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CHAPTER 8

Heteroskedasticity

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain the meaning of heteroskedasticity and
give examples of data sets likely to exhibit
heteroskedasticity.

2. Explain how and why plots of least squares
residuals can reveal heteroskedasticity.

3. Specify a variance function and use it to test for
heteroskedasticity with (a) a Breusch–Pagan test
and (b) a White test.

4. Test for heteroskedasticity using a
Goldfeld–Quandt test applied to (a) two
subsamples with potentially different variances
and (b) a model where the variance is
hypothesized to depend on an explanatory
variable.

5. Describe and compare the properties of the least
squares and generalized least squares
estimators when heteroskedasticity exists.

6. Compute heteroskedasticity-consistent
standard errors for least squares.

7. Describe how to transform a model to eliminate
heteroskedasticity.

8. Compute generalized least squares estimates for
heteroskedastic models where (a) the variance is
known except for the proportionality constant
σ2, (b) the variance is a function of explanatory
variables and unknown parameters, and (c) the
sample is partitioned into two groups with
different variances.

9. Explain why the linear probability model
exhibits heteroskedasticity.

10. Compute generalized least squares estimates of
the linear probability model.

K E Y W O R D S
Breusch–Pagan test
generalized least squares
Goldfeld–Quandt test
grouped heteroskadasticity
heteroskedasticity
heteroskedasticity-consistent

standard errors

homoskedasticity
Lagrange multiplier test
linear probability model
regression function
residual plot
robust standard errors
skedastic function

transformed model
variance function
weighted least squares
White test
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8.1 The Nature of Heteroskedasticity
In Chapter 2, we discussed the relationship between household food expenditure and household
income. We proposed the simple population regression model

FOOD_EXPi = β1 + β2INCOMEi + ei (8.1)
Given the parameter values, β1 and β2, we can predict food expenditures for households with any
income. Income is an important factor in households’ decisions about weekly food expenditure,
but there are many other factors entering a particular household’s decisions. The random error
ei represents the collection of all the factors other than income that affect household expenditure
on food.

The assumption of strict exogeneity says that when using information on household income
our best prediction of the random error is zero. If sample values are randomly selected, then the
technical expression for this assumption is that given income the conditional expected value of
the random error ei is zero, E

(
ei|INCOMEi

)
= 0. If the assumption of strict exogeneity holds then

the regression function is
E
(
FOOD_EXPi|INCOMEi

)
= β1 + β2INCOMEi

The slope parameter β2 describes how expected (population mean, or average) household food
expenditure changes when household income increases by $100, holding all else constant.
The intercept parameter β1 measures average expenditure on food for a household with no
income in a week.

The discussion above focuses on the level, or amount, of food expenditure. We now ask,
“How much variation in household food expenditure is there at different levels of income?”
The U.S. median household income is about $1000 a week. For such a household, the expected
weekly food expenditure is E

(
FOOD_EXPi|INCOME = 10

)
= β1 + β2(10). If we observe many

households with the median income, we would observe a wide range of actual weekly food expen-
ditures. The variation arises because different households have differing tastes and preferences,
and they have differing demographic characteristics, and life circumstances. Readers who are stu-
dents, and living on typical student incomes, how much variation is there in your food expenditure
from week to week? We suspect that regardless of your tastes and preferences you have calcu-
lated very carefully how much you can afford and stick closely to a spending plan each week. In
general, households with low incomes have little scope for wide variations in food expenditures
from week to week because of their income constraint. On the other hand, households with a large
weekly income have more food choices. Some high-income households may choose champagne,
caviar, and steaks, but others may choose beer, rice, pasta, and beans. We can expect to observe
larger variations in weekly food expenditures by households with large incomes.

Holding income constant, and given our model, what is the source of the variation in house-
hold food expenditures? It must be from the random error, the collection of factors, other than
income, that influence food expenditure. As we observe different households at a given level of
income, there are variations in food expenditures because randomly sampled households have
different tastes and preferences and differ in many other ways as well. Recall that the random
error in the regression is the difference between any observation on the outcome variable and its
conditional expectation, that is

ei = FOOD_EXPi − E
(
FOOD_EXPi|INCOMEi

)
(8.2)

If the assumption of strict exogeneity holds, then the population average value of the random
errors is E

(
ei|INCOMEi

)
= E

(
ei
)
= 0. A positive random error corresponds to an observation in

which food expenditure is greater than expected, while a negative random error corresponds to
an observation in which food expenditure is less than expected.

