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CHAPTER 10

Endogenous Regressors
and Moment-Based
Estimation

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Give an intuitive explanation of why correlation
between a random x and the error term causes
the least squares estimator to be inconsistent.

2. Describe the ‘‘errors-in-variables’’ problem in
econometrics and its consequences for the least
squares estimator.

3. Describe the properties of a good instrumental
variable.

4. Discuss how the method of moments can be used
to derive the least squares and instrumental
variables estimators, paying particular attention
to the assumptions upon which the derivations
are based.

5. Explain why it is important for an instru-
mental variable to be highly correlated with

the random explanatory variable for which it
is an instrument.

6. Describe how instrumental variables estimation is
carried out in the case of surplus instruments.

7. State the approximate large-sample distribution
of the instrumental variables estimator for the
simple linear regression model, and how it can be
used for the construction of interval estimates
and hypothesis tests.

8. Describe a test for the existence of contempo-
raneous correlation between the error term and
the contemporaneous explanatory variables in a
model, explaining the null and alternative
hypotheses, and the consequences of rejecting
the null hypothesis.

K E Y W O R D S
asymptotic properties
conditional expectation
endogenous variables
errors-in-variables
exogenous variables
first-stage regression
Hausman test

instrumental variable
instrumental variable estimator
just-identified
large sample properties
overidentified
population moments
random sampling

reduced-form
sample moments
sampling properties
simultaneous equations bias
surplus moment conditions
two-stage least squares estimation
weak instruments
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In this chapter we reconsider the linear regression model. We will initially discuss the simple lin-
ear regression model, but our comments apply to the general model as well. The usual assumptions
are SR1–SR6, given in Section 2.2.2. In Chapter 8, we relaxed the assumption var

(
ei|!

)
= σ2 that

the error variance is the same for all observations. In Chapter 9 we considered regressions with
time-series data in which the assumption of serially uncorrelated errors, cov

(
ei, ej|!

)
= 0, for

i ≠ j, cannot be maintained.
In this chapter, we relax the exogeneity assumption. When an explanatory variable is random,

the properties of the least squares estimator depend on the characteristics of the independent vari-
able x. The assumption of strict exogeneity is SR2 in the simple regression model, E

(
ei|x

)
= 0,

and it is MR2 in the multiple regression model, E
(
ei|X

)
= 0. The mathematical form of this

assumption is simple but the full meaning is complex. In Section 2.10.2, we gave common simple
regression model examples when this assumption might fail. In these cases, with an explanatory
variable that is endogenous, the usual least squares estimator does not have its desirable proper-
ties; it is not an unbiased estimator of the population parameters β1, β2, …; it is not a consistent
estimator of β1, β2, …; tests and interval estimators do not have the anticipated properties, and
even having large data samples will not cure the problems.

We review and discuss the properties of the least squares estimator with an endogenous
explanatory variable in this chapter, and we suggest a new estimator, the instrumental vari-
ables estimator, that does have some desirable properties in large samples. The instrumental
variables estimator is also called a method of moments estimator, and also the two-stage least
squares estimator. We offer fair warning, however, that this area of econometrics is filled with
practical and theoretical difficulties. Our search turns from finding an estimator that is “best” to
one that is “adequate,” and unfortunately producing convincing research applications requires
knowledge, skill, and patience. In order for you to begin properly you should reread (right now!)
Section 2.10 on the exogeneity concept and Section 5.7 on the large sample, or asymptotic, prop-
erties of the least squares estimator.

10.1 Least Squares Estimation
with Endogenous Regressors
As our starting point, let us assume we are working with microeconomic, cross-sectional data
obtained by random sampling. The standard assumptions for the simple regression model are
RS1–RS6, which we repeat here for your convenience.

The Simple Linear Regression Model Under Random Sampling
RS1: The observable variables y and x are related by yi = β1 + β2xi + ei, i = 1,… ,N, where
β1 and β2 are unknown population parameters and ei is a random error term.
RS2: The data pairs

(
yi, xi

)
are statistically independent of all other data pairs and have the

same joint distribution f
(
yi, xi

)
. They are independent and identically distributed (iid).

RS3: E
(
ei|xi

)
= 0 for i = 1,… ,N; x is contemporaneously, and strictly, exogenous.

RS4: The random error has constant conditional variance, var
(
ei|xi

)
= σ2.

RS5: xi takes at least two different values.
RS6: ei ∼ N

(
0, σ2)

With random sampling, the ith and jth observations are statistically independent, so that the ith
error ei is statistically independent from the jth value of the explanatory variable, xj. Thus, the
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strict exogeneity assumption E
(
ei|x1,… , xN

)
= E

(
ei|x

)
= 0 reduces to the simpler contempora-

neous exogeneity assumption E
(
ei|xi

)
= 0.

Recall from Chapter 2 that the “gold standard” in research is a randomized controlled exper-
iment. In an ideal (research) world, we would randomly assign x values (the treatment) and
examine changes in outcomes y (the effect). If there is a systematic relationship between changes
in x and changes in the outcome y, we can claim that changes in x cause changes in the outcome y.
Any other random factors, “everything else” = e, that might affect the outcome are statistically
independent of x. We can isolate, or identify, the effects of changes in x alone, and using regression
analysis, we can estimate the causal effect ΔE

(
yi|xi

)
∕Δxi = β2.

The importance of the strict exogeneity assumption E
(
ei|xi

)
= 0 is that if it is true then “x

is as good as randomly assigned.” If E
(
ei|xi

)
= 0, then the best prediction of the random error ei

is simply zero. [See Appendix 4C for the details behind this statement.] There is no information
contained in the values of x that helps us predict the random error. We can infer a causal relation-
ship between yi and xi when there is covariation between them because variations in the random
error ei are uncorrelated with the variations in the explanatory variable xi. It is just “as if” we had
randomly assigned the treatments, xi, to experimental subjects. Furthermore under RS1–RS6, the
least squares estimators of β1 and β2 are the best linear unbiased estimators and the usual interval
estimators and hypothesis tests work as they are expected to in samples of all sizes.

10.1.1 Large Sample Properties of the OLS Estimator
In Section 5.7, we introduced “large sample” or “asymptotic” analysis. With large samples of
data, strict exogeneity is not required to identify and estimate a causal effect. All that we require
is the simpler condition that the x values are uncorrelated with the random errors, e, and that the
average of the random errors is zero. Econometricians, statisticians, and mathematicians aim to
develop methods that work with as few strong assumptions as possible. We adopt that attitude
and replace RS3, strict exogeneity, with

RS3∗∶ E
(
ei
)
= 0 and cov

(
xi, ei

)
= 0

Instead of contemporaneous exogeneity, we simply assume that the random error ei and the
explanatory variable value xi are contemporaneously uncorrelated, which is a weaker condition
than E

(
ei|xi

)
= 0. The term contemporaneous means “occurring at the same point in time” or, as

in this case, occurring for the same cross-sectional observation subscript i. Explanatory variables
like this, that are contemporaneously uncorrelated with the regression error, are simply said to be
exogenous.

If we have obtained a random sample, then the selection of any person is statistically inde-
pendent of the selection of any other person. Any randomly selected person’s characteristics,
such as education, income, ability, and race, are statistically independent of the characteristics
of any other person selected. Because random sampling automatically implies zero correlation
between the ith and jth observations, we only require that the ith value xi be uncorrelated with ei.
The correlation between the ith error ei and the jth value of the explanatory variable, xj, is zero
automatically because of random sampling.

Regression assumption RS3* says two things. First, in a regression model yi = β1 + β2xi + ei,
the population average of all unobservable characteristics, or variables omitted from the regres-
sion model, is zero, E

(
ei
)
= 0. Second, in the population the correlation between the explanatory

variable xi and all the factors combined into the random error ei is zero, or cov
(
xi, ei

)
= 0.

We can replace RS3 by RS3* because, if assumption RS3 is true, it follows that RS3* is
true, that is, E

(
ei |xi

)
= 0 ⇒ cov

(
xi, ei

)
= 0 and E

(
ei |xi

)
= 0 ⇒ E

(
ei
)
= 0. These relations are

proven in Appendix 2G.1. Introducing assumption RS3* is convenient because it is a simpler
notion of exogeneity, which is good. However, assumption RS3* is weaker than RS3 and
under it we cannot show that the least squares estimator is unbiased, or that any of the other
properties hold in small samples. What we can show is that the least squares estimators have
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desirable large sample properties. Under assumptions RS1, RS2, RS3*, RS4, and RS5 the least
squares estimators:

1. are consistent; that is, they converge in probability to the true parameter values as N → ∞;
2. have approximate normal distributions in large samples, whether the random errors are nor-

mally distributed or not; and
3. provide interval estimators and test statistics that are valid if the sample is large.

In practice, this means that all the usual interpretations, intervals estimates, hypothesis tests, pre-
dictions, and prediction intervals are fine as long as our sample is large and RS1, RS2, RS3*,
RS4, and RS5 hold. If samples are large, and if cov

(
xi, ei

)
= 0 and E

(
ei
)
= 0, then it is “almost as

good as” randomly assigning treatment values to xi. We can estimate the population parameters
β1, β2, … using the least squares estimator. If there is serial correlation or heteroskedasticity, then
the robust standard error methods from Chapters 8 and 9 are fine as long as RS3* holds.

Remark
Do not fall into the trap of thinking “I’ll just assume this, or that, if I want this or that
result.” It is true that access to large samples of data means not having to worry about the
complexities of strict exogeneity. But what if you do not have access to large samples?
Then statistical inference (estimation, hypothesis testing, and prediction) in small, or finite,
samples is important. When the sample size N is not large, the asymptotic properties of
estimators may be very misleading. Estimators that may be fine in large samples may suffer
large biases in small samples. Estimates may appear statistically significant when they are
not, and confidence intervals may be too narrow or too wide. If governments, or businesses,
make decisions based on faulty inferences then we may suffer large economic or personal
losses as a result. It is not just a game.

If assumption RS3* is not true, and in particular if cov
(
xi, ei

)≠ 0 so that xi and ei are contempo-
raneously correlated, then the least squares estimators are inconsistent. They do not converge to
the true parameter values even in very large samples. Furthermore, our usual hypothesis testing
or interval estimation procedures are not valid. This means that estimating causal relationships
using the least squares estimator when cov

(
xi, ei

)≠ 0 may lead to incorrect inferences. When
xi is random, the relationship between xi and ei is a crucial factor when deciding whether least
squares estimation, either OLS or GLS, is appropriate or not. If the error term ei is correlated
with xi (or any xik in the multiple regression model) then the least squares estimator fails. In
the next section we explain why correlation between xi and ei leads to the failure of the least
squares estimator.

10.1.2 Why Least Squares Estimation Fails
In this section, we provide an intuitive explanation why the least squares estimator fails when
cov

(
xi , ei

)≠ 0. An algebraic proof is in the next section. The regression model data generation
process adds a random error ei to the systematic regression function E

(
yi|xi

)
= β1 + β2xi to obtain

the observed outcome yi. In Figure 10.1(a), xi and ei values are positively correlated, violating
the strict exogeneity assumption. In Figure 10.1(b), the positively sloped regression func-
tion E

(
yi|xi

)
= β1 + β2xi, which is the object of our analysis, is the solid line. For each value of xi,

the yi data values, yi = β1 + β2xi + ei, are the sum of the systematic portion E
(
yi|xi

)
= β1 + β2xi

and a random error ei. The data pairs
(
yi, xi

)
are the dots in Figure 10.1(b). As you see, the true

regression function does not pass through the middle of the data in this case and that is because
of the correlation between xi and ei. The yi values for larger xi values tend to have positive errors,
ei > 0. The yi values for smaller xi values have negative errors, ei < 0. In this case, we can use
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FIGURE 10.1 (a) Correlated x and e. (b) Plot of data, true and
fitted regression functions.

information provided by the xi values to provide a better prediction of the random error ei than
simply zero.

Least squares estimation leads to a fitted line passing through the middle of the data, shown
as a dashed line in Figure 10.1(b). The slope of the fitted line

(
the estimate b2

)
overestimates the

true slope of the regression function, β2 > 0. The least squares estimator attributes all variation
in yi to variation in xi. When xi and ei are correlated, the variation in yi comes from two sources:
changes in xi and changes in ei, and in our example these changes have a positive correlation.
If we think about the effect of changes in xi and ei on yi we have

Δyi = β2Δxi + Δei
(+) (+) (+)

If xi and ei are positively correlated and β2 > 0, increases in xi and ei combine to increase yi. In
the least squares estimation process, all the change (increase) in yi is attributed to the effect of the
change (increase) in xi, and thus the least squares estimator will overestimate β2.

Throughout this Chapter, we use the relation between wages and years of education as an
example. In this case, the omitted variable “intelligence,” or ability, is in the regression error,
and it is likely to be positively correlated with the years of education a person receives, with more
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intelligent individuals usually choosing to obtain more years of education. When regressing wage
on years of education, the least squares estimator attributes increases in wages to increases in
education. The effect of education is overstated because some of the increase in wages is also due
to higher intelligence.

The statistical consequence of a contemporaneous correlation between xi and ei is that the
least squares estimator is biased, and this bias will not disappear no matter how large the sam-
ple is. Consequently, the least squares estimator is inconsistent when there is contemporaneous
correlation between xi and ei.

Remark
If xi is endogenous the least squares estimator still is a useful predictive tool. In
Figure 10.1(b) the least squares fitted line fits the data well. Given a value x0 we can predict
y0 using the fitted line. What we cannot do is interpret the slope of the line as a causal effect.

10.1.3 Proving the Inconsistency of OLS
Let us prove that the least squares estimator is not consistent when cov

(
xi, ei

)≠ 0. Our regres-
sion model is yi = β1 + β2xi + ei. Continue to assume that E

(
ei
)
= 0, so that E

(
yi
)
= β1 + β2E

(
xi
)
.

Then,

• Subtract this expectation from the original equation,
yi − E

(
yi
)
= β2

[
xi − E

(
xi
)]

+ ei

• Multiply both sides by xi − E
(
xi
)

[
xi − E

(
xi
)][

yi − E
(
yi
)]

= β2
[
xi − E

(
xi
)]2

+
[
xi − E

(
xi
)]

ei

• Take expected values of both sides

E
[
xi − E

(
xi
)][

yi − E
(
yi
)]

= β2E
[
xi − E

(
xi
)]2

+ E
{[

xi − E
(
xi
)]

ei

}
,

or
cov

(
xi, yi

)
= β2var

(
xi
)
+ cov

(
xi, ei

)

• Solve for β2

β2 =
cov

(
xi, yi

)

var
(
xi
) −

cov
(
xi, ei

)

var
(
xi
)

This equation is the basis for showing when the least squares estimator is consistent, and when it
is not.

If we can assume that cov
(
xi, ei

)
= 0, then

β2 = cov(x, y)
var(x)

We drop the “i” subscript because we are randomly sampling from a population, and the data
pairs are not only independently distributed but identically distributed, with the same joint pdf
f
(
xi, yi

)
, and thus cov

(
xi, yi

)
= cov(x, y) and var

(
xi
)
= var(x). The least squares estimator is

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2 =
∑(

xi − x
)(

yi − y
)
∕(N − 1)

∑(
xi − x

)2/(N − 1)
= cov
⋀

(x, y)
var
⋀

(x)
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This shows that the least squares estimator b2 is the sample analog of the population relation-
ship, β2 = cov(x, y)∕var(x). The sample variance and covariance converge to the true variance
and covariance as the sample size N increases, using the Law of Large Numbers introduced in
Section 10.3.1, so that the least squares estimator converges to β2. That is, if cov

(
xi, ei

)
= 0, then

b2 = cov
⋀

(x, y)
var
⋀

(x)
→

cov(x, y)
var(x) = β2

showing that the least squares estimator is consistent.
On the other hand, if xi and ei are correlated, then

β2 = cov(x, y)
var(x) − cov(x, e)

var(x)
The least squares estimator now converges to

b2 →
cov(x, y)

var(x) = β2 +
cov(x, e)

var(x) ≠ β2

In this case, b2 is an inconsistent estimator of β2 and the amount of bias that exists even asymp-
totically, when samples can be assumed to be large, is cov(x, e)∕var(x). The direction of the bias
depends on the sign of the covariance between xi and ei. If factors in the error are positively cor-
related with the explanatory variable x, then the least squares estimator will overestimate the true
parameter. If factors in the error are negatively correlated with the explanatory variable x, then
the least squares estimator will underestimate the true parameter.

In the following section, we describe some common situations in which there is correlation
between xi and ei causing the least squares estimator to fail.

10.2 Cases in Which x and e are
Contemporaneously Correlated
There are several common situations in which the least squares estimator fails due to the presence
of a contemporaneous correlation between an explanatory variable and the error term. When an
explanatory variable and an error term are contemporaneously correlated, the explanatory vari-
able is said to be endogenous. This term comes from simultaneous equations models, which
we will consider in Chapter 11, and means “determined within the system.” When an explana-
tory variable is contemporaneously correlated with the regression error one is said to have an
“endogeneity problem.”

10.2.1 Measurement Error
The errors-in-variables problem occurs when an explanatory variable is measured with error.
If we measure an explanatory variable with error, then it is correlated with the error term, and
the least squares estimator is inconsistent. As an illustration, consider the following important
example. Let us assume that an individual’s personal saving is based on their “permanent” or
long-run income. Let yi = annual savings of the ith person and let x∗i = the permanent annual
income of the ith person. A simple regression model representing this relationship is

yi = β1 + β2x∗i + vi (10.1)

We have asterisked (*) the permanent income variable because it is difficult, if not impossible, to
observe. For the purposes of a regression, suppose that we attempt to measure permanent income
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using xi = current income. Current income is a measure of permanent income, but it does not
measure permanent income exactly. To capture this measurement error specify that

xi = x∗i + ui (10.2)

where ui is a random disturbance, with mean 0 and variance σ2
u. With this statement, we are

admitting that observed current income only approximates permanent income, and consequently
that we have measured permanent income with error. Furthermore, assume that the measurement
error ui is independent of the regression error vi. When we use xi in the regression in place of x∗i ,
we do so by replacement, that is, substitute x∗i = xi − ui into (10.1) to obtain

yi = β1 + β2x∗i + vi = β1 + β2
(
xi − ui

)
+ vi = β1 + β2xi +

(
vi − β2ui

)

= β1 + β2xi + ei
(10.3)

In order to estimate (10.3) by OLS, we must determine whether or not xi is contemporaneously
uncorrelated with the random error ei. The covariance between these two random variables, using
the fact that E

(
ei
)
= 0 and assuming that x∗i is exogenous in (10.1), so that E

(
x∗i vi

)
= 0, is

cov
(
xi, ei

)
= E

(
xiei

)
= E

[(
x∗i + ui

)(
vi − β2ui

)]

= E
(
−β2u2

i
)
= −β2σ2

u ≠ 0
(10.4)

The least squares estimator b2 is an inconsistent estimator of β2 in (10.3) because of the cor-
relation between the explanatory variable xi and the error term ei. Consequently, b2 does not
converge to β2 in large samples. Furthermore, in large or small samples, b2 is not approximately
normal with mean β2 and variance var

(
b2
)
= σ2/∑(

xi − x
)2. When ordinary least squares fails

in this way, is there another estimation approach that works? The answer is yes, as we will see in
Section 10.3.

Note that in equation (10.4), if β2 > 0, there is a negative correlation between xi and the
random error ei. The least squares estimator will underestimate β2 and in the literature devoted to
measurement error this is called attenuation bias. This is a logical result of using xi = x∗i + ui.
Imagine that the measurement error ui is very large relative to x∗i . Then xi becomes more like a
completely random number and there will be little association between yi and xi in the data, so
that b2 will be near zero.

