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CHAPTER 9

Regression with
Time-Series Data:
Stationary Variables

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain why lags are important in models that
use time-series data, and the ways in which lags
can be included in dynamic econometric models.

2. Explain what is meant by a serially correlated
time series and how we measure serial
correlation.

3. Compute the autocorrelations for a time series,
graph the corresponding correlogram, and use it
to test for serial correlation.

4. Explain the nature of regressions that involve
lagged variables and the number of
observations that are available.

5. Use autoregressive (AR) and autoregressive
distributed lag (ARDL) models to compute
forecasts, standard errors of forecasts, and
forecast intervals.

6. Explain the assumptions required for AR and
ARDL forecasting.

7. Specify and estimate ARDL models. Use serial
correlation checks, significance of coefficients,
and model selection criteria to choose lag
lengths.

8. Test for Granger causality.

9. Use a correlogram of residuals to test for serially
correlated errors.

10. Use a Lagrange multiplier test for serially
correlated errors.

11. Explain the differences between time-series
models for forecasting and time-series models
for policy analysis.

12. Estimate and interpret the estimates from finite
and infinite distributed lag models.

13. Compute HAC standard errors for least squares
estimates. Explain why they are used.

14. Compute nonlinear least squares and
generalized least squares estimates for a model
with an AR(1) error.

15. Contrast the exogeneity assumption required
for HAC standard errors with that required
for estimating an AR(1) error model.

16. Compute delay, interim, and total
multipliers for finite and infinite distributed
lag models.
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17. Test for consistency of least squares in the ARDL
representation of an infinite distributed lag
model.

18. Contrast the assumptions for a finite distributed
lag model with those for an infinite distributed
lag model.

K E Y W O R D S
AR(1) error
ARDL(p, q) model
autocorrelation
autoregressive distributed lags
autoregressive error
autoregressive model
correlogram
delay multiplier
distributed lag weight
dynamic models
exogeneity
finite distributed lag

forecast error
forecast intervals
forecasting
generalized least squares
geometrically declining lag
Granger causality
HAC standard errors
impact multiplier
infinite distributed lag
interim multiplier
lag length
lag operator

lagged dependent variable
LM test
moving average
multiplier analysis
nonlinear least squares
sample autocorrelations
serial correlation
standard error of forecast error
stationarity
total multiplier
T × R2 form of LM test
weak dependence

9.1 Introduction
When modeling relationships between variables, the nature of the data that have been collected
has an important bearing on the appropriate choice of an econometric model. In particular, it
is important to distinguish between cross-sectional data (data on a number of economic units at
a particular point in time) and time-series data (data collected over time on one particular eco-
nomic unit). Examples of both types of data were given in Section 1.5. When we say “economic
units,” we could be referring to individuals, households, firms, geographical regions, countries,
or some other entity on which data is collected. Because cross-sectional observations on a num-
ber of economic units at a given time are often generated by way of a random sample, they are
typically uncorrelated. The level of income observed in the Smiths’ household, for example, does
not affect, nor is it affected by, the level of income in the Jones’s household. On the other hand,
time-series observations on a given economic unit, observed over a number of time periods, are
likely to be correlated. The level of income observed in the Smiths’ household in one year is
likely to be related to the level of income in the Smiths’ household in the year before. Thus,
one feature that distinguishes time-series data from cross-sectional data is the likely correlation
between different observations. Our challenges for this chapter include testing for and modeling
such correlation.

A second distinguishing feature of time-series data is its natural ordering according to time.
With cross-sectional data, there is no particular ordering of the observations that is better or more
natural than another. One could shuffle the observations and then proceed with estimation without
losing any information. If one shuffles time-series observations, there is a danger of confounding
what is their most important distinguishing feature: the possible existence of dynamic–evolving
relationships between variables. A dynamic relationship is one in which the change in a variable
now has an impact on that same variable, or other variables, in one or more future time periods.
For example, it is common for a change in the level of an explanatory variable to have behavioral
implications for other variables beyond the time period in which it occurred. The consequences
of economic decisions that result in changes in economic variables can last a long time. When the
income tax rate is increased, consumers have less disposable income, reducing their expenditures
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Economic action
at time t

Effect at time t Effect at time t + 1 Effect at time t + 2

FIGURE 9.1 The distributed lag effect.

on goods and services, which reduces profits of suppliers, which reduces the demand for pro-
ductive inputs, which reduces the profits of the input suppliers, and so on. The effect of the tax
increase ripples through the economy. These effects do not occur instantaneously but are spread,
or distributed, over future time periods. As shown in Figure 9.1, economic actions or decisions
taken at one point in time, t, have effects on the economy at time t and also at times t + 1, t + 2,
and so on.

E X A M P L E 9.1 Plotting the Unemployment Rate and the GDP
Growth Rate for the United States

In Figure 9.2(a) and (b), the U.S. quarterly unemployment
rate, and the U.S. quarterly growth rate for gross domestic
product, from 1948 quarter 1 (1948Q1) to 2016 quarter 1
(2016Q1) are graphed against time. These data can be found
in the data file usmacro. We wish to understand how series
such as these evolve over time, how current values of each
data series are correlated with their past values, and how one
series might be related to current and past values of another.
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FIGURE 9.2a U.S. Quarterly unemployment rate 1948Q1 to 2016Q1.

There are several types of models that can be used to cap-
ture the time paths of variables, their correlation structures,
and their relationships with the time paths of other variables.
Once a model has been selected and estimated, it may be
used for forecasting future values or for policy analysis. We
begin this chapter by describing some of the many possible
time-series models and the nature of correlations between
current and past values of a data series.
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FIGURE 9.2b U.S. GDP growth rate, 1948Q1 to 2016Q1.

9.1.1 Modeling Dynamic Relationships
Given that time-series variables are dynamic, in the sense that their current values will be cor-
related with their past values, and they are related to current and past values of other variables,
we need to ask how to model the dynamic nature of relationships. We can do so by introducing
lagged variables into the model. These lags can take the form of lagged values of an explana-
tory variable

(
xt−1, xt−2,… , xt−q

)
, lagged values of a dependent variable

(
yt−1, yt−2,… , yt−p

)
, or

lagged values of an error term
(
et−1, et−2,… , et−s

)
. In this section, we describe a number of the

time-series models that arise from introducing lags of these kinds and explore the relationships
between them.

Finite Distributed Lags Suppose that the value of a variable y depends on current and
past values of another variable x, up to q periods into the past. We can write this model as

yt = α + β0xt + β1xt−1 + β2xt−2 + · · · + βqxt−q + et (9.1)

We can think of
(
yt, xt

)
as denoting the values for y and x in the current period; xt−1 means the

value of x in the previous period; xt−2 is the value of x two periods ago, and so on. Equations like
(9.1) might say, for example, that inflation yt depends not just on the current interest rate xt but also
on the rates in the previous q time periods xt−1, xt−2,… , xt−q. Turning this interpretation around as
in Figure 9.1, it means that a change in the interest rate now will have an impact on inflation now
and in the next q future periods; it takes time for the effect of an interest rate change to fully work
its way through the economy. Because of the existence of these lagged effects, equation (9.1) is
called a distributed lag model. The coefficients βk are sometimes known as the lag weights, and
their sequence β0, β1, β2, · · · is called a lag pattern. The model is called a finite distributed lag
model because the effect of x on y cuts off after a finite number of periods q. Models of this kind
can be used for forecasting or policy analysis. In terms of forecasting, we might be interested in
using information on past interest rates to forecast future inflation. For policy analysis, a central
bank might be interested in how inflation will react now and in the future to a change in the current
interest rate.
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The notation in (9.1) differs from what we have typically used so far. It is convenient to
change the subscript notation on the coefficients: βs is used to denote the coefficient of xt−s and
α is introduced to denote the intercept. Other explanatory variables can be added if relevant, in
which case other symbols are needed to denote their coefficients.

Remark
We use many different Greek symbols for regression parameters in this Chapter. Sometimes,
it may not seem so, but our goal is clarity.

An Autoregressive Model An autoregressive model, or an autoregressive process, is
one where a variable y depends on past values of itself. The general representation with p lagged
values

(
yt−1, yt−2,… , yt−p

)
is called an autoregressive model (process) of order p, abbreviated as

AR(p), and is given by

yt = δ + θ1yt−1 + θ2yt−2 + · · · + θpyt−p + et (9.2)

For example, an AR(2) model for the unemployment rate series U in Figure 9.2(a) would be
Ut = δ + θ1Ut−1 + θ2Ut−2 + et. AR models can be used to describe the time paths of variables and
capture their correlations between current and past values; they are generally used for forecasting.
Past values are used to forecast future values.

Autoregressive Distributed Lag Models A more general model that includes both
finite distributed lag models and autoregressive models as special cases is the autoregressive
distributed lag model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ0xt + δ1xt−1 + · · · + δqxt−q + et (9.3)

This model, with p lags of y, the current value x, and q lags of x, is abbreviated as an ARDL( p , q )
model. The AR component of the name ARDL comes from the regression of y on lagged values
of itself; the DL component comes from the distributed lag effect of the lagged x’s. For example,
an ARDL(2, 1) model relating the unemployment rate U to the growth rate in the economy G
would be given by Ut = δ + θ1Ut−1 + θ2Ut−2 + δ0Gt + δ1Gt−1 + et. ARDL models can be used
for both forecasting and policy analysis. Notice that we have used “δ” with no subscript for the
intercept and “δs” (δ with a subscript) for the coefficient of xt−s. This notation is a little strange,
but it avoids introducing another Greek letter for ARDL models.

Infinite Distributed Lag Models If we take equation (9.1) and assume that the impact
of past, lagged x’s does not cut off after q periods but goes back into the infinite past, then we
have the infinite distributed lag (IDL) model

yt = α + β0xt + β1xt−1 + β2xt−2 + β3xt−3 + · · · + et (9.4)

You might question whether values of x from a long, long time ago would still have an effect
on y. You might also wonder how to decide on the cut-off point q for a finite distributed lag. One
way out of this dilemma is to assume that the coefficients βs eventually decline in magnitude with
their effect becoming negligible at long lags. There are many possible lag pattern assumptions
that could be made to achieve this outcome. To illustrate, consider the geometrically declining
lag pattern

βs = λsβ0, 0 < λ < 1, s = 0, 1, 2,… (9.5)
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FIGURE 9.3 Geometrically declining lag pattern.

A graph of this lag pattern for β0 = 1 and λ = 0.8 is displayed in Figure 9.3. Notice that, as we
go back in time (s increases), βs becomes a smaller and smaller multiple of β0.

With the assumption in (9.5), we can write

yt = α + β0xt + λβ0xt−1 + λ2β0xt−2 + λ3β0xt−3 + · · · + et (9.6)

Lagging this equation by one period gives the equation for yt−1 as

yt−1 = α + β0xt−1 + λβ0xt−2 + λ2β0xt−3 + λ3β0xt−4 + · · · + et−1

Multiply both sides of this equation by λ to get

λyt−1 = αλ + λβ0xt−1 + λ2β0xt−2 + λ3β0xt−3 + λ4β0xt−4 + · · · + λet−1 (9.7)

Subtracting (9.7) from (9.6) gives

yt − λyt−1 = α(1 − λ) + β0xt + et − λet−1 (9.8)

or
yt = δ + θyt−1 + β0xt + vt (9.9)

We have made the substitutions δ = α(1 − λ), θ = λ, and vt = et – λet−1 so that (9.9) can be rec-
ognized as an ARDL model. By making the assumption βs = λsβ0, we have been able to turn the
IDL model into an ARDL(1, 0) model. On the right-hand side of (9.9), there is one lag of y and
the current value of x. We will see later that we can also go in the other direction. More general,
ARDL(p, q) models can be turned into more flexible IDL models, providing the lagged coeffi-
cients of the IDL eventually decline and become negligible. The ARDL formulation is useful for
forecasting; the IDL provides useful information for policy analysis.

An Autoregressive Error Model Another way in which lags can enter a model is
through the error term. For example, if the error et satisfies the assumptions of an AR(1) model,
it can be written as

et = ρet−1 + vt (9.10)

with the vt being uncorrelated. This model means that the random error at time t is related to
the random error in the previous time period plus a random component. In contrast to the AR
model in (9.2), there is no intercept parameter in (9.10); it is omitted because et has a zero mean.
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The AR(1) error model could be added to any of the models considered so far. To explore one
of its implications, suppose that et = ρet−1 + vt is the error term in the model

yt = α + β0xt + et (9.11)

Substituting et = ρet−1 + vt into yt = α + β0xt + et yields
yt = α + β0xt + ρet−1 + vt (9.12)

From the regression equation (9.11), the error in the previous period, time t − 1, can be
written as

et−1 = yt−1 − α − β0xt−1 (9.13)

Multiplying (9.13) by ρ yields
ρet−1 = ρyt−1 − ρα − ρβ0xt−1 (9.14)

Substituting (9.14) into (9.12) and rearranging yields
yt = α(1 − ρ) + ρyt−1 + β0xt − ρβ0xt−1 + vt

= δ + θyt−1 + β0xt + β1xt−1 + vt
(9.15)

In the second line of (9.15), we have made the substitutions δ = α(1 − ρ), θ = ρ and β1 = −ρβ0
to show that it is possible to rewrite the AR(1) error model in (9.10) and (9.11) as an ARDL(1, 1)
model. Equation (9.15) contains y lagged once, a current value for x, and x lagged once. How-
ever, it is a special type of ARDL model because one of its coefficients is equal to the negative
product of two of the other coefficients. That is, we have the constraint, or condition, β1 = −θβ0.
Autoregressive error models with more lags than one can also be transformed to special cases
of ARDL models.

Summary and Looking Ahead We have seen how dynamic relationships between vari-
ables can be modeled by including lags in a variety of ways. The various models are summarized
in Table 9.1. There is a sense in which most of the models can be viewed as ARDL models or

T A B L E 9.1 Summary of Dynamic Models for Stationary Time Series Data

Autoregressive distributed lag model, ARDL(p, q)
yt = δ + θ1yt−1 + · · · + θpyt−p + δ0xt + δ1xt−1 + · · · + δqxt−q + et (M1)

Finite distributed lag (FDL) model
yt = α + β0xt + β1xt−1 + β2xt−2 + · · · + βqxt−q + et (M2)

Infinite distributed lag (IDL) model
yt = α + β0xt + β1xt−1 + β2xt−2 + β3xt−3 + · · · + et (M3)

Autoregressive model, AR(p)
yt = δ + θ1yt−1 + θ2yt−2 + · · · + θpyt−p + et (M4)

Infinite distributed lag model with geometrically declining lag weights
βs = λsβ0, 0 < λ < 1, yt = α(1 − λ) + λyt−1 + β0xt + et − λet−1 (M5)

Simple regression with AR(1) error
yt = α + β0xt + et, et = ρet−1 + vt, yt = α(1 − ρ) + ρyt−1 + β0xt − ρβ0xt−1 + vt (M6)
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special cases of ARDL models. However, how we interpret and proceed with each model depends
on whether the model is to be used for forecasting or policy analysis and on what assumptions
are made about the error term in each model. We will examine the various scenarios as we move
through the chapter. One pair of assumptions that we make throughout the chapter for all models
is that the variables in the models are stationary and weakly dependent. Prior to discussing these
two requirements, it is useful to introduce the concept of autocorrelation – also known as serial
correlation.

9.1.2 Autocorrelations
Recall that the concepts of covariance and correlation refer to the degree of linear association
between two random variables. If there is no linear association between the variables, then both
the covariance and the correlation are zero. When there is some degree of linear association, cor-
relation is the preferred measure because it is unit free and lies within the interval [−1, 1], whereas
the magnitude of a covariance will depend on the units of measurement of the two variables. For
two random variables, say u and v, their correlation is defined as

ρuv =
cov(u, v)√

var(u) var(v)
(9.16)

If u and v are perfectly correlated, then there exist constants c and d ≠ 0 such that u = c + dv,
with ρuv = 1 when d > 0 and ρuv = −1 when d < 0. There is an exact linear relationship. When
u and v are uncorrelated, ρuv = cov(u, v) = 0. Intermediate values of ρuv measure the degree of
linear association.

When dealing with cross-sectional data, it is frequently reasonable to assume that each pair of
observations

(
yi, xi

)
will be uncorrelated with other observations, a characteristic guaranteed by

random sampling. In other words, cov
(
yi, yj

)
= 0 and cov

(
xi, xj

)
= 0 for i ≠ j. With time-series

data, it is unlikely that these covariances will be zero. If s is close to t, it will almost certainly be
the case that cov

(
yt, ys

) ≠ 0 and cov
(
xt, xs

) ≠ 0 for t ≠ s. Glance back at Figure 9.2(a) and (b).
If unemployment is higher than average in one quarter, then, in the next quarter, it is more likely
to be higher than average again, rather than lower than average. A similar statement can be made
for the GDP growth rate. Changes in variables such as unemployment, output growth, inflation,
and interest rates are more gradual than abrupt; their values in one period will depend on what
happened in the previous period.1 This dependence means that GDP growth now, for example,
will be correlated with GDP growth in the previous period. Successive observations are likely
to be correlated. Indeed, in any ARDL model where there is a linear relationship between yt and
its lags, yt must be correlated with lagged values of itself. Correlations of this kind are called
autocorrelations. When a variable exhibits correlation over time, we say it is autocorrelated or
serially correlated. We will use these two terms interchangeably.

Let’s be more precise about the definition of an autocorrelation. Consider a time series of
observations on any variable, x1, x2,… , xT, with mean E

(
xt
)
= μX and variance var

(
xt
)
= σ2

X .
We assume that μX and σ2

X do not change over time. The correlation structure between x’s that are
observed in different time periods is described by the correlation between observations that are
one period apart, the correlation between observations that are two periods apart, and so on. If
we turn the formula in (9.16) into one that measures the correlation between xt and xt−1, we have

ρ1 =
cov

(
xt, xt−1

)
√

var
(
xt
)

var
(
xt−1

) =
cov

(
xt, xt−1

)

var
(
xt
) (9.17)

............................................................................................................................................
1Abrupt changes can occur, particularly with financial data. Models considered in Chapter 14 can accommodate abrupt
changes.
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The notation ρ1 is used to denote the population correlation between observations that are
one period apart in time, known also as the population autocorrelation of order 1. The
second equality in (9.17) holds because var

(
xt
)
= var

(
xt−1

)
= σ2

X; we assumed that the variance
does not change over time. The population autocorrelation for observations that are s periods
apart is

ρs =
cov

(
xt, xt−s

)

var
(
xt
) s = 1, 2,… (9.18)

Sample Autocorrelations Population autocorrelations specified in (9.17) and (9.18)
refer to a conceptual time series of observations that goes on forever, starting in the infinite past
and continuing into the infinite future, · · · , x−2, x−1, x0, x1, x2, · · ·. Sample autocorrelations are
obtained using a sample of observations for a finite time period, x1, x2,… , xT, to estimate the
population autocorrelations. To estimate ρ1 we use

cov
⋀(

xt, xt−1
)
= 1

T − 1
T∑

t=2

(
xt − x

)(
xt−1 − x

)
and var

⋀(
xt
) 1

T − 1
T∑

t=1

(
xt − x

)2

where x is the sample mean x = T−1∑T
t=1 xt. The index of summation in the formula for

cov
⋀(

xt, xt−1
)

starts at t = 2 because we do not observe x0. Making the substitutions, and using r1
to denote the sample autocorrelation at lag 1, we have

r1 =

T∑
t=2

(
xt − x

)(
xt−1 − x

)

T∑
t=1

(
xt − x

)2
(9.19)

More generally, the s-order sample autocorrelation for a series x, which gives the correlation
between observations that are s periods apart

(
the correlation between xt and xt−s

)
, is given by

rs =

T∑
t=s+1

(
xt − x

)(
xt−s − x

)

T∑
t=1

(
xt − x

)2
(9.20)

This formula is commonly used in the literature and in software and is the one we use to compute
autocorrelations in this text, but it is worth mentioning variations of it that are sometimes used.
Because (T − s) observations are used to compute the numerator and T observations are used to
compute the denominator, an alternative that leads to larger estimates in finite samples is

r′s =

1
T − s

T∑
t=s+1

(
xt − x

)(
xt−s − x

)

1
T

T∑
t=1

(
xt − x

)2

Another modification of (9.20) that has a similar effect is to use only (T − s) observations in the
denominator, so that it becomes ∑T

t=s+1
(
xt − x

)2. Check the computing manuals that go with this
book to see which one your software uses.

Testing the Significance of an Autocorrelation It is often useful to test whether a
sample autocorrelation is significantly different from zero. That is, a test of H0∶ρs = 0 against the
alternative H1∶ρs ≠ 0. Tests of this nature are useful for constructing models and for checking
whether the errors in an equation might be serially correlated. The test statistic for this test is
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relatively simple. When the null hypothesis H0∶ρs = 0 is true, rs has an approximate normal
distribution with mean zero and variance 1∕T. Thus, a suitable test statistic is

Z =
rs − 0√

1∕T
=
√

Trs
a∼ N(0, 1) (9.21)

The product of the square root of the sample size and the sample autocorrelation rs has an
approximate standard normal distribution. At a 5% significance level, we reject H0∶ρs = 0 when√

Trs ≥ 1.96 or
√

Trs ≤ −1.96.

Correlogram A useful device for assessing the significance of autocorrelations is a dia-
grammatic representation called the correlogram. The correlogram, also called the sample auto-
correlation function, is the sequence of autocorrelations r1, r2, r3, . . . . It shows the correlation
between observations that are one period apart, two periods apart, three periods apart, and so on.
We indicated that an autocorrelation rs will be significantly different from zero at a 5% significance
level if

√
Trs ≥ 1.96 or if

√
Trs ≤ −1.96. Alternatively, we can say that rs will be significantly

different from zero if rs ≥ 1.96
/√

T or rs ≤ −1.96
/√

T . A typical diagram for a correlogram will
have bars or spikes to represent the magnitudes of the autocorrelations and approximate signifi-
cant bounds drawn at ± 2

/√
T , enabling the econometrician to see at a glance which correlations

are significant.

E X A M P L E 9.2 Sample Autocorrelations for Unemployment

Consider the quarterly series for the U.S. unemployment
rate found in the data file usmacro. It runs from 1948Q1 to
2016Q1, a total of 273 observations. The first four sample
autocorrelations for this series, computed from (9.20),
are r1 = 0.967, r2 = 0.898, r3 = 0.811, and r4 = 0.721.
The value r1 = 0.967 tells us that successive values of
unemployment are very highly correlated. With r4 = 0.721,
even observations that are four quarters apart are highly
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FIGURE 9.4 Correlogram for U.S. quarterly unemployment rate.

correlated. The correlogram for the unemployment rate for
the first 24 lags is graphed in Figure 9.4. The heights of the
bars represent the correlations. The horizontal line drawn
at 2

/√
173 = 0.121 is the significance bound for positive

autocorrelations. Because all the autocorrelations are
positive, the negative bound of −0.121 was not included on
the graph. The autocorrelations show a gradually declining
pattern but remain significantly different from zero until
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lag 19, beyond which they are not statistically significant.
As the chapter evolves, we will discover that estimates of
autocorrelations are important for model construction and
checking whether one of our assumptions is violated.

Your software might not produce a correlogram that is
exactly the same as Figure 9.4. It might have the correlations
on the x-axis and the lags on the y-axis. It could use spikes
instead of bars to denote the correlations, it might provide

a host of additional information, and its significance bounds
might be slightly different than ours. Be prepared! Learn to
isolate and focus on the information corresponding to that in
Figure 9.4 and do not be disturbed if the output is slightly
but not substantially different. If the significance bounds are
slightly different, it is because they use a different refinement
of the large sample approximation

√
Trs

a∼ N(0, 1).

E X A M P L E 9.3 Sample Autocorrelations for GDP Growth Rate

As a second example of sample autocorrelations and the
associated correlogram, we consider quarterly data for the
U.S. GDP growth rate that can also be found in the data
file usmacro. In this case, the first four sample auto-
correlations are r1 = 0.507, r2 = 0.369, r3 = 0.149, and
r4 = 0.085; the correlogram for up to 48 lags is presented in
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FIGURE 9.5 Correlogram for growth rate in U.S. GDP.

Figure 9.5. These correlations are much smaller than those
for the unemployment series, but there is a seemingly
strange pattern where the correlations, although not large,
oscillate between significance and insignificance at longer
lags. This is a complex structure, perhaps attributable to the
business cycle.

