
possible. There are L = 5 external instruments and B = 2 right-hand side endogenous variables.
Compare the value of the test statistic to the 95th percentile value from the χ2

(3) distribution. What
do we conclude about the validity of the surplus instruments in this case?

11.30 Example 11.3 introduces Klein’s Model I. Use the data file klein to answer the following questions.
a. Estimate the investment function in equation (11.18) by OLS. Comment on the signs and signifi-

cance of the coefficients.
b. Estimate the reduced-form equation for profits, Pt, using all eight exogenous and predeter-

mined variables as explanatory variables. Test the joint significance of all the variables except
lagged profits, Pt−1, and lagged capital stock, Kt−1. Save the residuals, v̂t and compute the fitted
values, P̂t.

c. The Hausman test for the presence of endogenous explanatory variables is discussed in
Section 10.4.1. It is implemented by adding the reduced-form residuals to the structural equation
and testing their significance, that is, using OLS estimate the model

It = β1 + β2Pt + β3Pt−1 + β4Kt−1 + δv̂t + e2t

Use a t-test for the null hypothesis H0∶δ = 0 versus H1∶δ ≠ 0 at the 5% level of significance. By
rejecting the null hypothesis, we conclude that Pt is endogenous. What do we conclude from the
test? In the context of this simultaneous equations model what result should we find?

d. Obtain the 2SLS estimates of the investment equation using all eight exogenous and predetermined
variables as IVs and software designed for 2SLS. Compare the estimates to the OLS estimates in
part (a). Do you find any important differences?

e. Estimate the second-stage model It = β1 + β2P̂t + β3Pt−1 + β4Kt−1 + e2t by OLS. Compare the esti-
mates and standard errors from this estimation to those in part (d). What differences are there?

f. Let the 2SLS residuals from part (e) be ê2t. Regress these residuals on all the exogenous and pre-
determined variables. If these instruments are valid, then the R2 from this regression should be
low, and none of the variables are statistically significant. The Sargan test for instrument validity
is discussed in Section 10.4.3. The test statistic TR2 has a chi-square distribution with degrees of
freedom equal to the number of “surplus” IVs if the surplus instruments are valid. The invest-
ment equation includes three exogenous and/or predetermined variables out of the total of eight
possible. There are L = 5 external instruments and B = 1 right-hand side endogenous variables.
Compare the value of the test statistic to the 95th percentile value from the χ2

(4) distribution. What
do we conclude about the validity of the surplus instruments in this case?
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Appendix 11A 2SLS Alternatives
There has always been great interest in alternatives to the standard IV/2SLS estimator. The search
for better alternatives was energized by the discovery of the problems weak instruments pose for
the usual IV/2SLS estimator. In this appendix, we examine a few alternative estimators for a single
equation with endogenous regressors. The equation might be part of a simultaneous equations
system, or a standalone equation with an endogenous regressor, as we studied in Chapter 10.
The limited information maximum likelihood (LIML) estimator was first derived by Anderson
and Rubin in 1949.1 It has played a “back seat” role relative to 2SLS over the years, but this is
no longer true. There is renewed interest in LIML in the presence of weak instruments. Several
modifications of LIML have been suggested by Fuller (1977) and others. These estimators are
unified in a common framework, along with 2SLS, using the idea of a k-class of estimators.
Later in this appendix, we provide Stock–Yogo tables of critical values for weak instruments
that apply to the LIML estimator and Fuller modifications. What is illustrated by these tables
is that LIML suffers less from test size aberrations than the 2SLS estimator, and that the Fuller
modification suffers less from bias.