10.2.2 Simultaneous Equations Bias
Another situation in which an explanatory variable is correlated with the regression error term
arises in simultaneous equations models. While this terminology may not sound familiar, students
of economics deal with such models from their earliest introduction to supply and demand. Recall
that in a competitive market the prices and quantities of goods are determined jointly by the forces
of supply and demand. Thus, if Pi = equilibrium price and Qi = equilibrium quantity, we can say
that Pi and Qi are endogenous, because they are jointly determined within a simultaneous system
of two equations, one equation for the supply curve and one equation for the demand curve.
Suppose that we write down the relation

Qi = β1 + β2Pi + ei (10.5)
We know that changes in price affect the quantities supplied and demanded. But it is also true
that changes in quantities supplied and demanded lead to changes in prices. There is a feedback
relationship between Pi and Qi. Because of this feedback, which results because price and
quantity are jointly, or simultaneously, determined, we can show that cov

(
Pi, ei

)≠ 0. The least
squares estimation procedure will fail if applied to (10.5) because of the endogeneity problem,
and the resulting bias (and inconsistency) is called simultaneous equations bias. Supply and
demand models permeate economic analysis, and we will treat simultaneous equations models
fully in Chapter 11.
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10.2.3 Lagged-Dependent Variable Models
with Serial Correlation

In Chapter 9, we introduced dynamic models with stationary variables. One way to make models
dynamic is to introduce a lagged dependent variable into the right-hand side of an equation, That
is, yt = β1 + β2yt−1 + β3xt + et. The lagged variable yt−1 is a random regressor, but as long as it
is uncorrelated with the error term et then the least squares estimator is consistent. However,
it is possible when specifying a dynamic model that the errors will be serially correlated. If the
errors et follow the AR(1) process et = ρet−1 + vt, then we can see that the lagged dependent
variable yt−1 must be correlated with the error term et, because yt−1 depends directly on et−1,
and et−1 directly affects the value of et. If ρ ≠ 0, there will be a correlation between yt−1 and et.
In this case, the OLS estimator applied to the lagged dependent variable model will be biased and
inconsistent. Thus, it is very important to test for the presence of serial correlation in models with
lagged dependent variables on the right-hand side (see Sections 9.4 and 9.5).

10.2.4 Omitted Variables
When an omitted variable is correlated with an included explanatory variable, then the regression
error will be correlated with the explanatory variable. We introduced this idea in Section 6.3.1.
A classic example is from labor economics. A person’s wage is determined in part by their level
of education. Let us specify a log-linear regression model explaining observed hourly wage as

ln
(
WAGEi

)
= β1 + β2EDUCi + β3EXPERi + β4EXPER2

i + ei (10.6)

with EDUCi = years of education and EXPERi = years of work experience. What else affects
wages? What is omitted from the model? This thought experiment should be carried out each
time a regression model is formulated. There are several factors we might think of, such as labor
market conditions, region of the country, and union membership. However, labor economists are
most concerned about the omission of a variable measuring ability. It is logical that a person’s
ability, intelligence and industriousness may affect the quality of their work and their wage. These
variables are components of the random error ei, since we usually have no measure for them. The
problem is not only that ability might affect wages but more able individuals may also spend
more years in school, causing a positive correlation between the error terms ei and EDUCi, so
that cov

(
EDUCi, ei

)
> 0. If this is true, then we can expect that the least squares estimator of

the returns to another year of education will be positively biased, E
(
b2
)
> β2, and inconsistent,

meaning that the bias will not disappear even in very large samples.

E X A M P L E 10.1 Least Squares Estimation of a Wage Equation

We will use the data on married women in the data file mroz to
estimate the wage model in (10.6). Using the N = 428 women
in the sample who are in the labor force, the least squares
estimates and their standard errors are

ln(WAGE) = −0.5220 + 0.1075 × EDUC
(se) (0.1986) (0.0141)

+ 0.0416 × EXPER − 0.0008 × EXPER2

(0.0132) (0.0004)
We estimate that an additional year of education increases
wages by approximately 10.75%, holding everything else

constant. If ability has a positive effect on wages, then
this estimate is overstated, as the contribution of ability is
attributed to the education variable.

The social and policy importance of the estimate 0.1075
can hardly be exaggerated. Countries invest a large portion
of tax revenue to improve education. Why? Spending on
education is an investment, and like any other investment
investors (taxpaying citizens) expect a rate of return that is
competitive with rates of returns for alternative projects.
Based on the estimated equation above, additional years
of schooling are estimated to increase wages by 10.75%,
holding other factors fixed, meaning that individuals are
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more likely to be self-sufficient, enjoy a good quality of life,
not requiring welfare or public health assistance, and less
likely to engage in crime. Suppose, however, that 10.75%
overestimates the returns to education for wage income. We
might re-evaluate the investment in education and perhaps
decide to spend tax dollars on bridges or parks instead of
schools. Evaluating the social rate of return to education

is a social policy problem. Regression estimates such as
those above play heavily into the calculation. Consequently
we must do all that we can, as econometricians, to obtain
estimates using the best methods. In the next section we
begin our examination of alternative estimation methods
for models in which regression errors are correlated with
regression variables.

10.3 Estimators Based on the Method
of Moments
In the simple linear regression model yi = β1 + β2xi + ei, when xi is random and cov

(
xi, ei

)≠ 0,
the least squares estimators are biased and inconsistent, with none of their usual nice properties
holding. When faced with such a situation we must consider alternative estimation procedures.
In this section we discuss the “method of moments” principle of estimation, which is an alternative
to the least squares estimation principle. When all the usual assumptions of the linear model hold,
the method of moments leads us to the least squares estimator. If xi is random and correlated with
the error term, the method of moments leads us to an alternative, called instrumental variables
estimation or two-stage least squares estimation, that will work in large samples.

10.3.1 Method of Moments Estimation of a Population
Mean and Variance

Let us begin with a simple case. The kth moment of a random variable Y is the expected value of
the random variable raised to the kth power. That is,

E
(
Yk)= μk = kth moment of Y (10.7)

The Law of Large Numbers (LLN) is a famous theorem. One version says: if X1, X2, … , XN
is a random sample from a population, and if E

(
Xi
)
= μ <∞ and var

(
Xi
)
= σ2 <∞, then the

sample mean X = ∑
Xi∕N converges (in probability) to the expected value (population mean) μ

as the sample size N increases. In this case, X is said to be a consistent estimator of μ. It is useful
to remember that in most situations sample moments are consistent estimators of population
moments.

We can apply the law of large numbers to obtain a consistent estimator of E
(
Yk)= μk by let-

ting Xi = Yk
i and E

(
Xi
)
= μ = E

(
Yk

i
)
= μk. Then, assuming that var

(
Yk

i
)
= σ2

k < ∞, a consistent
estimator of the population moment E

(
Yk)= μk is the corresponding sample moment

E
(
Yk)
⋀

= μ̂k = kth sample moment of Y = ∑
Yk

i
/

N (10.8)

The method of moments estimation procedure equates m population moments to m sample
moments to estimate m unknown parameters. As an example, let Y be a random variable with
mean E(Y)= μ and variance, given in the Probability Primer, equation (P.13):

var(Y) = σ2 = E(Y − μ)2 = E
(
Y2) − μ2 (10.9)

In order to estimate the two population parameters μ and σ2, we must equate two population
moments to two sample moments. Let Y1, Y2, …, YN be a random sample from the population.
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The first two population and sample moments of Y are
Population moments sample moments

E(Y) = μ1 = μ μ̂ = ∑
Yi
/

N

E
(
Y2)= μ2 μ̂2 = ∑

Y2
i
/

N

(10.10)

Note that for the first population moment μ1, it is customary to drop the subscript and use μ to
denote the population mean of Y . With these two moments, we can solve for the unknown mean
and variance parameters. Equate the first sample moment in (10.10) to the first population moment
to obtain an estimate of the population mean,

μ̂ = ∑
Yi
/

N = Y (10.11)
Then use (10.9), replacing the second population moment in (10.10) by its sample value and
replacing first moment μ by (10.11)

σ̃2 = μ̂2 − μ̂
2 =

∑
Y2

i
N

− Y
2
=

∑
Y2

i − NY
2

N
=

∑(
Yi − Y

)2

N
(10.12)

The method of moments leads us to the sample mean as an estimator of the population mean. The
method of moments estimator of the variance has N in its denominator, rather than the usual
N − 1, so it is not exactly the sample variance we are used to. But in large samples this will not
make much difference. In general, method of moments estimators are consistent, and converge
to the true parameter values in large samples, but there is no guarantee that they are “best” in
any sense.

10.3.2 Method of Moments Estimation in the Simple
Regression Model

The definition of a “moment” can be extended to more general situations. Assumption RS3*
states that E

(
ei
)
= 0 and cov

(
xi, ei

)
= E

(
xiei

)
= 0. Using these two equations, we can derive

the OLS estimator by using the method of moments approach. In the linear regression model
yi = β1 + β2xi + ei, the two moment conditions E

(
ei
)
= 0 and E

(
xiei

)
= 0 imply

E
(
ei
)
= 0 ⇒ E

(
yi − β1− β2xi

)
= 0 (10.13)

and
E
(
xiei

)
= 0 ⇒ E

[
xi
(
yi − β1− β2xi

)]
= 0 (10.14)

Equations (10.13) and (10.14) are population moment conditions. The Law of Large Numbers
says that under random sampling, sample moments converge to population moments, so

1
N
∑(

yi − β1− β2xi
) p
→E

(
yi − β1− β2xi

)
= 0

1
N
∑[

xi
(
yi − β1− β2xi

)] p
→E

[
xi
(
yi − β1− β2xi

)]
= 0

Setting the two sample moment conditions to zero and replacing the unknown parameters β1 and
β2 by their estimators b1 and b2, we have two equations and two unknowns

1
N
∑(

yi − b1 − b2xi
)
= 0

1
N
∑[

xi
(
yi − b1 − b2xi

)]
= 0
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Multiplying these two equations by N we have the two normal equations (2A.3) and (2A.4) given
in Appendix 2A, and solving them yields the least squares estimators,

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2

b1 = y − b2x

What we have shown is that under the weaker assumptions, E
(
ei
)
= 0 and zero contemporaneous

covariance between xi and ei, cov
(
xi, ei

)
= E

(
xiei

)
= 0, we can derive the OLS estimators for

the simple linear regression model using the method of moments approach. Further, as we have
discussed in Section 5.7, the OLS estimators are consistent estimators in this case, and have
their usual properties in large samples.

10.3.3 Instrumental Variables Estimation in the Simple
Regression Model

Problems for least squares estimation arise when xi is random and contemporaneously correlated
with the random error ei, so that cov

(
xi, ei

)
= E

(
xiei

)≠ 0. In this case xi is endogenous. As we
have discussed in Sections 5.7 and 6.3, and Appendix 6B, the OLS estimator is biased and incon-
sistent when an explanatory variable is endogenous. Also, in the method of moments context,
endogeneity makes the moment condition in equation (10.14) invalid.

What are we to do? The method of moments approach gives us an insight into an alternative.
Suppose that there is another variable, zi, with the following properties:

Characteristics of a Good Instrumental Variable
IV1: zi does not have a direct effect on yi, and thus it does not belong on the right-hand side
of the model yi = β1 + β2xi + ei as an explanatory variable.
IV2: zi is not contemporaneously correlated with the regression error term ei, so that
cov

(
zi, ei

)
= E

(
ziei

)
= 0. Variables with the property cov

(
zi, ei

)
= E

(
ziei

)
= 0 are said to be

exogenous.
IV3: zi is strongly (or at least not weakly) correlated with xi, the endogenous explanatory
variable.

A variable zi with these properties is called an instrumental variable. This terminology arises
because while z does not have a direct effect on y, having it will allow us to estimate the relation-
ship between x and y. It is a tool, or instrument, that we are using to achieve our objective.

If such a variable z exists, then we can use it to form a moment condition to replace (10.14),
that is,

E
(
ziei

)
= 0 ⇒ E

[
zi
(
yi − β1− β2xi

)]
= 0 (10.15)

Then we can use the two moment equations (10.13) and (10.15) to obtain estimates of β1 and β2.
Again appealing to the Law of Large numbers, we can assert that sample moments converge to
population moments. Therefore,

1
N
∑(

yi − β1− β2xi
) p
→E

(
yi − β1− β2xi

)
= 0

1
N
∑[

zi
(
yi − β1− β2xi

)] p
→E

[
zi
(
yi − β1− β2xi

)]
= 0



❦

❦ ❦

❦

10.3 Estimators Based on the Method of Moments 493

Assuming we have a sufficiently large sample, we set the sample moments to zero, yielding the
two sample moment conditions

1
N
∑(

yi − β̂1 − β̂2xi

)
= 0

1
N
∑

zi

(
yi − β̂1 − β̂2xi

)
= 0

(10.16)

Solving these equations leads us to method of moments estimators, which in economics are usu-
ally called the instrumental variable (IV) estimators,

β̂2 =
N
∑

ziyi −
∑

zi
∑

yi

N
∑

zixi −
∑

zi
∑

xi
=

∑(
zi − z

)(
yi − y

)
∑(

zi − z
)(

xi − x
)

β̂1 = y − β̂2x

(10.17)

We introduce the notation β̂1 and β̂2 for the instrumental variables estimators to differentiate
them from the OLS estimators b1 and b2. If properties IV1, IV2, and IV3 hold, then these new
estimators are consistent, they converge to the true parameter values as the sample size N →∞.
Also, they have approximate normal distributions in large samples, which we denote by “ a∼”. For
the simple regression model

β̂2
a∼N

[
β2, var
⋀

(
β̂2
)]

where the estimated variance is

var
⋀

(
β̂2
)
=

σ̂2
IV
∑(

zi − z
)2

[∑(
zi − z

)(
xi − x

)]2 (10.18a)

The IV estimator of the error variance σ2 is

σ̂2
IV =

∑(
yi − β̂1 − β̂2xi

)2

N − 2 (10.18b)

10.3.4 The Importance of Using Strong Instruments
When working with instrumental variables, a constantly repeated question is “How strong are
the instruments?” What is a strong instrument? We will develop a full answer to that question in
this chapter, but initially, we define a strong instrument z as one that is highly correlated with the
endogenous variable x. To show why this definition is useful, apply a bit of algebra to the expres-
sion for the variance var

(
β̂2
)

in equation (10.18a) to obtain an informative equivalent expression.

var
⋀

(
β̂2
)
=

σ̂2
IV
∑(

zi − z
)2

[∑(
zi − z

)(
xi − x

)]2

=
σ̂2

IV

⎧
⎪
⎨
⎪⎩

[∑(
zi − z

)(
xi − x

)]2/
(N − 1)

∑(
zi − z

)2∑(
xi − x

)2/(N − 1)

⎫
⎪
⎬
⎪⎭

∑(
xi − x

)2

=
σ̂2

IV

r2
zx
∑(

xi − x
)2
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We simply multiplied and divided by ∑(
xi − x

)2 and by (N − 1) in the middle equation and did
some rearranging. The final expression tells us about the precision of estimation of the coeffi-
cient of the endogenous variable. As was the case with the OLS estimator, the variance of β̂2
depends on the variation in the explanatory variable about its mean, ∑(

xi − x
)2, and the esti-

mated variance of the error term σ̂2
IV . Those components are familiar to you. What is new is that

the denominator also includes the squared sample correlation rzx between the instrumental vari-
able z and the endogenous variable x. The larger the magnitude of the sample correlation ||rzx

||
the smaller the estimated variance of the IV estimator, and vice versa. When ||rzx

|| is large, the
instrumental variable is strong. Stronger instrumental variables lead to smaller estimated vari-
ances, smaller standard errors, narrower interval estimates, and generally more precise statistical
inference. It is important to choose strong instrumental variables.

To illustrate and make the point about instrument strength dramatic, suppose cov
(
xi, ei

)
= 0,

so that both the OLS and IV estimators are consistent. Comparing the estimated variance of
the two estimators, the ratio of the estimated variance of the IV estimator to that of the OLS
estimator is

var
⋀

(
β̂2
)

var
⋀(

b2
) =

σ̂2
IV

r2
zx
∑(

xi − x
)2

σ̂2
∑(

xi − x
)2

=
σ̂2

IV
/
σ̂2

r2
zx

≃ 1
r2

zx

The final approximation uses the fact that if cov
(
xi, ei

)
= 0, then in large samples the two estima-

tors of σ2 will converge to the same value so that σ̂2
IV
/
σ̂2 ≃ 1. The squared correlation r2

zx < 1 and
thus we anticipate that the variance estimate for the IV estimator will be larger than the variance
estimate for the OLS estimator. The IV estimator is less efficient than the OLS estimator, meaning
that it makes less efficient use of sample data to estimate the unknown parameters.

We prefer the more efficient consistent estimator because it has a smaller standard error,
leading to narrower interval estimates, making statistical inferences more precise. The ratio of
standard errors is se

(
β̂2
)/

se
(
b2
)
≃ 1∕||rzx

||. If the correlation rzx = 0.5, then se
(
β̂2
)/

se
(
b2
)
≃ 2,

the estimated standard error of the IV estimator is two times as large as the standard error of the
OLS estimator. If rzx = 0.1, then se

(
β̂2
)/

se
(
b2
)
≃ 10, the estimated standard error of the IV

estimator is 10 times as large as the standard error of the OLS estimator.
To put some meat on these bones, recall that in large samples a 95% interval estimate is

approximately “estimate ± 2(standard error).” For the sake of illustration, suppose b2 ≃ β̂2 = 5
and se

(
b2
)
= 1, then the 95% interval estimate using the OLS estimator is 5 ± 2(1) or

[
3, 7

]
.

If rzx = 0.5, then the interval estimate based on the IV estimator is 5 ± 2(2) or
[
1, 9

]
. If rzx = 0.1,

then the interval estimate based on the IV estimator is 5 ± 2(10) or
[
−15, 25

]
. This shocking

difference will remind you not to use the IV estimator unless you have to. If you do have to use IV
estimation, then you must search for a strong instrumental variable, one that is highly correlated
with the endogenous x.

10.3.5 Proving the Consistency of the IV Estimator
The demonstration that the instrumental variables estimator is consistent follows the logic used
in Section 10.1.3. The IV estimator of β2 in (10.17) is

β̂2 =
∑(

zi − z
)(

yi − y
)
∕(N − 1)

∑(
zi − z

)(
xi − x

)
∕(N − 1)

= cov
⋀

(z, y)
cov
⋀

(z, x)
The sample covariance converges to the true covariance in large samples, so we can say

β̂2 →
cov(z, y)
cov(z, x)
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If the instrumental variable z is not correlated with x in either the sample data or in the population,
then the instrumental variable estimator fails. Having z and x uncorrelated in the sample data
would mean a zero in the denominator of β̂2. Having z and x uncorrelated in the population means
β̂2 would not converge in large samples. Thus for an instrumental variable to be valid, it must be
uncorrelated with the error term e but correlated with the explanatory variable x.

Now, following the same steps as in Section 10.1.3, we obtain

β2 = cov(z, y)
cov(z, x) −

cov(z, e)
cov(z, x)

If we can assume that that cov
(
zi, ei

)
= 0, a condition we imposed on the choice of the instrumen-

tal variable zi, then the instrumental variables estimator β̂2 converges in large samples to β2,

β̂2 →
cov(z, y)
cov(z, x) = β2

Thus, if cov
(
zi, ei

)
= 0 and cov

(
zi, xi

)≠ 0, then the instrumental variable estimator of β2 is con-
sistent, in a situation in which the OLS estimator is not consistent due to correlation between xi
and ei.

E X A M P L E 10.2 IV Estimation of a Simple Wage Equation

To illustrate the instrumental variables estimation method in
a simple regression consider a simplified version of the
model used in Example 10.1, ln(WAGE) = β1+ β2EDUC + e.
Using the data file mroz on N = 428 married women, the
OLS estimates are

ln(WAGE)
⋀

= −0.1852 + 0.1086EDUC
(se) (0.1852) (0.0144)

The estimated rate of return to education is approximately
10.86%, and t = 7.55 indicates that the estimated coefficient
is significantly different from zero at even the 1% level of
significance. If EDUC is endogenous, and correlated with the
random error e, then OLS estimation may lead to incorrect
inferences. We anticipate that EDUC is positively correlated
with the omitted variable “ability,” meaning that the esti-
mated rate of return 10.86% may overstate the true value.