Another way of describing the greater variation in food expenditures for high-income house-
holds is to say the probability of observing large positive or negative random errors is higher
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FIGURE 8.1 Heteroskedastic errors.

for high incomes than it is for low incomes. To illustrate this idea, examine Figure P.5 in the
Probability Primer. First, suppose the probability distribution of the random errors is N(0,1), the
solid curve. What is the probability of observing a random value of ei greater than two? Using
Statistical Table 1, P

(
ei > 2

)
= P(Z > 2) = 0.0228. Now, suppose the probability distribution of

the random errors is N(0, 4), the dot-dash curve. What is the probability of observing a random
value of ei greater than 2? Using Statistical Table 1, P

(
ei > 2

)
= P(Z > 1) = 0.1587. The random

error ei has a higher probability of taking on a large value if its variance is large. In the context
of the food expenditure example, we can capture the effect we are describing by assuming that
var

(
ei|INCOMEi

)
increases as income increases. Food expenditure can deviate further from its

mean, or expected value, when income is large.
In such a case, when the error variances for all observations are not the same, we say

that heteroskedasticity exists. Alternatively, we say the random error ei is heteroskedastic.
Conversely, if all observations come from probability density functions with the same variance,
we say that homoskedasticity exists, and ei is homoskedastic. Heteroscedastic, homoscedastic,
and heteroscedasticity are commonly used alternative spellings.

Figure 8.1 illustrates the heteroskedastic assumption. Let yi = FOOD_EXPi and
xi = INCOMEi. At x1, the food expenditure probability density function f

(
y1|x1

)
is such that y1

will be close to E
(
y1|x1

)
with high probability. When we move to the larger value x2, the proba-

bility density function f
(
y2|x2

)
is more spread out; we are less certain about where y2 might fall,

and much larger or smaller values than the average E
(
y2|x2

)
are possible. When homoskedasticity

exists, the probability density function for the errors does not change as x changes, as we illustrated
in Figure 2.3.

8.2 Heteroskedasticity in the Multiple
Regression Model
The existence of heteroskedasticity is a violation of one of our least squares assumptions listed
in Section 5.1. For the multiple regression model yi = β1 + β2xi2 + · · · + βKxiK + ei, i = 1,… ,N,
assumption MR3 is

var
(
ei|X

)
= var

(
yi|X

)
= σ2

the conditional variance of the random error, and the dependent variable, is σ2, a constant.
Assumption MR3 is that the random error term is conditionally homoskedastic. The simplest
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statement of the conditional heteroskedasticity assumption is
var

(
ei|X

)
= var

(
yi|X

)
= σ2

i (8.3)

The change is very subtle, the error variance σ2
i now has a subscript, i, indicating that it is not

always the same constant and may change from observation to observation, i = 1,… ,N. At the
extreme, the error is heteroskedastic even if only one random error has a variance different than
the other N − 1 random errors. Generally, however, we think of the problem as being more per-
vasive when it is present.

Assumptions MR1–MR5 apply to any type of regression, using time-series or cross-sectional
data. Our notation X represents all N observations on K − 1 explanatory variables plus a constant
term. Heteroskedasticity often arises when using cross-sectional data. The term cross-sectional
data refers to having data on a number of economic units such as firms or households, at a given
point in time. The household data on income and food expenditure fall into this category. Other
possible examples include data on costs, outputs, and inputs for a number of firms, and data on
quantities purchased and prices for some commodity, or commodities, in a number of retail estab-
lishments. Cross-sectional data usually involve observations on economic units of varying sizes.
For example, data on households will involve households with varying numbers of household
members and different levels of household income. With data on a number of firms, we might
measure the size of the firm by the quantity of output it produces. Frequently, the larger the firm,
or the larger the household, the more difficult it is to explain the variation in some outcome vari-
able yi by the variation in a set of explanatory variables. Larger firms and households are likely to
be more diverse and flexible with respect to the way in which values for yi are determined. What
this means for the linear regression model is that, as the size of the economic unit becomes larger,
there is more uncertainty associated with the outcomes yi. We model this greater uncertainty by
specifying a conditional error variance that is larger, the larger the size of the economic unit.