11A.1 The k-Class of Estimators
In a system of M simultaneous equations let the endogenous variables be y1, y2, …, yM. Let
there be K exogenous variables, x1, x2, …, xK. Suppose the first structural equation within this
system is

y1 = α2y2 + β1x1 + β2x2 + e1 (11A.1)
If this equation is identified, then its parameters can be estimated. The variable y2 is endogenous
because it is correlated with the regression error term e1. The endogenous variable y2 has reduced
form y2 = π12x1 + π22x2 + · · · + πK2xK + v2 = E

(
y2|X

)
+ v2. The source of the endogeneity of

y2 is not the systematic portion E(y2|!), which is exogenous. The random component v2 is the
source of the endogeneity problem. One way to think about developing an IV for y2 is to remove,
or “purge,” v2 from it, that is, use the IV y2 – v2 = E(y2|!). This instrument has the essential
properties of an instrument: It is correlated with the endogenous variable y2 and it is uncorrelated
with the structural equation error e1. The difficulty is that E(y2|!) is unknown. However, the
parameters of the reduced-form equation are consistently estimated by OLS, so that

E
(
y2|X

)⋀

= π̂12x1 + π̂22x2 + · · · + π̂K2xK (11A.2)
The reduced-form residuals are

v̂2 = y2 − E
(
y2|X

)⋀

In large samples the reduced-form estimators π̂k2 converge in probability to their true values. This
means that in large samples we can substitute for E(y2|!) its estimated value

E
(
y2|X)⋀

= y2 − v̂2 (11A.3)

The two-stage least squares estimator is an IV estimator using E
(
y2|X

)⋀

as an instrument.
Equation (11A.3) shows that the instrument used in 2SLS can be thought of as the endogenous
variable y2 “purged” of the troublesome error term v2.

The k-class of estimators is a unifying framework. A k-class estimator is an IV estimator
using IV y2 − kv̂2. It is called a class of estimators because it represents the OLS estimator if

............................................................................................................................................
1Anderson, T.W. and Rubin, H. (1949), “Estimation of the Parameters of a Single Equation in a Complete System of
Stochastic Equations,” Annals of Mathematical Statistics, 21, 46–63.
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k = 0 and the 2SLS estimator if k = 1. Why would we be interested in using values of k other
than 1? Hopefully by adjusting this value we can improve upon the performance of the k-class
estimator relative to the 2SLS estimator.

11A.2 The LIML Estimator
As noted earlier, the LIML estimator is one of the oldest estimators for an equation within a sys-
tem of simultaneous equations, or any equation with an endogenous variable on the right-hand
side. Rather than obtaining the LIML estimates by maximizing a likelihood function (see
Appendix C.8 for an introduction to maximum likelihood estimation) we will exploit the fact
that the LIML estimator is a member of the k-class.

The equation y1 = α2y2 + β1x1 + β2x2 + e1 is in normalized form, meaning that we have
chosen one variable to appear as the dependent variable. In general the first equation can be
written in implicit form as α1y1 + α2y2 + β1x1 + β2x2 + e1 = 0. There is no rule that says y1 has
to be the dependent variable in the first equation. Normalization amounts to setting α1 or α2 to
the value −1. One parameter αi must be set to −1 so that we can identify the equation, but it does
not matter which one. Let y* = α1y1 + α2y2, then the unnormalized equation can be written as
y* + β1x1 + β2x2 + e1 = 0, or

y∗ = −β1x1 − β2x2 − e1 = θ1x1 + θ2x2 + η (11A.4)
In (11A.1) the exogenous variables x3, …, xK were omitted. If we had included them, (11A.4)
would be

y∗ = θ1x1 + · · · + θKxK + η (11A.5)
The least variance ratio estimator chooses α1 and α2 so that the ratio of the sum of squared resid-
uals from (11A.4) relative to the sum of squared residuals from (11A.5) is as small as possible.
Define the ratio of sum of squared residuals from the two models as

! =
SSE from regression of y∗ on x1, x2

SSE from regression of y∗ on x1,… , xK
≥ 1 (11A.6)

We assume that the variables x3,… , xK were omitted from (11A.1) for a reason based in
economic theory. The estimates of α1 and α2, one of which will be set to −1, should be chosen
so to make the reduced regression (11A.4) fit the data as well as possible while still imposing
the condition that x3,… , xK are omitted.

The algebra required for the solution is beyond the scope of this book.2 The interesting result
is that the minimum value of ! in (11A.6), call it !̂, results in the LIML estimator when used as k
in the k-class estimator, that is, use k = !̂ when forming the instrument y2 − kv̂2, and the resulting
IV estimator is the LIML estimator.