What might we use as an instrumental variable?
One proposal is to use mother’s years of education,
MOTHEREDUC, as an instrument. Does this qualify? In
Section 10.3.3, we listed three criteria for an instrumental
variable. First, does this variable have a direct effect on the
dependent variable? Does it belong in the equation? Mother’s
education should not play any direct role in the determina-
tion of a daughter’s wage, so this seems fine. Second, the
instrument should not be contemporaneously correlated with
the random error, e. Is a mother’s education correlated

with the omitted variable, her daughter’s ability? This is
more difficult. Ability includes many attributes, including
intelligence, creativity, perseverance, and industriousness to
name a few. Some portion of these character traits may be
passed into our genetic makeup from our parents. We dodge
the scientific debate on this issue and assume that a mother’s
years of education are uncorrelated with her daughter’s
ability. Third, the instrument should be highly correlated
with the endogenous variable. This we can check! For the
428 women in the sample the correlation between mother’s
education and daughter’s education is 0.3870. This is not
very large, but it is not very small either.

The instrumental variables estimates are

ln(WAGE)
⋀

= 0.7022 + 0.0385EDUC
(se) (0.4851) (0.0382)

The IV estimate of the rate of return to education is 3.85%,
one-third of the OLS estimate. The standard error is about
2.65 times larger than the OLS standard error, which is very
close to what we reasoned that the ratio might be when both
estimators are consistent,

se
(
β̂2

)/
se
(
b2
)
= 0.0382∕0.0144 = 2.65 ≃ 1∕rzx

= 1∕0.3807 = 2.58

10.3.6 IV Estimation Using Two-Stage Least Squares (2SLS)
We can obtain the instrumental variables estimates by another type of calculation, one that will
help us extend the IV estimation idea to more general situations. The method called two-stage
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least squares uses two least squares regressions to calculate the IV estimates. The first-stage
equation has a dependent variable that is the endogenous regressor x, and the independent vari-
able z, the instrumental variable. That is, the first-stage equation is

x = γ1 + θ1z + v

where γ1 is an intercept parameter, θ1 is a slope parameter, and v is an error term. The steps in
2SLS are as follows:

1. Estimate the first-stage equation by OLS and obtain the fitted value, x̂ = γ̂1 + θ̂1z.
2. In the second stage, replace the endogenous variable x in the simple regression

y = β1 + β2x + e with x̂ = γ̂1 + θ̂1z and then apply OLS estimation to y = β1 + β2x̂ + e∗.

The OLS estimates of β1 and β2 from the second-stage regression are identically equal to the
IV estimates β̂1 and β̂2. Furthermore, the estimated variances and covariances of β̂1 and β̂2 are
the OLS formulas with σ̂2

IV = ∑(
yi − β̂1 − β̂2xi

)2/
(N − 2) replacing the usual estimate of σ2 and

using the fact that x̂ = x,

var
⋀

(
β̂2
)
=

σ̂2
IV

∑(
x̂i − x

)2 (10.19)

This variance estimate is numerically identical to the previous expression in equation (10.18a).
If (10.19) is not used, the second-stage OLS regression computes the variance incorrectly,
because OLS software will use

σ̂2
WRONG = ∑(

yi − β̂1 − β̂2x̂i

)2/
(N − 2)

putting x̂i in place of xi. Always use software designed for IV/2SLS as it will carry out the cor-
rect calculation.

E X A M P L E 10.3 2SLS Estimation of a Simple Wage Equation

To illustrate the two-stage least squares equivalent of
instrumental variables estimation, we estimate the first-stage
equation, a regression of the endogenous variable EDUC on
the instrumental variable MOTHEREDUC

EDUC
⋀

= 10.1145 + 0.2674MOTHEREDUC
(se) (0.3109) (0.0309)

In order for MOTHEREDUC to be a strong instrumental vari-
able it must be strongly correlated with EDUC. Another way
to say this is that MOTHEREDUC should be strongly sig-
nificant in this first-stage equation, and it is. The t-value is
8.66, so the coefficient is significantly different from zero at

the 1% level. We will say much more about this approach in
Section 10.3.9.

In the second-stage equation, we regress ln(WAGE) on
the fitted value from the first-stage equation,

ln(WAGE)
⋀

= 0.7021 + 0.0385EDUC
⋀

(incorrect se) (0.5021) (0.0396)

The coefficient estimates are the same as in Example 10.2, but
note that the standard errors produced by this second OLS
estimation are not the same as in Example 10.2. They are
incorrect because they use σ̂2

WRONG.

10.3.7 Using Surplus Moment Conditions
The reason for introducing two-stage least squares is that it is an easy way to use extra, additional,
instrumental variables. In a simple regression, we need only one instrumental variable, yielding
two moment conditions like (10.16), which we solve for the two unknown model parameters.
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Sometimes, however, we have more instrumental variables than are necessary. Suppose we have
two good instruments, z1 and z2 that satisfy conditions IV1–IV3. Compared to (10.16) we have the
additional moment condition

E
(
z2e

)
= E

[
z2
(
y − β1− β2x

)]
= 0

There are now three sample moment conditions:
1
N
∑(

yi − β̂1 − β̂2xi

)
= 0

1
N
∑

zi1
(

yi − β̂1 − β̂2xi

)
= 0

1
N
∑

zi2
(

yi − β̂1 − β̂2xi

)
= 0

We have three equations with only two unknowns. There are no solutions satisfying all three
equations. We could simply throw away one of the conditions (instruments) and use the remaining
two to solve for the unknowns. A better solution is to use all the available instruments by com-
bining them. It can be proved that the best way of combining instruments is using the two-stage
least squares idea. In the simple regression y = β1 + β2x + e, if x is endogenous, and we have two
instruments, z1 and z2, the first-stage equation becomes

x = γ1 + θ1z1 + θ2z2 + v

Estimate the first-stage equation by OLS and obtain the fitted value

x̂ = γ̂1 + θ̂1z1 + θ̂2z2

We have combined the two instruments z1 and z2 into the single instrument x̂. Using x̂ as an
instrument for x leads to two sample-moment conditions,

1
N
∑(

yi − β̂1 − β̂2xi

)
= 0

1
N
∑

x̂i

(
yi − β̂1 − β̂2xi

)
= 0

Solving these conditions, and using x̂ = x, we have

β̂2 =

∑(
x̂i − x̂

)(
yi − y

)

∑(
x̂i − x̂

)(
xi − x

) =
∑(

x̂i − x
)(

yi − y
)

∑(
x̂i − x

)(
xi − x

)

β̂1 = y − β̂2x

The estimates obtained using these formulas are identical to the IV/2SLS estimates obtained by
applying least squares to y = β1 + β2x̂ + e∗. If we have more than two instrumental variables we
apply the same strategy of combining several instruments into one.

E X A M P L E 10.4 Using Surplus Instruments in the Simple Wage Equation

Father’s education is also a potential instrument for daugh-
ter’s education. Using the 428 observations in the data file
mroz, the correlation between FATHEREDUC and EDUC

is 0.4154. The first-stage equation is

EDUC = γ1 + θ1MOTHEREDUC + θ2FATHEREDUC + v
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The OLS estimated first-stage equation is

EDUC
⋀

= 9.4801 + 0.1564MOTHEREDUC
(se) (0.3211) (0.0358)

+ 0.1881FATHEREDUC
(0.0336)

The t-statistics for the coefficients of MOTHEREDUC and
FATHEREDUC are 4.37 and 5.59, respectively, and are
significant at the 1% level. The test of the joint significance
of the two IV is even more important than their individ-
ual significance. The F-statistic for the null hypothesis
H0∶θ1 = 0, θ2 = 0 is 55.83, which is very significant, and
we can conclude that at least one of the two IV coefficients
is not zero based on this joint test. The importance of the
F-test is discussed in Section 10.3.9.

In the second-stage equation, we replace EDUC by
EDUC
⋀

and apply least squares to obtain the IV/2SLS
estimates

ln(WAGE)
⋀

= 0.5510 + 0.0505EDUC
⋀

(incorrect se) (0.4257) (0.0335)

The coefficient estimates are the correct IV estimates, but the
standard errors reported are incorrect. Using proper IV soft-
ware yields

ln(WAGE)
⋀

= 0.5510 + 0.0505EDUC
⋀

(se) (0.4086) (0.0322)

10.3.8 Instrumental Variables Estimation in the Multiple
Regression Model

To implement instrumental variables estimation in a multiple regression equation, we need esti-
mation formulas that are more general than equation (10.17). To extend our analysis to a more
general setting, consider the multiple regression model y = β1 + β2x2 + · · · + βKxK + e. Suppose
that among the explanatory variables we know, or suspect, that xK is an endogenous variable
correlated with the error term. The first K − 1 variables

(
x1 = 1, x2,… , xK−1

)
are exogenous

variables that are uncorrelated with the error term e—they are “included” instruments. Instru-
mental variables estimation can be carried out using a two-step process, with an OLS regression
in each step.

The first-stage regression has the endogenous variable xK on the left-hand side, and all
exogenous and instrumental variables on the right-hand side. If we have L “external” instru-
mental variables (we are Lucky to have them) that are from outside the model z1, z2, …, zL, then
the first-stage regression is

xK = γ1 + γ2x2 + · · · + γK−1xK−1 + θ1z1 + · · · + θLzL + vK (10.20)

where vK is a random error term that is uncorrelated with all the right-hand side variables.
Estimate the first-stage regression (10.20) by OLS and obtain the fitted value

x̂K = γ̂1 + γ̂2x2 + · · · + γ̂K−1xK−1 + θ̂1z1 + · · · + θ̂LzL (10.21)

The fitted value x̂K is the optimal combination of all the exogenous and instrumental variables.
The second-stage regression is based on the original specification with x̂K replacing xK ,

y = β1 + β2x2 + · · · + βKx̂K + e∗ (10.22)

where e∗ is an error term. OLS estimation of (10.22) is justified because in large samples e∗ is
uncorrelated with the explanatory variables, including x̂K . The OLS estimators from this equation,
β̂1,… , β̂K , are the instrumental variables (IV) estimators, and, because they can be obtained
by two least squares regressions, they are also popularly known as the two-stage least squares
(2SLS) estimators. We will refer to them as IV or 2SLS or IV/2SLS estimators. In the general
case with more than one endogenous variable on the right-hand side the steps are similar and are
discussed in Section 10.3.10.
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We can use the standard formulas for estimator variances and covariances for the least squares
estimator of (10.22), which we described in Section 5.3.1, with one modification. While we can
use two least squares estimations to obtain proper estimates, least squares software does not
produce correct standard errors and t-values. The IV/2SLS estimator of the error variance is
based on the residuals from the original model, y = β1 + β2x2 + · · · + βKxK + e, so that the proper
estimator of the error variance σ2 is the general version of equation (10.18b)

σ̂2
IV =

∑(
yi − β̂1 − β̂2xi2 − · · · − β̂KxiK

)2

N − K
Econometric software will automatically use the proper variance estimator if a two-stage least
squares or instrumental variables estimation option is chosen. Using the IV/2SLS estimated stan-
dard errors from (10.22), we can carry out t-tests and construct interval estimates of parameters
that are valid in large samples. Furthermore, the usual tests of joint hypotheses are valid in large
samples if the instrumental variables are not weak.

It is informative to recall the discussion in Section 6.4.1. Usually the coefficient of the endoge-
nous variable is most interesting. Thinking about our wage equation example, the coefficient of
EDUC, years of education, is of critical importance. Let SSEx̂K

be the sum of squared residuals
from the regression of x̂K on xexog =

(
x1 = 1, x2, x3, … , xK−1

)
, then, in large samples,

β̂K
a∼N

[
βK , var

(
β̂K

)]

and the variance estimate is
var
⋀

(
β̂K

)
=

σ̂2
IV

SSEx̂K

(10.23)

Equation (10.23) shows that the variance of β̂K , the instrumental variables estimator of βK ,
depends on, SSEx̂K

, the variation in x̂K that is not explained by xexog =
(
x1 = 1, x2, x3, … , xK−1

)
.

See equation (6.33) and the surrounding discussion. Because this is such an important concept
we return to it in Section 10.3.9 when analyzing “weak” instrumental variables.

E X A M P L E 10.5 IV/2SLS Estimation in the Wage Equation

In addition to education a worker’s experience is also impor-
tant in determining their wage. Because additional years of
experience have a declining marginal effect on wage use the
quadratic model

ln(WAGE) = β1+ β2EXPER + β3EXPER2 + β4EDUC + e

where EXPER is years of experience. This is the same
specification as in Example 10.1. We assume that EXPER is
an exogenous variable that is uncorrelated with the worker’s
ability and therefore uncorrelated with the random error e.
Two instrumental variables for years of education, EDUC,
are mother’s and father’s years of education, MOTHER-
EDUC and FATHEREDUC, introduced in the previous
examples. The first-stage equation is
EDUC = γ1 + γ2EXPER + γ3EXPER2 + θ1MOTHEREDUC

+ θ2FATHEREDUC + v

Using the 428 observations in the data file mroz the estimated
first-stage equation is reported in Table 10.1. The IV/2SLS
estimates, with correctly computed standard errors, are

ln(WAGE)
⋀

= 0.0481 + 0.0442EXPER
(se) (0.4003) (0.0134)

− 0.0009EXPER2 + 0.0614EDUC
(0.0004) (0.0314)

The estimated return to education is approximately 6.1%,
and the estimated coefficient is statistically significant with a
t = 1.96.
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T A B L E 10.1 First-Stage Equation

Variable Coefficient Std. Error t-Statistic Prob.
C 9.1026 0.4266 21.3396 0.0000
EXPER 0.0452 0.0403 1.1236 0.2618
EXPER2 −0.0010 0.0012 −0.8386 0.4022
MOTHEREDUC 0.1576 0.0359 4.3906 0.0000
FATHEREDUC 0.1895 0.0338 5.6152 0.0000

10.3.9 Assessing Instrument Strength Using
the First-Stage Model

In Section 10.3.4, we emphasized the importance of a strong instrument when estimating a
simple regression model with an endogenous explanatory variable. There the assessment of the
instrument’s strength was based on the correlation between the endogenous variable x and
the instrument z. In a multiple regression measuring instrument strength is more complicated.
The first-stage regression is a key tool in assessing whether an instrument is “strong” or “weak”
in the multiple regression setting.

Case 1: Assessing the Strength of One Instrumental Variable Suppose that
xK is endogenous and we have available one external instrumental variable z1. In terms of the
notation above L = 1. The first-stage regression equation is

xK = γ1 + γ2x2 + · · · + γK−1xK−1 + θ1z1 + vK (10.24)
In a simple regression model, we can look for instrument strength in the correlation between the
endogenous variable and the instrument. In the multiple regression model, we must deal with the
other exogenous variables

(
x2,… , xK−1

)
. The key to assessing the strength of the instrumental

variable z1 is the strength of its relationship to xK after controlling for the effects of all the other
exogenous variables. This, however, is exactly the purpose of multiple regression analysis. The
coefficient θ1 in the first-stage regression (10.24) measures the effect of z1 on xK after accounting
for the effects of the other variables.

Not only must there be an effect of z1 on xK but also it must be a statistically significant
effect. How significant? Very significant. To reject the hypothesis that the instrument z1 is weak,
a rule of thumb is that the F-test statistic for the null hypothesis H0∶θ1 = 0 in equation (10.24)
should be greater than 10. Using the relationship between the t- and F-tests, t2 = F described in
Section 6.1.3, this translates into the absolute t-statistic for significance being greater than 3.16,
which is larger than the usual 5% critical values ± 1.96 or the 1% critical values ± 2.58. The F > 10
rule has been refined by econometric researchers Stock and Yogo, and we discuss their analysis
in Appendix 10A. Estimates and tests based on an IV estimator are unreliable when instruments
are weak.

Further Analysis of Weak Instruments1 Another way to illustrate this point is the
following. The logic may seem a bit cumbersome, but the final result will be intuitively pleasing.

............................................................................................................................................
1This section is more advanced.
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In Section 10.3.8, we argued that the approximate large sample variance of the IV estimator
of βK is

var
⋀

(
β̂K

)
=

σ̂2
IV

SSEx̂K

where SSEx̂K
is the sum of squared residuals from the regression of x̂K on

(
x2, x3, … , xK−1

)
, where

x̂K is the fitted value from the first-stage regression (10.24),

x̂K = γ̂1 + γ̂2x2 + · · · + γ̂K−1xK−1 + θ̂1z1

By taking one more step, we can obtain an insight into how important the first-stage regression
results can be. Let us consider a regression of x̂K on xexog =

(
x1 = 1, x2, x3, … , xK−1

)
and z1.

We do not need to do this in practice; we know it will result in a perfect fit, with an R2 = 1.
Nevertheless, let us follow the Frisch–Waugh–Lovell approach described in Section 5.2.4.

• First, partial out xexog from x̂K and obtain the residuals ̃̂xK .
• Second, partial out xexog from the instrument z1 and obtain the residuals z̃1. The sum of

squared residuals is ∑ z̃2
i1.

• Regress ̃̂xK on z̃1, with no constant. The estimated coefficient is θ̂1, R2 = 1, and the fitted
value θ̂1z̃1 exactly equals ̃̂xK!

• Because ̃̂xK = θ̂1z̃1, we can write SSEx̂K
= ∑ ̃̂x2

iK = ∑(
θ̂1z̃i1

)2
= θ̂2

1
∑

z̃2
i1.

The result is an alternative expression for the large sample variance of the IV estimator of βK
given in (10.23),

var
(
β̂K

)
=

σ̂2
IV

SSEx̂K

=
σ̂2

IV

θ̂2
1
∑

z̃2
i1

(10.25)

What factors contribute to the precision of the IV estimator of βK? The first important factor is the
magnitude of the estimate θ̂1 from the first-stage regression. It is important that this coefficient is
large! Second, how much variation is there in the external instrument z1 after removing the linear
effects of the included exogenous variables, xexog? What is important is the amount of variation
in z1 not explained by the included exogenous variables xexog. Ideally z1 would be uncorrelated
with xexog and exhibit large variation. If θ̂1 is numerically small, or if z1 is highly correlated with
xexog, or exhibits little variation, then the precision of the IV estimator β̂K will be worse.

Case 2: Assessing the Strength of More Than One Instrumental Variable
Suppose that xK is endogenous and we have available L external instrumental variables, z1,
z2, …, zL. For a single endogenous variable, we need only a single instrument. Sometimes more
instruments are available, and having more strong instruments may improve the instrumental
variables estimator. The first-stage regression equation is now

xK = γ1 + γ2x2 + · · · + γK−1xK−1 +

external IV
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
θ1z1 + · · · + θLzL + vK (10.26)

What we require is that at least one of the instruments be strong. Given the nature of the
requirement, a joint F-test of the null hypothesis H0∶θ1 = 0, θ2 = 0,… , θL = 0 in (10.26) is
relevant, because the alternative is that at least one of the θi coefficients is nonzero. If the F-test
statistic value is sufficiently large, roughly F > 10, we reject the hypothesis that the instruments
are “weak” and can proceed with instrumental variables estimation. If the F-value is not
sufficiently large, then instrumental variables and two-stage least squares estimation is quite
possibly worse than “ordinary” least squares.
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The fitted value from the first-stage regression (10.26) is

x̂K = γ̂1 + γ̂2x2 + · · · + γ̂K−1xK−1 + θ̂1z1 + · · · + θ̂LzL

Applying the Frisch–Waugh–Lovell Theorem, as in the previous section, we find that

var
⋀

(
β̂K

)
=

σ̂2
IV

∑(
θ̂1z̃i1 + θ̂2z̃i2 + · · · + θ̂Lz̃iL

)2 (10.27)

where z̃il is the ith residual from a regression of zl on xexog =
(
x1 = 1, x2, x3, … , xK−1

)
.