Heteroskedasticity is not a property that is necessarily restricted to cross-sectional data. With
time-series data, where we have data over time on an economic unit, such as a firm, a household,
or even a whole economy, it is possible that the conditional error variance will change. This
would be true if there was an external shock or change in circumstances that created more or less
uncertainty about y.

For simplification, in the remainder of this chapter, we assume that the errors are uncorrelated
and that heteroskedasticity is an observation-by-observation problem and that the conditional
variance of the ith observation’s random error ei is unrelated to the jth observation. In the con-
text of the cross-sectional data food expenditure example, we are ruling out the case in which the
variability in the random error component for the ith household is connected to or explained by
the characteristics of the jth household. In a time-series regression context, we are ruling out the
case when the error variation at time t is related to conditions in the past, at time t − s. Can we
always rule out these exceptions? No, we cannot. In the cross-sectional data context, we may find
that households drawn from some geographical regions, or neighborhoods, are similar, so that
the error variation for neighboring households might be similar, or connected. In the time-series
context, we most certainly cannot rule out continuous periods of stability, perhaps many weeks at
a time, and periods of instability that can similarly last many weeks or months, meaning that
the error variation at time t is related to the error variation at times t − 1, t − 2, and so on.
For now, however, we will rule out these interesting cases.

8.2.1 The Heteroskedastic Regression Model
The multiple regression model is yi = β1 + β2xi2 + · · · + βKxiK + ei. We assume we have a ran-
dom sample so that the ith observation is statistically independent of the jth observation. Let
xi =

(
1, xi2,… , xiK

)
denote the values of the K explanatory variables for the ith observation.

The heteroskedasticity assumption in (8.3) becomes
var

(
yi|xi

)
= var

(
ei|xi

)
= σ2h

(xi
)
= σ2

i (8.4)



❦

❦ ❦

❦

372 CHAPTER 8 Heteroskedasticity

where h
(xi

)
> 0 is a function of xi that is sometimes called the skedastic function,1 and σ2 > 0 is

a constant. If h
(xi

)
= 1, then the conditional variance is homoskedastic. If h

(
!i
)

is not constant,
then the conditional variance is heteroskedastic. For example, when h

(xi
)
= xik the conditional

variance becomes var
(
ei|xi

)
= σ2xik, the error variance is proportional to the kth explanatory

variable xik. Because variances must be positive, for the proportional heteroskedasticity model to
work h

(xi
)
= xik > 0. In (8.4) we assume the conditional variance depends on the values of some

or all of the explanatory variables in the regression equation.
This chapter is concerned with the consequences of a variance assumption like (8.4). What

are the consequences for the properties of least squares estimator? Is there a better estimation
technique? How do we detect the existence of heteroskedasticity?

E X A M P L E 8.1 Heteroskedasticity in the Food Expenditure Model

We can further illustrate the nature of heteroskedasticity and
at the same time demonstrate an informal way of detecting
heteroskedasticity using the food expenditure data. Using the
N = 40 observations in the data file food, the OLS estimates
are

FOOD_EXPi

⋀

= 83.42 + 10.21 INCOMEi

A graph of this fitted line, along with all the observed
expenditure–income points, appears in Chapter 2, Figure 2.8.
Notice that, as income grows, the prevalence of data points
that deviate further from the estimated mean function
increases. There are more points scattered further away from
the line as income gets larger. Another way of describing this
feature is to say that there is a tendency for the least squares
residuals, defined by

êi = FOOD_EXPi − 83.42 − 10.21INCOMEi

to increase in absolute value as income grows. The plot of
the absolute value of the residuals, ||êi

||, versus income in
Figure 8.2 shows this quite clearly. The plot of the calculated
residuals, êi, versus income in Figure 8.3 shows the charac-
teristic “spray” pattern shown in Chapter 4, Figure 4.7(b).
Figure 4.7(a) shows the random scatter we anticipate if the
errors are conditionally homoskedastic. Figures 4.7(b)–(d),
spray, funnel, and bowtie, are patterns we might observe
when the errors are conditionally heteroskedastic.