11A.2.1 Fuller-Modified LIML
A modification suggested by Wayne Fuller (1977)3 uses the k-class value

k = !̂ − a
N − K

(11A.7)

where K is the total number of IVs (included and excluded exogenous variables) and N is the
sample size. The value of a is a constant. Fuller says (1977, p. 951), “If one desires estimates
that are nearly unbiased ‘a’ is set equal to 1. Presumably ‘a’ = 1 would be used when one is
interested in testing hypotheses or setting approximate confidence intervals for the parameters.”
Fuller also showed that the value a = 4 leads to an estimator that minimizes the “mean square

............................................................................................................................................
2Advanced students should consider reading Peter Schmidt’s Econometrics, 1976, Chapter 4, New York, NY: Marcel
Dekker. Inc.
3Wayne Fuller, “Some Properties of a Modification of the Limited Information Estimator,” Econometrica, 45, 939–953.
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error” of estimation. If we are estimating some parameter δ using an estimator δ̂, then the mean
square error of estimation is

MSE
(
δ̂
)
= E

(
δ̂ − δ

)2
= var

(
δ̂
)
+
[
E
(
δ̂
)
− δ

]2
= var

(
δ̂
)
+
[
bias

(
δ̂
)]2

Estimator MSE combines both variance and bias into a single measure.

11A.2.2 Advantages of LIML
A great deal of research has been devoted to the performance of the LIML estimator relative to the
2SLS estimator when instruments are weak and/or there are a large number of instruments. Stock
and Yogo (2005, p. 106) say, “Our findings support the view that LIML is far superior to (2)SLS
when the researcher has weak instruments …” when using interval estimates’ coverage rate as the
criterion. Also “… the Fuller-k estimator is more robust to weak instruments than (2)SLS when
viewed from the perspective of bias.” Some other findings are discussed by Mariano (2001)4:
• For the 2SLS estimator the amount of bias is an increasing function of the degree of over

identification. The distributions of the 2SLS and least squares estimators tend to become
similar when overidentification is large. LIML has the advantage over 2SLS when there are
a large number of instruments.

• The LIML estimator converges to normality faster than the 2SLS estimator and is generally
more symmetric.

11A.2.3 Stock–Yogo Weak IV Tests for LIML
Tables 11A.1 and 11A.2 contain Stock–Yogo critical values for testing weak instruments. These
tests are discussed in Chapter 10, Appendix A. Table 11A.1 contains the critical values using
the criterion of maximum LIML test size for a 5% test. Note that for L > 1, LIML critical values
are lower than the 2SLS critical values in Table 10A.1. This means that the Cragg–Donald F-test
statistic does not have to be as large for us to reject the null hypothesis that the instruments are
weak when using LIML instead of 2SLS. Table 11A.2 contains the critical values for the test
of weak instruments using the relative bias criterion for the Fuller modification of LIML, using
a = 1. There is no similar table for LIML, because the LIML estimator does not have a finite
expected value, and thus the concept of bias breaks down.

T A B L E 11A.1
Critical Values for the Weak Instrument Test Based on LIML Test Size
(5% Level of Significance)5

B = 1 B = 2
Maximum Test Size Maximum Test Size

L 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
1 16.38 8.96 6.66 5.53
2 8.68 5.33 4.42 3.92 7.03 4.58 3.95 3.63
3 6.46 4.36 3.69 3.32 5.44 3.81 3.32 3.09
4 5.44 3.87 3.30 2.98 4.72 3.39 2.99 2.79

............................................................................................................................................
4Mariano, R. S. (2001), “Simultaneous equation model estimators,” in The Companion to Theoretical Econometrics,
Badi Baltagi ed., Oxford: Blackwell Publishing, pp. 139−142.
5These values are from Table 5.4, page 103, in Stock and Yogo (2005), op. cit. The authors thank James Stock
and Motohiro Yogo for permission to use these results. Their tables are more extensive than the ones we provide.
The significance level of the test for weak instruments is 5%.
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T A B L E 11A.2
Critical Values for the Weak Instrument Test Based on Fuller-k Relative
Bias (5% Level of Significance)6