9.2 Stationarity and Weak Dependence
A critical assumption that is maintained throughout this chapter is that the variables in our
equations are stationary. Stationary variables have means and variances that do not change over
time and autocorrelations that depend only on how far apart the observations are in time, not on
a particular point in time. Specifically, the autocorrelations in (9.18) depend on the time between
the periods s, but not the actual point in time t. Implicit in the discussion in Section 9.1.2 was
that xt is stationary. Its mean μX, variance σ2

X , and autocorrelations ρs were assumed not to be
different for different t. In Examples 9.2 and 9.3, autocorrelations for the unemployment and
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growth rates were calculated under the assumption that both are stationary. Saying that a series
is stationary implies that, if we took different subsets of observations corresponding to different
windows of time, and used them for estimation, we would be estimating the same population
quantities, the same mean μ, the same variance σ2, and the same autocorrelations ρ1, ρ2, ρ3, · · ·.

The first task when estimating a relationship with time-series data is to plot the observations
on the variables, as we did in Figure 9.2(a) and (b), to gain an appreciation of the nature of your
data and to see if there is evidence of nonstationarity. In addition, formal tests known as unit
root tests can be used to detect nonstationarity. These tests and strategies for estimation with
nonstationary variables are considered in Chapter 12. Because checking for nonstationarity is an
essential first step, some readers may wish to temporarily jump forward to unit root testing in
Chapter 12 before returning to our coverage of estimation and forecasting with stationary vari-
ables. For the moment, we note that a stationary variable is one that is not explosive, nor is it
trending, and nor does it wander aimlessly without returning to its mean. These features can be
illustrated with some graphs. Figure 9.6(a–c) contains graphs of simulated observations on three
different variables, plotted against time. Plots of this kind are routinely considered when exam-
ining time series variables. The variable y that appears in Figure 9.6(a) is considered stationary
because it tends to fluctuate around a constant mean without wandering or trending. On the other
hand, x and z that appear in Figure 9.6(b) and (c) possess characteristics of nonstationary vari-
ables. In Figure 9.6(b), x tends to wander or is “slow turning,” while z in Figure 9.4(c) is trending.
These concepts will be defined more precisely in Chapter 12. At the present time, the important
thing to remember is that this chapter is concerned with modeling and estimating dynamic rela-
tionships between stationary variables whose time series have similar characteristics to those of y.
That is, they neither “wander,” nor “trend.”

In addition to assuming that the variables are stationary, in this chapter we also assume they
are weakly dependent. Weak dependence implies that, as s →∞ (observations get further and
further apart in time), they become almost independent. For s large enough, the autocorrelations
ρs become negligible. When using correlated time-series variables, weak dependence is needed
for the least squares estimator to have desirable large sample properties. Typically, stationary
variables have weak dependence. However, there are rare exceptions.

E X A M P L E 9.4 Are the Unemployment and Growth Rate Series Stationary
and Weakly Dependent?

A formal checking of the unemployment and growth rate
series for stationarity is deferred until unit root tests are
introduced in Chapter 12. It is useful, however, to see what
tentative conclusions might be drawn from the plots and
correlograms of the two series. An examination of the
plot for unemployment in Figure 9.2(a) suggests that it has
characteristics that make it more similar to Figure 9.6(b)
than to Figure 9.6(a). Thus, on the basis of the plot alone,
one might be inclined to conclude the unemployment
rate is nonstationary. It turns out that a unit root test
rejects a null hypothesis of nonstationarity, suggesting that
the series can be treated as stationary, but its very high
autocorrelations have led to the wandering characteristics
exhibited in Figure 9.2(a). Do we have evidence to suggest
that the series is weakly dependent? The answer is yes.
The autocorrelations in the correlogram in Figure 9.4 are
becoming smaller and smaller at longer lags and eventually
die out to r24 = 0.035. Had we considered lags beyond 24,
we would find r36 = 0.008.

Turning to the GDP growth series, we note that its
plot in Figure 9.2b has characteristics similar to those of
Figure 9.6(a), enabling us to tentatively conclude that it is
stationary. GDP growth has ups and downs from one quarter
to the next, but it does not keep going up or down for long
periods; it returns to the middle, or mean, after a short
time. Its correlogram in Figure 9.5 has some significant
correlations at long lags, but they are not large and, when
autocorrelations beyond those displayed in Figure 9.5 are
examined, they die out very quickly, leading us to conclude
the series is weakly dependent.

Knowing the unemployment and growth rates are
stationary and weakly dependent means that we can
proceed to use them for the examples in this chapter
devoted to time-series regression models with stationary
variables. With the exception of a special case known
as cointegration—considered in Chapter 12—variables
in time-series regressions must be stationary and weakly
dependent for the least squares estimator to be consistent.
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FIGURE 9.6 (a) Time series of a stationary variable; (b) time
series of a nonstationary variable that is
“slow-turning” or “wandering”; (c) time series
of a nonstationary variable that “trends.”
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9.3 Forecasting
The forecasting of values of economic variables is a major activity for many institutions includ-
ing firms, banks, governments, and individuals. Accurate forecasts are important for decision
making on government economic policy, investment strategies, the supply of goods to retail-
ers, and a multitude of other things that affect our everyday lives. Because of its importance,
you will find that there are whole books and courses that are devoted to the various aspects of
forecasting—methods and models for forecasting, ways of evaluating forecasts and their reliabil-
ity, and practical examples.2 In this section, we consider forecasting using two different models,
an AR model, and an ARDL model. Our focus is on short-term forecasting, typically up to three
periods into the future.

To introduce the forecasting problem within the context of an ARDL model, suppose that we
are given the following ARDL(2,2) model

yt = δ + θ1yt−1 + θ2yt−2 + δ1xt−1 + δ2xt−2 + et (9.22)
Criteria for choosing the numbers of lags for y and x will be discussed in Sections 9.3.3 and
9.4. For the moment, we use two lags of each to describe the essential features of the forecast-
ing problem. A quick comparison of (9.22) with (9.3) reveals a slight difference: the term δ0xt
has been omitted from (9.22). To appreciate why, suppose that we have the sample observations{(

yt, xt
)
, t = 1, 2,… ,T

}
and that we wish to forecast yT+1 which, from (9.22), is given by

yT+1 = δ + θ1yT + θ2yT−1 + δ1xT + δ2xT−1 + eT+1 (9.23)
Including δ0xt in (9.22) would mean including δ0xT+1 in (9.23). If the future value xT+1 were
known, then its inclusion is desirable, but the more likely situation is that both yT+1 and xT+1
will not be observed at time T when the forecast is made. Thus, dropping xt in (9.22) is a more
practical choice.

Define the information set of all current and past observations on y and x at time t as
It =

{
yt, yt−1,… , xt, xt−1,…

}
(9.24)

Assuming that we are standing at the end of the sample period, having observed yT and xT, the
one-period ahead forecasting problem is to find a forecast ŷT+1 conditional on, or given, the
information at time T , IT =

{
yT , yT−1,… , xT , xT−1,…

}
. If the parameters

(
δ, θ1, θ2, δ1, δ2

)
are

known, the best forecast in the sense that it minimizes conditional mean-squared forecast error
E
[(

ŷT+1 − yT+1
)2|||IT

]
is the conditional expectation ŷT+1 = E

(
yT+1|IT

)
. We investigate what this

implies for the ARDL(2, 2) model in (9.23) and later discuss estimation of the parameters. If we
believe that only two lags of y and two lags of x are relevant—they provide the best forecast—we
are assuming that

E
(
yT+1|IT

)
= E

(
yT+1|yT , yT−1, xT , xT−1

)

= δ + θ1yT + θ2yT−1 + δ1xT + δ2xT−1 (9.25)
Notice the difference between the two conditional expectations: E

(
yT+1|IT

)
conditions on all past

observations; E
(
yT+1|yT , yT−1, xT, xT−1

)
conditions on only the two most recent observations. By

employing an ARDL(2, 2) model, we are assuming that, for forecasting yT+1, observations from
more than two periods in the past do not convey any extra information relative to that contained
in the most recent two observations. In addition, for the result in (9.25) to hold, we require

E
(
eT+1|IT

)
= 0 (9.26)

............................................................................................................................................
2A comprehensive but relatively advanced treatment is Graham Elliott and Allan Timmermann, Economic Forecasting,
2016, Princeton University Press.
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For two-period ahead and three-period ahead forecasts, the best forecasts are given respec-
tively by

ŷT+2 = E
(
yT+2|IT

)
= δ + θ1E

(
yT+1|IT

)
+ θ2yT + δ1E

(
xT+1|IT

)
+ δ2xT

ŷT+3 = E
(
yT+3|IT

)
= δ + θ1E

(
yT+2|IT

)
+ θ2E

(
yT+1|IT

)
+ δ1E

(
xT+2|IT

)
+ δ2E

(
xT+1|IT

)

Notice the extra requirements for these two forecasts. We need to know E
(
yT+2|IT

)
, E

(
yT+1|IT

)
,

E
(
xT+2|IT

)
and E

(
xT+1|IT

)
. We have estimates of E

(
yT+2|IT

)
and E

(
yT+1|IT

)
readily available

from previous periods’ forecasts, but E
(
xT+2|IT

)
and E

(
xT+1|IT

)
require extra informa-

tion. This information can come from independent forecasts or we might be interested in
what-if type questions such as if the next two future values of x are x̂T+1 and x̂T+2, what
will be the point and interval forecasts for yT+2 and yT+3? If the model is a pure autore-
gressive one without an x-component, this issue does not arise. In what follows we first
consider an example using a pure AR model, and then one with one lagged x. These are
both special cases of (9.22). We defer discussion of (9.26) and other assumptions until after
the examples.

E X A M P L E 9.5 Forecasting Unemployment with an AR(2) Model

To demonstrate how to use an AR model for forecasting, we
consider the following AR(2) model for forecasting the U.S.
unemployment rate U

Ut = δ + θ1Ut−1 + θ2Ut−2 + et (9.27)

The aim is to use observations up to and including 2016Q1 to
forecast unemployment in the next three quarters: 2016Q2,
2016Q3, and 2016Q4. The information set at time t is
It =

{
Ut,Ut−1,…

}
. At the time we have observed 2016Q1,

it is I2016Q1 =
{

U2016Q1,U2015Q4,…
}

. We assume that (9.26)
holds which, in general terms for any time period, can be
written as E

(
et|It−1

)
= 0. Past values of unemployment

cannot be used to forecast the error in the current period.
With this set up, we can write expressions for forecasts for

the remainder of 2016 as

Û2016Q2 = E
(
U2016Q2|I2016Q1

)
= δ + θ1U2016Q1 + θ2U2015Q4

(9.28)

Û2016Q3 = E
(
U2016Q3|I2016Q1

)

= δ + θ1E
(
U2016Q2|I2016Q1

)
+ θ2U2016Q1

(9.29)

Û2016Q4 = E
(
U2016Q4|I2016Q1

)

= δ + θ1E
(
U2016Q3|I2016Q1

)
+ θ2E

(
U2016Q2|I2016Q1

)

(9.30)
Because these expressions all depend on the unknown param-
eters (δ, θ1, θ2), before we can proceed we need to estimate
them. We digress for a moment to consider estimation of the
AR(2) model.

OLS Estimation of the AR(2) Model for Unemployment The assumption
E
(
et|It−1

)
= 0 is sufficient for the OLS estimator for

(
δ, θ1, θ2

)
to be consistent. The OLS esti-

mator will not be unbiased, but consistency gives it a large-sample justification. Assuming that
E
(
et|It−1

)
= 0 is weaker than the strict exogeneity assumption. In the general ARDL model, it

implies cov
(
et, yt−s

)
= 0 and cov

(
et, xt−s

)
= 0 for all s > 0 but it does not preclude future values

yt+s and xt+s, s > 0, from being correlated with et. The model in (9.27) can be treated in the same
way as the multiple regression model in Chapters 5 and 6, with Ut−1 = xt1 and Ut−2 = xt2. The two
lags of the “dependent variable” can be treated as two different explanatory variables. One differ-
ence is that the two lags cause us to lose two observations. Instead of having T = 273 observations
for estimation, only T – 2 = 271 are available. From a practical standpoint, this modification is not
a concern; the software that you are using will make the necessary adjustments. It is nevertheless
useful to fully appreciate how the lagged variables are defined and how their observations enter
the estimation procedure. Table 9.2 contains the observations as separate variables in the form
they would appear in a spreadsheet. Notice how the observations are lagged and how we lose one
observation when Ut−1 is formed, and two observations when Ut−2 is formed.
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T A B L E 9.2 Spreadsheet of Observations for AR(2) Model

t Quarter Ut Ut−1 Ut−2
1 1948Q1 3.7 • •
2 1948Q2 3.7 3.7 •
3 1948Q3 3.8 3.7 3.7
4 1948Q4 3.8 3.8 3.7
5 1949Q1 4.7 3.8 3.8
⋮ ⋮ ⋮ ⋮ ⋮

271 2015Q3 5.2 5.4 5.6
272 2015Q4 5.0 5.2 5.4
273 2016Q1 4.9 5.0 5.2

Using the observations in Table 9.2 to find OLS estimates of the model in equation (9.27) yields
Ût = 0.2885 + 1.6128Ut−1 − 0.6621Ut−2 σ̂ = 0.2947
(se) (0.0666) (0.0457) (0.0456) (9.31)

The standard errors in this equation are the conventional least squares standard errors introduced
in Chapters 2 and 5. These standard errors and the estimate σ̂ = 0.2947 will be valid with the
conditional homoskedasticity assumption var

(
et|Ut−1,Ut−2

)
= σ2. In addition, in large samples,

the usual t- and F-statistics are valid for testing hypotheses or constructing interval estimates for(
δ, θ1, θ2

)
. You might wonder whether we need an assumption corresponding to the one made in

Chapters 2 and 5, that the errors are serially uncorrelated. It can be shown that one of the assump-
tions that has already been made, E

(
Ut|It−1

)
= δ + θ1Ut−1 + θ2Ut−2, implies that the errors are

uncorrelated.3

Unemployment Forecasts Having estimated the AR(2) model, we are now in a position
to use it for forecasting. Recognizing that the unemployment rates for the two most recent quarters
are U2016Q1 = 4.9 and U2015Q4 = 5, the forecast for U2016Q2 obtained using (9.28) and the estimates
in (9.31) is4

Û2016Q2 = δ̂ + θ̂1U2016Q1 + θ̂2U2015Q4

= 0.28852 + 1.61282 × 4.9 − 0.66209 × 5
= 4.8809 (9.32)

Moving to the forecast for two quarters ahead, we have
Û2016Q3 = δ̂ + θ̂1Û2016Q2 + θ̂2U2016Q1

= 0.28852 + 1.61282 × 4.8809 − 0.66209 × 4.9
= 4.9163 (9.33)

There is an important difference in the way the forecasts Û2016Q2 and Û2016Q3 are obtained. It is
possible to calculate Û2016Q2 using only past observations on U. However, U2016Q3 depends on
U2016Q2, which is unobserved at time 2016Q1. To overcome this problem, we replace U2016Q2 by

............................................................................................................................................
3See Exercise 9.3 for an example where autocorrelated errors imply an extra lag of the dependent variable should be
included.
4We carry the coefficient estimates to five decimal places to reduce rounding error.
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its forecast Û2016Q2 on the right side of equation (9.33). For forecasting U2016Q4, forecasts for both
U2016Q3 and U2016Q2 are needed on the right side of the equation. Specifically,

Û2016Q4 = δ̂ + θ̂1Û2016Q3 + θ̂2Û2016Q2

= 0.28852 + 1.61282 × 4.9163 − 0.66209 × 4.8809
= 4.986 (9.34)

The forecast unemployment rates for 2016Q2, 2016Q3, and 2016Q4 are approximately 4.88%,
4.92%, and 4.99%, respectively. By the time this book is published, we will be able to compare
these forecasts with what actually happened!

9.3.1 Forecast Intervals and Standard Errors
We are typically interested in not just point forecasts but also interval forecasts that give a likely
range in which a future value could fall and indicate the reliability of a point forecast. To investi-
gate how to construct a forecast interval, we return to the more general ARDL(2, 2) model

yt = δ + θ1yt−1 + θ2yt−2 + δ1xt−1 + δ2xt−2 + et

and examine the forecast errors for one-period, two-period, and three-period ahead forecasts. The
one-period ahead forecast error f1 is given by

"1 = yT+1− ŷT+1 =
(
δ − δ̂

)
+
(
θ1− θ̂1

)
yT +

(
θ2− θ̂2

)
yT−1 +

(
δ1 − δ̂1

)
xT−1

+
(
δ2 − δ̂2

)
xT−2 + eT+1 (9.35)

where
(
δ̂, θ̂1, θ̂2, δ̂1, δ̂2

)
are the least squares estimates. The difference between the forecast ŷT+1

and the corresponding realized value yT+1 depends on the differences between the actual coeffi-
cients and the estimated coefficients and on the value of the random error eT+1. A similar situation
arose in Chapters 4 and 6 when we were forecasting using the regression model. What we are
going to do differently now is to ignore the error from estimating the coefficients. It is common
to do so in time-series forecasting because the variance of the random error is typically large
relative to the variances of the estimated coefficients, and the resulting estimator for the forecast
error variance retains the property of consistency. This means that we can write the forecast error
for one quarter ahead as

"1 = eT+1 (9.36)
For two periods ahead, the forecast error gets more complicated. In this case, ignoring sampling
error from estimating the coefficients, we will be using

ŷT+2 = δ + θ1ŷT+1 + θ2yT + δ1x̂T+1 + δ2xT (9.37)
to forecast

yT+2 = δ + θ1yT+1 + θ2yT + δ1xT+1 + δ2xT + eT+2 (9.38)
In (9.37), ŷT+1 comes from the one-period ahead forecast, but a value for x̂T+1 needs to be obtained
from elsewhere. To forecast two periods ahead, we will also need x̂T+2. These values may come
from their own forecasting model, or they might be set by the forecaster to answer what-if type
questions. We will assume that these values are given, x̂T+1 = xT+1 and x̂T+2 = xT+2, or, alterna-
tively, that we are asking what-if type questions so that we can assume that there is no error from
predicting future values of x. Given these assumptions, the two-period ahead forecast error is

"2 = θ1
(
yT+1 − ŷT+1

)
+ eT+2 = θ1"1 + eT+2 = θ1eT+1 + eT+2 (9.39)

For three periods ahead, the error can be shown to be
"3 = θ1"2 + θ2"1 + eT+3 =

(
θ2

1 + θ2
)
eT+1 + θ1eT+2 + eT+3 (9.40)
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Expressing the forecast errors in terms of the et’s is convenient for deriving expressions for the
forecast error variances. With the assumptions E

(
et|It−1

)
= 0 and var

(
et|yt−1, yt−2, xt−1, xt−2

)
= σ2,

equations (9.36), (9.39), and (9.40) can be used to show that
σ2
"1 = var

(
"1|IT

)
= σ2

σ2
"2 = var

(
"2|IT

)
= σ2(1 + θ2

1
)

σ2
"3 = var

(
"3|IT

)
= σ2

[(
θ2

1 + θ2
)2 + θ2

1 + 1
]

(9.41)

The standard errors of the forecast errors are obtained by replacing the unknown parameters
in (9.41) by their estimates and then taking the square root. Denoting these standard errors by
σ̂"1, σ̂"2, and σ̂"3, 100(1 − α)% forecast intervals are given by ŷT+j ± t(1−α∕2, T−7)σ̂" j, j = 1, 2, 3.
The degrees of freedom for the t-distribution are (T – p – q − 1) − 2 = T − 7 because five coeffi-
cients have been estimated and the two lags have led to a loss of two observations.5

E X A M P L E 9.6 Forecast Intervals for Unemployment from the AR(2) Model

Using the forecast-error variances in (9.41), the estimates in
(9.31) and t(0.975, 268) = 1.9689, we can compute the forecast
standard errors and 95% forecast intervals presented in
Table 9.3. Notice how the forecast standard errors and the

T A B L E 9.3
Forecasts and Forecast Intervals for Unemployment from
AR(2) Model

Forecast Standard Error of Forecast Interval
Quarter ÛT+ j Forecast Error("̂" j

) (
ÛT+ j ± 1.9689 × "̂" j

)

2016Q2 ( j = 1) 4.881 0.2947 (4.301, 5.461)
2016Q3 ( j = 2) 4.916 0.5593 (3.815, 6.017)
2016Q4 ( j = 3) 4.986 0.7996 (3.412, 6.560)

widths of the intervals increase as we forecast further into
the future, reflecting the extra uncertainty from doing so. It is
much harder to be precise about forecasts further into the
future. This idea was introduced in Figure 4.2.

E X A M P L E 9.7 Forecasting Unemployment with an ARDL(2, 1) Model

In this example, we include a lagged value of the growth rate
of GDP (G) to see if its inclusion improves the precision of
our forecasts. We would expect a high growth rate to lead to
less unemployment and a slowdown in the economy to create
more unemployment. The least squares estimated model is

Ût = 0.3616 + 1.5331Ut−1 − 0.5818Ut−2 − 0.04824Gt−1

(se) (0.0723) (0.0556) (0.0556) (0.01949)
σ̂ = 0.2919 (9.42)

Apart from the need to supply future values of G necessary
for forecasting more than one quarter into the future, the
forecasting procedure for an ARDL model is essentially the
same as that for a pure AR model. Providing we are content
to construct forecast intervals that ignore any error in the
specification of future values of G, adding a distributed lag
component to the AR model does not require any special
treatment. Point and interval forecasts are obtained in
the same way. In Exercise 9.16, you are invited to verify
the values reported in Table 9.4. For the forecasts for

............................................................................................................................................
5The large sample distribution theory upon which this forecast interval is based uses a normal distribution rather than a
t-distribution. Thus, the interval ŷT+j ± z1−α∕2σ̂" j is also used. The t-distribution is frequently chosen in practice to be
more conservative.
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2016Q3 and 2016Q4, we assumed that G2016Q2 = 0.869
and G2016Q3 = 1.069. Comparing the forecasts in Tables 9.3
and 9.4, we find that including the lagged growth rate
has increased the point forecasts for unemployment and
reduced slightly the standard errors of the forecasts. The
main source of the larger point forecasts appears to be the

T A B L E 9.4
Forecasts and Forecast Intervals for Unemployment from
ARDL(2, 1) Model

Forecast Standard Error of Forecast Interval
Quarter ÛT+ j Forecast Error("̂" j

) (
ÛT+ j ± 1.9689 × "̂" j

)

2016Q2 ( j = 1) 4.950 0.2919 (4.375, 5.525)
2016Q3 ( j = 2) 5.058 0.5343 (4.006, 6.110)
2016Q4 ( j = 3) 5.184 0.7430 (3.721, 6.647)

increase in the estimate of the intercept δ from 0.2885 to
0.3616. In addition, although the values G2016Q2 = 0.869 and
G2016Q3 = 1.069 assume an improved growth rate relative
to G2016Q1 = 0.310, they are still below the sample average
growth rate of G = 1.575.

We have considered forecasting with both AR and ARDL models. It remains to point out that
forecasting with a finite distributed lag model with no AR component can be carried out within
the same framework as forecasting in the linear regression model that we considered in Section
6.4. Instead of the right-hand-side variables being a number of different x’s, they comprise a
number of lags on the same x.

9.3.2 Assumptions for Forecasting
Throughout this section, we have alluded to the various assumptions that ensure an ARDL model
can be estimated consistently and used for forecasting. A summary of these assumptions and some
of their implications follows.

F1: The time series y and x are stationary and weakly dependent. How to test this assumption
and how to model time series that violate the assumption are considered in Chapter 12.

F2: The conditional expectation E
(
yt|It−1

)
is a linear function of a finite number of lags of

y and x. That is,
E
(
yt|It−1

)
= δ + θ1yt−1 + · · · + θpyt−p + δ1xt−1 + · · · + δqxt−q (9.43)

where It−1 =
{

yt−1, yt−2,… , xt−1, xt−2,…
}

is defined as the information set at time t − 1
and represents all past observations at time t. There are a number of things implied by this
assumption.
1. Lags of y beyond yt−p and lags of x beyond xt−q do not contribute to the conditional

expectation; they cannot improve the forecast of yt.
2. The error term et in the ARDL model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ1xt−1 + · · · + δqxt−q + et

is such that E
(
et|It−1

)
= 0.

3. Let zt =
(
1, yt−1,… , yt−p, xt−1,… xt−q

)
denote all right-hand side variables in

the ARDL model at time t. The et are not serially correlated in the sense that
E
(
etes|$t, $s

)
= 0 for t ≠ s. If the et were serially correlated, then at least one
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more lag of y should appear in E
(
yt|It−1

)
. To gain an intuitive appreciation of why

this is so, consider the AR(1) model yt = δ + θ1yt−1 + et. Correlation between et
and et−1 implies that we can write E

(
et|It−1

)
= ρet−1, from which we obtain

E
(
yt|It−1

)
= δ + θ1yt−1 + ρet−1. From the original model, et−1 = yt−1 − δ − θ1yt−2,

and so

E
(
yt|It−1

)
= δ + θ1yt−1 + ρ

(
yt−1 − δ − θ1yt−2

)

= δ(1 − ρ) +
(
θ1 + ρ

)
yt−1 − ρθ1yt−2

4. The assumption E
(
et|It−1

)
= 0 does not preclude feedback from a past error et−j

( j > 0) to current and future values of x. If x is a policy variable whose setting
reacts to past values of e and y, the least squares estimator is still consistent and
the conditional expectation remains the best forecast. Correlation between et and
past values of x is excluded, however. If et was correlated with xt−1 (say), then
E
(
et|It−1

) ≠ 0.
F3: The errors are conditionally homoskedastic, var

(
et|$t

)
= σ2. This assumption is needed

for the traditional least squares standard errors to be valid and to compute the forecast
standard errors.