Since the observable least squares residuals
(
êi
)

are
the analogues of the unobservable errors

(
ei
)
, Figures 8.2

and 8.3 also suggest that the unobservable errors tend to
increase in absolute value as income increases. That is,
the variation of food expenditure around the conditional
mean food expenditure E

(
FOOD_EXPi|INCOMEi

)
=

β1 + β2INCOMEi, and variation in the random error term,
increase as income increases. The conditional variance
var

(
ei|INCOMEi

)
= σ2h

(
INCOMEi

)
, where h

(
INCOMEi

)
is an increasing function of income. Possible variance
functions include

var
(
ei|INCOMEi

)
= σ2INCOMEi

0
0
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Weekly household income

|ei|

FIGURE 8.2 Absolute value of food expenditure residuals
vs. income.

............................................................................................................................................
1See A. Colin Cameron and Pravin K. Trivedi (2010) Microeconometrics Using Stata, Revised Edition, Stata Press,
p. 153.
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FIGURE 8.3 Least squares food expenditure residuals
plotted against income.

or
var

(
ei|INCOMEi

)
= σ2INCOME2

i

These are consistent with the hypothesis that we posed earlier,
namely, that the mean food expenditure function is better at
explaining food expenditure for low-income households than
it is for high-income households.

Plotting of least squares residuals is an informal way
of detecting heteroskedasticity. Later in the chapter, in
Section 8.6, we consider formal test procedures. First,
however, we examine the consequences of heteroskedasticity
for least squares estimation.

8.2.2 Heteroskedasticity Consequences for the OLS
Estimator

Since the existence of heteroskedasticity violates the usual least squares assumption
var

(
ei|xi

)
= σ2, we need to ask what consequences this violation has for our least squares

estimator, and what we can do about it. There are two implications:

1. The least squares estimator is still a linear and unbiased estimator, but it is no longer best.
There is another estimator with a smaller variance.

2. The standard errors usually computed for the least squares estimator are incorrect. Confi-
dence intervals and hypothesis tests that use these standard errors may be misleading.

Let’s first consider the simple linear regression model with homoskedasticity

yi = β1 + β2xi + ei, with var
(
ei|x

)
= σ2 (8.5)

We showed in Chapter 2 that the conditional variance of the least squares estimator for b2 is

var
(
b2|x

)
= σ2

/ N∑
i=1

(
xi − x

)2 (8.6)

Now suppose the error variances for each observation are different and that we recognize this
difference by putting a subscript i on σ2, so that we have

yi = β1 + β2xi + ei, with var
(
ei|x

)
= σ2

i (8.7)
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In Appendix 8A, we show that under the heteroskedastic specification in (8.7) the least squares
estimator is unbiased with conditional variance

var
(
b2|x

)
=
[

N∑
i=1

(
xi − x

)2
]−1 [ N∑

i=1

(
xi − x

)2σ2
i

][
N∑

i=1

(
xi − x

)2
]−1

(8.8)

If the errors are homoskedastic, then equation (8.8) reduces to the usual OLS estimator variance
in equation (8.6). If the errors are heteroskedastic then (8.8) is correct and (8.6) is not. This is
a practical problem because your computer software has programmed into it the estimated vari-
ances and covariance of the least squares estimator under homoskedasticity, given in Chapter 2,
equations (2.20)–(2.22). This in turn means that if the errors are heteroskedastic, the usual stan-
dard errors in equations (2.23)–(2.24) are incorrect. Using incorrect standard errors in t-tests and
confidence intervals may lead us to faulty conclusions. If we proceed to use the least squares esti-
mator and its usual standard errors when var

(
ei
)
= σ2

i , we will be using an estimate of (8.6) to
compute the standard error of b2 when we should be using an estimate of (8.8).

8.3 Heteroskedasticity Robust Variance
Estimator
Calculation of a correct estimate for the OLS variance (8.8) is astonishingly simple, although
the theory leading to it is not. Simply replace σ2

i by
[
N∕(N − 2)

]
ê2

i , the squared OLS residuals
multiplied by an inflation factor.2 The White heteroskedasticity-consistent estimator (HCE)
that is valid in large samples for the simple regression model is

var
⋀(

b2
)
=
[∑(

xi − x
)2
]−1 {∑[(

xi − x
)2 ( N

N − 2
)

ê2
i

]}[∑(
xi − x

)2
]−1

(8.9)

where êi is the least squares residual from the regression model, yi = β1 + β2xi + ei. The estimator
is named after econometrician Halbert White who developed the idea. This variance estimator
is robust because it is valid whether heteroskedasticity is present or not. Thus, if we are not
sure whether the random errors are heteroskedastic or homoskedastic, then we can use a robust
variance estimator and be confident that our standard errors, t-tests, and interval estimates are
valid in large samples.