The precision of the IV estimator of βK depends on the magnitudes of the first-stage coefficients
and the unexplained components of the external instrumental variables.

E X A M P L E 10.6 Checking Instrument Strength in the Wage Equation

In Example 10.5, there is only one potentially endogenous
variable in the wage equation, EDUC. The minimum number
of instrumental variables is one. Given two instruments,
we require that at least one of them be significant in the
first-stage equation. The F-test null hypothesis is that both
coefficients, θ1 and θ2, are zero, and if we reject this null
hypothesis we conclude that at least one of them is nonzero.
In the first-stage regression in Table 10.1, the estimated
coefficient of MOTHEREDUC is 0.1576 with a t-value
of 4.39, and the estimated coefficient of FATHEREDUC
is 0.1895 with a t-value of 5.62. The F-statistic value for
the null hypothesis that both these coefficients are zero
is 55.40, which is significant at the 1% level, but more
importantly it is larger than the rule-of-thumb threshold,
F > 10. In addition to the vitally important F-statistic, the
goodness-of-fit measures R2 and R

2 are sometimes reported.
For the first-stage equation in Table 10.1, these values are
R2 = 0.1527 and R

2
= 0.1467.

Partial Correlation and Partial R2

In addition to the first-stage F-statistic, R2 and adjusted-R2,
a partial correlation or partial-R2 are informative. Applying
the partialling-out strategy of the Frisch–Waugh–Lovell

Theorem is another way to examine instrument strength.
The included exogenous variables in the wage equation are
xexog =

(
x1 = 1, EXPER, EXPER2). Regress EDUC on xexog

and obtain the residuals, REDUC.
Suppose that we are using the single instrument

MOTHEREDUC. Regress MOTHEREDUC on xexog and
obtain the residuals, RMOM. These residual variables have
the included exogenous variables partialled-out. That is,
we have removed the linear influences of the included
exogenous variables from the endogenous variable EDUC
and the external IV, MOTHEREDUC. The correlation
between REDUC and RMOM is called a partial correlation,
and in this case it is 0.3854. The R2 from a regression of
REDUC on RMOM is called the partial-R2, and in this case
it is 0.1485. Because we have one endogenous variable and
one external IV, the partial-R2 = 0.1485 is the square of the
partial correlation, 0.38542 = 0.1485.

If there are more external instruments, the partial-R2

is the R2 of the partialled-out endogenous variable on all
the partialled-out external IV. Add FATHEREDUC as an
IV, regress it on xexog and obtain the residuals, RDAD. The
partial-R2 is then the R2 from the regression of REDUC on
RMOM and RDAD. In this case, partial-R2 = 0.2076 and the
adjusted partial-R2 = 0.2038.

10.3.10 Instrumental Variables Estimation
in a General Model

To extend our analysis to a more general setting, consider the multiple regression model
y = β1 + β2x2 + · · · + βKxK + e. Suppose that among the explanatory variables

(
x1 = 1, x2,… , xK

)
we know, or suspect, that several may be correlated with the error term e. Divide the variables
into two groups, with the first G variables

(
x1 = 1, x2,… , xG

)
being exogenous variables that are

uncorrelated with the error term e. The second group of B = K − G variables
(
xG+1, xG+2,… , xK

)
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is correlated with the regression error, and thus they are endogenous. The multiple regression
model, including all K variables, is then

y =

G exogenous variables
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
β1 + β2x2 + · · · + βGxG +

B endogenous variables
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
βG+1xG+1 + · · · + βKxK + e (10.28)

In order to carry out IV estimation we must have at least as many instrumental variables as we
have endogenous variables. Suppose we have L external instrumental variables, from outside the
model, z1, z2, …, zL. Such notation is invariably confusing and cumbersome. It may help to keep
things straight to think of G = Good explanatory variables and B = Bad explanatory variables
and L = Lucky instrumental variables, since we are lucky to have them. Then we have The Good,
the Bad, and the Lucky.

It is a necessary condition for IV estimation that L ≥ B. If L = B then there are just
enough instrumental variables to carry out IV estimation. The model parameters are said to be
just-identified or exactly identified in this case. The term identified is used to indicate that the
model parameters can be consistently estimated. If L > B then we have more instruments than
are necessary for IV estimation, and the model is said to be overidentified.

To implement IV/2SLS, estimate B first-stage equations, one for each explanatory variable
that is endogenous. On the left-hand side of the first-stage equations, we have an endogenous
variable. On the right-hand side, we have all the exogenous variables, including the G explanatory
variables that are exogenous, and the L instrumental variables, which also must be exogenous.
The B first-stage equations are

xG+j = γ1j + γ2jx2 + · · · + γGjxG + θ1jz1 + · · · + θLjzL + vj, j = 1,… ,B (10.29)

The first-stage parameters (γ’s and θ’s) take different values in each equation, which is why they
have a “j” subscript. We have omitted the observation subscript for simplicity. Since the right-hand
side variables are all exogenous, we can estimate (10.29) by OLS. Then obtain the fitted values

x̂G+j = γ̂1j + γ̂2jx2 + · · · + γ̂GjxG + θ̂1jz1 + · · · + θ̂LjzL, j = 1,… ,B

This comprises the first stage of two-stage OLS estimation.
In the second stage of estimation we apply least squares to

y = β1 + β2x2 + · · · βGxG + βG+1x̂G+1 + · · · + βKx̂K + e∗ (10.30)

This two-stage estimation process leads to proper instrumental variables estimates, but it should
not be done this way in applied work. Use econometric software designed for two-stage least
squares or instrumental variables estimation so that standard errors, t-statistics, and other test
statistics will be computed properly.

Assessing Instrument Strength in a General Model The F-test for weak
instruments discussed in Section 10.3.9 is not valid for models having more than one endogenous
variable on the right side of the equation. Consider the model in (10.28) with B = 2,

y = β1 + β2x2 + · · · + βGxG + βG+1xG+1 + βG+2xG+2 + e (10.31)

where x2, …, xG are exogenous and uncorrelated with the error term e, while xG+1 and xG+2
are endogenous. Suppose that we have two external instrumental variables z1 and z2, with z1
being a good instrument for both xG+1 and xG+2. The weak instrument F-test may be signifi-
cant in each first-stage equation even if z2 is an irrelevant instrument and not at all related to
xG+1 or xG+2. In such a case, we might conclude that we have two valid instruments when we
have only one.
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The first-stage equations in this case are

xG+1 = γ11 + γ21x2 + · · · + γG1xG + θ11z1 + θ21z2 + v1

xG+2 = γ12 + γ22x2 + · · · + γG2xG + θ12z1 + θ22z2 + v2

The weak instrument F-test in the first equation is for the joint significance of θ11 and θ21,
H0∶θ11 = 0, θ21 = 0, with the alternative hypothesis that at least one of these coefficients is
not zero. If θ11 is statistically significant, then the joint null hypothesis may be rejected even
if θ21 = 0. Similarly in the second equation we can obtain a significant F-test outcome even if z2
is irrelevant as an instrument for xG+1 as long as z1 is statistically significant. In this case we have
two individually significant F-tests despite the fact that only one valid instrument z1 is available,
and thus the model in (10.31) is not identified. The more general test required for this case, which
builds on the concept of “partial correlation” is discussed in Appendix 10A.

10.3.11 Additional Issues When Using IV Estimation
In this section, we discuss some issues related to IV estimation.

Hypothesis Testing with Instrumental Variables Estimates We may be
interested in testing hypotheses about the regression parameters based on the two-stage least
squares/instrumental variables estimates. When testing the null hypothesis H0∶βk = c, use of
the test statistic t =

(
β̂k − c

)/
se
(
β̂k

)
is valid in large samples. We know that as N →∞, the

t(N−K) distribution converges to the standard normal distribution N(0, 1). If the degrees of freedom
N − K are large, then critical values from the two distributions will be very close. It is common,
but not universal, practice to use critical values, and p-values, based on the t(N−K) distribution
rather than the more strictly appropriate N(0, 1) distribution. The reason is that tests based on the
t-distribution tend to work better in samples of data that are not large.

Another issue is whether to use standard errors that are “robust” to the presence of het-
eroskedasticity (in cross-section data) or autocorrelation and heteroskedasticity (in time-series
data). These options were described in Chapters 8 and 9 for the linear regression model, and they
are also available in most software packages for IV estimation. Such corrections to standard errors
require large samples in order to work properly.

When using software to test a joint hypothesis, such as H0∶β2 = c2, β3 = c3, the test may be
based on the chi-square distribution with the number of degrees of freedom equal to the num-
ber of hypotheses (J) being tested. The test itself may be called a Wald test, or a likelihood
ratio (LR) test, or a Lagrange multiplier (LM) test. These testing procedures are all asymp-
totically equivalent and are discussed in Appendix C.8.4. However, the test statistic reported
may also be called an F-statistic with J numerator degrees of freedom and N − K denomina-
tor degrees of freedom. This F-value is often calculated by dividing one of the chi-square tests
statistics, such as the Wald statistic, by J. The motivation for using the F-test is to achieve bet-
ter performance in small samples. Asymptotically, the tests will all lead to the same conclusion.
See Chapter 6, Appendix 6A, for some related discussion. Once again, joint tests can be made
“robust” to potential heteroskedasticity or autocorrelation problems, and this is an option with
many software packages.

Generalized Method-of-Moments Estimation If heteroskedasticity or serial cor-
relation is present in a model with one or more endogenous variables, then using instrumental
variables estimation with a “robust” covariance matrix ensures that interval estimators, hypoth-
esis tests and prediction intervals use a valid standard error. However, using an instrumental
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variables estimator with a robust covariance matrix estimator does not improve the efficiency
of the estimator, just like using the OLS estimator with a robust covariance matrix estimator
does not improve its efficiency. In Chapters 8 and 9 we introduced a generalized least squares
estimator for linear regression models with error terms that are heteroskedastic and/or serially
correlated. In the same way, there is a generalized method-of-moments (GMM) estimator that
is “asymptotically” more efficient than the instrumental variables estimator. Being “asymptoti-
cally more efficient” means that the GMM estimator has smaller variances than the IV estimator
in large samples. In order to obtain the gain, we must have at least one surplus instrument. The
gain in efficiency is obtained by building into the estimator a heteroskedasticity and/or serial cor-
relation correction. Despite the fact that the GMM estimator improves the large sample precision
of estimation its actual performance in samples that are not large might not be good. And like the
IV estimator, good instruments are required. Theoretically, the GMM estimator is very attractive
because it is a general estimation approach that includes the OLS estimator, the GLS estimator
and IV/2SLS as special cases.

The GMM estimation procedure is built into econometric software packages but their
proper usage requires an in-depth study of the methodology, which is beyond the scope of this
book. It is one of the few topics that is difficult to explain without the tools of matrix algebra.
Advanced readers can consult William Greene (2018) Econometric Analysis, Eighth Edition,
Pearson Prentice-Hall, Chapter 13.

Goodness-of-Fit with Instrumental Variables Estimates We discourage the
use of measures like R2 outside the context of OLS estimation. When there are endogenous
variables on the right-hand side of a regression equation, the concept of measuring how well the
variation in y is explained by the x variables breaks down, because as we discussed in Section 10.2,
these models exhibit feedback. This logical problem is paired with a numerical one. If our model is
y = β1 + β2x + e, then the IV residuals are ê = y − β̂1 − β̂2x. Many software packages will report
the goodness-of-fit measure R2 = 1 −∑

ê2
i
/∑(

yi − y
)2. Unfortunately, this quantity can be

negative when based on IV estimates.

10.4 Specification Tests
We have shown that if an explanatory variable is correlated with the regression error term, the
OLS estimator fails. If a strong instrumental variable is available, the IV estimator is consistent
and approximately normally distributed in large samples. But if we use a weak instrument, or
an instrument that is invalid in the sense that it is not uncorrelated with the regression error,
then IV estimation can be as bad as, or worse than, using the OLS estimator. We addressed how
to detect weak instruments in Section 10.3.9, and go into much greater detail on this problem in
Appendix 10A. In this section we ask two other important questions that must be answered in each
situation in which instrumental variables estimation is considered:

1. Can we test for whether x is correlated with the error term? This might give us a guide for
when to use least squares and when to use IV estimators.

2. Can we test if our instrument is valid, and uncorrelated with the regression error, as required?

10.4.1 The Hausman Test for Endogeneity
In the previous sections, we discussed the fact that the least squares estimator fails if there is
correlation between an explanatory variable and the error term. We also provided an estimator,
the instrumental variables estimator, that can be used when the least squares estimator fails.
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The question we address in this section is how to test for the presence of a correlation between
an explanatory variable and the error term, so that we can use the appropriate estimation
procedure.

The null hypothesis is H0∶cov
(
xi, ei

)
= 0 against the alternative that H1∶cov

(
xi, ei

) ≠ 0.
The idea of the test is to compare the performance of the OLS estimator to an instrumental
variables estimator. Under the null and alternative hypotheses, we know the following:

• If the null hypothesis is true, both the OLS estimator b and the instrumental variables esti-
mator β̂ are consistent. Thus, in large samples the difference between them converges to
zero. That is, q =

(
b − β̂

)
→ 0. Naturally, if the null hypothesis is true, use the more efficient

estimator, which is the least squares estimator.
• If the null hypothesis is false, the OLS estimator is not consistent, and the instrumental vari-

ables estimator is consistent. Consequently, the difference between them does not converge
to zero in large samples. That is, q =

(
b − β̂

)
→ c ≠ 0. If the null hypothesis is not true, use

the instrumental variables estimator, which is consistent.

There are several forms of the test, usually called the Hausman test in recognition of econometri-
cian Jerry Hausman’s pioneering work on this problem, for these null and alternative hypotheses.
One form of the test directly examines the differences between the least squares and instrumental
variables estimates, as we have described above. Some computer software programs implement
this test for the user, which can be computationally difficult to carry out.2

An alternative form of the test is very easy to implement, and is the one we recommend.
See Section 10.4.2 for an explanation of the test’s logic. In the regression yi = β1 + β2xi + ei,
we wish to know whether xi is correlated with ei. Let z1 and z2 be instrumental variables for x.
At minimum, one instrument is required for each variable that might be correlated with the error
term. Then carry out the following steps:

1. Estimate the first-stage model x = γ1 + θ1z1 + θ2z2 + v by OLS, including on the right-hand
side all instrumental variables and all exogenous variables not suspected to be endogenous,
and obtain the residuals

v̂ = x − γ̂1 − θ̂1z1 − θ̂2z2

If more than one explanatory variable is being tested for endogeneity, repeat this estimation
for each one.

2. Include the residuals computed in step 1 as an explanatory variable in the original regression,
y = β1 + β2x + δv̂ + e. Estimate this “artificial regression” by OLS, and employ the usual
t-test for the hypothesis of significance:

H0∶δ = 0
(
no correlation between xi and ei

)

H1∶δ ≠ 0
(
correlation between xi and ei

)

3. If more than one variable is being tested for endogeneity, the test will be an F-test of joint
significance of the coefficients on the included residuals.

The t- and F-tests in steps two and three can be made robust if heteroskedasticity and/or autocor-
relation are potential problems.

............................................................................................................................................
2Some software packages compute Hausman tests with K, or K − 1, degrees of freedom, where K is the total number of
regression parameters. This is incorrect. Use the correct degrees of freedom B, equal to the number of potentially
endogenous right-hand-side variables (see 10.28).
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10.4.2 The Logic of the Hausman Test3

In Section 10.4.1, we presented the Hausman test for whether or not an explanatory variable is
endogenous using an artificial regression. Let us explore how this test works. The simple regres-
sion model is

y = β1 + β2x + e (10.32)

If x is correlated with the error term e, then x is endogenous and the OLS estimator is biased and
inconsistent.

An instrumental variable z must be correlated with x but uncorrelated with e in order to be
valid. A correlation between z and x implies that there is a linear association between them. This
means that we can describe their relationship as a regression

x = γ1 + θ1z + v (10.33)

This is the first-stage equation introduced in Section 10.3.6. It is a predictive model with the
base assumption E(x|z) = γ1 + θ1z. The conditional mean of the endogenous variable x is linearly
related to the instrumental variable z. The error term v is simply v = x – (γ1 + θ1z) so that the two
sides of (10.33) are equal. There is a correlation between x and z if, and only if, θ1 ≠ 0. We can
divide x into two parts, a systematic part and a random part, as

x = E(x|z) + v (10.34)

where E(x|z) = γ1 + θ1z. If we knew γ1 and θ1, we could substitute (10.34) into the simple regres-
sion model (10.32) to obtain

y = β1 + β2x + e = β1 + β2
[
E(x|z) + v

]
+ e

= β1 + β2E(x|z) + β2v + e (10.35)

Now, suppose for a moment that E(x|z) and v can be observed and are viewed as explanatory
variables in the regression y = β1 + β2E(x|z) + β2v + e. Will least squares work when applied to
this equation? The explanatory variable E(x|z) depends only on z and it is not correlated with the
error term e if z is a valid instrument. The endogeneity problem, if there is one, comes from a
correlation between v (the random part of x) and e. In fact, in the regression (10.32) any correlation
between x and e implies correlation between v and e because v = x − E(x|z).

We cannot exactly create the partition in (10.34) because we do not know γ1 and θ1. However,
we can consistently estimate the first-stage equation (10.33) by OLS. Doing so, we obtain the fitted
first-stage equation x̂ = E(x|z)

⋀

= γ̂1 + θ̂1z and the residuals v̂ = x − x̂. Rearrange these to obtain
an estimated analog of (10.34),

x = E(x|z) + v̂ = x̂ + v̂ (10.36)

Substitute (10.36) into the original equation (10.32) to obtain

y = β1 + β2x + e = β1 + β2
[
x̂ + v̂

]
+ e

= β1 + β2x̂ + β2v̂ + e (10.37)

To reduce confusion, and avoid β2 appearing twice in same equation, let the coefficient of v̂ be
denoted as γ, so that (10.37) becomes

y = β1 + β2x̂ + γv̂ + e (10.38)

............................................................................................................................................
3Contains advanced material.
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If we omit v̂ from (10.38) the regression becomes

y = β1 + β2x̂ + e (10.39)

The least squares estimates of β1 and β2 in (10.39) are the IV/2SLS estimates discussed in Section
10.3.6. Then, recall from Section 6.6.1, equation (6.23), that if we omit a variable from a regres-
sion that is uncorrelated with the included variable(s) there is no omitted variables bias, and
in fact the least squares estimates are unchanged! This holds true in (10.39) because the least
squares residuals v̂ are uncorrelated with x̂ and the intercept variable. Thus, the least squares esti-
mates of β1 and β2 in (10.38) and (10.39) are identical and are equal to the IV/2SLS estimates.
Consequently, the least squares estimators of β1 and β2 in (10.38) are consistent whether or not x
is exogenous, because they are the IV estimators.

What about γ? If x is exogenous, and hence v and e are uncorrelated, then the least squares
estimator of γ in (10.38) will also converge in large samples to β2. However, if x is endogenous
then the least squares estimator of γ in (10.38) will not converge to β2 in large samples because v̂,
like v, is correlated with the error term e. This observation makes it possible to test for whether
x is exogenous by testing the equality of the estimates of β2 and γ in (10.38). If we reject the null
hypothesis H0∶β2 = γ then we reject the exogeneity of x, and conclude that it is endogenous.