B = 1 B = 2
Maximum Relative Bias Maximum Relative Bias

L 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30
1 24.09 19.36 15.64 12.71
2 13.46 10.89 9.00 7.49 15.50 12.55 9.72 8.03
3 9.61 7.90 6.61 5.60 10.83 8.96 7.18 6.15
4 7.63 6.37 5.38 4.63 8.53 7.15 5.85 5.10

E X A M P L E 11.4 Testing for Weak Instruments Using LIML

This illustration was introduced in Example 10.8. With the
Mroz data we estimate the HOURS supply equation

HOURS = β1 + β2MTR + β3EDUC
+ β4KIDSL6 + β5NWIFEINC + e (11A.8)

The reduced-form estimates are in Table 10A.3. The LIML
estimates are given in Table 11A.3. The models we consider
are as follows:

T A B L E 11A.3 LIML Estimations

MODEL (1) (2) (3) (4)
C 17423.7211 16191.3338 −24491.5972 18587.9064

(5.56) (5.40) (−0.31) (5.05)
MTR −18456.5896 −17023.8164 29709.4652 −19196.5172

(−5.08) (−4.90) (0.33) (−4.79)
EDUC −145.2928 −134.5504 258.5590 −197.2591

(−4.40) (−4.26) (0.31) (−3.05)
KIDSL6 151.0229 113.5034 −1144.4778 207.5531

(1.07) (0.84) (−0.46) (1.27)
NWIFEINC −103.8983 −96.2895 149.2325 −104.9415

(−5.27) (−5.11) (0.32) (−5.07)
N 428 428 428 428
!̂ 1.0000 1.0195 1.0000 1.0029
CRAGG–DONALD F 30.61 13.22 0.10 8.60
NUMBER IV L 1 3 2 3
NUMBER ENDOG B 1 1 2 2

t-statistics in parentheses.

Model 1: endogenous: MTR; IV: EXPER
Model 2: endogenous: MTR; IV: EXPER, EXPER2,

LARGECITY
Model 3: endogenous: MTR, EDUC; IV: MOTHEREDUC,

FATHEREDUC
Model 4: endogenous: MTR, EDUC; IV: MOTHEREDUC,

FATHEREDUC, EXPER

............................................................................................................................................
6These values are from Table 5.3, page 102, in James H. Stock and Motohiro Yogo (2005), op. cit.
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First, for the just identified equations for which the number
of instruments equals the number of endogenous variables
in Models (1) and (3), the LIML estimates are identical
to the 2SLS estimators. This identity is always true for
just-identified equations. For the overidentified Models (2)
and (4), the estimated values !̂ are close to 1, so that the
estimates are not too far from the 2SLS estimates.

The estimates are not the important aspect of this illus-
tration. The Cragg–Donald F-test statistic is the same for all
the estimators. For convenience its values for each equation
are given at the bottom of Table 11A.3. In Model (2), we have
B = 1 endogenous variable and L = 3 instruments. Using the
LIML maximum size of 10% as our criterion, the Stock–Yogo
critical value is 6.46. The Cragg–Donald F-test statistic 13.22

exceeds this value, so we reject the null hypothesis that the
instruments are weak and conclude that they are not weak.
This is not the conclusion we would have drawn based on
IV/2SLS estimation. The critical value from Table 10A.1 is
22.30, and we would have not rejected the null hypothesis
that the instruments are weak.

In Model (4) there are B = 2 endogenous variables and
L = 3 instruments. Using the maximum size of 10% critical
value from Table 11A.1 of 5.44, we reject the null hypothesis
that the instruments are weak using the Cragg–Donald F-test
statistic of 8.60. If we were using the 2SLS/IV estimator,
we would have not rejected the hypothesis that the instru-
ments are weak because the critical value from Table 10A.1
is 13.43.

What is indicated by these examples is that the LIML estimator performs better, at least
potentially, in the face of weak instruments. We cannot prove anything based on one result from
one sample, which is why we present a Monte Carlo simulation experiment in Appendix 11A.3.