The formula in equation (8.9) has a lovely symmetry and is one illustration of
a variance sandwich. Let C =

[∑(
xi − x

)2]−1
be the “outside Crust” and let A =

{∑[(
xi − x

)2 ( N
N − 2

)
ê2

i

]}
be “Any filling.” Then our variance sandwich is any filling

between two crusts, or var
⋀(

b2
)
= CAC. Modern Econometrics offers many such sandwiches.

Equations (8.8) and (8.9) can be simplified, but we prefer to leave them as is to emphasize the
“sandwich” form. Also the matrix approaches to multiple regression in your future econometrics
courses will use the sandwich form.

E X A M P L E 8.2 Robust Standard Errors in the Food Expenditure Model

Most regression packages include an option for calculating
standard errors using White’s estimator. If we do so for the
food expenditure example, we obtain

FOOD_EXP
⋀

= 83.42 + 10.21INCOME
(27.46) (1.81) (White robust se)
(43.41) (2.09) (incorrect OLS se)

In this case, ignoring heteroskedasticity and using incorrect
standard errors, based on the usual formula in (8.6), tends to
understate the precision of estimation; we tend to get
confidence intervals that are wider than they should be.
Specifically, following the result in (3.6) in Chapter 3, we
can construct corresponding 95% confidence intervals for β2.

............................................................................................................................................
2See Appendix 8C for the logic of this inflation, and development of other versions of the robust variance.
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White Robust se:
b2 ± tcse

(
b2
)
= 10.21 ± 2.024 × 1.81 =[6.55, 13.87]

Incorrect OLS se:
b2 ± tcse

(
b2
)
= 10.21 ± 2.024 × 2.09 =[5.97, 14.45]

If we ignore heteroskedasticity, we estimate that β2 lies
between 5.97 and 14.45. When we recognize the existence of

heteroskedasticity, our information is judged more precise,
and using the robust standard error we estimate that β2
lies between 6.55 and 13.87. A caveat here is that the sample
is small, which does mean that the robust standard error
formula we have provided may not be as accurate as if the
sample were large.

White’s estimator for the standard errors helps us avoid computing incorrect interval estimates
or incorrect values for test statistics in the presence of heteroskedasticity. However, it does not
address the first implication of heteroskedasticity that we mentioned at the beginning of this
section, that the least squares estimator is no longer best. However, failing to use the “best” esti-
mator may not be too grave a sin if estimates are sufficiently precise for useful economic analysis.
Many cross-sectional data sets have thousands of observations, resulting in robust standard errors
that are small, making interval estimates narrow and t-tests powerful. Nothing further is required
in these cases. If, however, your estimates are not sufficiently precise for economic analysis, then a
better, more efficient, estimator is called for. In order to use such an estimator we must specify the
skedastic function h

(xi
)
> 0, a function of xi and also perhaps other variables, that describes the

pattern of conditional heteroskedasticity. In the next section, we describe an alternative estimator
that has a smaller variance than the least squares estimator.

8.4 Generalized Least Squares: Known Form
of Variance
To begin, consider the simple regression model yi = β1 + β2xi + ei. Let’s assume the data are
obtained by random sampling, so that the observations are statistically independent of one another,
that E

(
ei|xi

)
= 0, and that the heteroskedasticity assumption is

var
(
ei|xi

)
= σ2h

(
xi
)
= σ2

i (8.10)

Although it is possible to obtain the White heteroskedasticity-consistent variance estimates by
simply assuming the error variances σ2

i can be different for each observation, to develop an esti-
mator that is better than the least squares estimator, we need to make a further assumption about
how the variances σ2

i change with each observation. This means making an assumption about
the skedastic function h

(
xi
)
. The further assumption is necessary because the best linear unbi-

ased estimator in the presence of heteroskedasticity, an estimator known as the generalized least
squares (GLS) estimator, depends on the unknown σ2

i . It is not practical to estimate N unknown
variances σ2

1, σ
2
2,… , σ2

N with only N observations without making a restrictive assumption about
how the σ2

i change. Thus, to make the GLS estimator operational some structure is imposed on
σ2

i . Alternative structures are considered in this and the following section. Details of the GLS
estimator and the issues involved will become clear as we work our way through these sections.