Carrying out the test is made simpler by playing a trick on (10.38). Add and subtract β2v̂
to the right-hand side to obtain

y = β1 + β2x̂ + γv̂ + e + β2v̂ − β2v̂

= β1 + β2
(
x̂ + v̂

)
+
(
γ − β2

)
v̂ + e

= β1 + β2x + δv̂ + e (10.40)

Thus, instead of testing H0∶β2 = γ we can simply use an ordinary t-test of the null hypothesis
H0∶δ = 0 in (10.40), which is exactly the test we described in Section 10.4.1. This is much nicer
because software automatically prints out the t-statistic for this hypothesis test. This test can be
made robust to heteroskedasticity and/or autocorrelation if desired.

10.4.3 Testing Instrument Validity
A valid instrument z must be contemporaneously uncorrelated with the regression error term, so
that cov

(
zi, ei

)
= 0. If this condition fails then the resulting moment condition, like (10.16), is

invalid and the IV estimator will not be consistent. Unfortunately, not every instrument can be
tested for validity. In order to compute the IV estimator for an equation with B possibly endoge-
nous variables, we must have at least B instruments. The validity of this minimum number of
required instruments cannot be tested. In the case in which we have L > B instruments available,
we can test the validity of the L − B extra, or surplus, moment conditions.4

An intuitive approach is the following. From the set of L instruments, form groups of B
instruments and compute the IV estimates using each different group. If all the instruments are
valid, then we would expect all the IV estimates to be similar. Rather than do this, there is a test
of the validity of the surplus moment conditions that is easier to compute. The steps are

1. Compute the IV estimates β̂k using all available instruments, including the G variables
x1 = 1, x2, …, xG that are presumed to be exogenous, and the L instruments z1, …, zL.

2. Obtain the residuals êIV = y − β̂1− β̂2x2 − · · · − β̂KxK .

............................................................................................................................................
4Econometric jargon for surplus moment conditions is “overidentifying restrictions.” A surplus of moment conditions
means we have more than enough for identification, hence “overidentifying.” Moment conditions like (10.16) can be
thought of as restrictions on parameters.
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3. Regress êIV on all the available instruments described in step one.
4. Compute NR2 from this regression, where N is the sample size and R2 is the usual goodness-

of-fit measure.
5. If all of the surplus moment conditions are valid, then NR2 ∼ χ2

(L−B).5 If the value of the test
statistic exceeds the 100(1 − α)th percentile (i.e., the critical value) from the χ2

(L−B) distribu-
tion, then we conclude that at least one of the surplus moment conditions is not valid.

If we reject the null hypothesis that all the surplus moment conditions are valid, then we are
faced with trying to determine which instrument(s) are invalid, and how to weed them out.

E X A M P L E 10.7 Specification Tests for the Wage Equation

In Section 10.3.6, we examined a ln(WAGE) equation
for married women, using the two instruments “mother’s
education” and “father’s education” for the potentially
endogenous explanatory variable education (EDUC).

To implement the Hausman test we first obtain
the first-stage regression estimates, which are shown in
Table 10.1. Using these estimates we calculate the least
squares residuals v̂ = EDUC − EDUC

⋀

. Insert the residuals
in the ln(WAGE) equation as an extra variable, and estimate
the resulting augmented regression using OLS. The resulting
estimates are shown in Table 10.2.

The Hausman test of the endogeneity is based on the
t-test of significance of the first-stage regression residuals, v̂.
If we reject the null hypothesis that the coefficient is zero,
we conclude that education is endogenous. Note that the
coefficient of the first-stage regression residuals (VHAT) is
significant at the 10% level of significance using a two-tail
test. While this is not strong evidence of the endogeneity of
education, it is sufficient cause for concern to consider using
instrumental variables estimation. Second, note that the
coefficient estimates of the remaining variables, but not their
standard errors, are identical to their instrumental variables
estimates. This feature of the regression-based Hausman test
is explained in Section 10.4.2.

T A B L E 10.2 Hausman Test Auxiliary Regression

Variable Coefficient Std. Error t-Statistic Prob.
C 0.0481 0.3946 0.1219 0.9030
EDUC 0.0614 0.0310 1.9815 0.0482
EXPER 0.0442 0.0132 3.3363 0.0009
EXPER2 −0.0009 0.0004 −2.2706 0.0237
VHAT 0.0582 0.0348 1.6711 0.0954

In order to be valid, the instruments MOTHEREDUC
and FATHEREDUC should be uncorrelated with the
regression error term. As discussed in Section 10.4.3,
we cannot test the validity of both instruments, only the
“overidentifying” or surplus instrument. Since we have two
instruments and only one potentially endogenous variable,
we have L − B = 1 extra instrument. The test is carried out
by regressing the residuals from the ln(WAGE) equation,
calculated using the instrumental variables estimates, on
all available exogenous and instrumental variables. The test
statistic is NR2 from this artificial regression, and R2 is the
usual goodness-of-fit measure. If the surplus instruments
are valid, then the test statistic has an asymptotic χ2

(1)
distribution, where the degrees of freedom are the number
of surplus instruments. If the test statistic value is greater
than the critical value from this distribution, then we reject
the null hypothesis that the surplus instrument is valid.
For the artificial regression R2 = 0.000883, and the test
statistic value is NR2 = 428 × 0.000883 = 0.3779. The
0.05 critical value for the chi-square distribution with one
degree of freedom is 3.84, so we fail to reject the surplus
instrument as valid. With this result we are reassured that
our instrumental variables estimator for the wage equation is
consistent.

............................................................................................................................................
5This test is valid if errors are homoskedastic and is sometimes called the Sargan test. If the errors are heteroskedastic,
there is a more general test called Hansen’s J-test that is provided by some software. A very advanced reference is
Hayashi, Econometrics, Princeton, 2000, pp. 227–228.
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10.5 Exercises

10.5.1 Problems
10.1 Using state level data, a researcher wishes to examine the relationship between the median rent paid

(RENT) as a function of median house values (MDHOUSE in $1000). The percentage of the state
population living in an urban area (PCTURBAN) is used as an additional control. Use the results in
Table 10.3 to answer the following questions.

T A B L E 10.3 Estimates for Exercise 10.1

(1) (2) (3) (4) (5) (6)
RENT MDHOUSE MDHOUSE RENT RENT EHAT

C 125.9 −19.78 7.225 121.1 121.1 −53.50
(14.19) (10.23) (8.936) (12.87) (15.51) (22.66)

PCTURBAN 0.525 0.205 0.616 0.116 0.116 −0.257
(0.249) (0.113) (0.131) (0.254) (0.306) (0.251)

MDHOUSE 1.521 2.184 2.184
(0.228) (0.282) (0.340)

FAMINC 2.584 3.851
(0.628) (1.393)

REG4 15.89 −16.87
(3.157) (6.998)

VHAT −1.414
(0.411)

N 50 50 50 50 50 50
R2 0.669 0.679 0.317 0.737 0.609 0.198
SSE 20259.6 3907.4 8322.2 16117.6 23925.6 19195.8

Standard errors in parentheses.

a. The OLS estimates of the model are in column (1). Why might we be concerned that
MDHOUSE, the median price of houses, is endogenous in this regression?

b. Two instruments are considered: median family income (FAMINC in $1000) and a regional
dummy variable REG4 . Using the models in columns (2) and (3), test if the instruments
are weak.

c. In column (4), the least squares residuals (VHAT) from the regression in column (2) are added as
a regressor to the basic regression. The estimates are obtained using OLS. What is the usefulness
of this regression? What does it indicate about the results in (1)?

d. In column (5) are IV/2SLS estimates using the instruments listed in part (b). What differences
do you observe between these results and the OLS results in column (1)? Note that the estimates
(though not the standard errors) are the same in columns (4) and (5). Is this a mistake? Explain.

e. In column (6) the residuals from the estimation in column (5) are regressed upon the variables
shown. What information is contained in these results?

10.2 The labor supply of married women has been a subject of a great deal of economic research. Consider
the following supply equation specification

HOURS = β1 + β2WAGE + β3EDUC + β4AGE + β5KIDSL6 + β6NWIFEINC + e

where HOURS is the supply of labor, WAGE is hourly wage, EDUC is years of education, KIDSL6 is
the number of children in the household who are less than 6 years old, and NWIFEINC is household
income from sources other than the wife’s employment.
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a. Discuss the signs you expect for each of the coefficients.
b. Explain why this supply equation cannot be consistently estimated by OLS regression.
c. Suppose we consider the woman’s labor market experience EXPER and its square, EXPER2, to be

instruments for WAGE. Explain how these variables satisfy the logic of instrumental variables.
d. Is the supply equation identified? Explain.
e. Describe the steps [not a computer command] you would take to obtain IV/2SLS estimates.

10.3 In the regression model y = β1 + β2x + e, assume x is endogenous and that z is a valid instrument.
In Section 10.3.5, we saw that β2 = cov(z, y)∕cov(z, x).
a. Divide the denominator of β2 = cov(z, y)∕cov(z, x) by var(z). Show that cov(z, x)/var(z) is

the coefficient of the simple regression with dependent variable x and explanatory variable z,
x = γ1 + θ1z + v. [Hint: See Section 10.2.1.] Note that this is the first-stage equation in two-stage
least squares.

b. Divide the numerator of β2 = cov( z, y)∕cov(z, x) by var(z). Show that cov(z, y)/var(z) is the
coefficient of a simple regression with dependent variable y and explanatory variable z,
y = π0 + π1z + u. [Hint: See Section 10.2.1.]

c. In the model y = β1+ β2x + e, substitute for x using x = γ1 + θ1z + v and simplify to obtain
y = π0 + π1z + u. What are π0, π1, and u in terms of the regression model parameters and error
and the first-stage parameters and error? The regression you have obtained is a reduced-form
equation.

d. Show that β2 = π1∕θ1.
e. If π̂1 and θ̂1 are the OLS estimators of π1 and θ1, show that β̂2 = π̂1∕θ̂1 is a consistent estimator

of β2 = π1∕θ1. The estimator β̂2 = π̂1∕θ̂1 is an indirect least squares estimator.
10.4 Suppose that x is endogenous in the regression yi = β1+ β2xi + ei. Suppose that zi is an instrumen-

tal variable that takes two values, one and zero; it is an indicator variable. Make the assumption
E
(
ei|zi

)
= 0.

a. Show that E
(
yi|zi

)
= β1+ β2E

(
xi|zi

)
.

b. Assume E
(
xi|zi

)≠ 0. Does zi satisfy conditions IV1–IV3? Explain.
c. Write out the conditional expectation in (a) for the two cases with zi = 1 and zi = 0. Solve the

two resulting equations for β2.
d. Suppose we have a random sample

(
yi, xi, zi

)
, i = 1,… ,N. Give an intuitive argument that a con-

sistent estimator of E
(
yi|zi = 1

)
is the sample average of the yi values for the subset of observations

for which zi = 1, which we might call y1.
e. Following the strategy in part (d) form y1, y0, x1, and x0. Show that the empirical implementation

of the expression in (c) is β̂WALD =
(
y1 − y0

)/(
x1 − x0

)
, which is the Wald Estimator, in honor

of Abraham Wald.
f. Explain how E

(
xi|zi = 1

)
− E

(
xi|zi = 0

)
might be viewed as a measure of the strength of the

instrumental variable zi.
10.5 Suppose that xi is endogenous in the regression yi = β1+ β2xi + ei. Suppose that zi is an instrumen-

tal variable that takes two values, one and zero with probabilities p and 1 − p, respectively, that is,
Pr
(
zi = 1

)
= p and Pr

(
zi = 0

)
= 1 − p.

a. Show that E
(
zi
)
= p.

b. Show that E
(
yizi

)
= pE

(
yi|zi = 1

)
.

c. Use the law of iterated expectations to show that E
(
yi
)
= pE

(
yi|zi = 1

)
+(1 − p) E

(
yi|zi = 0

)
.

d. Substitute (a), (b), and (c) results into E
(
yizi

)
− E

(
yi
)
E
(
zi
)

to show that
cov

(
yi, zi

)
= p(1 − p)E

(
yi|zi = 1

)
− p(1 − p)E

(
yi|zi = 0

)
.

e. Use the arguments in (a)–(d) to show that cov
(
xi, zi

)
= p(1 − p)

[
E
(
xi|zi = 1

)
− E

(
xi|zi = 0

)]
.

f. Assuming E
(
ei
)
= 0 show

[
yi − E

(
yi
)]

= β2
[
xi − E

(
xi
)]

+ ei.
g. Multiply both sides of the expression in (f ) by zi − E

(
zi
)

and take expectations to show
cov

(
yi, zi

)
= β2cov

(
xi, zi

)
if cov

(
ei, zi

)
= 0.

h. Using (d), (f ), and (g) show that β2 =
E
(
yi|zi = 1

)
− E

(
yi|zi = 0

)

E
(
xi|zi = 1

)
− E

(
xi|zi = 0

)

i. Show that the empirical implementation of (h) leads to β̂WALD =
(
y1 − y0

)/(
x1 − x0

)
.

10.6 Suppose that xi is endogenous in the regression yi = β1+ β2xi + ei. Suppose that zi is an instrumental
variable that takes two values, one and zero.
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a. Let N1 =
∑

zi be the number of zi values such that zi = 1. Show that ∑zixi = N1x1 where x1 is the
sample average of the xi values corresponding to zi = 1.

b. Let N0 = N −∑
zi = N − N1 be the number of zi values such that zi = 0. Show that ∑xi = N1x1 +

N0x0 where x0 is the sample average of the xi values corresponding to zi = 0.
c. Show that N

∑
xizi −

∑
zi
∑

xi = N1N0
(
x1 − x0

)
d. Show that N

∑
yizi −

∑
zi
∑

yi = N1N0
(
y1 − y0

)
e. Use the results in (c) and (d) to show that the IV estimator of β2 in (10.17) reduces to

β̂2 =
(
y1 − y0

)
∕
(
x1 − x0

)
.

f. The estimated variance of the IV estimator is given in (10.18a). Show that ∑(
zi − z

)(
xi − x

)
=∑

zixi − N zx = N1N0
(
x1 − x0

)
.

g. Using the result in part (f ), suppose
(
x1 − x0

)
≃ 0. How does this indicate that the IV zi is weak?

h. ∑(
zi − z

)(
xi − x

)/∑(
zi − z

)2 is the OLS estimate of the slope coefficient from a regression of xi
on zi. True or False? How does this value relate to the weak instrument discussion in part (g)?
If this coefficient is small, with a low t-value, does it imply that zi is a weak IV? Explain.

10.7 Angrist and Krueger (1991) use quarter of birth as an instrumental variable to estimate the returns
to schooling, using a sample of 327,509 from the 1980 census. The model of interest is ln(WAGE) =
β1+ β2EDUC + e.
a. Let ln(WAGE) denote the average of the natural log of weekly wage. For men born in the first

quarter of the year the average is 5.8916, and for men born in the fourth quarter of the year the
average is 5.9027. What is the approximate percentage difference in wages for the two groups of
men?

b. The standard error of the difference in means from part (a) is 0.00274. Is the difference in
ln(WAGE) statistically significant? What is the two-tail p-value?

c. Let EDUC denote the average years of schooling. For men born in the first quarter of the year
the average is 12.6881, and for men born in the fourth quarter of the year the average is 12.7969.
What is the approximate percentage difference in years of schooling for the two groups of men?
Is there a reason why men born in the fourth quarter have higher average schooling than men born
in the first quarter?

d. The standard error of the difference in means from part (c) is 0.0132. Is the difference in EDUC
statistically significant? What is the two-tail p-value.

e. Compute the Wald estimate of the return to schooling, β̂2,WALD using the results above. What is the
instrumental variable z being used in this case? The Wald estimator is introduced in Exercise 10.4.

f. Explain why the result in (d) is important to the success of the Wald estimator.
10.8 Knowledge is Power Program (KIPP) Schools are charter schools with largely minority students.

These schools differ in a number of ways from public schools, but emphasize longer days and more
time spent in school. The question is: “How much benefit is there to attending a KIPP school?”6

a. Let yi = MATHi be the outcome of a math achievement test. This outcome is standardized by
subtracting the average and dividing by the standard deviation, so that y = 0 is the average score,
and y = 1 is a score that is one standard deviation above average, and so on. Let xi = ATTENDEDi
be an indicator variable with the value one if a student attended a KIPP school and zero otherwise.
In the regression yi = β1 + β2xi + ei, suppose that the OLS estimate of β2 is b2 = 0.467, with a
standard error of 0.103. Based on this regression result, does attending a KIPP school seem to
improve math test score? Is the estimate of the amount of improvement a meaningful amount?
If the average math score of those attending the KIPP school is 0.095, what is the average score
of those who do not attend the KIPP school?

b. Explain why we might worry that ATTENDED is an endogenous variable.
c. Offers of admission are randomly assigned to the pool of KIPP applicants. Some of those

offered admission wind up attending and some do not. Let WINNER be an indicator variable
taking the value one if a student receives an offer to attend, and zero otherwise. Suppose that
78.7% of offers to attend are accepted. Does WINNER satisfy the conditions for an instrumental
variable?

............................................................................................................................................................
6This exercise is adapted from Angrist and Pischke (2015) Mastering Metrics: The Path from Cause to Effect,
Princeton University Press.
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d. Suppose that zi = WINNERi. In the terms of this example, explain the components of

β2 =
E
(
yi|zi = 1

)
− E

(
yi|zi = 0

)

E
(
xi|zi = 1

)
− E

(
xi|zi = 0

)

See Exercises 10.4 and 10.5 for background discussion of the expression.
e. The average math score of those receiving an offer to attend the KIPP school was −0.003, which

is very close to average. The average score of those not offered a seat was −0.358, which is about
one-third of a standard deviation below average. Interestingly, some students wind up attending
the KIPP school despite not being randomly selected from the applicants. Assume that the pro-
portion of students attending the KIPP school who were not “winners” be 4.6%. Obtain the Wald
estimator of β2 by replacing the population averages in part (d) with sample averages. How does
this estimate compare to the OLS estimate in part (a)? Does attending a KIPP school appear to
have a meaningful positive effect on scores of those attending?

10.9 Consider the wage equation used in Example 10.5. Suppose we have a variable designed to measure
ABILITY . This variable is an index created using 10 different tests of cognitive ability. Using data on
2,178 white males in 1980, the ability variable has a sample mean of 0.04 and a standard deviation
of 0.96.
a. The estimated relationship between years of education and the ability measure is EDUC

⋀

=
12.30 + 0.977ABILITY with a t-value of 25.81. Is this result consistent with the usual “omitted
variables bias” explanation of the endogeneity of education? Explain.

b. Using these data and the model in Example 10.5, the estimated coefficient on EDUC is 0.0609
with standard error 0.005. Adding ABILITY to the equation reduces the estimated coefficient on
EDUC to 0.054 with standard error 0.006. Is this the effect that you anticipate? Explain.

c. Assuming that ABILITY and EXPER are exogenous, along with instrumental variables MOTH-
EREDUC and FATHEREDUC, what is the specification of the first-stage equation? That is, what
variables are on the right-hand side?

d. Estimating the first-stage equation in (c), we find that the t-values on MOTHEREDUC and
FATHEREDUC are 2.55 and 4.72, respectively. The F-test of their joint significance is 33.82.
Are these instruments adequately strong for their use in IV/2SLS? Explain.

e. Let v̂ denote the OLS residuals from part (d). If we estimate the model in Example 10.5, and
include the variables ABILITY and v̂, the t-statistic for v̂ is −0.94. What does this result tell us
about the endogeneity of EDUC after controlling for ability?