9.3.3 Selecting Lag Lengths
So far in our description of an ARDL model and how it can be used for forecasting, we have taken
the lag lengths p and q as given. A critical assumption to ensure that we had the best forecast in
a minimum mean-squared-error sense was that no lags beyond those included in the model con-
tained extra information that could improve the forecast. Technically, this assumption was equiva-
lent to E

(
et|It−1

)
= 0 where et is the equation error term, and It−1 =

{
yt−1, yt−2,… , xt−1, xt−2,…

}
is the set of information prior to period t. A natural question that now arises is: How many lags
of y and x should be included? Specifically, in terms of the ARDL(p, q) model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ1xt−1 + · · · + δqxt−q + et

how do we decide on p and q? There are a number of different criteria that can be used. Because
they all do not necessarily lead to the same choice, there is a degree of subjective judgment that
must be exercised. It is an area in which econometrics is an art as well as a science.

We can explain three criteria relatively quickly. One is to extend the lag lengths for y and
x as long as their estimated coefficients are significantly different from zero. A second is to
choose p and q to minimize either the AIC or the SC variable selection criterion. And a third
is to evaluate the out-of-sample forecasting performance of each (p, q) combination using a
hold-out sample. Testing significance was introduced in Chapter 3 and has been used exten-
sively since. The second and third criteria were discussed in Section 6.4.1. In the remainder of
this section, we use the unemployment equation to illustrate how the SC can be used to choose
lag lengths.6 A fourth way of of deciding on p and q is to check for serial correlation in the
error term. Since E

(
et|It−1

)
= 0 implies that the lag lengths p and q are sufficient and the errors

are not serially correlated, the presence of serial correlation is an indication we have insuffi-
cient lags. Testing for serial correlation is an important topic in its own right, and so we devote
Section 9.4 to it.

............................................................................................................................................
6The SC penalizes additional lags more heavily than does the AIC and hence leads to a more parsimonious model. It is
generally preferred to the AIC that can select a model with too many lags even when the sample size is infinitely large.
For details, see Russell Davidson and James McKinnon (2004), Econometric Theory and Methods, Oxford University
Press, p.676–677.
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E X A M P L E 9.8 Choosing Lag Lengths in an ARDL(p, q) Unemployment Equation

Our objective is to use the SC to select the number of lags for
U and the number of lags for G in the equation

Ut=δ + θ1Ut−1 + · · · + θpUt−p + δ1Gt−1 + · · · + δqGt−q + et

When computing the SC for a number of possible lag lengths,
it is important that the same number of observations is used
to estimate each model; otherwise, the sum-of-squared-errors
component in the SC will not be comparable across models.
Since lagging variables leads to a loss of observations, and
the number of observations lost depends on the lag length,
care must be exercised when selecting the period for estima-
tion. We consider a maximum of eight lags for both U and G
and, to ensure comparability, our estimation period is from
1950Q1 to 2016Q1 for all models. Up to eight observations
are used for the lags on the right-hand side of each equation,
and the first sample value for Ut is always 1950Q1, giving a
total of 265 observations. The SC values for p = 1, 2, 4, 6, 8
and q = 0, 1, 2,… , 8 are displayed in Table 9.5.7 There are
p lags of U and q lags of G. The SC values for p = 3, 5, 7 were
omitted because they were dominated by those for the other
values of p and did not convey any extra information. Because
the SC values are negative, the minimizing values for p and
q are those that lead to the “largest negative” entry, namely
p = 2 and q = 0, suggesting that the ARDL(2, 0) model
Ut = δ + θ1Ut−1 + θ2Ut−2 + et is suitable. Other things to
notice are that the relatively large increases in the SC if Ut−2
is dropped and that more than two lags of Ut are not favored
by the SC irrespective of the value of q.

Since we have also used an ARDL(2, 1) model with Gt−1
included, we ask whether there is any evidence to support

T A B L E 9.5
SC Values for ARDL(p , q )
Unemployment Equation

Lag SC
q /p 1 2 4 6 8
0 −1.880 −2.414 −2.391 −2.365 −2.331
1 −2.078 −2.408 −2.382 −2.357 −2.323
2 −2.063 −2.390 −2.361 −2.337 −2.302
3 −2.078 −2.407 −2.365 −2.340 −2.306
4 −2.104 −2.403 −2.362 −2.331 −2.297
5 −2.132 −2.392 −2.353 −2.346 −2.312
6 −2.111 −2.385 −2.346 −2.330 −2.292
7 −2.092 −2.364 −2.325 −2.309 −2.271
8 −2.109 −2.368 −2.327 −2.307 −2.269

its inclusion. It turns out that, if we go back and start the
sample from 1948Q3, dropping the first two observations to
accommodate two lags, the SC values for the ARDL(2, 0)
and ARDL(2, 1) models are −2.393 and −2.395, respec-
tively. In this case, there is a slight preference for including
Gt−1. Moreover, as we have seen from equation (9.42), the
coefficient of Gt−1 is significantly different from zero at a
5% significance level. Its p-value for a zero null hypothesis
is 0.014.

9.3.4 Testing for Granger Causality
Granger causality8 refers to the ability of lags of one variable to contribute to the forecast of
another variable. In the context of the ARDL model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ1xt−1 + · · · + δqxt−q + et

we say that x does not “Granger cause” y if
E
(
yt|yt−1, yt−2,… , yt−p, xt−1, xt−2,… xt−q

)
= E

(
yt|yt−1, yt−2,… , yt−p

)

Thus, testing for Granger causality is equivalent to testing
H0∶δ1 = 0, δ2 = 0,… , δq = 0
H1∶at least one δi ≠ 0

............................................................................................................................................
7The AIC and SC values that are reported are computed using the formulas given in equations (6.43) and (6.44). Your
software may provide different values that are based on more general formulas that use a likelihood function. To get the
likelihood-based values, you need to add [1 + ln(2π)]≅2.8379 to the entries in Table 9.4. Adding or subtracting a
constant does not change the lag length that minimizes AIC or SC.
8Granger, C.W.J. (1969), “Investigating causal relations by econometric models and cross-spectral methods,”
Econometrica 37, 424–38.
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It can be performed using the F-test introduced in Chapter 6 for testing joint linear hypotheses.
Rejection of H0 implies x Granger causes y. Note that if x Granger causes y, it does not necessarily
imply a direct causal relationship between x and y. It means that having information on past x
values will improve the forecast for y. Any causal effect can be an indirect one.

E X A M P L E 9.9 Does the Growth Rate Granger Cause Unemployment?

To answer this question, we first return to the ARDL(2, 1)
model whose estimates were given in equation (9.42). Specif-
ically,
Ût = 0.3616 + 1.5331Ut−1 − 0.5818Ut−2 − 0.04824Gt−1

(se) (0.0723) (0.0556) (0.0556) (0.01949)
In this model, testing whether G Granger causes U is equiva-
lent to testing the significance of the coefficient of Gt−1. It can
be carried out with a t- or an F-test. For example, the F-value
is

F = t2 = (0.04824∕0.01949)2 = 6.126
It exceeds the 5% critical value of F(0.95, 1, 267) = 3.877, lead-
ing us to conclude that G Granger causes U.

To illustrate how the test works when more than one lag
is being tested, consider the following model with four lags
of G

Ut = δ + θ1Ut−1 + θ2Ut−2 + δ1Gt−1 + δ2Gt−2

+ δ3Gt−3 + δ4Gt−4 + et

In this model, testing whether G Granger causes U is equiv-
alent to testing

H0∶δ1 = 0, δ2 = 0, δ3 = 0, δ4 = 0
H1∶at least one δi ≠ 0

The restricted model obtained by assuming that H0 is true
is Ut = δ + θ1Ut−1 + θ2Ut−2 + et. If we compute an F-value
using the restricted and unrestricted sums of squared errors, it
is important to make sure that both models use the same num-
ber of observations, in this case, 269, for the sample period
1949Q1 to 2016Q1. The F-value for the test is

F =
(
SSER − SSEU

)
∕J

SSEU∕(T − K) = (23.2471 − 21.3020)∕4
21.3020∕(269 − 7) = 5.981

Because F = 5.981 is greater than the 5% critical value
F(0.95, 4, 262) = 2.406, we reject H0 and conclude that G does
Granger cause U.

9.4 Testing for Serially Correlated Errors
Consider again the ARDL(p, q) model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ1xt−1 + · · · + δqxt−q + et

with It−1 =
{

yt−1, yt−2,… , xt−1, xt− 2,…
}

defined as the information set at time t − 1 and rep-
resenting all past observations at time t. To keep the notation and exposition relatively simple,
suppose p = q = 1. One implication of forecasting assumption F2, that all relevant lags have
been included in the conditional expectation E

(
yt|It−1

)
= δ + θ1yt−1 + δ1xt−1, is that the errors

et are serially uncorrelated. For the absence of serial correlation, we require the conditional
covariance between any two different errors to be zero. That is, E

(
etes|$t, $s

)
= 0 for all t ≠ s

where $t =
(
1, yt−1, xt−1

)
denotes all right-hand-side variables in the ARDL model at time t.

If E
(
etes|$t, $s

) ≠ 0, then E
(
et|It−1

) ≠ 0 that, in turn, implies E
(
yt|It−1

) ≠ δ + θ1yt−1 + δ1xt−1.
Thus, one way of assessing whether sufficient lags have been included to get the best forecast is
to test for serially correlated errors.

Not using the best model for forecasting is not the only implication of serially correlated
errors. If E

(
etes|$t, $s

) ≠ 0 for t ≠ s, then the usual least squares standard errors are invalid. The
possibility of invalid standard errors is relevant not just for forecasting equations but also for
equations used for policy analysis to be discussed in Section 9.5. For these reasons, testing for
serially correlated errors is routine practice when estimating time series regressions. We discuss
three tests for this purpose – checking the correlogram of the least squares residuals, a Lagrange
multiplier test, and the Durbin–Watson test.
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9.4.1 Checking the Correlogram of the Least Squares
Residuals

In Section 9.1.2, we saw how the correlogram can be used to examine the nature of the auto-
correlations of a time series and to test whether these autocorrelations are significantly different
from zero. The autocorrelations for the unemployment and growth series were investigated in
Examples 9.2 and 9.3, respectively. In a similar way, we can use the correlogram of the least
squares residuals to check for serially correlated errors. Because the errors et are unobserved,
their correlogram cannot be checked directly. However, we can obtain the least squares residuals
êt = yt − δ̂ − θ̂1yt−1 − δ̂1xt−1 as estimates of the et and examine their autocorrelations. Noting that
the mean of the least squares residuals is zero and adapting equation (9.20), we can write the kth
order autocorrelation for the residuals as

rk =
∑T

t=k+1êtêt−k
∑T

t=1ê2
t

(9.45)

Ideally, for the correlogram to suggest no serial correlation, we like to have |rk| < 2
/√

T for
k = 1, 2,… , the 2 being used to approximate 1.96, the critical value for a 5% significance level.
However, occasional significant (but small) autocorrelations at long lags do not constitute strong
evidence of autocorrelation and are regarded as acceptable.

E X A M P L E 9.10 Checking the Residual Correlogram for the ARDL(2, 1)
Unemployment Equation

For a first example, we return to the ARDL(2,1) model in
(9.42), estimated with 271 observations:

Ût = 0.3616 + 1.5331Ut−1 − 0.5818Ut−2 − 0.04824Gt−1

(se) (0.0723) (0.0556) (0.0556) (0.01949)
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FIGURE 9.7 Correlogram for residuals from ARDL(2, 1) model.

The autocorrelations for its residuals given in the correl-
ogram in Figure 9.7 are generally small and insignificant.
There are exceptions at lags 7, 8, and 17, where the autocor-
relations exceed the significance bounds. These correlations
are at long lags, barely significant, and relatively small(
r7 = 0.146, r8 = −0.130, r17 = 0.133

)
. It is reasonable to

conclude that there is no strong evidence of serial correlation.
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E X A M P L E 9.11 Checking the Residual Correlogram for an ARDL(1, 1)
Unemployment Equation

To contrast the outcome in Example 9.10 with one where
serial correlation is clearly present, we reestimate the model
with Ut−2 omitted and using 272 observations. If Ut−2 is
an important contributor to the forecasting equation, its
omission is likely to lead to serial correlation in the errors.
The reestimated equation is

Ût = 0.4849 + 0.9628Ut−1 − 0.1672Gt−1

(se) (0.0842) (0.0128) (0.0187) (9.46)
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FIGURE 9.8 Correlogram for residuals from ARDL(1, 1) model.

and its correlogram is displayed in Figure 9.8. In this case, the
first three autocorrelations are significant, and the first two
are moderately large

(
r1 = 0.449, r2 = 0.313

)
. We conclude

that the errors are serially correlated. More lags are needed
to improve the forecasting specification, and the least squares
standard errors given in (9.46) are invalid.

9.4.2 Lagrange Multiplier Test
A second test that we consider for testing for serially correlated errors is derived from a gen-
eral set of hypothesis testing principles that produce Lagrange9 multiplier (LM) tests. In more
advanced courses, you will learn the origin of the term LM. Another example was given in
Chapter 8 for testing for heteroskedasticity. The general principle is described in Appendix C.8.4.
An advantage of this test is that it readily generalizes to a joint test of correlations at more than
one lag.

To introduce the test, consider the ARDL(1, 1) model yt = δ + θ1yt−1 + δ1xt−1 + et. The null
hypothesis for the test is that the errors et are uncorrelated. To express this null hypothesis in terms
of restrictions on one or more parameters, we can introduce a model for an alternative hypothesis,
with that model describing the possible nature of any autocorrelation. We will consider a number
of alternative models.

............................................................................................................................................
9Joseph–Louis Lagrange (1736–1813) was an Italian born mathematician. Statistical tests using the so-called “Lagrange
multiplier principle” were introduced into statistics by C.R. Rao in 1948.
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Testing for AR(1) Errors In the first instance, we consider an alternative hypothesis
that the errors are correlated through the AR(1) process et = ρet−1 + vt where the new errors vt sat-
isfy the uncorrelated assumption cov

(
vt, vs|$t, $s

)
= 0 for t ≠ s. In the context of the ARDL(1, 1)

model, $t =
(
1, yt−1, xt−1

)
. Substituting for et in the original equation yields

yt = δ + θ1yt−1 + δ1xt−1 + ρet−1 + vt (9.47)

Now, if ρ = 0, then et = vt and since vt is not serially correlated, et will not be serially correlated.
Thus, a test for serial correlation can be set up in terms of the hypotheses H0∶ρ = 0 and H1∶ρ ≠ 0.
The obvious way to perform this test if et−1 was observable is to regress yt on yt−1, xt−1, and et−1
and to then use a t- or F-test to test the significance of the coefficient of et−1. However, because
et−1 is not observable, we replace it by the lagged least squares residuals êt−1 and then perform
the test in the usual way.

Proceeding in this way seems straightforward, but, to complicate matters, applied econo-
metricians have managed to do it in at least four different ways! One of the variations centers
around the treatment of the first observation. To appreciate the issue, suppose that we have 100
observations with which to estimate an ARDL(1, 1) model. Because y and x are both lagged
once, an effective sample of 99 observations will be used for estimation. There will be 99 resid-
uals êt. Replacing et−1 with êt−1 in (9.47) means that a further observation will be lost leaving
98 for the test equation. An alternative to losing this last observation is to set the initial value
of êt−1 equal to zero so that 99 observations are retained. Doing so is justified because, when H0
is true, E

(
et−1|$t−1

)
= 0. This is the approach adopted in the automatic commands of the popular

software packages Stata and EViews.
The second variation requires a bit more work. As we discovered in Chapter 8, LM tests are

such that they can frequently be written as the simple expression T × R2 where T is the number
of sample observations and R2 is the goodness-of-fit statistic from an auxiliary regression.
To derive the relevant auxiliary regression for the autocorrelation LM test, we begin by writing
the test equation from (9.47) as

yt = δ + θ1yt−1 + δ1xt−1 + ρêt−1 + vt (9.48)

Noting that yt = ŷt + êt = δ̂ + θ̂1yt−1 + δ̂1xt−1 + êt, we can rewrite (9.48) as

δ̂ + θ̂1yt−1 + δ̂1xt−1 + êt = δ + θ1yt−1 + δ1xt−1 + ρêt−1 + vt

Rearranging this equation yields

êt =
(
δ − δ̂

)
+
(
θ1 − θ̂1

)
yt−1 +

(
δ1 − δ̂1

)
xt−1 + ρêt−1 + vt

= γ1 + γ2yt−1 + γ3xt−1 + ρêt−1 + vt (9.49)

where γ1 = δ − δ̂, γ2 = θ1 − θ̂1, and γ3 = δ1 − δ̂1. When testing for autocorrelation by testing
the significance of the coefficient of êt−1, one can estimate (9.48) or (9.49). Both yield the
same test result – the same coefficient estimate for êt−1 and the same t-value. The estimates for
the intercept and the coefficients of yt−1 and xt−1 will be different, however. In (9.49), we are
estimating

(
δ − δ̂

)
,
(
θ1 − θ̂1

)
, and

(
δ1 − δ̂1

)
, instead of δ, θ1, and δ1. The auxiliary regression

from which the T × R2 version of the LM test is obtained is (9.49). Because
(
δ − δ̂

)
,
(
θ1 − θ̂1

)
,

and
(
δ1 − δ̂1

)
are centered around zero, if (9.49) is a regression with significant explanatory

power, that power will come from êt−1.
If H0∶ρ = 0 is true, then LM = T × R2 has an approximate χ2

(1) distribution where T and R2

are the sample size and goodness-of-fit statistic, respectively, from least squares estimation of
(9.49). Once again, there are two alternatives depending on whether the first observation is dis-
carded, or ê0 is set equal to zero.
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Testing for MA(1) Errors There are several kinds of models that can be used to try to
capture the characteristics of observed sample autocorrelations. These models can be applied to
observed time series such as unemployment and the growth rate of GDP or to unobserved errors
in a time-series regression model. Up to now only autoregressive models have been discussed.
Another useful class of models is what is known as moving-average models. You will study these
and other models in more depth if you take a time-series course. In Exercise 9.5, you are asked to
compare the autocorrelations of an AR(1) model with those of a moving-average model of order
one, MA(1). Our task at the moment is to work out a test statistic when an alternative hypothesis
of autocorrelation is modeled using the MA(1) process

et = ϕvt−1 + vt (9.50)

The vt are assumed to be uncorrelated: cov
(
vt, vs|$t, $s

)
= 0 for t ≠ s. Following the strategy we

adopted for the AR(1) error model, combining (9.50) with an ARDL(1,1) model yields

yt = δ + θ1yt−1 + δ1xt−1 + ϕvt−1 + vt (9.51)

Notice that ϕ = 0 implies et = vt, and so we can test for autocorrelation through the hypotheses
H0∶ϕ = 0 and H1∶ϕ ≠ 0. Comparing (9.51) with (9.47), we can see that the test for an MA(1)
alternative will be exactly the same as the test for an AR(1) alternative providing we can find an
estimate v̂t−1. Fortunately, we can use the least squares residual êt−1 to estimate vt−1, just as we
did before. That is, v̂t−1 = êt−1. The reason we can do this is that, when H0 is true, both errors
are the same: et = vt. Thus, the test for testing against the alternative of MA(1) errors is identical
to the test for an alternative of AR(1) errors. The downside of this result is that, when H0 is
rejected, the LM test does not identify which error model is more suitable.

Testing for Higher Order AR or MA Errors The LM test and its variations can be
readily extended to alternative hypotheses that are expressed in terms of higher order AR or MA
models. For example, suppose that the model for an alternative hypothesis is either an AR(4) or
an MA(4) process. Then

AR(4)∶ et = ψ1et−1 + ψ2et−2 + ψ3et−3 + ψ4et−4 + vt

MA(4)∶ et = ϕ1vt−1 + ϕ2vt−2 + ϕ3vt−3 + ϕ4vt−4 + vt

The corresponding null and alternative hypotheses for each case are

AR(4)
{

H0∶ψ1 = 0, ψ2 = 0, ψ3 = 0, ψ4 = 0
H1∶at least one ψi is nonzero

MA(4)
{

H0∶ϕ1 = 0, ϕ2 = 0, ϕ3 = 0, ϕ4 = 0
H1∶at least one ϕi is nonzero

The two alternative test equations corresponding to (9.48) and (9.49) are

yt = δ + θ1yt−1 + δ1xt−1 + ψ1êt−1 + ψ2êt−2 + ψ3êt−3 + ψ4êt−4 + vt (9.52)
êt = γ1 + γ2yt−1 + γ3xt−1 + ψ1êt−1 + ψ2êt−2 + ψ3êt−3 + ψ4êt−4 + vt (9.53)

We have used the coefficient notation ψi from the AR model, but since the test is the same for
both AR and MA alternatives, we could equally well have used ϕi from the MA model. One can
use an F-test to jointly test the significance of the ψi in (9.52) or (9.53), or, use the LM = T × R2

test computed from (9.53). When H0 is true, the latter has a χ2
(4)-distribution. Once again, the

initial observations can be dropped or set to zero; there will be a slight difference in results from
these two alternatives.
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E X A M P L E 9.12 LM Test for Serial Correlation in the ARDL Unemployment
Equation

To illustrate the LM test, we apply the χ2 = T × R2 version
of the test to the ARDL unemployment equation. Two
models are chosen: the ARDL(1, 1) model whose residual
correlogram strongly suggested the existence of serially
correlated errors and the ARDL(2, 1) model whose cor-
relogram revealed a few small significant correlations, but
otherwise was free from serial correlation. Initial values
for the êt lost from lagging were set to zero. Table 9.6
contains the test results for AR(k) or MA(k) alternatives for
k = 1, 2, 3, 4. There is strong evidence that the errors in the
ARDL(1, 1) model are serially correlated. With p-values
less than 0.0001, the test soundly rejects a null hypothesis
of no serial correlation at all four lags. With the ARDL(2,1)
model, the results are not so clear cut. At a 5% significance
level, a null hypothesis of no serial correlation is not rejected
for alternatives with one lag or four lags, but it is rejected
for alternatives with two or three lags. Adding a second
lag of Ut to the ARDL(1, 1) model has eliminated a large
degree of serial correlation in the errors, but some may

T A B L E 9.6
LM Test Results for Serial
Correlation in the Errors of the
Unemployment Equation

Values of k
for AR(k )
or MA(k )
Alternative

ARDL(1, 1) ARDL(2, 1)
Test value p -Value Test Value p -Value

1 66.90 0.0000 2.489 0.1146
2 73.38 0.0000 6.088 0.0476
3 73.38 0.0000 9.253 0.0261
4 73.55 0.0000 9.930 0.0521

still remain. In Exercise 9.19, you are invited to test for
serial correlation in the errors after adding more lags of Ut
and Gt.

9.4.3 Durbin–Watson Test
The sample correlogram and the Lagrange multiplier test are two large-sample tests for serially
correlated errors. Their test statistics have their specified distributions in large samples. An alter-
native test, one that is exact in the sense that its distribution does not rely on a large sample
approximation, is the Durbin–Watson test. It was developed in 1950 and, for a long time, was
the standard test for H0∶ρ = 0 in the AR(1) error model et = ρet−1 + vt. It is used less frequently
today because its critical values are not available in all software packages and one has to exam-
ine upper and lower critical bounds instead. In addition, unlike the LM and correlogram tests,
its distribution no longer holds when the equation contains a lagged dependent variable. A quick
rule of thumb, useful when checking your computer output, is that a Durbin–Watson statistic
value near 2.0 is compatible with the hypothesis of no serial correlation. Details are provided in
Appendix 9A.

9.5 Time-Series Regressions for Policy Analysis
In Section 9.3, we focused on specification, estimation, and use of time-series regressions for
forecasting. The main concern was how to use an estimate of an AR conditional expectation

E
(
yt|It−1

)
= δ + θ1yt−1 + · · · + θpyt−p

or an ARDL conditional expectation
E
(
yt|It−1

)
= δ + θ1yt−1 + · · · + θpyt−p + δ1xt−1 + · · · + δqxt−q

to forecast the future values yT+1, yT+2,… , given the information available at the end of the
sample period, IT. In the AR model, the information set was IT =

{
yT , yT−1, yT−2,…

}
; for

the ARDL model it was IT =
{

yT , xT , yT−1, xT−1, yT−2, xT−2,…
}

. We were not concerned with
the interpretation of individual coefficients, and, providing an adequate number of lags of y (or y
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and x) was included in the relevant conditional expectation, we were not concerned with omitted
variables. Valid forecasts could be obtained from either of the models or one that contains other
explanatory variables and their lags. Moreover, because we were using past data to forecast the
future, a current value of x was not included in the ARDL model.