8.4.1 Transforming the Model: Proportional
Heteroskedasticity

Recall our earlier inspection of the least squares residuals for the food expenditure example.
The variation in the OLS residuals increases as income increases, which suggests that the error
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variance increases as income increases. One possible assumption for the variance σ2
i that has this

characteristic is
var

(
ei|xi

)
= σ2

i = σ2h
(
xi
)
= σ2xi, xi > 0 (8.11)

That is, we assume that the variance of the ith error term σ2
i is given by a positive unknown

constant parameter σ2 multiplied by the positive income variable xi, so that var
(
ei|xi

)
is propor-

tional to income. We are assuming the skedastic function is h
(
xi
)
= xi. As explained earlier, in

economic terms this assumption implies that, for low levels of income
(
xi
)
, food expenditure

(
yi
)

will be clustered closer to the regression function E
(
yi|xi

)
= β1 + β2xi. Expenditure on food for

low-income households will be largely explained by the level of income. At high levels of income,
food expenditures can deviate more from the regression function. This means that there are likely
to be many other factors, such as specific tastes and preferences, that reside in the error term, and
that lead to a greater variation in food expenditure for high-income households.

The least squares estimator is not the best linear unbiased estimator when the errors are
heteroskedastic. Is there a best linear unbiased estimator under these circumstances? Yes there is!
The approach is to transform the model into one with homoskedastic errors. Leaving the basic
structure of the model intact, we turn the heteroskedastic error model into a homoskedastic error
model. After the transformation, applying OLS to the transformed model gives a best linear
unbiased estimator. These steps define the new GLS estimator.

Given the model of proportional heteroskedasticity in equation (8.11), begin by dividing both
sides of the original model in (8.7) by √

xi

yi√
xi

= β1

(
1√
xi

)
+ β2

(
xi√
xi

)
+

ei√
xi

(8.12)

Define the transformed variables and transformed error as

y∗i =
yi√
xi
, x∗i1 = 1√

xi
, x∗i2 =

xi√
xi

=
√

xi, e∗i =
ei√
xi

(8.13)

so that (8.12) can be rewritten as

y∗i = β1x∗i1 + β2x∗i2 + e∗i (8.14)

The beauty of this transformed model is that the new transformed error term e∗i is homoskedastic.
To see this, recall equation (P.14) from the Probability Primer: If X is a random variable and a is
a constant, then var(aX) = a2var(X). Applying that rule here we have

var
(
e∗i |xi

)
= var

(
ei√
xi

||||||
xi

)
= 1

xi
var

(
ei|xi

)
= 1

xi
σ2xi = σ2 (8.15)

Using the rules of expected values, the transformed error term will retain a zero conditional mean
E
(
e∗i |xi

)
= 0. As a consequence, we can apply OLS to the transformed variables, y∗i , x∗i1, and x∗i2

to obtain the best linear unbiased estimator for β1 and β2. Note that the transformed variables
y∗i , x∗i1, and x∗i2 are easy to create. An important difference between the original and transformed
models is that the transformed model no longer contains a constant term. In the original model,
xi1 = 1. In the transformed model, the variable x∗i1 = 1

/√
xi is no longer constant. You will have

to be careful to exclude the constant if your software automatically inserts one, but you can still
proceed. The transformed model is linear in the unknown parameters β1 and β2. These are the
original parameters that we are interested in estimating. They are unaffected by the transformation.
In short, the transformed model is a linear model to which we can apply OLS estimation. The
transformed model satisfies the conditions of the Gauss–Markov theorem, and the OLS estimators
defined in terms of the transformed variables are BLUE.
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To summarize, to obtain the best linear unbiased estimator for a model with heteroskedastic-
ity of the type specified in equation (8.11), var

(
ei|xi

)
= σ2

i = σ2h
(
xi
)
= σ2xi:

1. Calculate the transformed variables given in (8.13).
2. Use OLS to estimate the transformed model given in (8.14), yielding estimates β̂1 and β̂2.