10.10 Consider the model in Example 10.5. Suppose we have the idea that the effect of education may
differ for individuals who have siblings. Suppose SIBS = number of siblings, which we assume is
exogenous. We add to the model the variable EDUC × SIBS.
a. Assuming we treat EDUC as endogenous, what type of variable is EDUC × SIBS? Is it exogenous

or endogenous? Explain your reasoning.
b. In addition to MOTHEREDUC and FATHEREDUC, are MOTHEREDUC × SIBS and

FATHEREDUC × SIBS potentially useful IV? Explain how they satisfy, or might satisfy, the
three conditions IV1–IV3.

c. Using OLS with a large sample of individuals, we find the estimated coefficient of EDUC to be
0.0903 (t = 46.74) and the estimated coefficient of EDUC × SIBS to be −0.0001265 (t = −0.91).
Explain why we should not simply omit the variable EDUC × SIBS in the wage equation based
on this result.

d. The first-stage equations for EDUC and EDUC × SIBS include EXPER, EXPER2, and the four
variables listed in (b). The F-tests for the joint significance of the IV have p-values of 0.0000.
Can we safely conclude that our IV are strong for both EDUC and EDUC × SIBS?

e. We calculate the residuals from the two first-stage equations. Let the residuals from the EDUC
equation be v̂1 and the residuals from the EDUC × SIBS equation be v̂2. We estimate the structural
model by OLS including both v̂1 and v̂2 as explanatory variables. Their t-values are −10.29 and
−1.63, respectively, and the joint F-test of their significance is 55.87. Can we safely conclude that
both EDUC and EDUC × SIBS are endogenous?

f. Using IV/2SLS, we find that the estimated coefficient of EDUC is 0.1462 with a t-value of 25.25,
and the estimated coefficient of EDUC × SIBS is 0.0007942 with a t-value of 4.53. The estimated
covariance between these two coefficients is 4.83 × 10−7. Estimate the marginal effect of another
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year of education on wages for a person with no siblings. What is the estimated marginal effect
of education if a person has five siblings?

10.11 Consider the wage equation in Example 10.5.
a. Two possible instruments for EDUC are NEARC4 and NEARC2 , where these are dummy vari-

ables indicating whether the individual lived near a 4-year college or a 2-year college at age 10.
Speculate as to why these might be potentially valid IV.

b. Explain the steps (not the computer command) required to carry out the regression-based
Hausman test, assuming we use both IV.

c. Using a large data set, the p-value for the regression-based Hausman test for the model in Example
10.5, using only NEARC4 as an IV is 0.28; using only NEARC2 the p-value is 0.0736, and using
both IV the p-value is 0.0873 [with robust standard errors it is 0.0854]. What should we conclude
about the endogeneity of EDUC in this model?

d. We compute the IV/2SLS residuals, using both NEARC4 and NEARC2 as IV. In the regression
of these 2SLS residuals on all exogenous variables and the IV, with N = 3010 observations, all
regression p-values are greater than 0.30 and the R2 = 0.000415. What can you conclude based
on these results?

e. The main reason we seldom use OLS to estimate the coefficients of equations with endogenous
variables is that other estimation methods are available that yield better fitting equations. Is this
statement true or false, or are you uncertain? Explain the reasoning of your answer.

f. The F-test of the joint significance of NEARC4 and NEARC2 in the first-stage regression is 7.89.
The 95% interval estimates for the coefficient of education using OLS is 0.0678 to 0.082, and
using 2SLS it is 0.054 to 0.260. Explain why the width of the interval estimates is so different.

10.12 Estimating cost and production functions for industrial plants is important. Decisions are based on
estimated average and marginal cost, and average and marginal products. Suppose a manufactur-
ing plant for a particular firm has output modeled as Q = β1+ β2MGT_EFF + β3CAP + β4LAB + e,
where Q is the output in a particular manufacturing plant, MGT_EFF is a managerial efficiency index,
CAP is capital stock input index and LAB is labor input index.
a. What is the interpretation of β2? What sign should it have?
b. Measuring MGT_EFF is difficult. Suppose we propose to estimate the model

Q = β1 + β2XPER + β3CAP + β4LAB + e

where XPER is the plant manager’s experience, measured in years. What should the sign of β2 be
now? Why might we worry that XPER is endogenous? [Hint: Think carefully about this one.]

c. We use data from 75 plants to estimate the model in (b). The least squares estimates are

Q̂ = 1.7623 + 0.1468XPER + 0.4380CAP + 0.2392LAB
(se) (1.0550) (0.0634) (0.1176) (0.0998)

Are the signs of the coefficients and their significance consistent with your expectations? Explain.
d. If XPER is endogenous, what is the direction of the bias of the OLS estimator? Explain. [Hint:

Remember your answer to part (b).]
e. Suppose we consider AGE, the age of the plant manager, as an instrument. Does it satisfy the

criteria for an IV based on your economic reasoning? Why or why not?
f. In the OLS regression of XPER on CAP, LAB, and AGE, the t-value for the coefficient of AGE is

3.13. What information does this provide us about the feasibility of carrying out IV/2SLS?
g. We add the residuals from part (f ) to the model in (b) to obtain

Q = β1+ β2XPER + β3CAP + β4LAB + β5RESID + e

The t-statistic for the null hypothesis H0∶β5 = 0 from this regression is −2.2. What should we
infer from it?

h. The two-stage least squares estimates are

Q̂ = −2.4867 + 0.5121XPER + 0.3321CAP + 0.2400LAB
(se) (2.7230) (0.2205) (0.1545) (0.1209)
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What are the differences in these estimates versus the OLS estimates? Are the differences consis-
tent with your expectations, relative to the OLS estimates? Explain.

i. Reasoning that AGE is an adequate IV, a staff economist decides to add AGE × LAB and AGE ×
CAP as IV also. Are these likely to be valid IV and uncorrelated with the regression error term?
To test this, the two-stage least squares residuals are regressed on CAP, LAB, AGE, AGE × LAB,
and AGE × CAP. The resulting R2 is 0.0045. What do you think about the validity of the IV now?

j. The economist regresses XPER on CAP, LAB, AGE, AGE × LAB, and AGE × CAP. The F-test of
the joint significance of AGE, AGE × LAB, and AGE × CAP is 3.3. Do you think it is advisable
to use the interaction variables as IV in the estimation? Justify your answer.

10.13 Households plan consumption expenditures and saving with consideration of their long-run income.
We wish to estimate SAVING = β1+ β2LRINCOME + e, where LRINCOME is long-run income.
a. Long-run income is difficult to define and measure. Using data on 50 households’ annual sav-

ings (SAVINGS, $1000 units) and annual income (INCOME, $1000 units), we estimate a savings
equation by OLS to obtain

SAVINGS
⋀

= 4.3428 − 0.0052INCOME
(se) (0.8561) (0.0112)

Why might we expect the OLS estimator of the marginal propensity to save to be biased and
inconsistent? What is the likely direction of the bias?

b. Suppose that in addition to current income we know average household income over the past
10 years (AVGINC, $1000 units). Why might this be a suitable instrumental variable?

c. The estimated first-stage regression is

INCOME
⋀

= −35.0220 + 1.6417AVGINC
(t) (−1.83) (5.80)

Does AVGINC qualify as a strong instrument? Explain.
d. Let the residuals from part (c) be v̂. Adding this variable to the savings equation and estimating

the result by OLS gives

SAVINGS
⋀

= 0.9883 + 0.0392INCOME − 0.0755v̂
(se) (1.1720) (0.0154) (0.0201)

Based on this result should we rely on the OLS estimates of the savings equation?
e. Using the fitted values from part (c) in place of INCOME and applying OLS, we obtain

SAVINGS
⋀

= 0.9883 + 0.0392INCOME
⋀

(se) (1.2530) (0.0165)

Compare these coefficient estimates to those in part (a). Are these estimates more in line with
your prior expectations than those in (a), or not?

f. Are the OLS standard errors in part (e) correct or not? Explain.
g. Using IV/2SLS software, with instrument AVGINC, we obtain the estimates

SAVINGS
⋀

= 0.9883 + 0.0392INCOME
(se) (1.5240) (0.0200)

Construct a 95% interval estimate of the effect of INCOME on SAVINGS. Compare and contrast
it to the 95% interval estimate based on the results in part (a).

h. In parts (d), (e), and (g), the estimated coefficient of INCOME is 0.0392. Is this an accident?
Explain.

i. Explain how to test whether AVGINC is a valid instrument, and uncorrelated with the regression
error.

10.14 The Capital Asset Pricing Model (CAPM) [see Exercise 2.16] says that the risk premium on security
j is related to the risk premium on the market portfolio, that is

rj − r' = αj + βj
(
rm − r'

)
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where rj and rf are the returns to security j and the risk-free rate, respectively, rm is the return on the
market portfolio, and βj is the jth security’s “beta” value. A stock’s beta is important to investors since
it reveals the stock’s volatility. We measure the market portfolio using the Standard & Poors value
weighted index, and the risk-free rate by the 30-day LIBOR monthly rate of return.
a. Using 180 monthly observations from January 1988, the OLS estimate of IBM’s beta is 0.9769

with a standard error of 0.0978. If our constructed values of the market return and the risk-free
rate are measured with error is the OLS estimator unbiased and consistent? If it is biased, what is
the direction of the bias?

b. It has been suggested that it is possible to construct an IV by ranking the values of the explanatory
variable and using the rank as the IV. That is, we sort

(
rm − r'

)
from smallest to largest, and assign

the values RANK = 1, 2,… , 180. Does this variable potentially satisfy the conditions IV1–IV3?
c. The estimated first-stage regression of

(
rIBM − r'

)
on RANK yields an overall F-test of model

significance of 93.77. What can we conclude about the strength of the IV RANK?
d. If we compute the first-stage residuals and add them to the CAPM model, the resulting coefficient

has a t-value of 60.60. What does this result suggest to us about the OLS estimator in the CAPM
model?

e. Using RANK as an IV and estimating the CAPM model by IV/2SLS yield an estimate of IBM’s
beta of 1.0025 with a standard error of 0.1019. Compare this IV estimate to the OLS estimate in
part (a). Does the IV estimate agree with your expectations?

10.5.2 Computer Exercises
10.15 Consider the simple wage model in Example 10.2. Use the 428 observations on married women who

participate in the labor force.
a. Using the instrumental variables estimator in equation (10.17), divide the numerator and

denominator by (N − 1) and show that the IV estimator is the ratio of sample covariances,
β̂2 = cov

⋀(
zi, yi

)/
cov
⋀(

zi, xi
)
.

b. Using your computer software, calculate cov
⋀(

MOTHEREDUCi, ln
(
WAGEi

))
and

cov
⋀(

MOTHEREDUCi,EDUCi
)
. Compare their ratio to the IV estimate in Example 10.2.

c. In Example 10.5, we added experience and its square to the model specification. To implement the
ratio of covariances estimator in part (a), we first remove (partial-out) the influence of experience
and its square from MOTHEREDUC, EDUC, and ln(WAGE). Regress each of variables on EXPER
and EXPER2 and save the residuals, calling them RMOTHEREDUC, REDUC, and RLWAGE.
Calculate cov

⋀(
RMOTHEREDUCi,RLWAGEi

)
and cov
⋀(

RMOTHEREDUCi,REDUCi
)
. Compare

their ratio to the IV estimate in Example 10.5.
d. Using your IV/2SLS software, estimate the model RLWAGE = β2REDUC + error, omitting the

constant term, using RMOTHEREDUC as an instrumental variable. Compare the resulting esti-
mate to that in part (c).

10.16 Consider the wage model in Example 10.5 and the 428 observations on married women who partici-
pate in the labor force. Use only MOTHEREDUC as an instrument in this exercise.
a. Estimate the first-stage equation by OLS and obtain the fitted values

EDUC
⋀

= γ̂1 + γ̂2EXPER + γ̂3EXPER2 + θ̂1MOTHEREDUC

b. Use OLS to estimate the second-stage equation

ln(WAGE) = β1 + β2EXPER + β3EXPER2 + β4EDUC
⋀

+ error

c. Obtain the least squares residuals, ê, from the estimation in part (b). Calculate ∑ êi. Explain why
the value you obtain is theoretically correct.

d. Using the coefficient estimates from part (b), calculate the residuals

êIV = ln(WAGE) − β̂1 − β̂2EXPER − β̂3EXPER2 − β̂4EDUC

Calculate ∑
êIV . Explain why the value you obtain is theoretically correct.

e. Calculate ∑
ê2

i
/
(N − 4) and ∑

ê2
IV
/
(N − 4). Which of these is the correct estimator of the error

variance, σ2?
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f. Estimate the regression EDUC
⋀

= a1 + a2EXPER + a3EXPER2 + error and obtain the sum of
squared residuals. Use equation (10.25) and one of the values from part (e) to obtain var

⋀(
β̂4

)
.

g. Using software for IV/2SLS estimate the wage model ln(WAGE) = β1 + β2EXPER + β3EXPER2 +
β4EDUC + e using the instrumental variable MOTHEREDUC. How do the estimates compare to
those in part (b)? Does the reported standard error se

(
β̂4

)
agree with the calculated variance in

part (f )?
10.17 Consider the wage model in Example 10.5 and the 428 observations on married women who partici-

pate in the labor force. Use only MOTHEREDUC as an instrument in this exercise.
a. Estimate the first-stage equation by OLS and obtain the fitted values

EDUC
⋀

= γ̂1 + γ̂2EXPER + γ̂3EXPER2 + θ̂1MOTHEREDUC

Save the least squares residuals. Call them REDUCHAT . Calculate the sum of squared residuals,∑
REDUCHAT2

i .
b. Estimate the regression EDUC

⋀

= a1 + a2EXPER + a3EXPER2 + error and save the OLS residu-
als. Call them REDUC. Calculate the sum of squared residuals, ∑REDUC2

i .
c. Estimate the regression MOTHEREDUC = c1 + c2EXPER + c3EXPER2 + error and save the

OLS residuals. Call them RMOM. Calculate the sum of squared residuals, ∑RMOM2
i .

d. Estimate the regression REDUC = θ1RMOM + error. Compare the estimated value of θ1 from
this regression to the estimated θ1 from the first-stage equation. What R2 value did you obtain
from this regression? What is the sum of squared residuals?

e. Show that ∑RMOM2
i = θ̂2

1
∑

REDUC2
i .

f. Refer to equation (10.25) and discuss the importance of the quantities in (e) for the precision of
the IV/2SLS estimator.

10.18 Consider the data file mroz on working wives. Use the 428 observations on married women who
participate in the labor force. In this exercise, we examine the effectiveness of a parent’s college
education as an instrumental variable.
a. Create two new variables. MOTHERCOLL is a dummy variable equaling one if MOTHER-

EDUC >12, zero otherwise. Similarly, FATHERCOLL equals one if FATHEREDUC >12 and
zero otherwise. What percentage of parents have some college education in this sample?

b. Find the correlations between EDUC, MOTHERCOLL, and FATHERCOLL. Are the magnitudes
of these correlations important? Can you make a logical argument why MOTHERCOLL and
FATHERCOLL might be better instruments than MOTHEREDUC and FATHEREDUC?

c. Estimate the wage equation in Example 10.5 using MOTHERCOLL as the instrumental variable.
What is the 95% interval estimate for the coefficient of EDUC?

d. For the problem in part (c), estimate the first-stage equation. What is the value of the F-test statis-
tic for the hypothesis that MOTHERCOLL has no effect on EDUC? Is MOTHERCOLL a strong
instrument?

e. Estimate the wage equation in Example 10.5 using MOTHERCOLL and FATHERCOLL as the
instrumental variables. What is the 95% interval estimate for the coefficient of EDUC? Is it nar-
rower or wider than the one in part (c)?

f. For the problem in part (e), estimate the first-stage equation. Test the joint significance of
MOTHERCOLL and FATHERCOLL. Do these instruments seem adequately strong?

g. For the IV estimation in part (e), test the validity of the surplus instrument. What do you conclude?
10.19 Consider the data file mroz on working wives. Use the 428 observations on married women who

participate in the labor force. In this exercise, we examine the effectiveness of a parent’s college
education as an instrumental variable.
a. Create two new variables. MOTHERCOLL is a dummy variable equaling one if

MOTHEREDUC > 12, zero otherwise. Similarly FATHERCOLL equals one if FATHEREDUC >
12, and zero otherwise. Also, create COLLSUM = MOTHERCOLL + FATHERCOLL and
COLLBOTH = MOTHERCOLL × FATHERCOLL. What values do COLLSUM and COLLBOTH
take? What percentage of women in the sample have both a mother and a father with some
college education.

b. Find the correlations between EDUC, COLLSUM, and COLLBOTH. Are the magnitudes of these
correlations important? Can you make a logical argument why COLLSUM and COLLBOTH
might be better instruments than MOTHEREDUC and FATHEREDUC?
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c. Estimate the wage equation in Example 10.5 using 2SLS with COLLSUM as the instrumental
variable. What is the 95% interval estimate for the coefficient of EDUC?

d. For the problem in part (c), estimate the first-stage equation. What is the value of the F-test
statistic for the hypothesis that COLLSUM has no effect on EDUC? Is COLLSUM a strong
instrument?

e. Using OLS estimate the regression model with EDUC as dependent variable, and include as
explanatory variables experience, and its square, along with MOTHERCOLL and FATHERCOLL,
and a constant term. Test the null hypothesis that the coefficients of MOTHERCOLL and
FATHERCOLL are equal at the 5% level.

f. Based on the results in part (e ), are we justified in using COLLSUM = MOTHERCOLL +
FATHERCOLL as an IV? Are we better off using COLLSUM only or using MOTHERCOLL and
FATHERCOLL?

10.20 The CAPM [see Exercises 10.14 and 2.16] says that the risk premium on security j is related to the
risk premium on the market portfolio. That is

rj − r' = αj + βj
(
rm − r'

)

where rj and rf are the returns to security j and the risk-free rate, respectively, rm is the return on the
market portfolio, and βj is the jth security’s “beta” value. We measure the market portfolio using the
Standard & Poor’s value weighted index, and the risk-free rate by the 30-day LIBOR monthly rate
of return. As noted in Exercise 10.14, if the market return is measured with error, then we face an
errors-in-variables, or measurement error, problem.
a. Use the observations on Microsoft in the data file capm5 to estimate the CAPM model using OLS.

How would you classify the Microsoft stock over this period? Risky or relatively safe, relative to
the market portfolio?

b. It has been suggested that it is possible to construct an IV by ranking the values of the explana-
tory variable and using the rank as the IV, that is, we sort

(
rm − r'

)
from smallest to largest,

and assign the values RANK = 1, 2, . . . . , 180. Does this variable potentially satisfy the condi-
tions IV1–IV3? Create RANK and obtain the first-stage regression results. Is the coefficient of
RANK very significant? What is the R2 of the first-stage regression? Can RANK be regarded as a
strong IV?

c. Compute the first-stage residuals, v̂, and add them to the CAPM model. Estimate the resulting
augmented equation by OLS and test the significance of v̂ at the 1% level of significance. Can we
conclude that the market return is exogenous?

d. Use RANK as an IV and estimate the CAPM model by IV/2SLS. Compare this IV estimate to the
OLS estimate in part (a). Does the IV estimate agree with your expectations?

e. Create a new variable POS = 1 if the market return
(
rm − r'

)
is positive, and zero otherwise.

Obtain the first-stage regression results using both RANK and POS as instrumental variables.
Test the joint significance of the IV. Can we conclude that we have adequately strong IV? What
is the R2 of the first-stage regression?

f. Carry out the Hausman test for endogeneity using the residuals from the first-stage equation
in (e). Can we conclude that the market return is exogenous at the 1% level of significance?

g. Obtain the IV/2SLS estimates of the CAPM model using RANK and POS as instrumental vari-
ables. Compare this IV estimate to the OLS estimate in part (a). Does the IV estimate agree with
your expectations?

h. Obtain the IV/2SLS residuals from part (g) and use them (not an automatic command) to carry
out a Sargan test for the validity of the surplus IV at the 5% level of significance.