Models for policy analysis differ in a number of ways. The individual coefficients are of
interest because they might have a causal interpretation, telling us how much the average outcome
of a dependent variable changes when an explanatory variable and its lags change. For example,
central banks who set interest rates are concerned with how a change in the interest rate will affect
inflation, unemployment, and GDP growth, now and in the future. Because we are interested in
the current effect of a change, as well as future effects, the current value of explanatory variables
can appear in distributed lag or ARDL models. In addition, omitted variables can be a problem
if they are correlated with the included variables because then the coefficients may not reflect
causal effects.

Interpreting a coefficient as the change in a dependent variable caused by a change in
an explanatory variable is in line with the emphasis in Chapters 2–8. With the exception of
Section 6.3.1, where we discussed the difference between predictive and causal models, and some
sections devoted to prediction, the focus in those chapters was on estimating βk = ∂E

(
yt|%t

)
∕∂xtk

in the model
yt = β1 + β2xt2 + · · · + βKxtK + et

and on how the interpretation of the βk changes if one or more variables is expressed in terms of
logarithms or if there is some other nonlinear relationship between yt and xtk. Results from these
earlier chapters on the estimation of causal effects also hold for time series regressions providing
some critical assumptions hold. Under assumptions MR1–MR5 described in Chapter 5, least
squares estimates of the βk are best linear unbiased. However, there are two of these assumptions
that can be very restrictive when working within a time-series framework. Recalling that X is
used to denote all observations in all time periods for the right-hand-side variables, those two
assumptions are strict exogeneity, E

(
et|&

)
= 0, and the absence of serial correlation in the errors,

cov
(
et, es|&

)
= 0 for t ≠ s. Strict exogeneity implies that there are no lagged dependent variables

on the right-hand side, ruling out ARDL models. It also means that the errors are uncorrelated
with future x values, an assumption that would be violated if x was a policy variable, such as
the interest rate, whose setting was influenced by past values of y, such as the inflation rate.
The absence of serial correlation implies that variables omitted from the equation, and whose
effect is felt through the error term, must not be serially correlated. Given that time series variables
are typically autocorrelated, it is likely to be difficult to satisfy this assumption.

The strict exogeneity assumption can be relaxed if we are content to live with large sam-
ple properties. In Section 5.7.3, we noted that the assumptions E

(
et
)
= 0 and cov

(
et, xtk

)
= 0

for all t and k were sufficient for the least squares estimator to be consistent. Thus, we can still
proceed if the errors and right-hand-side variables are contemporaneously uncorrelated, an impli-
cation of the lesser assumption of contemporaneous exogeneity. In the general framework of an
ARDL model, the contemporaneous exogeneity assumption can be written as E

(
et|$t

)
= 0 where

zt denotes all right-hand-side variables that could include both lagged x’s and lagged y’s. Feedback
from current and past y to future x is possible under this assumption, and lagged values of y can
be included on the right-hand side. However, as we will discover, for both proper interpretation
of coefficients and consistency of estimation, we have to be careful about including the correct
number of lags and about the context in which lagged values of y and x arise in the equation.
Stronger assumptions often have to be made. In Section 9.1.1, we noted that lagged values of
y can arise not just in ARDL models but also in transformations of other models: in a model
with an AR(1) error and in an IDL model. The special features of these models are considered
in Sections 9.5.3 and 9.5.4. For the OLS standard errors to be valid for large sample infer-
ence, the serially uncorrelated error assumption cov

(
et, es|&

)
= 0 for t ≠ s can be weakened to

cov
(
et, es|$t, $s

)
= 0 for t ≠ s, but we do still need to query whether this assumption is realistic in a

time-series setting.
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In the following four sections, we are concerned with three main issues that add to our
time-series regression results from earlier chapters.

1. Interpretation of coefficients of lagged variables in finite and infinite distributed lag models.
2. Estimation and inference for coefficients when the errors are autocorrelated.
3. The assumptions necessary for interpretation and estimation.

To simplify the discussion, we work with models with only one x and its lags, like those specified
at the beginning of this chapter in Table 9.1. Our results and conclusions carry over to models
with more than one x and their lags.

9.5.1 Finite Distributed Lags
The finite distributed lag model where we are interested in the impact of current and past values
of a variable x on current and future values of a variable y can be written as

yt = α + β0xt + β1xt−1 + β2xt−2 + · · · + βqxt−q + et (9.54)

It is called a finite distributed lag because the impact of x on y cuts off after q lags. It is called a
distributed lag because the impact of a change in x is distributed over future time periods. For the
coefficients βk to represent causal effects, the error term must not be correlated with any omitted
variables that are correlated with %t =

(
xt, xt−1,… , xt−q

)
. In particular, since xt is likely to be

autocorrelated, we require et not to be correlated with the current and all past values of x. This
requirement holds if

E
(
et|xt, xt−1,…

)
= 0 (9.54)

It then follows that

E
(
yt|xt, xt−1,…

)
= α + β0xt + β1xt−1 + β2xt−2 + · · · + βqxt−q

= E
(
yt|xt, xt−1,… , xt−q

)
= E

(
yt|xt

)
(9.55)

Once q lags of x have been included in the equation, further lags of x will not have an
impact on y.

Given this assumption, a lag-coefficient βs can be interpreted as the change in E
(
yt|%t

)
when

xt−s changes by 1 unit, but x is held constant in other periods. Alternatively, if we look forward
instead of backward, βs gives the change in E

(
yt+s|%t

)
when xt changes by 1 unit, but x is held

constant in other periods. In terms of derivatives
∂E

(
yt|xt

)

∂xt−s
=
∂E

(
yt+s|xt

)

∂xt
= βs (9.56)

To further appreciate this interpretation, suppose that x and y have been constant for at least the
last q periods and that xt is increased by 1 unit and then returned to its original level in the next and
subsequent periods. Then, using (9.54) but ignoring the error term, the immediate effect will be
an increase in yt by β0 units. One period later yt+1 will increase by β1 units, then yt+2 will increase
by β2 units and so on, up to period t + q when yt+q will increase by βq units. In period t + q + 1,
the value of y will return to its original level. The effect of a 1-unit change in xt is distributed over
the current and next q periods, from which we get the term distributed lag model. The coefficient
βs is called a distributed-lag weight or an s-period delay multiplier. The coefficient β0 (s = 0)
is called the impact multiplier.

It is also relevant to ask what happens if xt is increased by 1 unit and then maintained at its
new level in subsequent periods (t + 1), (t + 2), · · ·. In this case, the immediate impact will again
be β0; the total effect in period t + 1 will be β0 + β1; in period t + 2, it will be β0 + β1 + β2, and
so on. We add together the effects from the changes in all preceding periods. These quantities
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are called interim or cumulative multipliers. For example, the 2-period interim multiplier is(
β0 + β1 + β2

)
. The total multiplier is the final effect on y of the sustained increase after q or

more periods have elapsed; it is given by ∑q
s=0βs.

E X A M P L E 9.13 Okun’s Law

To illustrate the various distributed lag concepts, we intro-
duce an economic model known as Okun’s Law.10 In this
model, we again consider a relationship between unemploy-
ment and growth of the economy, but we formulate the model
differently and use a different data set. Moreover, our purpose
is not to forecast unemployment but to investigate the lagged
responses of unemployment to growth in the economy. In the
basic model for Okun’s Law, the change in the unemployment
rate from one period to the next depends on the rate of growth
of output in the economy:

Ut − Ut−1 = −γ
(
Gt − GN

)
(9.57)

where Ut is the unemployment rate in period t, Gt is the
growth rate of output in period t, and GN is the “normal”
growth rate, which we assume is constant over time. The
parameter γ is positive, implying that when the growth of out-
put is above the normal rate, unemployment falls; a growth
rate below the normal rate leads to an increase in unemploy-
ment. The normal growth rate GN is the rate of output growth
needed to maintain a constant unemployment rate. It is equal
to the sum of labor force growth and labor productivity
growth. We expect 0 < γ < 1, reflecting that output growth
leads to less than one-to-one adjustments in unemployment.

To write (9.57) in the more familiar notation of
the multiple regression model, we denote the change in
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FIGURE 9.9a Time series for the change in the Australian unemployment rate:
1978Q2 to 2016Q2.

unemployment by DUt = ΔUt = Ut – Ut−1, we set β0 = −γ
and α = γGN, and include an error term

DUt = α + β0Gt + et (9.58)

Recognizing that changes in output are likely to have a
distributed-lag effect on unemployment–not all of the effect
will take place instantaneously–we expand (9.58) to include
lags of Gt

DUt = α + β0Gt + β1Gt−1 + β2Gt−2 + · · · + βqGt−q + et
(9.59)

To estimate this relationship, we use quarterly Australian
data on unemployment and the percentage change in gross
domestic product (GDP) from quarter 2, 1978 to quarter 2,
2016. These data are stored in the file okun5_aus. The time
series for DU and G are graphed in Figure 9.9(a) and (b).
There are noticeable jumps in the unemployment rate around
1983, 1992, and 2009; they correspond roughly to periods
when there was negative growth but with a lag. At this time,
we also note that the series appear to be stationary; tools for
more rigorous assessment of stationarity are deferred until
Chapter 12.

Least squares estimates of the coefficients and related
statistics for equation (9.59) are reported in Table 9.7 for lag

............................................................................................................................................
10See O. Blanchard (2009), Macroeconomics, 5th edition, Upper Saddle River, NJ, Pearson Prentice Hall, p. 184.
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FIGURE 9.9b Time series for Australian GDP growth: 1978Q2 to 2016Q2.

lengths q = 4 and q = 5. All coefficients of G and its lags have
the expected negative sign and are significantly different from
zero at a 5% significance level, with the exception of that for
Gt−5 when q = 5. Given the coefficient of this lag is positive

T A B L E 9.7
Estimates for Okun’s Law Finite
Distributed Lag Model

Lag Length q = 5
Variable Coefficient Standard

Error t-Value p -Value
C 0.3930 0.0449 8.746 0.0000
Gt −0.1287 0.0256 −5.037 0.0000
Gt−1 −0.1721 0.0249 −6.912 0.0000
Gt−2 −0.0932 0.0241 −3.865 0.0002
Gt−3 −0.0726 0.0241 −3.012 0.0031
Gt−4 −0.0636 0.0241 −2.644 0.0091
Gt−5 0.0232 0.0240 0.966 0.3355
Observations = 148 R2 = 0.503 σ̂ = 0.2258

Lag Length q = 4

Variable Coefficient Standard
Error t-Value p-Value

C 0.4100 0.0415 9.867 0.0000
Gt −0.1310 0.0244 −5.369 0.0000
Gt−1 −0.1715 0.0240 −7.161 0.0000
Gt−2 −0.0940 0.0240 −3.912 0.0001
Gt−3 −0.0700 0.0239 −2.929 0.0041
Gt−4 −0.0611 0.0238 −2.563 0.0114
Observations = 149 R2 = 0.499 σ̂ = 0.2251

and insignificant, we drop Gt−5 and settle on a model of order
q = 4 where all coefficients have the expected negative signs
and are significantly different from zero.

What do the estimates for lag length 4 tell us? A 1%
increase in the growth rate leads to a fall in the expected
unemployment rate of 0.13% in the current quarter, a fall
of 0.17% in the next quarter and falls of 0.09%, 0.07%, and
0.06% in two, three, and four quarters from now, respectively.
These changes represent the values of the impact multiplier
and the one- to four-quarter delay multipliers. The interim
multipliers, which give the effect of a sustained increase in
the growth rate of 1%, are −0.30 for 1 quarter, −0.40 for
2 quarters, −0.47 for 3 quarters, and −0.53 for 4 quarters.
Since we have a lag length of four, −0.53 is also the total
multiplier. A summary of these values is presented in
Table 9.8. Knowledge of them is important for a government
that wishes to keep unemployment below a certain level by
influencing the growth rate. If we view γ in equation (9.57) as
the total effect of a change in output growth, then its estimate
is γ̂ = −∑4

s=0 bs = 0.5276. An estimate of the normal growth
rate that is needed to maintain a constant unemployment rate
is ĜN = α̂∕γ̂ = 0.4100∕0.5276 = 0.78% per quarter.

T A B L E 9.8 Multipliers for Okun’s Law

Delay Multipliers Interim Multipliers
b0 −0.1310
b1 −0.1715 ∑1

s=0 bs −0.3025
b2 −0.0940 ∑2

s=0 bs −0.3965
b3 −0.0700 ∑3

s=0 bs −0.4665
b4 −0.0611 ∑4

s=0 bs −0.5276

Total multiplier ∑4
s=0 bs = −0.5276
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Assumptions for Finite Distributed Lag Model Before examining some compli-
cations that frequently arise with the finite distributed lag model, it is useful to summarize the
assumptions that are necessary for OLS estimates to have desirable large sample properties, and
the implications of violations of these assumptions. We can also look ahead to what remedies are
available to overcome particular violations of assumptions, and their requirements.

FDL1: The time series y and x are stationary and weakly dependent.
FDL2: The finite distributed lag model describing how y responds to current and past values

of x can be written as

yt = α + β0xt + β1xt−1 + β2xt−2 + · · · + βqxt−q + et (9.60)

FDL3: The error term is exogenous with respect to the current and all past values of x

E
(
et|xt, xt−1, xt−2,…

)
= 0

This assumption ensures

E
(
yt|xt, xt−1, xt−2,…

)
= E

(
yt|xt

)

where %t =
(
xt, xt−1, xt−2,… , xt−q

)
. In other words, all relevant lags of x are included

in the model. It also implies that there are no omitted variables that are correlated
with xt and also impact on yt. This implication raises questions about the Okun’s Law
example. There are likely to be excluded macro variables that are correlated with GDP
growth and that may also impact on the unemployment rate: wage growth, inflation,
and interest rates are all possibilities. In the interest of maintaining a relatively simple
example, we abstract from these relationships.

FDL4: The error term is not autocorrelated, cov
(
et, es|%t, %s

)
= E

(
etes|%t, %s

)
= 0 for t ≠ s.

FDL5: The error term is homoskedastic, var
(
et|xt

)
= E

(
e2

t |xt
)
= σ2.

Assumptions FDL4 and FDL5 are needed for OLS standard errors, hypothesis tests, and interval
estimates to be valid. Since having autocorrelated errors is highly likely, and heteroskedastcity
is a possibility, we need to ask how we would proceed when FDL4 and FDL5 are violated. In
Chapter 8 when we were faced with the problem of heteroskedastic errors, we considered two
possible solutions: (1) using heteroskedasticity consistent robust standard errors for the OLS esti-
mator with no assumptions about the form of the heteroskedasticity being made or (2) making
an assumption about the skedastic function and employing a more efficient generalized least
squares estimator whose standard errors will be valid if the assumption is true. Comparable solu-
tions exist for time series data when FDL4 and FDL5 are violated. It is possible to use the OLS
estimator and standard errors known as HAC (heteroskedasticity and autocorrelation consis-
tent) standard errors, or Newey–West standard errors. Or, we can make some assumption
about the nature of the autocorrelation and employ a more efficient generalized squares estima-
tor. In what follows we consider both options. Although the generalized least squares estimator
is more efficient, it comes with a cost. In addition to having to make an assumption about the
form of the autocorrelation, an exogeneity assumption that is stricter than FDL3 must be made,
whereas for OLS with HAC standard errors, FDL3 is sufficient.

9.5.2 HAC Standard Errors
To explain the nature of heteroskedasticity and autocorrelation consistent standard errors within
a simplified framework, we drop the lagged x’s from (9.60), and consider the simple regression
model

yt = α + β0xt + et
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From Appendix 8A, the least squares estimator for β0 can be written as

b0 = β0 +
∑T

t=1wtet = β0 +
1
T
∑T

t=1
(
xt − x

)
et

1
T
∑T

t=1
(
xt − x

)2
= β0 +

1
T
∑T

t=1
(
xt − x

)
et

s2
x

(9.61)

where s2
x is the sample variance for x, using T as the divisor. When et was homoskedastic and

uncorrelated, we used this result to show that the variance of b0, conditional on all observations
X, is given by (see equation (2.15))

var
(
b0|X

)
=

σ2
e∑T

t=1
(
xt − x

)2 =
σ2

e

Ts2
x

For a result that was not conditional on X, we obtained the large sample approximate variance for
b0 from the variance of its asymptotic distribution. This variance is given by var

(
b0
)
= σ2

e∕Tσ2
x

and uses the fact that s2
x is a consistent estimator for σ2

x . Other terminology is that σ2
x is the proba-

bility limit of s2
x , s2

x
p
−−→ σ2

x (see Section 5.7, and in particular the discussions following equations
(5.34) and (5.35)).

We are now interested in the unconditional variance of b0 when et is both heteroskedastic
and autocorrelated. This is a much harder problem. Following similar steps to those sketched out
in Section 5.7, we can replace s2

x in (9.61) by its probability limit σ2
x , and x by its probability limit

μx, and then write the large sample variance of b0 as

var
(
b0
)
= var

⎛
⎜
⎜
⎜⎝

1
T
∑T

t=1
(
xt − μx

)
et

σ2
x

⎞
⎟
⎟
⎟⎠
= 1

T2(σ2
x
)2 var

(
T∑

t=1
qt

)

= 1
T2(σ2

x
)2

[
T∑

t=1
var

(
qt
)
+ 2

T−1∑
t=1

T−t∑
s=1

cov
(
qt, qt+s

)
]

=

T∑
t=1

var
(
qt
)

T2(σ2
x
)2

⎡
⎢
⎢
⎢
⎢⎣

1 +
2

T−1∑
t=1

T−t∑
s=1

cov
(
qt, qt+s

)

T∑
t=1

var
(
qt
)

⎤
⎥
⎥
⎥
⎥⎦

(9.62)

where qt =
(
xt − μx

)
et. HAC standard errors are obtained by considering estimators for the

quantity outside the big brackets and the quantity inside the big brackets. For the quantity
outside the brackets, first note that qt has a zero mean. Then, using (T − K)−1∑T

t=1 q̂2
t =

(T − K)−1∑T
t=1

(
xt − x

)2ê2
t as an estimator for var

(
qt
)
, where êt is a least squares residual,

K = 2 because it is a simple regression, and s2
x as an estimator for σ2

x , an estimator for∑T
t=1 var

(
qt
)/

T2(σ2
x
)2 is given by (see Exercise 9.6)

var
⋀

HCE
(
b0
)
=

T
∑T

t=1
(
xt − x

)2ê2
t

(T − K)
(∑T

t=1
(
xt − x

)2)2

Go back and compare this equation with equation (8.9) in Chapter 8. The notation is a little
different and the equations are arranged in different ways, but otherwise, they are identical. The
quantity outside the brackets in the last line of (9.62) is the large sample unconditional variance
of b0 when there is heteroskedasticity but no autocorrelation. The square root of its estimator
var
⋀

HCE
(
b0
)

is the heteroskedasticity consistent, robust standard error. To get a variance estimator
for least squares that is consistent in the presence of both heteroskedasticity and autocorrelation,
we need to multiply var

⋀

HCE
(
b0
)

by an estimator of the quantity in brackets in (9.62). We will
denote this quantity as g.
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Several estimators for g have been suggested. To discuss the framework in which they are
developed, we simplify g as follows (see Exercise 9.6):

g = 1 +
2

T−1∑
t=1

T−t∑
s=1

cov
(
qt, qt+s

)

T∑
t=1

var
(
qt
) = 1 +

2
T−1∑
s=1

(T − s)cov
(
qt, qt+s

)

Tvar
(
qt
)

= 1 + 2
T−1∑
s=1

(T − s
T

)
τs (9.63)

where τs = corr
(
qt, qt+s

)
= cov

(
qt, qt+s

)
∕var

(
qt
)
. When there is no serial correlation in the errors,

the qt will also not be autocorrelated, τs = 0 for all s, and g = 1.To obtain a consistent estimator
for g in the presence of autocorrelated errors, the summation in (9.63) is truncated at a lag much
smaller than T , the autocorrelations τs up to the truncation point are estimated, and the autocorre-
lations for lags beyond the truncation point are taken as zero. For example, if five autocorrelations
are used, the corresponding estimator is

ĝ = 1 + 2
5∑

s=1

(6 − s
6

)
τ̂s

Alternative estimators differ depending on the number of lags for which the τs are estimated
and on whether the weights placed on these correlations at each lag are equal to, for example,
(6 − s)∕6, or some other alternative. Because there are a large number of possibilities, you will
discover that different software packages may yield different HAC standard errors; moreover,
different options are possible within a given software package. The message is: Don’t be disturbed
if you see slightly different HAC standard errors computed for the same problem. Given a suitable
estimator ĝ, the large sample estimator for the variance of b0, allowing for both heteroscedasticity
and autocorrelation in the errors, is

var
⋀

HAC
(
b0
)
= var
⋀

HCE
(
b0
)
× ĝ

This analysis extends to the finite distributed lag model with q lags and indeed to any time series
regression involving stationary variables. The HAC standard errors are given by the square roots
of the estimated HAC variances. In Exercise 9.20, you are invited to check whether the errors
in the FDL model for Okun’s Law in Example 9.13 are autocorrelated and whether using HAC
standard errors has an impact on inferences about the multipliers. In Example 9.14 that follows we
investigate the impact of serial correlation on the coefficient standard errors for a Phillips curve.

E X A M P L E 9.14 A Phillips Curve

The Phillips curve has a long history in macroeconomics as
a tool for describing the relationship between inflation and
unemployment.11 Our starting point is the model

INFt = INFE
t − γ

(
Ut − Ut−1

)
(9.64)

where INFt is the inflation rate in period t, INFE
t denotes

inflationary expectations for period t, DUt = Ut – Ut−1
denotes the change in the unemployment rate from period
t − 1 to period t, and γ is an unknown positive parameter.

It is hypothesized that falling levels of unemployment(
Ut – Ut−1 < 0

)
reflect excess demand for labor that drives

up wages which in turn drives up prices. Conversely, rising
levels of unemployment

(
Ut – Ut−1 > 0

)
reflect an excess

supply of labor that moderates wage and price increases.
The expected inflation rate is included because workers
will negotiate wage increases to cover increasing costs
from expected inflation, and these wage increases will be
transmitted into actual inflation. We assume that inflationary

............................................................................................................................................
11For a historical review of the development of different versions, see Gordon, R.J. (2008), “The History of the Phillips
Curve: An American Perspective”, http://nzae.org.nz/wp-content/uploads/2011/08/nr1217302437.pdf, Keynote Address
at the Australasian Meetings of the Econometric Society.
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expectations are constant over time and set α = INFE
t .

In addition, we set β0 = −γ, and add an error term, in
which case the Phillips curve can be written as the simple
regression model

INFt = α + β0DUt + et (9.65)
The data used for estimating (9.65) are quarterly Australian
data from 1987, Quarter 1 to 2016, Quarter 1, a total of 117
observations, stored in the data file phillips5_aus. Inflation
is calculated as the percentage change in the Consumer
Price Index, with an adjustment in the third quarter of 2000
when Australia introduced a national sales tax. The adjusted
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FIGURE 9.10 Time series for the Australian inflation rate: 1987Q1 to 2016Q1.
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FIGURE 9.11 Correlogram for least squares residuals from Phillips curve.

time series is graphed in Figure 9.10; the time series for the
change in the unemployment rate was previously graphed in
Figure 9.9(a). Tests for assessing whether these series are sta-
tionary are set as exercises in Chapter 12.

The correlogram of the residuals from least squares
estimation of (9.65) is presented in Figure 9.11; approximate
5% significance bounds for the autocorrelations are plot-
ted at ± 2∕

√
117 = ± 0.185. There is evidence of moderate

correlations at lags 1–5, and smaller ones at lags 6 and 8.
To examine the impact of the autocorrelated errors, in
Table 9.9, we report the least squares estimates, and conven-
tional (OLS), HCE and HAC standard errors, t-values, and
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T A B L E 9.9 A Comparison of Conventional (OLS), HCE, and HAC Standard Errors

Variable OLS estimate Standard error t-value One-tail p -value
OLS HCE HAC OLS HCE HAC OLS HCE HAC

C 0.7317 0.0561 0.0569 0.0915 13.05 12.86 7.99 0.0000 0.0000 0.0000
DU −0.3987 0.2061 0.2632 0.2878 –1.93 –1.51 –1.39 0.0277 0.0663 0.0844

p-values.12 The HAC standard errors that allow for auto-
correlation and heteroskedasticity are larger than the HCE
standard errors that allow only for heteroskedacticity, and
the HCE standard errors are larger than the conventional
OLS ones that allow for neither heteroskedasticity nor
autocorrelation. Thus, ignoring the autocorrelation and
heteroskedasticity overstates the reliability of the least
squares estimates. Overstating their reliability means that

interval estimates will be narrower than they should be
and we are more likely to reject a true null hypotheses.
Using t(0.975, 115) = 1.981, 95% interval estimates for β0
are (−0.8070, 0.0096) with conventional standard errors
and (−0.9688, 0.1714) with HAC standard errors. With
conventional standard errors, a one-tail test and a 5%
significance level, we reject H0∶β2 = 0. With HCE or HAC
standard errors, we do not reject H0.