The estimates obtained in this way are the GLS estimates.
The GLS estimator is BLUE if the model assumption of proportional heteroskedasticity is

correct. Of course, we never know if our assumed skedastic function is correct or not. It is likely
that a thoughtfully chosen transformation will reduce the model heteroskedasticity. If, however,
the chosen transformation does not completely eliminate the heteroskedasticity, the GLS estimator
is linear and unbiased but not best, and the standard errors from the transformed model estimation
are incorrect. What then? Easy. Use White robust standard errors with the transformed data model
to obtain valid (in large samples) standard errors. Doing so we will have striven for a more effi-
cient estimator, but been cautious to present valid standard errors, t-stats, and interval estimates.
We illustrate this strategy in Example 8.3.

8.4.2 Weighted Least Squares: Proportional
Heteroskedasticity

One way of viewing the GLS estimator is as a weighted least squares (WLS) estimator. Recall
that the OLS estimates are those values of β1 and β2 that minimize the sum of squared errors

S
(
β1, β2|yi, xi

)
=

N∑
i=1

(
yi − β1 − β2xi

)2

The sum of squares function using the transformed data model (8.14) is

S
(
β1, β2|yi, xi

)
=

N∑
i=1

(
y∗i − β1x∗i1 − β2x∗i2

)2 =
N∑

i=1

(
yi√
xi
− β1

1√
xi
− β2

xi2√
xi

)2

=
N∑

i=1

[
1√
xi

(
yi − β1 − β2xi2

)
]2

(8.16)

=
N∑

i=1

(
yi − β1 − β2xi2

)2

xi

The squared errors are weighted by 1
/

xi. Recall that our variance assumption is var
(
ei|xi

)
= σ2xi.

When xi is smaller we are assuming the variance of the error is smaller and the data fall
closer to the regression function. These data are more informative about the location of
E
(
yi|xi

)
= β1 + β2xi. When xi is larger we are assuming the variance of the error is larger, and

the data may fall farther from the regression function. These data are less informative about the
location of E

(
yi|xi

)
= β1 + β2xi. Intuitively, it makes sense to “down weight” observations with

less information and weigh more heavily observations with more information. That is exactly
what the weighted sum of squares function (8.16) achieves. When xi is small, the data contain
more information about the regression function and the observations are weighted heavily. When
xi is large, the data contain less information and the observations are weighted lightly. In this
way, we take advantage of the heteroskedasticity to improve parameter estimation. On the other
hand, OLS estimation treats all observations as equally informative and equally important, as it
should under homoskedasticity.

Most software have a WLS or GLS option. If your software falls into this category, you do
not have to transform the variables before estimation, nor do you have to worry about omitting
the constant. The computer will do both the transforming and the estimating once you decipher
the software command. If you do the transforming yourself, that is, you create y∗i , x∗i1, and x∗i2,
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and apply OLS, be careful not to include a constant in the regression. As noted before, there is no
constant because x∗i1 ≠ 1.

E X A M P L E 8.3 Applying GLS/WLS to the Food Expenditure Data

In the food expenditure example, we assume var
(
ei|INCOMEi

)
= σ2

i = σ
2INCOMEi. Applying the generalized (weighted)

least squares procedure to our household expenditure data
yields the following GLS estimates:

FOOD_EXP
⋀

i = 78.68 + 10.45INCOMEi
(se) (23.79) (1.39) (8.17)

That is, we estimate the intercept term as β̂1 = 78.68
and the slope coefficient that shows the response of food
expenditure to a change in income as β̂2 = 10.45. These
estimates are somewhat different from the least squares
estimates b1 = 83.42 and b2 = 10.21 that did not allow
for the existence of heteroskedasticity. It is important to
recognize that the interpretations for β1 and β2 are the
same in the transformed model in (8.14) as they are in
the untransformed model in (8.7). Transformation of the
variables is a technique for converting a heteroskedastic error
model into a homoskedastic error model, not as something
that changes the meaning of the coefficients.