10.21 Consider the data file mroz on working wives. Use the 428 observations on married women who
participate in the labor force. In this exercise, we examine the effectiveness of alternative constructed
instrumental variables. Estimate the model in Example 10.5 using IV/2SLS using both MOTHER-
EDUC and FATHEREDUC as IV. These will serve as our baseline results.
a. Write down the first-stage equation using econometric notation, as in equation (10.26), with

γ1, γ2, γ3 as the unknown coefficients of the intercept, EXPER and its square, and θ1, θ2 as the
coefficients of MOTHEREDUC and FATHEREDUC, respectively. Test the null hypothesis that
θ1 = θ2 at the 5% level. What do you conclude?

b. Assume that θ1 = θ2 = θ. Substitute into the first-stage equation to obtain a “restricted” model.
What variable involving MOTHEREDUC and FATHEREDUC now appears on the right-hand
side?
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c. Create a new variable PARENTSUM = MOTHEREDUC + FATHEREDUC. Obtain IV/2SLS
estimates using this as the IV. How do the estimates compare to the baseline results? Is this IV
strong?

d. Create two new variables MOMED2 = MOTHEREDUC2 and DADED2 = FATHEREDUC2.
Use these new variables and both MOTHEREDUC and FATHEREDUC as IV. Estimate the
first-stage equation using these four IV. Test their joint significance using an F-test. Are these
instruments adequately strong? Do any seem irrelevant based on t-tests of significance? Find
the simple correlations among the four IV. Are any large?

e. Obtain IV/2SLS estimates of the model in Example 10.5 using the four IV in part (d). How do
these estimates compare to the baseline results and to those in part (c)?

f. Based on the results in this question, which set of IV/2SLS estimates would you prefer to report?
The baseline estimates, the results in part (c), or the results in part (e). Explain your choice.

10.22 Consider the data file mroz on working wives and the model ln(WAGE) = β1+ β2EDUC +
β3EXPER + e. Use the 428 observations on married women who participate in the labor force.
a. Write down in algebraic form the three moment conditions, like (10.13) and (10.14), that would

lead to the OLS estimates of the model above.
b. Calculate the OLS estimates and residuals, êi. What is the sum of the least squares residuals? What

is the sum of squared least squares residuals? What is ∑EDUCi × êi? What is ∑
EXPERi × êi?

Relate these results to the moment conditions in (a).
c. Calculate the fitted values ln(WAGE)

⋀

= b1 + b2EDUC + b3EXPER. What is the sample average
of the fitted values? What is the sample average of ln(WAGE), ln(WAGE)?

d. Find each of the following:

SST = ∑[
ln
(
WAGEi

)
− ln(WAGE)

]2
, SSE = ∑

ê2
i , SSR = ∑[

ln
(
WAGEi

)⋀

− ln(WAGE)
]2

Compute SSR + SSE, R2 = SSR∕SST and R2 = 1 − SSE∕SST . Explain what these calculations
show about measuring goodness-of-fit.

10.23 This question is an extension of Exercise 10.22. Consider the data file mroz on working wives and
the model ln(WAGE) = β1 + β2EDUC + β3EXPER + e. Use the 428 observations on married women
who participate in the labor force. Let the instrumental variable be MOTHEREDUC.
a. Write down in algebraic form the three moment conditions, like (10.16) , that would lead to the

IV/2SLS estimates of the model above.
b. Calculate the IV/2SLS estimates and residuals, êIV . What is the sum of the IV residuals? What is∑

MOTHEREDUCi × êIV ,i? What is ∑EXPERi × êIV ,i? Relate these results to the moment con-
ditions in (a).

c. What is ∑
EDUCi × êIV ,i? What is the sum of squared IV residuals? How do these two results

compare with the corresponding OLS results in Exercise 10.22(b)?
d. Calculate the IV/2SLS fitted values FLWAGE = β̂1 + β̂2EDUC + β̂3EXPER. What is the sample

average of the fitted values? What is the sample average of ln(WAGE), ln(WAGE)?
e. Find each of the following:

SST = ∑[
ln
(
WAGEi

)
− ln(WAGE)

]2
, SSE_IV = ∑

ê2
IV ,

SSR_IV = ∑[
FLWAGE − ln(WAGE)

]2

Compute SSR_IV + SSE_IV ,R2
IV ,1 = SSR_IV∕SST , and R2

IV ,2 = 1 − SSE_IV∕SST . How do these
values compare to those in Exercise 10.22(d)?

f. Does your IV/2SLS software report an R2 value. Is it either of the ones in (e)? Explain why the
usual concept of R2 fails to hold for IV/2SLS estimation.

10.24 Consider the data file mroz on working wives. Use the 428 observations on married women who par-
ticipate in the labor force. In this exercise, we examine the effectiveness of alternative standard errors
for the IV estimator. Estimate the model in Example 10.5 using IV/2SLS using both MOTHEREDUC
and FATHEREDUC as IV. These will serve as our baseline results.
a. Calculate the IV/2SLS residuals, êIV . Plot them versus EXPER. Do the residuals exhibit a pattern

consistent with homoskedasticity?
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b. Regress ê2
IV against a constant and EXPER. Apply the NR2 test from Chapter 8 to test for the

presence of heteroskedasticity.
c. Obtain the IV/2SLS estimates with the software option for Heteroskedasticity Robust Standard

Errors. Are the robust standard errors larger or smaller than those for the baseline model? Compute
the 95% interval estimate for the coefficient of EDUC using the robust standard error.

d. Obtain the IV/2SLS estimates with the software option for Bootstrap standard errors, using
B = 200 bootstrap replications. Are the bootstrap standard errors larger or smaller than those for
the baseline model? How do they compare to the heteroskedasticity robust standard errors in (c)?
Compute the 95% interval estimate for the coefficient of EDUC using the bootstrap standard
error.

10.25 To examine the quantity theory of money, Brumm (2005) [“Money Growth, Output Growth,
and Inflation: A Reexamination of the Modern Quantity Theory’s Linchpin Prediction,” Southern
Economic Journal, 71(3), 661–667] specifies the equation

INFLATION = β1 + β2MONEY GROWTH + β3OUTPUT GROWTH + e

where INFLATION is the growth rate of the general price level, MONEY GROWTH is the growth
rate of the money supply, and OUTPUT GROWTH is the growth rate of national output. According
to theory we should observe that β1 = 0, β2 = 1, and β3 = −1. Use the data file brumm. It consists of
1995 data on 76 countries. We wish to test

i. the strong joint hypothesis that β1 = 0, β2 = 1, and β3 = −1.
ii. the weak joint hypothesis β2 = 1 and β3 = −1

a. It is argued that OUTPUT GROWTH may be endogenous. Four instrumental variables are pro-
posed, INITIAL = initial level of real GDP, SCHOOL = a measure of the population’s educational
attainment, INV = average investment share of GDP, and POPRATE = average population growth
rate. Using these instruments, obtain instrumental variables (2SLS) estimates of the inflation
equation.

b. Test the strong and weak hypotheses using the IV estimates.
c. Compute the IV/2SLS residuals, êIV . Identify the observation with the largest absolute residual,

|êIV |. How does it compare to the next smallest residual?
d. Let us examine the effect of the observation with the largest residual. Drop the corresponding

observation from the data, reestimate the model using IV/2SLS, and carry out the tests of the
strong and weak hypotheses. How much do things change, if any?

e. Obtain the IV/2SLS residuals from part (d), ẽIV . Regress ẽ2
IV on MONEY . Calculate the het-

eroskedasticity test statistic NR2. Compare it to the 95th percentile of the χ2
(1) distribution. Is there

evidence of heteroskedasticity?
f. Using the 75 remaining observations from (d) obtain the IV/2SLS estimates with heteroskedas-

ticity robust standard errors. Carry out the tests of the strong and weak hypotheses. How to the
test results compare to those in (d)?

g. Using the remaining 75 observations from (d), estimate the first-stage equation and test the joint
significance of the IV. Repeat the tests robust to heteroskedasticity. Is there evidence that the
instruments are strong?

h. Regress ẽIV against the four IV and MONEY . Are any of the coefficients significant? If the IV are
valid, do we expect any significant coefficients in this regression? Explain.

Appendix 10A Testing for Weak Instruments
The F-test for weak instruments discussed in Section 10.3.9 is not valid for models with more than
one endogenous variable on the right side of the equation.7 Using canonical correlations there
is a solution to the problem of identifying weak instruments when an equation has more than
one endogenous variable. Canonical correlations are a generalization of the usual concept of

............................................................................................................................................
7The F > 10 rule of thumb comes from D. Staiger and J.H. Stock (1997) “Instrumental Variables with Weak
Instruments,” Econometrica 65, pp. 557−586.
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a correlation between two variables and attempt to describe the association between two sets
of variables. The association in which we are interested is the association between the pair of
endogenous variables

(
xG+1, xG+2

)
and the pair of additional, external, instrumental variables(

z1, z2
) after controlling for the effect of the other G exogenous variables x1 ≡ (

1, x2,… , xG
)
. The

effects of the G exogenous variables are “removed” by first regressing
(
xG+1, xG+2

)
and

(
z1, z2

)
on x1 and then computing the residuals

(
x̃G+1, x̃G+2

)
and

(
z̃1, z̃2

)
. This process is often called

partialing out the effect of x1.
Suppose that x∗1 = h11x̃G+1 + h21x̃G+2 is a linear combination of the “partialed out” endoge-

nous variables
(
x̃G+1, x̃G+2

)
and z∗1 = k11z̃1 + k21z̃2 is a linear combination of the “partialed out”

instrumental variables
(
z̃1, z̃2

)
. Using canonical correlation analysis, we can determine values

h11, h21, k11, and k21, resulting in the largest correlation between x∗1 and z∗1.8 It is called the first
canonical correlation, r1. Similarly, we can determine values h12, h22, k12, and k22, resulting in
the second largest correlation between x∗2 = h12x̃G+1 + h22x̃G+2 and z∗2 = k12z̃1 + k22z̃2, which is
called the second canonical correlation, r2—and so on.

If we have two variables in the first set of variables and two variables in the second set,
then there are two canonical correlations, r1 and r2. If we have B variables in the first group (the
endogenous variables with the effects of x1 removed) and L ≥ B variables in the second group
(the group of instruments with the effects of x1 removed), then there are B possible canonical
correlations, r1 ≥ r2 ≥ · · · ≥ rB. If the smallest canonical correlation rB = 0, then we do not have
enough relationships between the instruments and the endogenous variables, and the equation
is not identified.

10A.1 A Test for Weak Identification
Using the smallest canonical correlation, we are able to test whether any relationship between
the instruments and the endogenous variables is sufficiently strong for reliable econometric infer-
ences.9 Let N denote the sample size, B the number of right-hand side endogenous variables, G the
number of exogenous variables included in the equation (including the intercept), L the number of
“external” instruments that are not included in the model, and rB the minimum canonical corre-
lation. A test for weak identification, the situation that arises when the instruments are correlated
with the endogenous regressors but only weakly, is based on the Cragg–Donald F-test statistic10

Cragg–Donald F =
[
(N − L)∕L

]
×
[
r2

B
/(

1 − r2
B
)]

(10A.1)

The Cragg–Donald statistic reduces to the usual weak instruments F-test when the number of
endogenous variables is B = 1. Critical values for this test statistic have been tabulated by James
Stock and Motohiro Yogo (2005),11 so that we can test the null hypothesis that the instruments

............................................................................................................................................
8Certain normalizations on h and k constants are necessary to make the solutions unique. The algebra and calculations
are beyond the scope of this book. An online search will reveal many sources but virtually all use matrix algebra and
multidimensional calculus. Harold Hotelling did research in mathematical statistics and economic theory and introduced
the concept of canonical correlation in a 1935 publication.“The most predictable criterion,” in the Journal of
Educational Psychology.
9The tests based on canonical correlations are neatly summarized in “Enhanced Routines for Instrumental Variables/
Generalized Method of Moments Estimation and Testing,” by Christopher F. Baum, Mark E. Schaffer, and Steven
Stillman, The Stata Journal (2007), 7, pp. 465–506. Further discussion is provided by Alastair R. Hall, Glenn D.
Rudebusch and David W. Wilcox (1996) “Judging Instrument Relevance in Instrumental Variables Estimation,”
International Economic Review, 37(2), pp. 283–298.
10Cragg, J. G. and S. G. Donald (1993) “Testing Identifiability and Specification in Instrumental Variable Models,”
Econometric Theory, 9, 222–240. D. Poskitt and C. Skeels (2009), “Assessing the Magnitude of the Concentration
Parameter in a Simultaneous Equations Model.” The Econometrics Journal, 12, pp. 26–44, showed that the
Cragg–Donald statistic could be conveniently written in terms of the smallest canonical correlation.
11“Testing for Weak Instruments in Linear IV Regression,” in Identification and Inference for Econometric Models:
Essays in Honor of Thomas Rothenberg, eds, Donald W. K. Andrews and James H. Stock. Cambridge University Press,
Chapter 5.
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are weak against the alternative that they are not, for two particular consequences of weak
instruments.

• Relative Bias: In the presence of weak instruments, the amount of bias in the IV estimator
can become large. Stock and Yogo consider the bias when estimating the coefficients of the
endogenous variables. They examine the maximum IV estimator bias relative to the bias of
the least squares estimator. Stock and Yogo give the illustration of estimating the return to
education. If a researcher believes that the least squares estimator suffers a maximum bias of
10%, and if the relative bias is 0.1, then the maximum bias of the IV estimator is 1%.

• Rejection Rate (Test Size): When estimating a model with endogenous regressors, testing
hypotheses about the coefficients of the endogenous variables is frequently of interest. If we
choose the α = 0.05 level of significance, we expect that a true null hypothesis is rejected
5% of the time in repeated samples. If instruments are weak, then the actual rejection
rate of the null hypothesis, also known as the test size, may be larger. Stock and Yogo’s
second criterion is the maximum rejection rate of a true null hypothesis if we choose
α = 0.05. For example, we may be willing to accept a maximum rejection rate of 10%
for a test at the 5% level, but we may not be willing to accept a rejection rate of 20% for
a 5% level test.

To test the null hypothesis that instruments are weak against the alternative that they are not,
we compare the Cragg–Donald F-test statistic to a critical value chosen from Table 10A.1 or
Table 10A.2.

T A B L E 10A.1
Critical Values for the Weak Instrument Test Based on IV Test Size
(5% level of significance)12

B = 1 Maximum Test Size B = 2 Maximum Test Size
L 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
1 16.38 8.96 6.66 5.53
2 19.93 11.59 8.75 7.25 7.03 4.58 3.95 3.63
3 22.30 12.83 9.54 7.80 13.43 8.18 6.40 5.45
4 24.58 13.96 10.26 8.31 16.87 9.93 7.54 6.28

T A B L E 10A.2
Critical Values for the Weak Instrument Test Based on IV Relative Bias
(5% level of significance)13

B = 1 Maximum Relative Bias B = 2 Maximum Relative Bias
L 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30
3 13.91 9.08 6.46 5.39
4 16.85 10.27 6.71 5.34 11.04 7.56 5.57 4.73

............................................................................................................................................
12These values are from Table 5.2, page 101, in Stock and Yogo (2005), op cit. The authors thank James Stock
and Motohiro Yogo for permission to use these results. (Their tables are more extensive than the ones we provide.)
13These values are from Table 5.1, page 100, in James H. Stock and Motohiro Yogo (2005), op cit. In their paper Stock
and Yogo explain that the F > 10 rule introduced by Staiger and Stock (1997), op cit., is for B = 1 approximately the
critical value for a maximum relative bias of 0.10 for all values of L. Their critical values can be considered refinements
of the Staiger–Stock rule of thumb.
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1. First choose either the maximum relative bias or maximum test size criterion. You must
also choose the maximum relative bias or maximum test size you are willing to accept.

2a. If you choose the maximum test size criterion, select from Table 10A.1 the critical value
associated with a maximum test size of 0.10, 0.15, 0.20, or 0.25 for B = 1 or B = 2 endoge-
nous variables using L = 1 to L = 4 instrumental variables.

2b. If you choose the maximum relative bias criterion, select from Table 10A.2 the critical
value associated with a maximum relative bias of 0.05, 0.10, 0.20, or 0.30 for B = 1 or
B = 2 endogenous variables using L = 3 or L = 4 instrumental variables. There are no
critical values using this criterion if L < 3.

3. Reject the null hypothesis that the instruments are weak if the Cragg–Donald F-test statistic
is larger than the tabled critical value. If the F-test statistic is not larger than the critical
value, then do not reject the null hypothesis that the instruments are weak.

E X A M P L E 10.8 Testing for Weak Instruments

In Section 10.2.4 we introduced an example of a wage
equation for married working women using Thomas Mroz’s
data. Consider the following HOURS supply equation
specification:

HOURS = β1 + β2MTR + β3EDUC + β4KIDSL6
+ β5NWIFEINC + e (10A.4)

The variable NWIFEINC = (FAMINC −WAGE × HOURS)∕
1000 is household income attributable to sources other than
the wife’s income. The variable MTR is the marginal tax
rate facing the wife, including Social Security taxes. In
this equation we expect the signs of coefficients on MTR,
KIDSL6 , and NWIFEINC to be negative, and the coefficient
on EDUC is of uncertain sign. In this example, we treat the
marginal tax rate as endogenous.14 Initially we treat EDUC
as exogenous and use the wife’s previous years of work
experience, EXPER, as an instrumental variable for MTR.

Weak IV Example 1: Endogenous: MTR;
Instrument: EXPER

Suppose that we choose the maximum test size criterion and
are willing to accept a maximum test size of 0.15 for a 5%
test. In Table 10A.1, we see that for B = 1 (one right-hand
side endogenous variable) and L = 1 (one instrument) that
the Stock-Yogo critical value is 8.96. The estimated first-stage
equation for MTR is Model (1) of Table 10A.3. The F-statistic
for the hypothesis that the coefficient of experience is zero
is 30.61. The Cragg–Donald F-statistic is also 30.61 in this
case. Since the Cragg–Donald F-test statistic is larger than
the Stock-Yogo critical value 8.96, we reject the null hypoth-
esis that the instruments are weak and accept the alterna-
tive that they are not weak. This conclusion is conditional
upon the test criterion we have chosen and the maximum size

selected. The relative bias criterion cannot be used in this case
because it requires at least three instruments. The estimated
coefficient of MTR in the estimated HOURS supply equation
in Model (1) of Table 10A.4 is negative and significant at the
5% level.

Weak IV Example 2: Endogenous: MTR;
Instruments: EXPER, EXPER2, LARGECITY

For the sake of illustration, consider using the L = 3
instruments EXPER, EXPER2, and the indicator variable
LARGECITY , which = 1 if the city is large. Suppose
we choose the maximum relative bias criterion and are
willing to tolerate a maximum relative bias of 0.10. From
Table 10A.2 the Stock–Yogo critical value is 9.08. If the
Cragg–Donald F-test statistic is greater than this value, we
reject the null hypothesis that the instruments are weak. The
first-stage equation estimates are reported in Model (2) of
Table 10A.3. The Cragg–Donald F-statistic is 13.22. We
conclude that using this test the instruments are not weak.
If, however, we are only willing to accept a 0.05 relative
bias, then the Stock–Yogo critical value is 13.91. Since the
Cragg–Donald F-statistic is less than this value, we cannot
reject the null hypothesis that the instruments are weak.
The estimated coefficient of MTR in the estimated HOURS
supply equation in Model (2) of Table 10A.4 is negative
and significant at the 5% level, although the magnitudes
of all the coefficients are smaller in absolute value for this
estimation than for the model in Model (1). Qualitatively
the estimates of Model (1) and Model (2), using L = 1
instrument and L = 3 instruments are much the same, with
likely thanks to the strong instrument EXPER. This example
illustrates the point that having more instrumental variables
is not necessarily beneficial from the standpoint of weak
instrument diagnostics.