9.5.3 Estimation with AR(1) Errors
Using least squares with HAC standard errors overcomes the negative consequences that auto-
correlated errors have for least squares standard errors. However, it does not address the issue of
finding an estimator that is better in the sense that it has a lower variance. One way to proceed
is to make an assumption about the model that generates the autocorrelated errors and to derive
an estimator compatible with this assumption. In this section, we examine how to estimate the
parameters of the regression model when one such assumption is made, that of AR(1) errors. To
keep the exposition free from excessive algebra, we again consider the simple regression model

yt = α + β0xt + et (9.66)

This model can be extended to include extra lags from an FDL model and other variables. The
AR(1) error model is given by

et = ρet−1 + vt |ρ| < 1 (9.67)

with the vt assumed to be uncorrelated random errors with zero mean and constant variances.
That is,

E
(
vt|xt, xt−1,…

)
= 0 var

(
vt|xt

)
= σ2

v cov
(
vt, vs|xt, xs

)
= 0 for t ≠ s

The assumption |ρ| < 1 is required for et and yt to be stationary. From the assumptions about the
vt, we can derive the mean, variance, and autocorrelations for et. Conditional on all x’s (current,
past, and future), it can be shown that et has zero mean, constant variance σ2

e = σ2
v∕
(
1 − ρ2),

and autocorrelations ρk = ρk. Thus, the population correlogram that describes the special
autocorrelation structure implied by an AR(1) model is ρ, ρ2, ρ3, . . . . Because −1 < ρ < 1,
the AR(1) autocorrelations decline geometrically as the lag increases, eventually becoming
negligible. Since there is only one lag of e in the equation et = ρet−1 + vt, you might be surprised
to find that autocorrelations at lags greater than one, although declining, are still nonzero.

............................................................................................................................................
12The HAC standard errors were computed by EViews using a Bartlett kernel, a Newey–West fixed bandwidth of 5, and
a degrees of freedom adjustment.
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The correlation persists because each et depends on all past values of the errors vt through the
equation (see Appendix 9B).13

et = vt + ρvt−1 + ρ2vt−2 + ρ3vt−3 + · · ·

Nonlinear Least Squares Estimation To estimate the AR(1) model described by
(9.67) and (9.68), we note, from equation (9.15) in Section 9.1.1, that these equations can be
combined and rewritten in the form

yt = α(1 − ρ) + ρyt−1 + β0xt − ρβ0xt−1 + vt (9.68)
If you are wondering how we get this equation, go back and check out Section 9.1.1. Why is (9.68)
useful for estimation? We have transformed the original model in (9.66) with the autocorrelated
error term et into a new model given by (9.68) that has an error term vt that is uncorrelated over
time. The advantage of doing so is that we can now proceed to find estimates for

(
α, β0, ρ

)
that

minimize the sum of squares of uncorrelated errors Sv =
∑T

t=2 v2
t . The least squares estimator

that minimizes the sum of squares of the correlated errors Se =
∑T

t=1 e2
t is not minimum variance

and its standard errors are not correct. However, minimizing the sum of squares of uncorrelated
errors, Sv, yields an estimator that, in large samples, is best and whose standard errors are correct.
Note that this result is in line with earlier practice in the book. The least squares estimator used
in Chapters 2 through 7 minimizes a sum of squares of uncorrelated errors.

There is, however, an important distinctive feature about the transformed model in (9.68).
Note that the coefficient of xt−1 is equal to –ρβ0, which is the negative product of ρ (the coefficient
of yt−1) and β0 (the coefficient of xt). This fact means that, although (9.68) is a linear function of
the variables xt, yt−1 and xt−1, it is not a linear function of the parameters

(
α, β0, ρ

)
. The usual

linear least squares formulas cannot be obtained using calculus to find the values of
(
α, β0, ρ

)
that minimize Sv. Nevertheless, we can still proceed using nonlinear least squares to obtain
estimates. Nonlinear least squares was introduced in Chapter 6.6. Instead of using formulas to
calculate estimates, it uses a numerical procedure to find the estimates that minimize the least
squares function.

Generalized Least Squares Estimation To introduce an alternative estimator for
(α, β0, ρ) in the AR(1) error model, we rewrite (9.68) as

yt − ρyt−1 = α(1 − ρ) + β0
(
xt − ρxt−1

)
+ vt (9.69)

Defining y∗t = yt − ρyt−1, α∗ = α(1 − ρ) and x∗t = xt − ρxt−1, (9.69) becomes
y∗t = α∗ + β0x∗t + vt t = 2, 3,… ,T (9.70)

If ρ was known, values for the transformed variables y∗t and x∗t could be calculated, and least
squares applied to (9.70) to find estimates α̂∗ and β̂0. An estimate for the original intercept is
α̂ = α̂∗∕(1 − ρ). This procedure is analogous to that introduced in Section 8.4 where a model
with heteroskedastic errors was transformed to one with homoskedastic errors. In that case, the
least squares estimator applied to transformed variables y∗ and x∗ was known as a generalized
least squares estimator. Here, we have transformed a model with autocorrelated errors into one
with uncorrelated errors. The transformed variables y∗t and x∗t are different from those in the
heteroscedasticity error case, but, once again, least squares applied to the transformed variables
is known as generalized least squares.

Of course, ρ is not known and must be estimated. When the transformed variables are com-
puted using an estimate of ρ, say ρ̂, and least squares is applied to these transformed variables,
the resulting estimator for α and β0 is known as a feasible generalized least squares estimator.
There are direct parallels with this estimator and the feasible generalized least squares estimator

............................................................................................................................................
13See Appendix 9B for the derivations.
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introduced in Section 8.5. In Section 8.5, parameters in the skedastic function had to be estimated
to transform the variables. Here, the parameter in the autocorrelated error model, ρ, needs to be
estimated in order to transform the variables.

There are a number of possible estimators for ρ. A simple one is to use r1 from the sample
correlogram. Another one is the least-squares estimate of ρ in a regression of the OLS residuals
on their lags. The steps for obtaining the feasible generalized least squares estimator for α and β0
using this estimator for ρ are as follows:

1. Find least-squares estimates a and b0 from the equation yt = α + β0xt + et.
2. Compute the least squares residuals êt = yt − a − b0xt.
3. Estimate ρ by applying least squares to the equation êt = ρêt−1 + v̂t. Call this estimate ρ̂.
4. Compute values of the transformed variables y∗t = yt − ρ̂yt−1 and x∗t = xt − ρ̂xt−1.
5. Apply least squares to the transformed equation y∗t = α∗ + β0x∗t + vt.

These steps can also be implemented in an iterative manner. If α̂ and β̂0 are the estimates obtained
in step 5, new residuals can be obtained from êt = yt − α̂ − β̂0xt, steps 3–5 can be repeated using
results from these new residuals, and the process can be continued until the estimates converge.
The resulting estimator is often called the Cochrane–Orcutt estimator.14

Assumptions and Properties Let’s pause and take stock of where we are in Section 9.5.
In the finite distributed lag model under assumptions FDL1-FDL5, the least squares estimator is
consistent, it is minimum variance in large samples, and the usual OLS t-, F-, and χ2-tests are
valid in large samples. However, time-series data are such that assumptions FDL4 (the errors
are not autocorrelated) and FDL5 (homoskedasticity), particularly FDL4, might not hold. When
FDL4 and FDL5 are violated, the least squares estimator is still consistent, but its usual variance
and covariance estimates and standard errors are not correct, leading to invalid t-, F-, and χ2-tests.
One solution to this problem is to use the HAC estimator for variances and covariances and the
corresponding HAC standard errors. The least squares estimator is no longer minimum variance
when FDL4 and/or FDL5 do not hold, but using HAC variance and covariance estimates means
that t-, F-, and χ2-tests will be valid. Although we examined the use of HAC standard errors in
the context of a simple regression model with no lags, they are equally applicable for a finite
distributed lag model that includes lags.

A second solution to violation of FDL4 is to assume a specific model for the autocorrelated
errors and to use an estimator that is minimum variance for that model. We showed how the
parameters of a simple regression model with AR(1) errors can be estimated by (1) nonlinear
least squares or (2) feasible generalized least squares. Under two extra conditions, both of these
techniques yield a consistent estimator that is minimum variance in large samples, with valid
t-, F-, and χ2-tests. The first extra condition that is needed to achieve these properties is that the
AR(1) error model is suitable for modeling the autocorrelated error. We can, however, guard
against a failure of this condition using HAC standard errors following nonlinear least squares or
feasible generalized least squares estimation. Doing so will ensure t-, F-, and χ2-tests are valid
despite the wrong choice for an autocorrelated error model. The second extra condition is a
stronger exogeneity assumption than that in FDL3. To explore this second requirement, consider
estimation of α, β0, and ρ from the nonlinear least squares equation

yt = α(1 − ρ) + ρyt−1 + β0xt − ρβ0xt−1 + vt

The exogeneity assumption comparable to FDL3 is
E
(
vt|xt, xt−1, xt−2,…

)
= 0

............................................................................................................................................
14A modification of this process that includes a transformation of the first observation is called the Prais–Winsten
estimator. See Exercise 9.7 for details.
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Noting that vt = et – ρet−1, this condition becomes

E
(
et − ρet−1|xt, xt−1, xt−2,…

)
= E

(
et|xt, xt−1, xt−2,…

)
− ρE

(
et−1|xt, xt−1, xt−2,…

)
= 0

Advancing the subscripts in the second term by one period, we can rewrite this condition as

E
(
et|xt, xt−1, xt−2,…

)
− ρE

(
et|xt+1, xt, xt−1,…

)
= 0

For this equation to be true for all possible values of ρ, we require E
(
et|xt, xt−1, xt−2,…

)
= 0 and

E
(
et|xt+1, xt, xt−1, · · ·

)
= 0. Now, from the law of iterated expectations, E

(
et|xt+1, xt, xt−1, · · ·

)
= 0

implies E
(
et|xt, xt−1, xt−2,…

)
= 0. Thus, the exogeneity requirement necessary for nonlinear least

squares to be consistent, and it is the same for feasible generalized least squares, is

E
(
et|xt+1, xt, xt−1,…

)
= 0 (9.71)

This requirement implies that et and xt+1 cannot be correlated. It rules out instances where xt+1
is set by a policymaker (such as a central banker setting an interest rate) in response to an error
shock in the previous period. Thus, while modeling the autocorrelated error may appear to be
a good strategy in terms of improving the efficiency of estimation, it could be at the expense
of consistency if the stronger exogeneity assumption is not met. Using least squares with HAC
standard errors does not require this stronger assumption.

Modeling of more general forms of autocorrelated errors with more than one lag requires et
to be uncorrelated with x values further than one period into the future. A stronger exogeneity
assumption that accommodates these more general cases and implies (9.71) is the strict exogeneity
assumption E

(
et|&

)
= 0, where X includes all current, past and future values of the explanatory

variables. For general modeling of autocorrelated errors, we replace FDL3 with this assumption.

E X A M P L E 9.15 The Phillips Curve with AR(1) Errors

In this example, we obtain estimates of the Phillips curve
introduced in Example 9.14 under the assumption that its
errors can be modeled with an AR(1) process. The data
file is phillips5_aus. We can, at the outset, conjecture that
an AR(1) model might be inadequate. Returning to the
correlogram of the least squares residuals in Figure 9.11,
the first four sample autocorrelations are r1 = 0.489,
r2 = 0.358, r3 = 0.422, and r4 = 0.428. They do not decline
exponentially, nor approximately so. Values that start from
r1 = 0.489 and decline in line with the properties of an AR(1)
model are r2 = 0.4892 = 0.239, r3 = 0.4893 = 0.117, and
r4 = 0.4894 = 0.057. Nevertheless, we illustrate the AR(1)
error model with this example and later, in Exercise 9.21,

T A B L E 9.10 Phillips Curve Estimates from AR(1) Error Model

Parameter OLS NLS FGLS

Estimate
HAC Standard

Error Estimate
Standard

Error Estimate
Standard

Error
α 0.7317 0.0915 0.7028 0.0963 0.7029 0.0956
β0 −0.3987 0.2878 −0.3830 0.2105 −0.3830 0.2087
ρ 0.5001 0.0809 0.4997 0.0799

explore how we might improve it. Both the nonlinear
least squares (NLS) and feasible generalized least squares
(FGLS) estimates are reported in Table 9.10, along with
the least squares (OLS) estimates and HAC standard errors
reproduced from Table 9.9. The NLS and FGLS estimates
and their standard errors are almost identical, and the
estimates are also similar to those from OLS. The NLS and
FGLS standard errors for estimates of β0 are smaller than the
corresponding OLS HAC standard error, perhaps represent-
ing an efficiency gain from modeling the autocorrelation.
However, one must be cautious with interpretations like this
because standard errors are estimates of standard deviations,
not the unknown standard deviations themselves.
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9.5.4 Infinite Distributed Lags
The finite distributed lag model introduced in Section 9.5.1 assumed that the effect of changes in
an explanatory variable x on a dependent variable y cuts off after a finite number of lags q. One
way of avoiding the need to specify a value for q is to consider an IDL model where y depends
on lags of x that go back into the indefinite past, namely,

yt = α + β0xt + β1xt−1 + β2xt−2 + β3xt−3 + · · · + et (9.72)
We introduced this model in Section 9.1.1. For it to be feasible, the βs coefficients must eventually
(but not necessarily immediately) decline in magnitude, becoming negligible at long lags. They
have the same multiplier interpretations as in the finite distributed lag case. Specifically,

βs =
∂E

(
yt|xt, xt−1,…

)

∂xt−s
= s period delay multiplier

s∑
j=0
βj = s period interim multiplier

∞∑
j=0
βj = total multiplier

For the total multiplier, we assume the infinite sum converges to a finite value.

Geometrically Declining Lags An obvious disadvantage of the IDL model is its infinite
number of parameters. To estimate the lag coefficients in (9.72) with a finite sample of data, some
kind of restrictions need to be placed on those coefficients. In Section 9.1.1, we showed that
insisting the coefficients decline geometrically through the restrictions βs = λsβ0, for 0 < λ < 1,
led to the ARDL(1, 0) equation

yt = δ + θyt−1 + β0xt + vt (9.73)
where δ = α(1 − λ), θ = λ, and vt = et – λet−1. Go back and reread Section 9.1.1 to see how (9.73)
was derived. By imposing the restrictions, we have been able to reduce the infinite number of
parameters to just three. The delay multipliers can be calculated from the restrictions βs = λsβ0.
Using results on the sum of a geometric progression, the interim multipliers are given by

s∑
j=0
βj = β0 + β0λ + β0λ2 + · · · + β0λs =

β0
(
1 − λs+1)

1 − λ
and the total multiplier is given by

∞∑
j=0
βj = β0 + β0λ + β0λ2 + · · · =

β0
1 − λ

Estimating (9.73) poses some difficulties. If we assume that the original errors et are not autocor-
related, then vt = et – λet−1 will be correlated with yt−1, which means E

(
vt|yt−1, xt

) ≠ 0; the least
squares estimator will be inconsistent. To see that vt and yt−1 are correlated, note that they both
depend on et−1. It is clear that vt = et − λet−1 depends on et−1. To see that yt−1 also depends on
et−1, we lag (9.72) by one period,

yt−1 = α + β0xt−1 + β1xt−2 + β2xt−3 + β3xt−4 + · · · + et−1

Assuming, as we have done in the past, that E
(
et|xt, xt−1, xt−2,…

)
= 0, meaning we cannot predict

et given current and past values of x, we have

E
(
vtyt−1|xt−1, xt−2,…

)
= E

[(
et − λet−1

)(
α + β0xt−1 + β1xt−2 + · · · + et−1

)||xt−1, xt−2,…
]

= E
[(

et − λet−1
)

et−1|xt−1, xt−2,…
]
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= E
(
etet−1|xt−1, xt−2,…

)
− λE

(
e2

t−1|xt−1, xt−2,…
)

= −λvar
(
et−1|xt−1, xt−2,…

)

where we have used E
(
etet−1|xt−1, xt−2,…

)
= 0 from the assumption that et and et−1 are condi-

tionally uncorrelated.
One possible consistent estimator for (9.73) is the instrumental variable estimator to be dis-

cussed in Chapter 10. It turns out that xt−1 is a suitable instrument for yt−1. You are encouraged
to think of this as an example when you get to Chapter 10.

There is one special case where least squares applied to (9.73) is a consistent estimator.
The inconsistency problem arises because the vt follow the autocorrelated MA(1) process
vt = et – λet−1 and yt−1 appears on the right side of the equation. The vt are no longer autocorre-
lated if the et follow the AR(1) process et = λet−1 + ut, with the same parameter λ, and with the
ut being uncorrelated. In this case, we have

vt = et − λet−1 = λet−1 + ut − λet−1 = ut

Since ut is not autocorrelated, it will not be correlated with yt−1, and so correlation between yt−1
and the error is no longer a source of inconsistency for least squares estimation. Clearly, there is
a need to check whether et = λet−1 + ut is a reasonable assumption. A test for this purpose has
been proposed by McClain and Wooldridge.15 Details follow.

Testing for Consistency in the ARDL Representation of an IDL Model
The development of this test starts from the assumption that the errors et in the IDL model fol-
low an AR(1) process et = ρet−1 + ut with parameter ρ that can be different from λ and tests the
hypothesis H0∶ρ = λ. Under the assumption that ρ and λ are different

vt = et − λet−1 = ρet−1 + ut − λet−1 = (ρ − λ) et−1 + ut

Then, equation (9.73) becomes
yt = δ + λyt−1 + β0xt +(ρ − λ) et−1 + ut (9.74)

The test is based on whether or not an estimate of the error et−1 adds explanatory power to the
regression.

The steps are as follows:

1. Compute the least squares residuals from (9.74) under the assumption that H0 holds

ût = yt −
(
δ̂ + λ̂yt−1 + β̂0xt

)
, t = 2, 3,… ,T

2. Using the least squares estimate λ̂ from step 1, and starting with ê1 = 0, compute recursively
êt = λ̂êt−1 + ût, t = 2, 3,… ,T .

3. Find the R2 from a least squares regression of ût on yt−1, xt and êt−1.
4. When H0 is true, and assuming that ut is homoskedastic, (T − 1) × R2 has a χ2

(1) distribution
in large samples.

Note that ût can be viewed as equal to yt after yt−1 and xt have been partialled out. Thus, if the
regression in step 3 has significant explanatory power, it will come from êt−1.

We have described this test in the context of a model with geometrically declining lag weights
that leads to an ARDL(1, 0) model with only one lag of y. It can also be performed for ARDL(p, q)

............................................................................................................................................
15McClain, K.T. and J.M. Wooldridge (1995), “A simple test for the consistency of dynamic linear regression in rational
distributed lag models,” Economics Letters, 48, 235–240.
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models where p > 1. In such instances, the null hypothesis is that the coefficients in an AR(p) error
model for et are equal to the ARDL coefficients on the lagged y’s, extra lags are included in the
test procedure, and the chi-square statistic has p degrees of freedom; it is equal to the number of
observations used to estimate the test equation multiplied by that equation’s R2.

E X A M P L E 9.16 A Consumption Function

Suppose that consumption expenditure C is a linear function
of “permanent” income Y*

Ct = ω + βY∗t
Permanent income is unobserved. We will assume that it con-
sists of a trend term and a geometrically weighted average of
observed current and past incomes, Yt, Yt−1,…

Y∗t = γ0 + γ1t + γ2
(
Yt + λYt−1 + λ2Yt−2 + λ3Yt−3 + · · ·

)

where t = 0, 1, 2,… is the trend term. In this model,
consumers anticipate that their income will trend, pre-
sumably upwards, adjusted by a weighted average of their
past incomes. For reasons that will become apparent in
Chapter 12, it is convenient to consider a differenced
version of the model where we relate the change in con-
sumption DCt = Ct – Ct−1 to the change in actual income
DYt = Yt – Yt−1. This version of the model can be written as

DCt = Ct − Ct−1 =
(
ω + βY∗t

)
−
(
ω + βY∗t−1

)
= β

(
Y∗t − Y∗t−1

)

= β
{
γ0 + γ1t + γ2

(
Yt + λYt−1 + λ2Yt−2 + λ3Yt−3 + · · ·

)

−
[
γ0 + γ1(t − 1) + γ2

(
Yt−1 + λYt−2 + λ2Yt−3

+ λ3Yt−4 + · · ·
)]}

= βγ1 + βγ2
(
DYt + λDYt−1 + λ2DYt−2 + λ3DYt−3 + · · ·

)

Setting α = βγ1 and β0 = βγ2 and adding an error term, this
equation, in more familiar notation, becomes

DCt=α + β0
(
DYt + λDYt−1 + λ2DYt−2 + λ3DYt−3 +· · ·

)
+ et

(9.75)

Its ARDL(1, 0) representation is

DCt = δ + λDCt−1 + β0DYt + vt (9.76)

To estimate this model, we use quarterly data on Australian
consumption expenditure and national disposable income
from 1959Q3 to 2016Q3, stored in the data file cons_inc.
Estimating (9.76) yields

DC
⋀

t = 478.6 + 0.3369DCt−1 + 0.0991DYt

(se) (74.2) (0.0599) (0.0215)

The delay multipliers from this model are 0.0991, 0.0334,
0.0112, …. The total multiplier is 0.0991∕(1 − 0.3369) =
0.149. At first, these values may seem low for what could be
interpreted as a marginal propensity to consume. However,
because a trend term is included in the model, we are
measuring departures from that trend. The LM test for
serial correlation in the errors described in Section 9.4.2
was conducted for lags 1, 2, 3, and 4; in each case, a null
hypothesis of no serial correlation was not rejected at a 5%
significance level. To see if this lack of serial correlation
in the errors could be attributable to an AR(1) model with
parameter λ for the errors in (9.75), the steps for the test in the
previous subsection were followed, yielding a test value of
χ2 = (T − 1) × R2 = 227 × 0.00025 = 0.057. Given the 5%
significance level for a χ2

(1)-distribution is 3.84, we fail to
reject the null hypothesis that the errors in the IDL repre-
sentation can be described by the process et = λet−1 + vt.
Put another way, there is no evidence to suggest that the
existence of an MA(1) error of the form vt = et – λet – 1 is a
source of inconsistency in the estimation of (9.76).

Deriving Multipliers from an ARDL Representation The geometrically declining
lag model is a convenient one if we believe the lag weights do in fact satisfy, or approximately
satisfy, the restrictions βs = λsβ0. However, there are many other lag patterns that may be realistic.
The largest impact of a change in an explanatory variable may not be felt immediately; the lag
weights may increase at first and then decline. How do we decide what might be reasonable
restrictions to impose? Instead of beginning with the IDL representation and choosing restrictions
a priori, an alternative strategy is to begin with an ARDL representation whose lags have been
chosen using conventional model selection criteria and to derive the restrictions on the IDL model
implied by the chosen ARDL model. Specifically, we first estimate the finite number of θ’s and
δ’s from an ARDL model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ0xt + δ1xt−1 + · · · + δqxt−q + vt (9.77)
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For these estimates to be compatible with the infinite number of β’s in the IDL model

yt = α + β0xt + β1xt−1 + β2xt−2 + β3xt−3 + · · · + et (9.78)

restrictions have to be placed on the β’s. The strategy is to find expressions for the β’s in terms
of the θ’s and δ’s such that equations (9.77) and (9.78) are equivalent. One way to do so is to use
recursive substitution, substituting out the lagged dependent variables on the right-hand side of
(9.77), and going back indefinitely. This process becomes messy very quickly, however, partic-
ularly when there are several lags. Our task for the general case is made much easier if we can
master some heavy machinery known as the lag operator.