E X A M P L E 11.5 Testing for Weak Instruments with Fuller-Modified LIML

Using the Fuller modification of LIML, and setting the
constant a = 1, we obtain the estimates in Table 11A.4. All
the results are at least somewhat different from the 2SLS/IV
estimations, because even for just-identified equations, the
Fuller estimator is different from the 2SLS estimator. The
only extremely dramatic change now comes in Model (3),

T A B L E 11A.4 Fuller ( a = 1) Estimations

MODEL (1) (2) (3) (4)
C 17108.0110 15924.1895 2817.5400 18156.7850

(5.60) (5.44) (0.20) (5.10)
MTR −18089.5451 −16713.2345 −1304.8205 −18730.1617

(−5.11) (−4.93) (−0.08) (−4.84)
EDUC −142.5409 −132.2218 −29.6043 −191.1248

(−4.41) (−4.27) (−0.20) (−3.05)
KIDSL6 141.4113 105.3703 −287.7915 193.2295

(1.02) (0.79) (−0.65) (1.21)
NWIFEINC −101.9491 −94.6401 −12.0108 −102.6290

(−5.31) (−5.14) (−0.15) (−5.12)
N 428 428 428 428
k 0.9976 1.0172 0.9976 1.0005
FULLER a 1.0000 1.0000 1.0000 1.0000
NUMBER IV L 1 3 2 3
CRAGG–DONALD F 30.61 13.22 0.10 8.60
NUMBER ENDOG B 1 1 2 2

t-statistics in parentheses

where coefficient signs become more in line with the other
models, although still nothing is significant. In Model (4), if
we adopt the criterion of 10% maximum relative bias, then the
Stock–Yogo critical value is 8.96. The Cragg–Donald F-test
statistic is 8.6, so we fail to reject the null hypothesis that the
instruments are weak.
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11A.3 Monte Carlo Simulation Results
In Appendix 10B.2, we carried out a Monte Carlo simulation to explore the properties of the
IV/2SLS estimators. Here we employ the same experiment, adding aspects of the new estimators
we have introduced in this appendix.

First, examine the percentage rejections of the true null hypothesis β2 = 1 using a two-tail
test at the 5% level of significance. The Monte Carlo rejection rate for the IV/2SLS estimator is
in the column labeled t

(
β̂2
)

, and for the LIML estimator in the column t
(
β̂2,LIML

)
. The largest

difference is in the case of strong endogeneity with weak instruments, in which the test based
upon the two-stage least squares estimator rejects 28.86% of the time, while the test based on the
LIML estimator rejects 13.47% of the time. Recall that a two-tail test at the 5% level of signif-
icance corresponds to determining whether the 95% interval estimate contains the hypothesized
parameter value. In these Monte Carlo experiments, the 95% interval estimate based on the LIML
estimator contains the true parameter 86.53% of the time, whereas the 95% interval estimate
using IV/2SLS contains the true parameter only 71.14% of the time. This finding is consistent
with Stock and Yogo’s conclusion about coverage rates of the two interval estimation approaches.

In these experiments, there is little difference between the averages of the two-stage least
squares estimates, β̂2 and the Fuller modified (a = 1) LIML estimates β̂2, F. A greater contrast
shows up when comparing how close the estimates are to the true parameter value using the mean
square error criterion. In Table 11A.5, we report the empirical mean square error for the IV/2SLS
estimator, mse

(
β̂2
)

and that for the Fuller modification of LIML with a = 4, mse
(
β̂2,F

)
. Recall

that the mean square error measures how close the estimates are to the true parameter value. For
the IV/2SLS estimator, the empirical mean square error is

mse
(
β̂2
)
= ∑10000

m=1

(
β̂2m − β2

)2/
10,000

The Fuller-modified LIML has lower mean square error than the IV/2SLS estimator in each
experiment, and when the instruments are weak, the improvement is large.

T A B L E 11A.5 Monte Carlo Simulation Results

" # F $̂2 t
(
$̂2
)

t
(
$̂2,LIML

)
$̂2,F mse

(
$̂2
)

mse
(
$̂2,F

)

0.0 0.1 1.98 0.9941 0.0049 0.0049 0.9941 0.4068 0.0748
0.0 0.5 21.17 0.9998 0.0441 0.0473 0.9997 0.0140 0.0132
0.8 0.1 2.00 1.3311 0.2886 0.1347 1.3375 1.0088 0.3289
0.8 0.5 21.18 1.0111 0.0636 0.0509 1.0000 0.0139 0.0127
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