............................................................................................................................................
14This idea is explored by Mroz (1987, p. 786).
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T A B L E 10A.3 First-stage Equations

MODEL
Dependent/ (1) (2) (3) (4) (5) (6)
independent MTR MTR MTR EDUC MTR EDUC
C 0.87930 0.88470 0.79907 8.71459 0.82960 8.17622

(74.33) (71.93) (103.22) (25.83) (93.34) (20.34)
EXPER −0.00142 −0.00217 −0.00168 0.02957

(−5.53) (−2.65) (−6.23) (2.43)
EDUC −0.00718 −0.00689

(−7.76) (−7.45)
KIDSL6 0.02037 0.02039 0.02189 0.61812 0.01559 0.72921

(3.86) (3.89) (3.92) (2.54) (2.87) (2.96)
NWIFEINC −0.00551 −0.00539 −0.00565 0.04961 −0.00585 0.05304

(−27.40) (−26.35) (−27.15) (5.46) (−28.96) (5.81)
EXPER2 0.00002

(1.01)
LARGECITY −0.01163

(−2.70)
MOTHEREDUC −0.00111 0.15202 −0.00134 0.15601

(−1.40) (4.40) (−1.76) (4.54)
FATHEREDUC −0.00180 0.16371 −0.00202 0.16754

(−2.40) (5.01) (−2.81) (5.15)
N 428 428 428 428 428 428
Weak IV F 30.61 13.22 8.14 49.02 18.86 35.03
Number IV L 1 3 2 2 3 3
Number Endog B 1 1 2 2 2 2

t-statistics in parentheses.

T A B L E 10A.4 IV Estimation of Hours Equation

MODEL (1) (2) (3) (4)
C 17423.7211 14394.1144 −24491.5995 18067.8425

(5.56) (5.68) (−0.31) (5.11)
MTR −18456.5896 −14934.3696 29709.4677 −18633.9223

(−5.08) (−5.09) (0.33) (−4.85)
EDUC −145.2928 −118.8846 258.5590 −189.8611

(−4.40) (−4.28) (0.32) (−3.04)
KIDSL6 151.0229 58.7879 −1144.4779 190.2755

(1.07) (0.48) (−0.46) (1.20)
NWIFEINC −103.8983 −85.1934 149.2325 −102.1516

(−5.27) (−5.32) (0.31) (−5.11)
N 428 428 428 428
CRAGG–DONALD F 30.61 13.22 0.10 8.60

t-statistics in parentheses.
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Weak IV Example 3 Endogenous: MTR, EDUC;
Instruments: MOTHEREDUC, FATHEREDUC

Now treat both marginal tax rate MTR and education EDUC
as endogenous, so that B = 2. Following Section 10.3.6 we
use mother’s and father’s education, MOTHEREDUC and
FATHEREDUC, as instruments, so that L = 2. Suppose that
we are willing to accept a maximum test size of 15% for a
5% test. From Table 10A.1 the critical value for the weak
instrument test is 4.58. The first-stage equations for MTR
and EDUC are Model (3) and Model (4) of Table 10A.3.
These instruments are strong for EDUC as we have earlier
seen, with the first-stage weak instrument F-test statistic
49.02. For MTR [Model (3)] these two instruments are less
strong. FATHEREDUC is significant at the 5% level, and the
first-stage weak instrument F-test statistic is 8.14, which has
a p-value of 0.0003. While this does not satisfy the F ≥ 10
rule of thumb, it is “close,” and we may have concluded
that these two instruments were adequately strong. The
Cragg–Donald F-test statistic value is only 0.101, which
is far below the critical value 4.58 for 15% maximum test
size (for a 5% test on MTR and EDUC). We cannot reject
the null hypothesis that the instruments are weak, despite
the favorable first-stage F-test values. The estimates of the
HOURS supply equation, Model (3) of Table 10A.3, shows
parameter estimates that are wildly different from those

in Model (1) and Model (2), and the very small t-statistic
values imply very large standard errors, another consequence
of instrumental variables estimation in the presence of weak
instruments.

Weak IV Example 4 Endogenous: MTR, EDUC;
Instruments: MOTHEREDUC, FATHEREDUC, EXPER

If we include the additional instrument EXPER, so that
L = 3, we obtain the first-stage estimates in Model (5) and
Model (6) of Table 10A.3. Once again the first-stage weak
instrument F-test statistic values appear strong, with values
for MTR of 18.86 and for EDUC of 35.03. Using the F > 10
rule of thumb, we would be comfortable that our instruments
are strong. The Cragg–Donald F-test statistic value is 8.60,
which tells a slightly different story. Our instruments are
not quite as strong as the first-stage weak instrument F-test
statistics imply. If we choose a maximum test size of 0.15,
we can reject the null hypothesis of weak instruments. If,
however, we are prepared to accept only a maximum 10%
rejection rate for a 5% test, the critical value is 13.43, and
we do not reject the null hypothesis that the instruments are
weak. The instrumental variables estimates of the HOURS
supply equation are Model (4) of Table 10A.4 and we see
that they are more in line with Model (1) and Model (2) than
those in Model (3).

10A.2 Testing for Weak Identification: Conclusions
If instrumental variables are “weak,” then the instrumental variables, or two-stage least squares,
estimator is unreliable. When there is a single endogenous variable, the first-stage F-test of the
joint significance of the external instruments is an indicator of instrument strength. The F > 10
rule of thumb has been refined by Stock and Yogo, who provide tables of critical values for the
null hypothesis “the instruments are weak” using two criteria: the bias of the IV estimator relative
to the bias of the least squares estimator, and the maximum size of a 5% test of the coefficients
of the endogenous variables. If there is more than one endogenous variable on the right-hand
side of an equation, then the F-test statistics from the first-stage equations do not provide reliable
information about instrument strength. In this case the Cragg–Donald F-test statistic should be
used to test for weak instruments, along with the Stock-Yogo tables of critical values.

Econometric research continues for alternatives to the IV/2SLS estimator in the weak instru-
ment case. Some progress has been made; these results are summarized in Appendix 11B. The
discussion is deferred until the next chapter, as the advances have their genesis in discussions of
estimation of simultaneous equations models.

Appendix 10B Monte Carlo Simulation
In this appendix we do two sorts of simulations. First, we generate a sample of artificial data and
give numerical illustrations of the estimators and tests discussed in the chapter. In the chapter the
illustrations used real data. The advantage gained here is that we can see how the estimators and
tests perform using data we know comes from a particular data generation process. Secondly, we
carry out a Monte Carlo simulation to illustrate the repeated sampling properties of the least
squares and IV/2SLS estimators under various conditions.
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10B.1 Illustrations Using Simulated Data
In this section, we demonstrate, using a simulated sample of data, that the OLS estimator fails
when cov

(
xi, ei

) ≠ 0, and that instrumental variables estimators “work” when conditions listed
in Section 10.3.3 are satisfied. For the simulated data, we specify a simple regression model in
which the parameter values are β1 = 1 and β2 = 1. Thus, the systematic part of the regression
model is E(y|x) = β1 + β2x = 1 + 1 × x. By adding to E(y|x) an error term value, which will be a
random number we create, we can create a sample value of y.

We want to explore the properties of the OLS estimator when x and e are correlated. Using
random number generators, we create N = 100 pairs of x and e values, such that each has a normal
distribution with mean zero and variance one. The population correlation between the x and e
values is ρxe. We then create an artificial sample of y values by adding e to the systematic portion
of the regression,

y = E(y|x) + e = β1 + β2x + e = 1 + 1 × x + e

The data values are contained in the data file ch10 . The OLS estimates are

ŷOLS = 0.9789 + 1.7034x
(se) (0.088) (0.090)

When x and e are positively correlated, the estimated slope tends to be too large—here,
b2 = 1.7034 compared to the true β2 = 1. Furthermore, the systematic overestimation of the
slope will not go away in larger samples, so the least squares estimators are not correct on average
even in large samples. The least squares estimators are inconsistent.

In the process of creating the artificial data (data file ch10 ) we also created two instrumental
variables, both uncorrelated with the error term. The correlation between the first instrument
z1 and x is ρxz1

= 0.5, and the correlation between the second instrument z2 and x is ρxz2
= 0.3.

The IV estimates using z1 are

ŷIV_z1
= 1.1011 + 1.1924x

(se) (0.109) (0.195)

and the IV estimates using z2 are

ŷIV_z2
= 1.3451 + 0.1724x

(se) (0.256) (0.797)

Using z1, the stronger instrument, yields an estimate of the slope of 1.1924 with a standard error
of 0.195, about twice the standard error of the OLS estimate. Using the weaker instrument z2
produces a slope estimate of 0.1724, which is far from the true value, and a standard error of
0.797, about eight times as large as the least squares standard error. The results with the weaker
instrument are far less satisfactory than the estimates based on the stronger instrument z1.

Another problem that an instrument can have is that it is not uncorrelated with the error
term as it is supposed to be. The variable z3 is correlated with x, with correlation ρxz3

= 0.5, but
it is correlated with the error term e, with correlation ρez3

= 0.3. Thus, z3 is not a valid instru-
ment. What happens if we use instrumental variables estimation with the invalid instrument?
The results are

ŷIV−z3
= 0.9640 + 1.7657x

(se) (0.095) (0.172)

As you can see, using the invalid instrument produces a slope estimate even further from the
true value than the least squares estimate. Using an invalid instrumental variable means that the
instrumental variables estimator will be inconsistent, just like the least squares estimator.
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What is the outcome of two-stage least squares estimation using the two instruments z1 and
z2? Obtain the first-stage regression of x on the two instruments z1 and z2,

x̂ = 0.1947 + 0.5700z1 + 0.2068z2
(se) (0.095) (0.089) (0.077) (10B.1)

Using the predicted value x̂ to replace x, then applying least squares to the modified equation, as
in (10.22), we obtain the instrumental variables estimates

ŷIV_z1,z2
= 1.1376 + 1.0399x

(se) (0.116) (0.194) (10B.2)

The standard errors are based on an estimated error variance as in (10.18b). Using the two valid
instruments yields an estimate of the slope of 1.0399, which, in this example, is close to the true
value of β2 = 1.

10B.1.1 The Hausman Test
To implement the Hausman test we estimate the first-stage equation, which is shown in (10A.1)
using the instruments z1 and z2. Compute the residuals

v̂ = x − x̂ = x − 0.1947 − 0.5700z1 − 0.2068z2

Include the residuals as an extra variable in the regression equation and apply least squares,

ŷ = 1.1376 + 1.0399x + 0.9957v̂
(se) (0.080) (0.133) (0.163)

The t-statistic for the null hypothesis that the coefficient of v̂ is zero is 6.11. The critical value
comes from the t-distribution with 97 degrees of freedom and is 1.985, so we reject the null
hypothesis that x is uncorrelated with the error term and correctly conclude that it is endogenous.

10B.1.2 Test for Weak Instruments
The test for weak instruments again begins with estimation of the first-stage regression. If we
consider using just z1 as an instrument, the estimated first-stage equation is

x̂ = 0.2196 + 0.5711z1
(t) (6.24)

The t-statistic 6.24 corresponds to an F-value of 38.92, which is well above the guideline value
of 10. If we use just z2 as an instrument, the estimated first-stage equation is

x̂ = 0.2140 + 0.2090z2
(t) (2.28)

While the t-statistic 2.28 indicates statistical significance at the 0.05 level, the corresponding
F-value is 5.21 < 10, indicating that z2 is a weak instrument. The first-stage equation using both
instruments is shown in (10B.1), and the F-test for their joint significance is 24.28, indicating that
we have at least one strong instrument.



❦

❦ ❦

❦

528 CHAPTER 10 Endogenous Regressors and Moment-Based Estimation

10B.1.3 Testing the Validity of Surplus Instruments
If we use z1 and z2 as instruments, there is one extra. The number of instruments is L = 2, and
the number of endogenous regressors is B = 1. The IV estimates are shown in (10B.2). Cal-
culate the residuals from this equation and then regress them on intercept, z1 and z2, to obtain
ê = 0.0189 + 0.0881z1 − 0.1818z2. The R2 from this regression is 0.03628, and NR2 = 3.628.
The 0.05 critical value for the chi-square distribution with one degree of freedom is 3.84, so we
fail to reject the validity of the surplus moment condition.

If we use z1, z2, and z3 as instruments, there are two surplus moment conditions. The IV
estimates using these three instruments are ŷIV_z1,z2,z3

= 1.0626 + 1.3535x. Obtaining the residuals
and regressing them on the instruments yields

ê = 0.0207 − 0.1033z1 − 0.2355z2 + 0.1798z3

The R2 from this regression is 0.1311, and NR2 = 13.11. The 0.05 critical value for the chi-square
distribution with two degrees of freedom is 5.99, so we reject the validity of the two surplus
moment conditions. This test does not identify the problem instrument, but since we first tested
the validity of z1 and z2 and failed to reject their validity, and then found that adding z3 led us to
reject the validity of the surplus moment conditions, the instrument z3 seems to be the culprit.

10B.2 The Sampling Properties of IV/2SLS
To illustrate the repeated sampling properties of the OLS and IV/2SLS estimators, we use an
experimental design based on the discussion in Section 10.4.2. In the simple regression model
yi = β1 + β2xi + ei, if xi is correlated with the error term ei then xi is endogenous, and the least
squares estimator is biased and inconsistent. An instrumental variable zi must be correlated with
xi but uncorrelated with ei in order to be valid. A correlation between zi and xi implies that there
is a linear association between them. This means that we can describe their relationship as a
regression xi = γ1 + θ1zi + vi. There is a correlation between xi and zi if, and only if, θ1 ≠ 0. If
we knew γ1 and θ1, we could substitute E

(
xi|zi

)
= γ1 + θ1zi into the simple regression model to

obtain yi = β1 + β2E
(
xi|zi

)
+ β2vi + ei. Suppose for a moment that E

(
xi|zi

)
and vi can be observed

and are viewed as explanatory variables in the regression yi = β1 + β2E
(
xi|zi

)
+ β2vi + ei. The

explanatory variable E
(
xi|zi

)
is not correlated with the error term ei because it depends only on zi.

Any correlation between xi and ei implies correlation between vi and ei because vi = xi − E
(
xi|zi

)
.

In the simulation,15 we use the data generation process yi = xi + ei, so that the intercept
parameter is 0 and the slope parameter is 1. The first-stage regression is xi = θzi1 + θzi2 + θzi3
+ vi. Note that we have L = 3 instruments, each of which has an independent standard normal
N(0,1) distribution. The parameter θ controls the instrument strength. If θ = 0, the instruments
are not correlated with xi and instrumental variables estimation will fail. The larger θ becomes the
stronger the instruments become. Finally, we create the random errors ei and vi to have standard
normal distributions with correlation ρ, which controls the endogeneity of x. If ρ = 0, then x is
not endogenous. The larger ρ becomes the stronger the endogeneity. We create 10,000 samples of
size N = 100 and then try out OLS and IV/2SLS under several scenarios. We let θ = 0.1 (weak
instruments) and θ = 0.5 (strong instruments). We let ρ = 0 (x exogenous) and ρ = 0.8 (x highly
endogenous).

In Table 10B.1, the reported values are

• F is the average first-stage F: compare these values to 10. Note that the average value of F is
about 2 when θ = 0.1 indicating weak instruments. The average value of F is about 21 when
θ = 0.5 indicating strong instruments.

............................................................................................................................................
15This design is similar to that used by Jinyong Hahn and Jerry Hausman (2003) “Weak Instruments: Diagnosis and
Cures in Empirical Economics,” American Economic Review, 93(2), pp. 118–125.
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T A B L E 10B.1 Monte Carlo Simulation Results

" # F b2 s.d. (b2
)

t
(
b2
) t (H) $̂2 s.d.

(
$̂2
)

t
(
$̂2
)

0.0 0.1 1.98 1.0000 0.1000 0.0499 0.0510 0.9941 0.6378 0.0049
0.0 0.5 21.17 0.9999 0.0765 0.0484 0.0518 0.9998 0.1184 0.0441
0.8 0.1 2.00 1.7762 0.0610 1.0000 0.3077 1.3311 0.9483 0.2886
0.8 0.5 21.18 1.4568 0.0610 1.0000 0.9989 1.0111 0.1174 0.0636

• b2 is the average of the OLS estimates of β2 = 1. The least squares estimator is unbiased
when ρ = 0, but when ρ = 0.8, the least squares estimator shows severe bias.

• s.d.(b2) is the sample standard deviation of the 10,000 Monte Carlo values of b2. It tells us
how much variation the OLS estimates exhibit in repeated sampling.

• t
(
b2
)

is the percentage of rejections of the true null hypothesis β2 = 1 using the 0.05 level
of significance t-test based on the OLS estimator. If there is no endogeneity, the percent
rejections is very close to the 0.05 value, but if there is strong endogeneity, the OLS estimator
rejects the true null hypothesis 100% of the time. That is not good.

• t(H) is the percentage rejections of the regression-based Hausman test for endogeneity using
the 0.05 level of significance. If there is no endogeneity, the test rejects 5% of the time,
which is what we expect. If there is strong endogeneity but weak instruments, θ = 0.1, the
test rejects only 31% of the time, failing to indicate the endogeneity problem. If instruments
are not strong, nothing is going to work well. If the instruments are strong, then the test for
endogeneity is very successful in detecting strong endogeneity.

• β̂2 is the average of the instrumental variables estimates of β2 = 1. The IV estimator is unbi-
ased when ρ = 0. When endogeneity is strong, with weak instruments the IV estimator has
a 33% bias, but when instruments are strong it has an average very close to the true value.

• s.d.
(
β̂2
)

is the sample standard deviation of the IV estimates in the 10,000 Monte Carlo
samples. If there is no endogeneity, note how large its standard deviation is relative to the
least squares estimator. With weak instruments its standard deviation is six times that of
the least squares estimator. Even with strong instruments, it is substantially larger. The IV
estimator is inefficient relative to the least squares estimator when endogeneity is absent.
When endogeneity is present, the effect of weak instruments shows up in the large standard
deviation of the estimates. When instruments are stronger, the standard deviation of the IV
estimates falls from 0.95 to 0.12, a substantial improvement.

• Finally, we see the rate of rejections of the true null hypothesis β2 = 1 under the scenarios.
When x is endogenous and the instruments are weak, the t-test rejects far too often, but it
is better than the t-test based on the least squares estimator. Otherwise, the rejection rate is
close to the 5% that we expect.

These results are based on a sample size of N = 100, which is neither large nor small. What results
do you anticipate with larger or smaller samples?

Advice about what to do when there is uncertainty as to whether a regressor is endogenous
or not is somewhat mixed. In Table 10.2, the Hausman test statistic p-value is 0.0954. The pre-
vailing attitude is probably summarized by Jeffrey Wooldridge,16 who says, “We find evidence
of endogeneity of EDUC at the 10% significance level against a two-sided alternative, and so
2SLS is probably a good idea (assuming that we trust the instruments.)” On the other hand, Patrik

............................................................................................................................................
16Econometric Analysis of Cross Section and Panel Data, 2nd Edition, The MIT Press, 2010, p. 132.
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Guggenberger17 advises, that if testing the coefficient of the endogenous regressor is the objective,
then we should avoid considering the Hausman test result and use 2SLS. On the other hand, if
we consider how close the estimates are to the true value on average, the “mean square error,”
Chmelarova and Hill18 advise that perhaps IV/2SLS should be used only if a Hausman pretest
has a much smaller p-value. This result is revealed somewhat in the Monte Carlo simulation.
In the case in which ρ = 0.8 and θ = 0.1, the mean square error for the least squares estimator is

∑10000
m=1

(
b2m − β2

)2/10000 = 0.6062

while for the IV estimator it is
∑1000

m=1

(
β̂2m − β2

)2/
10000 = 1.0088

In other words, in this experimental setting with strong endogeneity and weak instruments, the
least squares estimator is, on average, closer to the true parameter value than the IV estimator.

............................................................................................................................................
17“The Impact of a Hausman Pretest on the Asymptotic Size of a Hypothesis Test,” Econometric Theory, 2010, 26(2),
pp. 369–382.
18“The Hausman Pretest Estimator,” Economics Letters, 2010, 108, 96−99.
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