The lag operator L has the effect of lagging a variable,

Lyt = yt−1

For lagging a variable twice, we have

L
(
Lyt

)
= Lyt−1 = yt−2

which we write as L2yt = yt−2. More generally, L raised to the power of s means lag a variable s
times

Lsyt = yt−s

Now we are in a position to write the ARDL model in terms of lag operator notation.
Equation (9.77) becomes

yt = δ + θ1Lyt + θ2L2yt + · · · + θpLpyt + δ0xt + δ1Lxt + δ2L2xt + · · · + δqLqxt + vt (9.79)

Bringing the terms that contain yt to the left side of the equation and factoring out yt and xt yields
(
1 − θ1L − θ2L2 − · · · − θpLp)yt = δ +

(
δ0 + δ1L + δ2L2 + · · · + δqLq)xt + vt (9.80)

This algebra is starting to get heavy. It will be easier if we continue in terms of a specific example.

E X A M P L E 9.17 Deriving Multipliers for an Infinite Lag Okun’s Law Model

In Example 9.13, using data from the file okun5_aus, we esti-
mated a finite distributed lag model for Okun’s Law, with the
change in unemployment DUt related to the current value
and four lags of GDP growth, Gt,Gt−1,… ,Gt−4. Suppose,
instead, that we wanted to entertain an IDL with values for G
going back into the indefinite past. The estimates in Table 9.7
suggest a geometrically declining lag would be inappropriate.
The estimated coefficient for Gt−1 is larger (in absolute value)
than that for Gt and then the coefficients decline. To decide
on what might be a suitable lag distribution, we begin by esti-
mating an ARDL model. After experimenting with different
values for p and q, taking into consideration significance of
the coefficient estimates and the possibility of serial correla-
tion in the errors, we settled on the ARDL(2, 1) model

DUt = δ + θ1DUt−1 + θ2DUt−2 + δ0Gt + δ1Gt−1 + vt
(9.81)

Using the lag operator notation in (9.80), this equation can be
written as

(
1 − θ1L − θ2L2)DUt = δ +

(
δ0 + δ1L

)
Gt + vt (9.82)

Now suppose that it is possible to define an inverse of(
1 − θ1L − θ2L2), that we write as

(
1 − θ1L − θ2L2)−1,

which is such that
(
1 − θ1L − θ2L2)−1(1 − θ1L − θ2L2) = 1

This concept is a bit abstract, but we do not have to figure
the inverse out. Using it will seem like magic the first time
that you encounter it. Stick with us. We have nearly reached
the essential result. Multiplying both sides of (9.82) by(
1 − θ1L − θ2L2)−1 yields

DUt =
(
1 − θ1L − θ2L2)−1δ

+
(
1 − θ1L − θ2L2)−1 ×

(
δ0 + δ1L

)
Gt

+
(
1 − θ1L − θ2L2)−1vt (9.83)

This representation is useful because we can equate it with
the IDL representation

DUt = α + β0Gt + β1Gt−1 + β2Gt−2 + β3Gt−3 + · · · + et

= α +
(
β0 + β1L + β2L2 + β3L3 + · · ·

)
Gt + et (9.84)
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For (9.83) and (9.84) to be identical, it must be true that
α =

(
1 − θ1L − θ2L2)−1δ (9.85)

β0 + β1L + β2L2 + β3L3 + · · ·

=
(
1 − θ1L − θ2L2)−1(δ0+ δ1L

)
(9.86)

et =
(
1 − θ1L − θ2L2)−1vt (9.87)

Equation (9.85) can be used to derive α in terms of θ1, θ2, and
δ, and equation (9.86) can be used to derive the β’s in terms of
the θ’s and δ’s. To see how, first multiply both sides of (9.85)
by

(
1 − θ1L − θ2L2) to obtain

(
1 − θ1L − θ2L2) α = δ. Then,

recognizing that the lag of a constant is the same constant
(Lα = α), we have

(
1 − θ1 − θ2

)
α = δ and α = δ

1 − θ1 − θ2

Turning now to the β’s, we multiply both sides of (9.86) by(
1 − θ1L − θ2L2) to obtain
δ0 + δ1L =

(
1 − θ1L − θ2L2)(β0 + β1L + β2L2 + β3L3 + · · ·

)

= β0 + β1L + β2L2 + β3L3 + · · ·
−θ1β0L − θ1β1L2 − θ1β2L3 − · · ·

− θ2β0L2 − θ2β1L3 − · · ·

= β0 +
(
β1 − θ1β0

)
L +

(
β2 − θ1β1 − θ2β0

)
L2

+
(
β3 − θ1β2 − θ2β1

)
L3 + · · · (9.88)

Notice how we can do algebra with the lag operator. We have
used the fact that LrLs = Lr+s.

Equation (9.88) holds the key to deriving the β’s in
terms of the θ’s and the δ’s. For both sides of this equation to
mean the same thing (to imply the same lags), coefficients of
like powers in the lag operator must be equal. To make what
follows more transparent, we rewrite (9.88) as

δ0 + δ1L + 0L2 + 0L3

= β0 +
(
β1 − θ1β0

)
L +

(
β2 − θ1β1 − θ2β0

)
L2

+
(
β3 − θ1β2 − θ2β1

)
L3 + · · · (9.89)

Equating coefficients of like powers in L yields

δ0 = β0

δ1 = β1 − θ1β0

0 = β2 − θ1β1 − θ2β0

0 = β3 − θ1β2 − θ2β1

and so on. Thus, the β’s can be found from the θ’s and the δ’s
using the recursive equations

β0 = δ0

β1 = δ1 + θ1β0

βj = θ1βj−1 + θ2βj−2 for j ≥ 2 (9.90)

You are probably asking: Do I have to go through all this each time I want to derive some multi-
pliers for an ARDL model? The answer is no. You can start from the equivalent of equation (9.88)
which, in its general form, is

δ0 + δ1L + δ2L2 + · · · + δqLq =
(
1 − θ1L − θ2L2 − · · · − θpLp)

×
(
β0 + β1L + β2L2 + β3L3 + · · ·

)
(9.91)

Given the values p and q for your ARDL model, you need to multiply out the above expression,
and then equate coefficients of like powers in the lag operator.

E X A M P L E 9.18 Computing the Multiplier Estimates for the Infinite Lag Okun’s
Law Model

Using the data file okun5_aus, the estimated ARDL(2,1)
model for Okun’s Law is

DUt

⋀

= 0.1708 + 0.2639DUt−1 + 0.2072DUt−2

(se) (0.0328) (0.0767) (0.0720)
− 0.0904Gt − 0.1296Gt−1

(0.0244) (0.0252) (9.92)

Using the relationships in (9.90), the impact multiplier and
the delay multipliers for the first 4 quarters are given by16

β̂0 = δ̂0 = −0.0904
β̂1 = δ̂1 + θ̂1β̂0 = −0.129647 − 0.263947 × 0.090400

= −0.1535
β̂2 = θ̂1β̂1 + θ̂2β̂0 = −0.263947 × 0.153508

− 0.207237 × 0.090400 = −0.0593

............................................................................................................................................
16In the calculations, we carry the values to six decimal places to minimize rounding error.
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β̂3 = θ̂1β̂2 + θ̂2β̂1 = −0.263947 × 0.059252
− 0.207237 × 0.153508 = −0.0475

β̂4 = θ̂1β̂3 + θ̂2β̂2 = −0.263947 × 0.047452
− 0.207237 × 0.059252 = −0.0248

An increase in GDP growth leads to a fall in unem-
ployment. The effect increases from the current quarter to
the next quarter, declines dramatically after that and then
gradually declines to zero. This property—that the weights
at long lags go to zero—is an essential one for the above
analysis to be valid. The weights are displayed in Figure 9.12
for lags up to 10 quarters.

To estimate the total multiplier that is given by ∑∞
j=0 βj,

we can sum the progressions implied by (9.90), but an eas-
ier way is to assume the process is in long-run equilibrium
with no changes in DU and G, and to examine the effect of
a change in G on the long-run equilibrium. Being in log-run
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FIGURE 9.12 Lag distribution from Okun’s Law ARDL(2, 1) model.

equilibrium means we can ignore the time subscript and the
error term in (9.92), giving

DU = 0.1708 + 0.2639DU + 0.2072DU − 0.0904G
− 0.1296G

or

DU = 0.1708 − (0.0904 + 0.1296)G
1 − 0.2639 − 0.2072 = 0.3229 − 0.4160G

The total multiplier is given by d(DU)∕dG = −0.416.
The sum of the lag coefficients in Figure 9.12 is∑10

s=0 β̂s = −0.414; most of the impact of a change in G is felt
in the first 10 quarters. An estimate of the normal growth rate
that is needed to maintain a constant rate of unemployment
is ĜN = −α̂

/∑∞
j=0 β̂j = 0.3229∕0.416 = 0.78%. The total

multiplier estimate from the finite distributed lag model was
higher in absolute value at −0.528, but the estimate of the
normal growth rate was the same at 0.78%.

The Error Term In Example 9.18, we used least squares to estimate the ARDL model and
conveniently ignored the error term. The question we need to ask is whether the error term will
be such that the least squares estimator is consistent. In equation (8.47), we found that

et =
(
1 − θ1L − θ2L2)−1vt

Multiplying both sides of this equation by
(
1 − θ1L − θ2L2) gives

(
1 − θ1L − θ2L2) et = vt

et − θ1et−1 − θ2et−2 = vt

et = θ1et−1 + θ2et−2 + vt
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In the general ARDL(p, q) model, this equation becomes
et = θ1et−1 + θ2et−2 + · · · + θpet−p + vt (9.93)

For vt to be uncorrelated, which is required for least squares estimation of the ARDL model to
be consistent, the errors et must satisfy (9.93). That is, they must follow an AR(p) process with
the same coefficients as in the AR component of the ARDL model. The test for consistency of
least squares described earlier in the context of the geometric lag model can be extended to the
general case.

E X A M P L E 9.19 Testing for Consistency of Least Squares Estimation
of Okun’s Law

The starting point for this test is the assumption that the errors
et in the IDL representation follow an AR(2) process

et = ψ1et−1 + ψ2et−2 + vt

with the vt being uncorrelated. Then, given the ARDL
representation

DUt = δ + θ1DUt−1 + θ2DUt−2 + δ0Gt + δ1Gt−1 + vt
(9.94)

the null hypothesis is H0∶ψ1 = θ1, ψ2 = θ2. To find the
test statistic, we compute êt = θ̂1êt−1 + θ̂2êt−2 + ût where
the ût are the residuals from the estimated equation in
(9.92). Then, regressing ût on a constant, DUt−1, DUt−2,
Gt, Gt−1, êt−1, and êt−2 yields R2 = 0.02089 and a test value
χ2 = (T – 3) × R2 = 150 × 0.02089 = 3.13. The 5% critical
value is χ2

(0.95, 2) = 5.99 implying we fail to reject H0 at
a 5% significance level. There is not sufficient evidence
to conclude that serially correlated errors are a source of
inconsistency in least squares estimation of (9.94).

Assumptions for the Infinite Distributed Lag Model Several assumptions
underlie least squares estimation of the consumption function and Okun’s Law examples. Here
we summarize those assumptions and discuss implications of variations of them.

IDL1: The time series y and x are stationary and weakly dependent.
IDL2: The infinite distributed lag model describing how y responds to current and past values

of x can be written as
yt = α + β0xt + β1xt−1 + β2xt−2 + · · · + et (9.95)

with βs → 0 as s →∞.
IDL3: Corresponding to (9.95) is an ARDL(p, q) model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ0xt + δ1xt−1 + · · · + δqxt−q + vt (9.96)
where vt = et – θ1et−1 − θ2et−2 − · · · − θpet−p.

IDL4: The errors et are strictly exogenous,
E
(
et|X

)
= 0

where X includes all current, past, and future values of x.
IDL5: The errors et follow the AR(p) process

et = θ1et−1 + θ2et−2 + · · · + θpet−p + ut

where
i. ut is exogenous with respect to current and past values of x and past values of y,

E
(
ut|xt, xt−1, yt−1, xt−2, yt−2,…

)
= 0

ii. ut is homoskedastic, var
(
ut|xt

)
= σ2

u
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Under assumptions IDL2 and IDL3, expressions for the lag weights βs in terms of the parame-
ters θ’s and δ’s can be found by equating coefficients of like powers of the lag operator in the
product

δ0 + δ1L + δ2L2 + · · · + δqLq =
(
1 − θ1L − θ2L2 − · · · − θpLp)

×
(
β0 + β1L + β2L2 + β3L3 + · · ·

)
(9.97)

The assumption IDL5 is a very special case of an autocorrelated error model for (9.95) and for
that reason we described a test of its validity. It is required for least squares estimation of (9.96)
to be consistent. Because the exogeneity assumption IDL5(i) includes all past values of y, it is
sufficient to ensure vt will not be autocorrelated; IDL5(ii) is needed for OLS standard errors to
be valid. If IDL5 holds and least squares estimates of (9.96) are used to find estimates of the β’s
through equation (9.97), strict exogeneity for et (IDL4) is required for the β’s to have a causal
interpretation. This requirement is similar to that for nonlinear least squares and generalized least
squares estimation of the autocorrelated error model.

An alternative assumption to IDL5 is

IDL5*: The errors et are uncorrelated, cov
(
et, es|xt, xs

)
= 0 for t ≠ s and homoskedastic,

var
(
et|xt

)
= σ2

e .

In this case, the errors vt = et – θ1et−1 − θ2et−2 − · · · − θpet−p follow an MA(p) process, and
least squares estimation of (9.96) is inconsistent. The instrumental variables approach studied
in Chapter 10 can be used as an alternative.

Finally, we note that both an FDL model with autocorrelated errors and an IDL model can
be transformed to ARDL models. Thus, an issue that arises after estimating an ARDL model is
whether to interpret it as an FDL model with autocorrelated errors or an IDL model. An attractive
way out of this dilemma is to assume an FDL model and use HAC standard errors. In many cases,
an IDL model will be well approximated by an FDL, and using HAC standard errors avoids having
to make the restrictive strict exogeneity assumption.

9.6 Exercises

9.6.1 Problems
9.1 a. Show that the mean-squared forecast error E

[(
ŷT+1 − yT+1

)2|||IT

]
for a forecast ŷT+1, that depends

only on past information IT, can be written as

E
[(

ŷT+1 − yT+1
)2|||IT

]
= E

[{(
ŷT+1 − E

(
yT+1||IT

))
−
(

yT+1 − E
(
yT+1||IT

))}2||||IT

]

b. Show that E
[(

ŷT+1 − yT+1
)2|||IT

]
is minimized by choosing ŷT+1 = E

(
yT+1|IT

)
.

9.2 Consider the AR(1) model yt = δ + θyt−1 + et where |θ| < 1,E
(
et|It−1

)
= 0 and var

(
et|It−1

)
= σ2. Let

y−1 =
∑T

t=2 yt∕(T − 1) (the average of the observations on y with the first one missing) and y−T =∑T
t=2 yt−1∕(T − 1) (the average of the observations on y with the last one missing).

a. Show that the least squares estimator for θ can be written as

θ̂ = θ +
∑T

t=2 et
(
yt−1 − y−T

)
∑T

t=2
(
yt−1 − y−T

)2

b. Explain why θ̂ is a biased estimator for θ.
c. Explain why θ̂ is a consistent estimator for θ.
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9.3 Consider a stationary model that combines the AR(2) model yt = δ + θ1yt−1 + θ2yt−2 + et with an
AR(1) error model et = ρet−1 + vt where E

(
vt|It−1

)
= 0. Show that

E
(
yt|It−1

)
= δ(1 − ρ) +

(
θ1 + ρ

)
yt−1 +

(
θ2 − θ1ρ

)
yt−2 − θ2ρyt−3

Why will the assumption E
(
yt|It−1

)
= δ + θ1yt−1 + θ2yt−2 be violated if the errors are

autocorrelated?
9.4 Consider the ARDL(2, 1) model

yt = δ + θ1yt−1 + θ2yt−2 + δ1xt−1 + et

with auxiliary AR(1) model xt = α + ϕxt−1 + vt, where It =
{

yt, yt−1,… , xt, xt−1,…
}

, E
(
et|It−1

)
= 0,

E
(
vt|It−1

)
= 0, var

(
et|It−1

)
= σ2

e , var
(
vt|It−1

)
= σ2

v , and vt and et are independent. Assume that sample
observations are available for t = 1, 2,… , T.
a. Show that the best forecasts for periods T + 1, T + 2 and T + 3 are given by

ŷT+1 = δ + θ1yT + θ2yT−1 + δ1xT

ŷT+2 = δ + δ1α + θ1ŷT+1 + θ2yT + δ1ϕxT

ŷT+3 = δ + δ1α + δ1ϕα + θ1ŷT+2 + θ2ŷT+1 + δ1ϕ2xT

b. Show that the variances of the forecast errors are given by

σ2
"1 = E

((
yT+1 − ŷT+1

)2|||IT

)
= σ2

e

σ2
"2 = E

((
yT+2 − ŷT+2

)2|||IT

)
=
(
1 + θ2

1
)
σ2

e + δ
2
1σ

2
v

σ2
"3 = E

((
yT+3 − ŷT+3

)2|||IT

)
=
((
θ2

1 + θ2
)2 + θ2

1 + 1
)
σ2

e + δ
2
1

((
θ1 + ϕ

)2 + 1
)
σ2

v

9.5 Let et denote the error term in a time series regression. We wish to compare the autocorrelations from
an AR(1) error model et = ρet−1 + vt with those from an MA(1) error model et = ϕvt−1 + vt. In both
cases, we assume that E

(
vtvt−s

)
= 0 for s ≠ 0 and E

(
v2

t
)
= σ2

v . Let ρs = E
(
etet−s

)
∕var

(
et
)

be the s-th
order autocorrelation for et. Show that,
a. for an AR(1) error model, ρ1 = ρ, ρ2 = ρ2, ρ3 = ρ3,…
b. for an MA(1) error model, ρ1 = ϕ∕

(
1 + ϕ2) , ρ2 = 0, ρ3 = 0,…

Describe in words the difference between the two autocorrelation structures.
9.6 This question is designed to clarify some of the results used to explain HAC standard errors.

a. Given that var
⋀(

q̂t
)
=(T − 2)−1∑T

t=1
(
xt − x

)2ê2
t and s2

x = T−1∑T
t=1

(
xt − x

)2, show that
T∑

t=1
var
⋀(

q̂t
)

T2
(
s2

x
)2 =

T
∑T

t=1
(
xt − x

)2ê2
t

(T − 2)
(∑T

t=1
(
xt − x

)2)2

b. For T = 4, write out all the terms in the summations

(i)
T−1∑
t=1

T−t∑
s=1

cov
(
qt, qt+s

)
and (ii)

T−1∑
s=1

(T − s) cov
(
qt, qt+s

)

What assumption is necessary for these two summations to be equal?
c. For the simple regression model yt = α + β0xt + et with E

(
et|xt

)
= 0 show that

cov
(
et, es|xt, xs

)
= 0 for t ≠ s implies cov

(
qt, qs

)
= 0 where qt =

(
xt – μx

)
et.

9.7 In Section 9.5.3, we described how a generalized least squares (GLS) estimator for α and β0 in the
regression model yt = α + β0xt + et, with AR(1) errors et = ρet−1 + vt and known ρ, can be computed
by applying OLS to the transformed model y∗t = α∗ + β0x∗t + vt where y∗t = yt − ρyt−1, α* = α(1 − ρ)
and x∗t = xt − ρxt−1. In large samples, the GLS estimator is minimum variance because the vt are
homoskedastic and not autocorrelated. However, x∗t and y∗t can only be found for t = 2, 3,… , T. One
observation is lost through the transformation. To ensure the GLS estimator is minimum variance in
small samples, a transformed observation for t = 1 has to be included. Let e∗1 =

√
1 − ρ2e1.

a. Using results in Appendix 9B, show that var
(
e∗1
)
= σ2

v and that e∗1 is uncorrelated with vt,
t = 2, 3,… , T.
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b. Explain why the result in (a) implies OLS applied to the following transformed model will yield
a minimum variance estimator

y∗t = αjt + β0x∗t + e∗t

where y∗t = yt − ρyt−1, jt = 1 − ρ, x∗t = xt − ρxt−1, and e∗t = et − ρet−1 = vt for t = 2, 3,… , T, and,
for t = 1, y∗1 =

√
1 − ρ2y1, j1 =

√
1 − ρ2, and x∗1 =

√
1 − ρ2x1. This estimator, particularly when

it is used iteratively with an estimate of ρ, is often known as the Prais–Winsten estimator.
9.8 Consider the following distributed lag model relating the percentage growth in private investment

(INVGWTH) to the federal funds rate of interest (FFRATE).

INVGWTHt = 4 − 0.4FFRATEt − 0.6FFRATEt−1 − 0.3FFRATEt−2 − 0.2FFRATEt−3

a. Suppose FFRATE = 1% for t = 1, 2, 3, 4. Use the abovementioned equation to forecast INVGWTH
for t = 4.

b. Suppose that FFRATE is raised by one percentage point to 2% in period t = 5 and then returned
to its original level of 1% for t = 6, 7, 8, 9. Use the equation to forecast INVGWTH for periods
t = 5, 6, 7, 8, 9. Relate the changes in your forecasts to the values of the coefficients. What are the
delay multipliers?

c. Suppose that FFRATE is raised to 2% for periods t = 5, 6, 7, 8, 9. Use the equation to forecast
INVGWTH for periods t = 5, 6, 7, 8, 9. Relate the changes in your forecasts to the values of the
coefficients. What are the interim multipliers? What is the total multiplier?

9.9 Using 157 weekly observations on sales revenue (SALES) and advertising expenditure (ADV) in mil-
lions of dollars for a large department store, the following relationship was estimated

SALES
⋀

t = 18.74 + 1.006ADVt + 3.926ADVt−1 + 2.372ADVt−2

a. How many degrees of freedom are there for this estimated model? (Take into account the obser-
vations lost through lagged variables.)

b. Describe the relationship between sales and advertising expenditure. Include an explanation of the
lagged relationship. When does advertising have its greatest impact? What is the total effect of a
sustained $1 million increase in advertising expenditure?

c. The estimated covariance matrix of the coefficients is

C ADVt ADVt−1 ADVt−2

C 0.2927 −0.1545 −0.0511 −0.0999
ADVt −0.1545 0.4818 −0.3372 0.0201
ADVt−1 −0.0511 −0.3372 0.7176 −0.3269
ADVt−2 −0.0999 0.0201 −0.3269 0.4713

Using a two-tail test and a 5% significance level, which lag coefficients are significantly different
from zero? Do your conclusions change if you use a one-tail test? Do they change if you use a 10%
significance level?

d. Find 95% confidence intervals for the impact multiplier, the one-period interim multiplier, and the
total multiplier.

9.10 Consider the following time series sample of size T = 10 on a random variable yt whose sample mean
is y = 0.

t 1 2 3 4 5 6 7 8 9 10
yt 1 4 8 5 4 −3 0 −5 −9 −5

a. Use a hand calculator or spreadsheet to compute the sample autocorrelations

r1 =
∑T

t=2ytyt−1∑T
t=1y2

t

r2 =
∑T

t=3ytyt−2∑T
t=1y2

t
r3 =

∑T
t=4ytyt−3∑T

t=1y2
t
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b. Using a 5% significance level, separately test whether r1, r2, and r3 are significantly different from
zero. Sketch the first three bars of the correlogram. Include the significance bounds.

9.11 Using 250 quarterly observations on U.S. GDP growth (G) from 1947Q2 to 2009Q3, we calculate the
following quantities.

250∑
t=1

(
Gt − G

)2
= 333.8558

250∑
t=2

(
Gt − G

)(
Gt−1 − G

)
= 162.9753

250∑
t=3

(
Gt − G

)(
Gt−2 − G

)
= 112.4882

250∑
t=4

(
Gt − G

)(
Gt−3 − G

)
= 30.5802

a. Compute the first three autocorrelations
(
r1 , r2, and r3

)
for G. Test whether each one is signifi-

cantly different from zero at a 5% significance level. Sketch the first three bars of the correlogram.
Include the significance bounds.

b. Given that
250∑
t=2

(
Gt−1 − G−1

)2
= 333.1119 and

250∑
t=2

(
Gt − G1

)(
Gt−1 − G−1

)
= 162.974, where G1 =

∑250
t=2 Gt∕249 = 1.662249 and G−1 =

∑250
t=2 Gt−1∕249 = 1.664257, find least squares estimates of δ

and θ1 in the AR(1) model Gt = δ + θ1Gt−1 + et. Explain the difference between the estimate θ̂1
and the estimate r1 obtained in part (a).

9.12 Increases in the mortgage interest rate increase the cost of owning a house and lower the demand
for houses. In this question, we use three equations to forecast the monthly change in the number
of new one-family houses sold in the United States. In the first equation (XR 9.12.1), the monthly
change in the number of houses DHOMES is regressed against two lags of the monthly change in
the 30-year conventional mortgage rate DIRATE. In the second equation (XR 9.12.2), DHOMES is
regressed against two lags of itself, and in the third equation (XR 9.12.3), two lags of both DHOMES
and DIRATE are included as regressors.

DHOMESt = δ + δ1DIRATEt−1 + δ2DIRATEt−2 + e1,t (XR 9.12.1)
DHOMESt = δ + θ1DHOMESt−1 + θ2DHOMESt−2 + e2,t (XR 9.12.2)
DHOMESt = δ + θ1DHOMESt−1 + θ2DHOMESt−2 + δ1DIRATEt−1 + δ2DIRATEt−2 + e3,t

(XR 9.12.3)
The data used are from January, 1992 (1992M1) to September, 2016 (2016M9). The units of measure-
ment are thousands of new houses for DHOMES and percentage points for DIRATE. After differencing
and allowing for two lags, three observations are lost, resulting in a total of 294 observations that were
used to produce the least squares estimates in Table 9.11.

T A B L E 9.11 Coefficient Estimates for Equations for Forecasting New Houses

XR 9.12.1 XR 9.12.2 XR 9.12.3
Dependent variable DHOMESt ê1, t DHOMESt ê2, t DHOMESt ê3, t

C −0.92 −0.03 0.05 0.05 –1.39 0.65
DHOMESt−1 −0.32 0.04 −0.37 0.53
DHOMESt−2 −0.10 0.16 −0.11 0.14
DIRATEt−1 −46.1 −0.31 −45.6 −0.003
DIRATEt−2 −13.2 −1.17 −35.3 30.8
ê1,t−1 −0.39 −0.05 −0.54
ê1,t−2 −0.14 −0.17 0.03
SSE 634312 550482 599720 597568 555967 550770

a. Given DHOMES2016M8 = −54, DHOMES2016M9 = 18, DIRATE2016M8 = 0.00, DIRATE2016M9 =
0.02, and DIRATE2016M10 = −0.01, use each of the three estimated equations to find 95% forecast
intervals for DHOMES2016M10 and DHOMES2016M11. Comment on the results.

b. Using a 5% significance level, test for autocorrelated errors in each of the equations.
c. Using a 5% significance level, test whether DIRATE Granger causes DHOMES.
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9.13 Consider the infinite lag representation yt = α +
∑∞

s=0 βsxt−s + et for the ARDL model

yt = δ + θ1yt−1 + θ3yt−3 + δ1xt−1 + vt

a. Show that α = δ∕
(
1 − θ1 − θ3

)
, β0 = 0, β1 = δ1, β2 = θ1β1, β3 = θ1β2, and βs = θ1βs−1 + θ3βs−3

for s ≥ 4.
b. Using quarterly data on U.S. inflation (INF), and the change in the unemployment rate (DU) from

1955Q2 to 2016Q1, we estimate the following version of a Phillips curve

INF
⋀

t = 0.094 + 0.564INFt−1 + 0.333INFt−3 − 0.300DUt−1
(se) (0.049) (0.051) (0.052) (0.084) SSE = 48.857

c. Using the results in part (a), find estimates of the first 12 lag weights in the infinite lag repre-
sentation of the estimated Phillips curve in part (b). Graph those weights and comment on the
graph.

d. What rate of inflation is consistent with a constant unemployment rate (where DU = 0 in all time
periods)?

e. Let êt = 0.564êt−1 + 0.333êt−3 + ût where the ût are the residuals from the equation in part (b),
and the initial values ê1, ê2, and ê3 are set equal to zero. The SSE from regressing ût on a constant,
INFt−1, INFt−3DUt−1, êt−1, and êt−3 is 47.619. Using a 5% significance level, test the hypothesis that
the errors in the infinite lag representation follow the AR(3) process et = θ1et−1 + θ3et−3 + vt. The
number of observations used in this regression and that in part (b) is 241. What are the implications
of this test result?

9.14 Inflationary expectations play an important role in wage negotiations between employers and employ-
ees. In this exercise, we examine how inflationary expectations of Australian businesses, collected by
National Australia Bank surveys, depend on past inflation rates. The data are quarterly and run from
1989Q3 to 2016Q1. The basic model being estimated is

EXPNt = α + β1INFt−1 + et

where EXPNt is the expected percentage price increase for 3 months ahead and INFt−1 is the inflation
rate in the previous 3 months. The left-hand panel of estimates in Table 9.12 contains OLS estimates
of α and β1 with conventional and HAC standard errors. The right-hand panel contains nonlinear
least squares estimates and both sets of standard errors assuming the equation errors follow the AR(1)
process et = ρet−1 + vt. The first three sample autocorrelations of the residuals are also reported for
each of the estimations.

T A B L E 9.12 Estimates for Inflationary Expectations Model

OLS Estimates AR(1) Error Model
OLS HAC NLS HAC

Coefficients Standard Errors Standard Errors Coefficients Standard Errors Standard Errors
α 1.437 0.110 0.147 1.637 0.219 0.195
β1 0.629 0.120 0.188 0.208 0.074 0.086
ρ 0.771 0.063 0.076

r1 = 0.651 r1 = −0.132
r2 = 0.466 r2 = 0.099
r3 = 0.445 r3 = −0.136

Observations = 106 Observations = 105

a. What evidence is there of serial correlation in the errors et? What is the impact of any serial
correlation on interval estimation of β1?

b. Is there any evidence of remaining serial correlation in the errors vt after estimating the model
with an AR(1) error?

c. What is the impact of the AR(1) error assumption on the estimate for β1? Suggest a reason for the
large difference in magnitude.
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d. Show that the AR(1) error model can be written as

EXPNt = δ + θ1EXPNt−1 + δ1INFt−1 + δ2INFt−2 + vt

where δ = α(1 − ρ), θ1 = ρ, δ1 = β1 and δ2 = −ρβ1.
e. Estimating the unconstrained version of the model in part (d) via OLS yields

EXPN
⋀

t = 0.376 + 0.773EXPNt−1 + 0.206INFt−1 − 0.163INFt−2

(se) (0.121) (0.070) (0.091) (0.090)

Given that se
(
θ̂1δ̂1 + δ̂2

)
= 0.1045, test the hypothesis H0∶θ1δ1 = −δ2 using a 5% significance

level. What is the implication of this test result?
f. Find estimates for the first four lag coefficients of the infinite distributed lag representation of the

equation estimated in part (e).
9.15 a. Write the AR(1) error model et = ρet−1 + vt in lag operator notation.

b. Show that
(1 − ρL)−1 = 1 + ρL + ρ2L + ρ3L3 + · · ·

and hence that
et = vt + ρvt−1 + ρ2vt−2 + ρ3vt−3 + · · ·

9.6.2 Computer Exercises
9.16 Using tha data file usmacro, estimate the ARDL(2, 1) model

Ut = δ + θ1Ut−1 + θ2Ut−2 + δ1Gt−1 + et

Your estimates should agree with the results given in equation (9.42). Use these estimates to verify the
forecast results given in Table 9.4.

9.17 Using the data file usmacro, estimate the AR(1) model Gt = α + ϕGt−1 + vt. From these estimates
and those obtained in Exercise 9.16, use the results from Exercise 9.4 to find point and 95% interval
forecasts for U2016Q2,U2016Q3, and U2016Q4.

9.18 Consider the ARDL(p, q) equation

Ut = δ + θ1Ut−1 + · · · + θpUt−p + δ1Gt−1 + · · · + δqGt−q + et

and the data in the file usmacro. For p = 2 and q = 1, results from the LM test for serially cor-
related errors were reported in Table 9.6 for AR(k) or MA(k) alternatives with k = 1, 2, 3, 4. The
χ2 = T × R2 version of the test, with missing initial values for êt set to zero, was used to obtain those
results. Considering again the model with p = 2 and q = 1, compare the results in Table 9.6 with results
from the following alternative versions of the LM test.
1. The χ2 = T × R2 version of the test, with missing initial values for êt dropped.
2. The F-test for the joint significance of lags of êt, with missing initial values for êt dropped.
3. The F-test for the joint significance of lags of êt, with missing initial values for êt set to zero.

9.19 Consider the ARDL(p, q) equation

Ut = δ + θ1Ut−1 + · · · + θpUt−p + δ1Gt−1 + · · · + δqGt−q + et

and the data in the file usmacro. For p = 2 and q = 1, results from the LM test for serially correlated
errors were reported in Table 9.6 for AR(k) or MA(k) alternatives with k = 1, 2, 3, 4. The χ2 = T × R2

version of the test, with missing initial values for êt set to zero, was used to obtain those results.
a. Using the same test statistic and the same AR and MA alternatives, and a 5% significance level,

test for serially correlated errors in the two models, (p = 4, q = 3) and (p = 6, q = 5).
b. Examine the residual correlograms from the two models in part (a). What do they suggest?

9.20 In Example 9.13, the following finite distributed lag model was estimated for Okun’s Law using the
data file okun5_aus.

DUt = α + β0Gt + β1Gt−1 + β2Gt−2 + β3Gt−3 + β4Gt−4 + et
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a. Find the correlogram of the least squares residuals for this model. Is there any evidence of auto-
correlation?

b. Test for autocorrelation in the residuals using the χ2 = T × R2 version of the LM test, with missing
initial values for êt set to zero, and lags up to 4. Is there any evidence of autocorrelation?

c. Compare 95% interval estimates for the coefficients obtained using conventional OLS standard
errors with those obtained using HAC standard errors.

9.21 In Examples 9.14 and 9.15, we considered the Phillips curve

INFt = INFE
t − γ

(
Ut − Ut−1

)
+ et = α + β0DUt + et

where inflationary expectations are assumed to be constant, INFE
t = α, and β0 = −γ. In Example 9.15,

we used data in the file phillips5_aus to estimate this model assuming the errors follow an AR(1) model
et = ρet−1 + vt. Nonlinear least squares estimates of the model were α̂ = 0.7028, β̂0 = −0.3830, and
ρ̂ = 0.5001. The equation from these estimates can be written as the following ARDL representation
(see equation (9.68))

INF
⋀

t = α̂
(
1 − ρ̂

)
+ ρ̂INFt−1 + β̂0DUt − ρ̂β̂0DUt−1

= 0.7028 ×(1 − 0.5001) + 0.5001INFt−1 − 0.3830DUt +(0.5001 × 0.3830)DUt−1

= 0.3513 + 0.5001INFt−1 − 0.3830DUt + 0.1915DUt−1

(XR 9.21.1)

Instead of assuming that this ARDL(1, 1) model is a consequence of an AR(1) error, another possi-
ble interpretation is that inflationary expectations depend on actual inflation in the previous quarter,
INFE

t = δ + θ1INFt−1. If DUt−1 is retained because of a possible lagged effect, and we change notation
so that it is line with what we are using for a general ARDL model, we have the equation

INFt = δ + θ1INFt−1 + δ0DUt + δ1DUt−1 + et (XR 9.21.2)

a. Find least squares estimates of the coefficients in (XR 9.21.2) and compare these values with those
in (XR 9.21.1). Use HAC standard errors.

b. Reestimate (XR 9.21.2) after dropping DUt−1. Why is it reasonable to drop DUt−1?
c. Now, suppose that inflationary expectations depend on inflation in the previous quarter and inflation

in the same quarter last year, INFE
t = δ + θ1INFt−1 + θ4INFt−4. Estimate the model that corre-

sponds to this assumption.
d. Is there empirical evidence to support the model in part (c)? In your answer, consider (i) the residual

correlograms from the equations estimated in parts (b) and (c), and the significance of coefficients
in the complete ARDL(4, 0) model that includes INFt−2 and INFt−3.

9.22 Using the data file phillips5_aus, estimate the equation

INFt = δ + θ1INFt−1 + θ4INFt−4 + δ0DUt + et

Assuming that the unemployment rate in 2016Q2, 2016Q3 and 2016Q4 remains constant at 6%, use
the estimated equation to find 95% forecast intervals for the inflation rate in those quarters.

9.23 Using the data file phillips5_aus, estimate the equation

INFt = δ + θ1INFt−1 + θ4INFt−4 + δ0DUt + vt

a. Find the first eight lag weights (delay multipliers) of the infinite distributed lag representation that
corresponds to this model. What is the total multiplier?

b. Using a 5% significance level, test the hypothesis that the error term in the infinite distributed lag
representation follows the AR(4) process et = θ1et−1 + θ4et−4 + vt.

9.24 In Example 9.16, we considered a geometrically declining infinite distributed lag model to describe
the relationship between the change in consumption DCt = Ct – Ct−1 and the change in income
DYt = Yt – Yt−1. In this exercise, we consider instead a finite distributed lag model of the form

DCt = α +
q∑

s=0
βsDYt−s + et

a. Use the observations in the data file cons_inc to estimate this model assuming q = 4. Use HAC
standard errors. Comment on (i) the distribution of the lag weights and (ii) the significance of your
estimates at a 5% significance level.
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b. Reestimate the equation, dropping the lags whose coefficients were not significant in part (a). Use
HAC standard errors. Have there been any substantial changes in the estimates and standard errors
of the coefficients of the retained lags?

c. Using an LM test with two lags, test for autocorrelation in the errors of the equation estimated in
part (b). Is the use of HAC standard errors justified?

d. Assume that the errors follow the AR(1) process et = ρet−1 + vt with the usual assumptions on vt.
Transform the model estimated in part (b) into one that can be estimated using nonlinear least
squares.

e. Use nonlinear least squares to estimate the model derived in part (d). Use HAC standard errors.
Compare these estimates and their standard errors with those obtained in part (b).

f. Using the results from part (e), find an estimate for the total multiplier and its standard error. Com-
pare these values with those obtained for the model in Example 9.16. (You will need to estimate
the model in Example 9.16 to work out the standard error of its total multiplier.)

9.25 a. Using observations on the change in consumption DCt = Ct – Ct−1 and the change in income DYt =
Yt – Yt−1 from 1959Q3 to 2015Q4, obtained from the data file cons_inc, estimate the following two
models

DCt = δ + θ1DCt−1 + δ0DYt + e1t

DCt = α + β0DYt + β3DYt−3 + e2t

b. Use each model estimated in part (a) to forecast consumption C in 2016Q1, 2016Q2, and 2016Q3.
c. Use the mean-square criterion ∑2016Q3

t=2016Q1
(
Ĉt − Ct

)2 to compare the out-of-sample predictive ability
of the two models.

9.26 Using time series data on five different countries, Atkinson and Leigh17 examine changes in inequality
measured as the percentage income share (SHARE) held by those with the top 1% of incomes. A subset
of their annual data running from 1921 to 2000 can be found in the data file inequality.
a. It is generally recognized that inequality was high prior to the great depression, then declined during

the depression and World War II, increasing again toward the end of the sample period. To capture
this effect, use the observations on New Zealand to estimate the following model with a quadratic
trend

SHAREt = β1 + β2YEARt + β3YEAR2
t + et

where YEARt is defined as 1 = 1921, 2 = 1922,… , 80 = 2000. Plot the observations on SHARE
and the fitted quadratic trend. Does the trend capture the general direction of the changes in SHARE?

b. Find the correlogram of the least-squares residuals from the equation estimated in part (a). How
many of the autocorrelations (up to lag 15) are significantly different from zero at a 5% level of
significance?

c. Reestimate the equation in (a) using HAC standard errors. How do they compare with the con-
ventional standard errors? Using first the conventional coefficient covariance matrix, and then
the HAC covariance matrix, find 95% interval estimates for the expected share in 2001. That is,
E(SHARE|YEAR = 81) = β1 + 81β2 + 812β3. Compare the two intervals.

d. Assuming that the errors in (a) follow the AR(1) error process et = ρet−1 + vt, show that the model
can be rewritten as [Hint: YEARt−1 = YEARt − 1]

SHAREt = β1−ρ
(
β1−β2 + β3

)
+ ρSHAREt−1 +

[
β2−ρ

(
β2−2β3

)]
YEARt + β3(1 − ρ)YEAR2

t + vt

e. Estimate the equation in part (d) using nonlinear least squares. Plot the quadratic trend and compare
it with that obtained in part (a).

f. Estimate the following equation using OLS and use the estimates of δ1, δ2, δ3, and ρ to retrieve
estimates of β1, β2, and β3. How do they compare with the nonlinear least squares estimates obtained
in part (e)?

SHAREt = δ1 + ρSHAREt−1 + δ2YEARt + δ3YEAR2
t + vt

............................................................................................................................................................
17Atkinson, A.B. and A. Leigh (2013), “The Distribution of Top Incomes in Five Anglo-Saxon Countries over the Long
Run”, Economic Record, 89, 1–17.
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g. Find the correlogram of the least-squares residuals from the equation estimated in part (f). How
many of the autocorrelations (up to lag 15) are significantly different from zero at a 5% level of
significance?

h. Using the equation estimated in part (f), find a 95% interval estimate for the expected share in 2001.
That is, E

(
SHARE2001|YEAR = 81, SHARE2000 = 8.25

)
. Compare this interval with those obtained

in part (c).
9.27 Reconsider the data file inequality used in Exercise 9.26 and the model in part (a) of that exercise but

include the median marginal tax rate for the upper 1% of incomes (TAX). We are interested in whether
the marginal tax rate is a useful instrument for reducing inequality. The resulting model is

SHAREt = α1 + α2TAXt + α3YEARt + α4YEAR2
t + et

a. Estimate this equation using data for Canada. Obtain both conventional and HAC standard errors.
Compare the 95% interval estimates for α2 from each of the standard errors.

b. Use an LM test with a 5% significance level and three lagged residuals to test for autocorrelation
in the errors of the equation estimated in part (a). What do you conclude about the use of HAC
standard errors in part (a)?

c. Estimate a parameter ρ by applying OLS to the equation êt = ρêt−1 + v̂t where êt are the least
squares residuals from part (a). What assumption is being made when you estimate this equation?

d. Transform each of the variables in the original equation using a transformation of the form x∗t = xt −
ρ̂xt−1 and apply OLS to the transformed variables. Compute both conventional and HAC standard
errors. Find the resulting 95% interval estimates for α2. Compare them with each other and with
those found in part (a).

e. Use an LM test with a 5% significance level and three lagged residuals to test for autocorrelation
in the errors of the equation estimated in part (d). What do you conclude about the use of HAC
standard errors in part (d)?

f. For each of the equations estimated in parts (a) and (d), discuss whether the exogeneity assumption
required for consistent estimation of α2 is likely to be satisfied.

9.28 In this exercise, we use a subset of the data compiled by Everaert and Pozzi18 to forecast growth in
per capita private consumption (CONSN) and growth in per capita real disposable income (INC) in
France. Their data are annual from 1971 to 2007 and are stored in the data file france_ep.
a. To forecast consumption growth consider the autoregressive model

CONSNt = δ +
p∑

s=1
θsCONSNt−s + et

Estimate this model for p = 1, 2, 3, and 4. In each case, use 33 observations to ensure the same
number of observations for each value of p. Based on significance of coefficients, autocorrelation
in the residuals, and the Schwarz criterion, choose a suitable value for p.

b. For the choice of p in part (a), reestimate the model using all available observations and use it to
find 95% interval forecasts for CONSN2008, CONSN2009 and CONSN2010.

c. To forecast income growth, consider the ARDL model

INCt = δ +
p∑

s=1
θsINCt−s +

q∑
r=1
δrHOURSt−r + et

Estimate this model for p = 1, 2 and q = 1, 2. In each case, use 35 observations to ensure the same
number of observations for all values of p and q. Use the Schwarz criterion to choose between the
four models. In the model of your choice, are the coefficient estimates significantly different from
zero at a 5% level? At a 10% level? Does the correlogram of residuals suggest that there is any
serial correlation?

d. Use the model chosen in part (c) to find 95% interval forecasts for INC2008, INC2009, and INC2010,
given that HOURS2008 = HOURS2009 = −0.0066.

9.29 One way of modeling supply response for an agricultural crop is to specify a model in which area
planted AREA depends on expected price, PRICE∗. A log-log (constant elasticity) version of this

............................................................................................................................................................
18Everaert, G. and L. Ponzi (2014), “The Predictability of Aggregate Consumption Growth in OECD Countries: a Panel
Data Analysis,” Journal of Applied Econometrics, 29(3), 431–453.
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model is ln
(
AREAt

)
= α + γ ln

(
PRICE∗t+1

)
+ et where PRICE∗t+1 is expected price in the next period

when harvest takes place. When farmers expect price to be high, they plant more than when a low
price is expected. Since they do not know the price at harvest time, we assume that they base their
expectations on current and past prices, ln

(
PRICE∗t+1

)
= ∑q

s=0γs ln
(
PRICEt−s

)
, with more recent

prices given a greater weight, γ0 > γ1 > · · · > γq. We use this model to explain the area of sugar
cane planted in a region of the Southeast Asian country of Bangladesh. Information on the delay and
interim elasticities is useful for government planning. It is important to know whether existing sugar
processing mills are likely to be able to handle predicted output, whether there is likely to be excess
milling capacity, and whether a pricing policy linking production, processing, and consumption
is desirable. Data comprising 73 annual observations on area and price are given in the data
file bangla5.
a. Let βs = γγs. Show that the model can be written as the finite distributed lag model

ln
(
AREAt

)
= α +

q∑
s=0
βsln

(
PRICEt−s

)
+ et

b. Estimate the model in part (a) assuming q = 3. Use HAC standard errors. What are the estimated
delay and interim elasticities? Comment on the results. What are the first four autocorrelations of
the residuals? Are they significantly different from zero at a 5% significance level?

c. You will have discovered that the lag weights obtained in part (a) do not satisfy a priori expectations.
One way to try and overcome this problem is to insist that the weights lie on a straight line

βs = α0 + α1s s = 0, 1, 2, 3

If α0 > 0 and α1 < 0, these weights will decline implying farmers place a larger weight on more
recent prices when forming their expectations. Substitute βs = α0 + α1s into the original equation
and hence show that this equation can be written as

ln
(
AREAt

)
= α + α0zt0 + α1zt1 + et

where zt0 =
∑3

s=0ln
(
PRICEt−s

)
and zt1 =

∑3
s=1 s ln

(
PRICEt−s

)
.

d. Create variables zt0 and zt1 and find least squares estimates of α0 and α1. Use HAC standard errors.
e. Use the estimates for α0 and α1 to find estimates for βs = α0 + α1s and comment on them. Has the

original problem been cured? Do the weights now satisfy a priori expectations?
f. How do the delay and interim elasticities compare with those obtained earlier?

9.30 In this exercise, we consider a partial adjustment model as an alternative to the model used in Exercise
9.29 for modeling sugar cane area response in Bangladesh. The data are in the file bangla5. In the
partial adjustment model long-run desired area, AREA* is a function of price,

AREA∗t = α + β0PRICEt (XR 9.30.1)

In the short-run, fixed resource constraints prevent farmers from fully adjusting to the area desired at
the prevailing price. Specifically,

AREAt − AREAt−1 = γ
(
AREA∗t − AREAt−1

)
+ et (XR 9.30.2)

where AREAt – AREAt−1 is the actual adjustment from the previous year, AREA∗t − AREAt−1 is the
desired adjustment from the previous year, and 0 < γ < 1.
a. Combine (XR 9.30.1) and (XR 9.30.2) to show that an estimable form of the model can be written

as
AREAt = δ + θ1 AREAt−1 + δ0PRICEt + et

where δ = αγ, θ1 = 1 – γ, and δ0 = β0γ.
b. Find least squares estimates of δ, θ1, and δ0. Are they significantly different from zero at a 5%

significance level?
c. What are the first three autocorrelations of the residuals? Are they significantly different from zero

at a 5% significance level?
d. Find estimates and standard errors for α, β0, and γ. Are the estimates significantly different from

zero at a 5% significance level?
e. Find an estimate of AREA∗73 and compare it with AREA73.
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f. Forecast AREA74, AREA75,… , AREA80 assuming that price in the next 7 years does not change from
the last sample value

(
PRICE74 = PRICE75 = · · · = PRICE80 = PRICE73

)
. Comment on these

forecasts and compare the forecast AREA
⋀

80 with AREA∗80 estimated from (XR 9.30.1).
9.31 Using data on the Maltese economy, Apap and Gravino19 estimate a number of versions of Okun’s

Law. Their quarterly data run from 1999Q1 to 2012Q4 and can be found in the data file apap. The
variables used in this exercise are DUt = Ut − Ut−4 (the change in the unemployment rate relative to
the same quarter in the previous year) and Gt (real output growth in quarter t relative to quarter t − 4).
a. Estimate the Okun’s Law equation DUt = α + β0Gt + et. Find both conventional and HAC standard

errors and comment on the results.
b. Check the correlogram of the residuals êt from the equation estimated in part (a). Is there evidence

of autocorrelation?
c. Create the variable qt = Gt × êt, and examine its correlogram. Use this correlogram and

equation (9.63) to suggest a reason why the conventional and HAC standard errors for the estimate
of β0 are similar in magnitude.

d. Estimate the finite distributed lag model
DUt = α + β0Gt + β1Gt−1 + β2Gt−2 + et

Use HAC standard errors. Is there evidence of a lagged effect of growth on unemployment? Using
HAC standard errors in both cases, find a 95% interval estimate for the total multiplier and compare
it with a 95% interval for the total multiplier from the model in part (a).

e. Estimate ARDL models DUt = δ +
∑p

s=1θsDUt−s +
∑q

r=0 δrGt−r + et for p = 1, 2, 3 and q = 0, 1, 2.
Use HAC standard errors. Select and report the model with the largest number of lags whose coef-
ficients are significantly different from zero at a 5% level.

f. For the model selected in part (e), find estimates for the total multiplier, the impact multiplier, and
the first three delay multipliers of the infinite distributed lag representation.

g. For the model selected in part (e), find 95% interval estimates for the total multiplier and the
two-period interim multiplier. How do they compare with the interval obtained in part (d)?

9.32 In their paper referred to in Exercise 9.31, Apap and Gravino examine the separate effects of output
growth in the manufacturing and services sectors on changes in the unemployment rate. Their quarterly
data run from 1999Q1 to 2012Q4 and can be found in the data file apap. The variables used in this
exercise are DUt = Ut – Ut−4 (the change in the unemployment rate relative to the same quarter in the
previous year), MANt (real output growth in the manufacturing sector in quarter t relative to quarter
t − 4), SERt (real output growth in the services sector in quarter t relative to quarter t − 4), MAN_ WTt
(the proportion of real output attributable to the manufacturing sector in quarter t), and SER_ WTt
(the proportion of real output attributable to the services sector in quarter t). The relative effects of
growth in each of the sectors on unemployment will depend not only on their growth rates but also on
the relative size of each sector in the economy. To recognize this fact, construct the weighted growth
variables MAN2 t = MANt ×MAN_ WTt and SER2 t = SERt × SER_ WTt.
a. Use OLS with HAC standard errors to estimate the model

DUt = α + γ0SER2 t + γ1SER2 t−1 + β0MAN2 t + β1MAN2 t−1 + vt

Comment on the relative importance of growth in each sector on changes in unemployment and on
whether there is a lag in the effect from each sector.

b. Use an LM test with two lags and a 5% significance level to test for autocorrelation in the errors
for the equation in part (a).

c. Assume that the errors in the equation in part (a) follow the AR(1) process et = ρet−1 + vt. Show
that, under this assumption, the model can be written as

DUt = α(1 − ρ) + ρDUt−1 + γ0SER2 t +
(
γ1 − ργ0

)
SER2 t−1 − ργ1SER2 t−2

+ β0MAN2 t +
(
β1 − ρβ0

)
MAN2 t−1 − ρβ1MAN2 t−2 + vt

d. Use nonlinear least squares with HAC standard errors to estimate the model in part (c). Have your
conclusions made in part (a) changed?

............................................................................................................................................................
19Apap, W. and D. Gravino (2017), “A Sectoral Approach to Okun’s Law”, Applied Economics Letters 25(5), 319–324.
The authors are grateful to Wayne Apap for providing the data.
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e. Use an LM test with two lags and a 5% significance level to test for autocorrelation in the errors for
the equation in part (d). Is the AR(1) process adequate to model the autocorrelation in the errors
of the original equation.

f. Suppose that, wanting to forecast DU2013Q1 using current and past information, you set up the model

DUt = δ + θ1DUt−1 + θ2DUt−2 + γ1SER2 t−1 + γ2SER2 t−2 + δ1MAN2 t−1 + δ2MAN2 t−2 + vt

i. Have a sufficient number of lags of DU been included?
ii. Using a 5% significance level, test whether SER2 Granger causes DU.

iii. Using a 5% significance level, test whether MAN2 Granger causes DU.
9.33 The data file xrate contains monthly observations from 1986M1 to 2008M12 on the following vari-

ables20:
NER = the nominal exchange rate for the Australian dollar in terms of U.S. cents.
INF_AUS = the Australian inflation rate.
INF_US = the U.S. inflation rate.
DI6_AUS = the percentage change in the interest rate on an Australian government debt instru-

ment of maturity 6 months.
DI6_US = the percentage change in the interest rate on a U.S. government debt instrument of

maturity 6 months.
a. Plot NER against time and examine its correlogram. Does the series wander like a nonstationary

series? Do the autocorrelations die out relatively quickly, suggesting a weakly dependent series?
b. Construct a variable which is the monthly change in the exchange rate, DNERt = NERt – NERt−1.

Plot DNER against time and examine its correlogram. Does the series wander like a nonstationary
series? Do the autocorrelations die out relatively quickly, suggesting a weakly dependent series?

c. Theory suggests that the exchange rate will be higher when Australian inflation is low relative to that
in the United States, and when the Australian interest rate is high relative to the U.S. interest rate.
Construct the two variables DINFt = INF_ AUSt – INF_ USt and DI6t = DI6_ AUSt − DI6_ USt, and
estimate the model (using HAC standard errors)

DNERt = α + β0DINFt + β1DINFt−1 + γ0DI6t + γ1DI6t−1 + et

Comment on the results. Do the coefficients have the expected signs? Are they significantly different
from zero using one-tail tests and a 5% significance level?

d. Reestimate the model in part (c), dropping variables whose coefficients had the wrong sign. Are the
coefficients in the reestimated model significantly different from zero using one-tail tests and a 5%
significance level? Check for serial correlation in the errors, using both the residual correlogram
and an LM test with one lagged residual.

e. Reestimate the model in part (d) using feasible generalized least squares and assuming AR(1)
errors. Estimate the model with both conventional and HAC standard errors. Are the coefficients
in the reestimated model significantly different from zero using one-tail tests and a 5% significance
level?

f. Suppose that the following model is proposed for 1-month ahead forecasting of the exchange rate

DNERt = δ + θ1DNERt−1 + δ1DINFt−1 + ϕ1DI6t−1 + et

Estimate this model using observations from 1986M1 to 2007M12. Does it appear to be a good
model for forecasting?

g. Use the model in part (f) to obtain 1-month ahead forecasts of NER for each of the months in
2008. (Use the actual values of DNERt−1 to obtain each forecast.) Comment on the accuracy of the
forecasts and compute the average absolute forecast error ∑2008M12

t=2008M1
|||NER
⋀

t − NERt
|||
/

12.

9.34 In the new Keynesian Phillips curve (NKPC), inflation at time t
(
INFt

)
depends on inflationary expec-

tations formed at time t for time t + 1
(
INFEXt

)
, and the output gap, defined as output less potential

output. Expectations of higher inflation lead to greater inflation. The closer output is to potential

............................................................................................................................................................
20These data are constructed from the data archive for Berge, T. (2014), “Forecasting Disconnected Exchange Rates,”
Journal of Applied Econometrics 29(5), 713–735.
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output, the higher the inflation rate. Amberger et al.21 compare results from estimating NKPCs with
two output gaps, one that has been augmented with changes in financial variables

(
FNGAPt

)
, and one

that has not
(
GAPt

)
. Quarterly data for Italy for the period 1990Q1 to 2014Q4 can be found in the data

file italy.
a. Using OLS, estimate the two equations

INFt = αG + βGINFEXt + γGGAPt + eGt

INFt = αF + βFINFEXt + γFFNGAPt + eFt

Find 95% interval estimates for γG and γF using both conventional and HAC standard errors. Com-
ment on (i) the relative widths of the intervals with and without HAC standard errors and (ii)
whether one output gap measure is preferred over another in terms of its impact on inflation.

b. What are the values of the first four residual autocorrelations from each of the two regressions in
part (a)? Which ones are significantly different from zero at a 5% significance level?

c. Consider the generic equation yt = α + βxt + γzt + et with AR(2) errors et = ψ1et−1 + ψ2et−2 + vt
where the vt are not autocorrelated. Show that this model can be written as

y∗t = α∗ + βx∗t + γz
∗
t + vt t = 3, 4,… , T

where y∗t = yt − ψ1yt−1 − ψ2yt−2, α* = α
(
1 – ψ1 – ψ2

)
, x∗t = xt − ψ1xt−1 − ψ2xt−2, and

z∗t = zt − ψ1zt−1 − ψ2zt−2.
d. Using the least squares residuals êGt from the first equation in part (a), estimate ψ1 and ψ2 from

the regression equation êGt = ψ1êG,t−1 + ψ2êG,t−2 + v̂t. Along the lines of the transformations
in part (c), use the estimates of ψ1 and ψ2 to find transformed variables INF∗

t , INFEX∗
t , and

GAP∗t and then estimate α∗G, βG, and γG from the transformed equation INF∗
t = α∗G + βGINFEX∗

t +
γGGAP∗t + vt. Estimate the equation with both conventional and HAC standard errors.

e. Using the results from part (d), find 95% interval estimates for γG using both conventional and HAC
standard errors. Comment on (i) the relative widths of the intervals with and without HAC standard
errors and (ii) how the estimates and intervals compare with the corresponding ones obtained in
part (a).

9.35 Do lags of the variables in the new Keynesian Phillips curve provide a good basis for forecasting
quarterly inflation? In this exercise, we investigate this question using the French data from Amberger
et al. See Exercise 9.34 for details. The data are stored in the data file france.
a. Consider ARDL models of the form

INFt = δ +
p∑

s=1
θsINFt−s +

q∑
r=1
δrINFEXt−r +

m∑
j=1
γjGAPt−j + et

Using observations from 1991Q1 to 2013Q4, estimate this equation for p = 2, q = 1, 2, 3, 4 and
m = 1, 2, 3, 4. From these 16 equations, select and report the one with the smallest value of the
Schwarz criterion. Note that 92 observations should be used to estimate each equation.

b. In the equation selected in part (a), are all the estimated coefficients significantly different from
zero at a 5% significance level? Does the correlogram suggest that there is no autocorrelation in
the errors?

c. Use the selected model from part (a) to find 95% forecast intervals for inflation in 2014Q1, 2014Q2,
2014Q3, and 2014Q4. When computing the forecasts, use actual values of INFEX and GAP where
needed but assume that the actual values of INF in the four forecast quarters are unknown. After
you have found the forecast intervals, check whether the actual values lie within those intervals.
[Hint: If your software does not compute standard errors of forecast errors, equation (9.41) can be
used to find them for the first three quarters. For the fourth quarter, the variance of the forecast
error is given by

σ2
"4 =

[(
θ3

1 + 2θ1θ2
)2 +

(
θ2

1 + θ2
)2 + θ2

1 + 1
]
σ2

You might like to prove this result.]
d. What assumptions are necessary for the standard errors of the forecast errors to be valid?

............................................................................................................................................................
21Amberger, J., R Fendel and H. Stremmel (2017), “Improved output gaps with financial cycle information? An
application to G7 countries’ new Keynesian Phillips curves,” Applied Economics Letters, 24(4), 219–228. Many thanks
to Johanna Amberger for supplying the data used in this study.
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9.36 Consider the following model where a dependent variable y depends on infinite distributed lags of the
two variables x and z.

yt = α +
∞∑

s=0
βsxt−s +

∞∑
r=0
γrzt−r + et

Suppose that both sets of lag weights decline geometrically, but with different parameters λ1 and λ2.
That is, βs = λs

1β0 and γr = λr
2γ0.

a. Show that the model can be written as

yt = α + β0

∞∑
s=0
λs

1Lsxt + γ0

∞∑
r=0
λr

2Lrzt + et

b. Use the result in Exercise 9.15 to show that the equation in (a) can be written as

yt = α + β0
(
1 − λ1L

)−1xt + γ0
(
1 − λ2L

)−1zt + et

= α∗ +
(
λ1 + λ2

)
yt−1 − λ1λ2yt−2 + β0xt − β0λ2xt−1 + γ0zt − γ0λ1zt−1 + vt

where α* =
(
1 − λ1

)(
1 − λ2

)
α and vt = et –

(
λ1 + λ2

)
et−1 + λ1λ2et−2.

c. Using data in the file canada5, with yt = INFt, xt = INFEXt, and zt = GAPt, estimate the last
equation in part (b) using nonlinear least squares. Report the estimates, their standard errors, and
one-tail p-values for a zero null hypothesis on each parameter (except the constant). Are the esti-
mates significantly different from zero at a 5% level?

d. Find estimates of the first three lag weights for both INFEX and GAP.
e. Find estimates of the total multipliers for both INFEX and GAP.
f. Using a 5% significance level, test H0∶λ1 = λ2 versus H1∶λ1 ≠ λ2. What are the implications for

the model if H0 is true?
g. The equation estimated in part (c) can be viewed as a restricted version of the more general

ARDL(2, 1, 1) model

yt = α∗ + θ1yt−1 + θ2yt−2 + δ0xt + δ1xt−1 + ϕ0zt + ϕ1zt−1 + vt

where δ1
δ0
×
ϕ1
ϕ0

= −θ2 and δ1
δ0

+
ϕ1
ϕ0

= −θ1. Estimate this unrestricted model and jointly test the
validity of the restrictions at a 5% level. What are the implications for the infinite distributed lags
if the restrictions are not true?

h. Test the hypothesis that et follows an AR(2) process et =
(
λ1 + λ2

)
et−1 − λ1λ2et−2 + ut. What are

the implications of rejecting this hypothesis?

Appendix 9A The Durbin–Watson Test
In Section 9.4, two testing procedures for testing for autocorrelated errors, the sample correlo-
gram and a Lagrange multiplier test, were considered. These are two large sample tests; their test
statistics have their specified distributions in large samples. An alternative test, one that is exact in
the sense that its distribution does not rely on a large sample approximation, is the Durbin–Watson
test. It was developed in 1950 and for a long time was the standard test for H0∶ρ = 0 in the AR(1)
error model et = ρet−1 + vt. It is used less frequently today because of the need to examine upper
and lower bounds, as we describe below, and because its distribution no longer holds when the
equation contains a lagged dependent variable. In addition, the test is derived conditional on X;
it treats the explanatory variables as nonrandom.

It is assumed that the vt are independent random errors with distribution N
(
0, σ2

v
)

and that
the alternative hypothesis is one of positive autocorrelation. That is,

H0∶ρ = 0 H1∶ρ > 0
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The statistic used to test H0 against H1 is

d =

T∑
t=2

(
êt − êt−1

)2

T∑
t=1

ê2
t

(9A.1)

where the êt are the least squares residuals êt = yt − b1 − b2xt. To see why d is a reasonable
statistic for testing for autocorrelation, we expand (9A.1) as

d =

T∑
t=2

ê2
t +

T∑
t=2

ê2
t−1 − 2

T∑
t=2

êtêt−1

T∑
t=1

ê2
t

=

T∑
t=2

ê2
t

T∑
t=1

ê2
t

+

T∑
t=2

ê2
t−1

T∑
t=1

ê2
t

− 2

T∑
t=2

êtêt−1

T∑
t=1

ê2
t

(9A.2)

≈ 1 + 1 − 2r

The last line in (9A.2) holds only approximately. The first two terms differ from 1 through the
exclusion of ê2

1 and ê2
T from the first and second numerator summations, respectively. Thus,

we have
d ≈ 2

(
1 − r1

)
(9A.3)

If the estimated value of ρ is r1 = 0, then the Durbin–Watson statistic d ≈ 2, which is taken as an
indication that the model errors are not autocorrelated. If the estimate of ρ happened to be r1 = 1
then d ≈ 0, and thus a low value for the Durbin–Watson statistic implies that the model errors are
correlated, and ρ > 0.

The question we need to answer is: How close to zero does the value of the test statistic
have to be before we conclude that the errors are correlated? In other words, what is a critical
value dc such that we reject H0 when d ≤ dc? Determination of a critical value and a rejection
region for the test requires knowledge of the probability distribution of the test statistic under the
assumption that the null hypothesis, H0∶ρ = 0, is true. For a 5% significance level, knowledge of
the probability distribution f (d) under H0 allows us to find dc such that P

(
d ≤ dc

)
= 0.05. Then,

as illustrated in Figure 9.A1, we reject H0 if d ≤ dc and fail to reject H0 if d > dc. Alternatively,
we can state the test procedure in terms of the p-value of the test. For this one-tail test, the p-value
is given by the area under f (d) to the left of the calculated value of d. Thus, if the p-value is less
than or equal to 0.05, it follows that d ≤ dc, and H0 is rejected. If the p-value is greater than 0.05,
then d > dc, and H0 is not rejected.

In any event, whether the test result is found by comparing d with dc or by computing the
p-value, the probability distribution f (d) is required. A difficulty associated with f (d), and one
that we have not previously encountered when using other test statistics, is that this probabil-
ity distribution depends on the values of the explanatory variables. Different sets of explanatory
variables lead to different distributions for d. Because f (d) depends on the values of the explana-
tory variables, the critical value dc for any given problem will also depend on the values of the
explanatory variables. This property means that it is impossible to tabulate critical values that can
be used for every possible problem. With other test statistics, such as t, F, and χ2, the tabulated
critical values are relevant for all models.

There are two ways to overcome this problem. The first way is to use software that computes
the p-value for the explanatory variables in the model under consideration. Instead of comparing



❦

❦ ❦

❦

478 CHAPTER 9 Regression with Time-Series Data: Stationary Variables

f(d)

Reject H0

0 4 ddc

Do not reject  H0

FIGURE 9.A1 Testing for positive autocorrelation.

the calculated d value with some tabulated values of dc, we get our computer to calculate the
p-value of the test. If this p-value is less than the specified significance level, H0∶ρ = 0 is rejected,
and we conclude that the errors are correlated.1

9A.1 The Durbin–Watson Bounds Test
In the absence of software that computes a p-value, a test known as the bounds test can be
used to partially overcome the problem of not having general critical values. Durbin and Wat-
son considered two other statistics dL and dU whose probability distributions do not depend on
the explanatory variables and which have the property that

dL < d < dU

That is, irrespective of the explanatory variables in the model under consideration, d will be
bounded by an upper bound dU and a lower bound dL. The relationship between the probability
distributions f

(
dL
)
, f (d), and f

(
dU

)
is depicted in Figure 9.A2. Let dLc be the 5% critical value

from the probability distribution for dL. That is, dLc is such that P
(
dL ≤ dLc

)
= 0.05. Similarly, let

dUc be such that P
(
dU ≤ dUc

)
= 0.05. Since the probability distributions f

(
dL
)

and f
(
dU

)
do not

depend on the explanatory variables, it is possible to tabulate the critical values dLc and dUc. These
values do depend on T and K, but it is possible to tabulate the alternative values for different T
and K.

Thus, in Figure 9.A2, we have three critical values. The values dLc and dUc can be readily
tabulated. The value dc, the one in which we are really interested for testing purposes, cannot
be found without a specialized computer program. However, it is clear from the figure that if
the calculated value d is such that d ≤ dLc, then it must follow that d ≤ dc, and H0 is rejected.
In addition, if d > dUc, then it follows that d > dc, and H0 is not rejected. If it turns out that
dLc < d < dUc, then, because we do not know the location of dc, we cannot be sure whether to
accept or reject. These considerations led Durbin and Watson to suggest the following decision
rules, known collectively as the Durbin–Watson bounds test:

Ifd ≤ dLc, rejectH0∶ρ = 0 and acceptH1∶ρ > 0;
ifd > dUc, do not rejectH0∶ρ = 0;
ifdLc < d < dUc, the test is inconclusive.

The presence of a range of values where no conclusion can be reached is an obvious disadvantage
of the test. For this reason, it is preferable to have software which can calculate the required
p-value if such software is available.

............................................................................................................................................
1The software packages SHAZAM and SAS, for example, will compute the exact Durbin–Watson p-value.
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f (d)

f (dL)

dLc dc dUc

d
4

f (d) f (dU)

FIGURE 9.A2 Upper and lower critical value bounds
for the Durbin–Watson test.

E X A M P L E 9.20 Durbin–Watson Bounds Test for Phillips Curve

The 5% critical bounds for the Phillips curve in Examples
9.14 and 9.15, for T = 117 and K = 2 are2

dLc = 1.681 dUc = 1.716

The Durbin–Watson test value is 0.965. Since 0.965 <
dLc = 1.681, we conclude that d < dc, and hence we reject
H0∶ρ = 0; there is evidence to suggest that the errors are
positively serially correlated.

Appendix 9B Properties of an AR(1) Error
We are interested in the mean, variance, and autocorrelations for et where et = ρet−1 + vt and the vt
are uncorrelated random errors with mean zero and variance σ2

v .3 To derive the desired properties,
we begin by lagging the equation et = ρet−1 + vt by one period, to obtain et−1 = ρet−2 + vt−1.
Then, substituting et−1 into the first equation yields

et = ρet−1 + vt

= ρ
(
ρet−2 + vt−1

)
+ vt (9B.1)

= ρ2et−2 + ρvt−1 + vt

Lagging et = ρet−1 + vt by two periods gives et−2 = ρet−3 + vt−2. Substituting this expression for
et−2 into (9B.1) yields

et = ρ2(ρet−3 + vt−2
)
+ ρvt−1 + vt

= ρ3et−3 + ρ2vt−2 + ρvt−1 + vt
(9B.2)

Repeating this process k times and rearranging the order of the lagged v’s yields
et = ρket−k + vt + ρvt−1 + ρ2vt−2 + · · · + ρk−1vt−k+1 (9B.3)

If we view the process as operating for a long time into the past, then we can let k → ∞. This
makes the first and last terms, ρket−k and ρk−1vt−k+1, go to zero because −1 < ρ < 1. The result is

et = vt + ρvt−1 + ρ2vt−2 + ρ3vt−3 + · · · (9B.4)

............................................................................................................................................
2These values can be found from the Durbin Watson tables on the web site principlesofeconometrics.com/poe5/
poe5.htm.
3To simplify the exposition, we derive these properties in terms of the marginal distributions of et and vt. When
estimating the AR(1) error model in the body of the chapter, we make the stronger assumptions E

(
vt|&

)
= 0 and

var
(
vt|X

)
= σ2

v .
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The regression error et can be written as a weighted sum of the current and past values of the
uncorrelated error vt. This is an important result. It means that all past values of the v’s have an
impact on the current error et and that this impact feeds through into yt through the regression
equation. Notice, however, that the impact of the past v’s declines the further we go into the
past. The weights that are attached to the lagged v’s are ρ, ρ2, ρ3, . . . . Because −1 < ρ < 1, these
weights decline geometrically as we consider past v’s that are more distant from the current period.
Eventually, they become negligible.

Equation (9B.4) can be used to find the properties of the et. Its mean is zero, because
E
(
et
)
= E

(
vt
)
+ ρE

(
vt−1

)
+ ρ2E

(
vt−2

)
+ ρ3E

(
vt−3

)
+ · · ·

= 0 + ρ × 0 + ρ2 × 0 + ρ3 × 0 + · · ·
= 0

To find the variance, we write
var

(
et
)
= var

(
vt
)
+ ρ2var

(
vt−1

)
+ ρ4var

(
vt−2

)
+ ρ6var

(
vt−3

)
+ · · ·

= σ2
v + ρ

2σ2
v + ρ

4σ2
v + ρ

6σ2
v + · · ·

= σ2
v
(
1 + ρ2 + ρ4 + ρ6 + · · ·

)

=
σ2

v

1 − ρ2

(9B.5)

In the abovementioned derivation, zero covariance terms are ignored because the v’s are uncorre-
lated. The result in the last line follows from rules for the sum of a geometric progression. Using
shorthand notation, we have σ2

e = σ2
v
/(

1 − ρ2); the variance of e depends on that for v and the
value for ρ.

To find the covariance between two e’s that are one period apart, we use (9B.4) and its lag
to write

cov
(
et, et−1

)
= E

(
etet−1

)

= E
[(

vt + ρvt−1 + ρ2vt−2 + ρ3vt−3 + · · ·
)

(
vt−1 + ρvt−2 + ρ2vt−3 + ρ3vt−4 · · ·

) ]

= ρE
(
v2

t−1
)
+ ρ3E

(
v2

t−2
)
+ ρ5E

(
v2

t−3
)
+ · · ·

= ρσ2
v
(
1 + ρ2 + ρ4 + · · ·

)

=
ρσ2

v

1 − ρ2

When the second line in the abovementioned derivation is expanded, only squared terms with
the same subscript are retained. Because the v’s are uncorrelated, the cross-product terms with
different time subscripts will have zero expectation and are dropped from the third line. To obtain
the fourth line from the third line, we have used E

(
v2

t−k
)
= var

(
vt−k

)
= σ2

v for all lags k. In a similar
way, we can show that the covariance between errors that are k periods apart is

cov
(
et, et−k

)
=

ρkσ2
v

1 − ρ2 k > 0 (9B.6)

From (9B.5) and (9B.6), the autocorrelations for errors that are k periods apart are given by

ρk = corr
(
et, et−k

)
=

cov
(
et, et−k

)

var
(
et
) =

ρkσ2
v
/(

1 − ρ2)

σ2
v
/(

1 − ρ2) = ρk
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