The standard errors in (8.17), se
(
β̂1

)
= 23.79

and se
(
β̂2

)
= 1.39, are both lower than their least

squares counterparts that were calculated from White’s
robust standard errors, namely, se

(
b1
)
= 27.46 and

se
(
b2
)
= 1.81. Since GLS is a better estimation procedure

than least squares, we expect the GLS standard errors to
be lower. This statement needs to be qualified in two ways.
First, remember that standard errors are square roots of
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FIGURE 8.4 OLS- and GLS-transformed residuals.

estimated variances; in a single sample, the relative magni-
tudes of true variances may not always be reflected by their
corresponding variance estimates. Second, the reduction
in variance has come at the cost of making an additional
assumption, namely, that the error variances have the
structure given in (8.11).

The smaller standard errors have the advantage of pro-
ducing narrower, more informative confidence intervals. For
example, using the GLS results, a 95% confidence interval for
β2 is given by

β̂2 ± tcse
(
β̂2

)
= 10.451 ± 2.024 ×1.386 = [7.65, 13.26]

The least squares confidence interval computed using
White’s standard errors was [6.55, 13.87].

In order to obtain the GLS estimates, we assumed the
specific pattern of heteroskedasticity, namely var

(
ei|xi

)
=

σ2
i = σ

2h
(
xi
)
= σ2xi. We must ask ourselves whether

this assumption adequately represents the pattern of het-
eroskedasticity in the data. If so, then the transformed model
(8.14) should have homoskedastic errors. An informal check
is to compute the residuals from the transformed model and
plot them. That is, let ê∗i = y∗i − β̂1x∗i1 − β̂2x∗i2. If you have used
a WLS/GLS software, then the residuals it saves are, most
likely, the GLS residuals êi,WLS = yi − β̂1 − β̂2xi2. In this case,
ê∗i = êi,WLS

/√
xi. In Figure 8.4 we plot the residuals from the

transformed model and the OLS residuals against household
income.
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It is evident that our transformation has substantially
reduced the “spray” pattern indicating heteroskedasticity. If
the transformation is a total success plotting the transformed
residuals against any variable should reveal no pattern. If
patterns remain, then you may try another skedastic func-
tion. Or, because it is visually clear that the transformation
eliminated most, if not all, the heteroskedasticity, we can
use a White heteroskedasticity robust standard error with the
transformed model. In this way, we will have attempted to

gain a more efficient estimator, but then protected ourselves
against incorrect standard errors from any remaining
heteroskedasticity. The GLS/WLS estimated model with
robust standard errors is

FOOD_EXPi

⋀

= 78.68 + 10.45INCOMEi
(robse) (12.04) (1.17)

The 95% interval estimate of the slope is [8.07, 12.83].

8.5 Generalized Least Squares: Unknown
Form of Variance
In the previous section, we assumed that heteroskedasticity could be described by the vari-
ance function var

(
ei|xi

)
= σ2xi. This is convenient and simple in the food expenditure example

because xi = INCOMEi > 0 and intuitively reasonable. However, this is one possible choice of a
skedasticity function h

(
xi
)
. There are other alternatives such as var

(
ei|xi

)
= σ2h

(
xi
)
= σ2x2

i and
var

(
ei|xi > 0

)
= σ2h

(
xi
)
= σ2x1∕2

i . Both have the property that the error variance increases as
xi increases. Why not choose one of these functions?

In a multiple regression yi = β1 + β2xi2 + · · · + βKxiK + ei a heteroskedasticity pattern might
be related to more than one of the explanatory variables, so that we might consider a skedastic
function h

(
xi2,… , xiK

)
= h

(xi
)
. In fact, the heteroskedasticity pattern might be related to vari-

ables not even in the model! In order to deal with the more general specification that includes
all these possibilities we need a model that is flexible, parsimonious, and for which σ2

i > 0.
One specification that works well is

σ2
i = exp

(
α1 + α2zi2 + · · · + αSziS

)

= exp
(
α1
)

exp
(
α2zi2 + · · · + αSziS

)
(8.18)

= σ2h
(
zi2,… , ziS

)

The candidate variables zi2, … , ziS that are possibly associated with the heteroskedasticity may
or may not be in xi. The exponential function is convenient because it ensures we will get positive
values for the variances σ2

i for all possible values of the parameters α1, α2, … , αS. Equation
(8.18) is called the model of multiplicative heteroskedasticity. It includes homoskedasticity as
a special case; when α2 = · · · = αS = 0 the error variance is σ2

i = exp
(
α1
)
= σ2. It is called a

multiplicative model because

exp
(
α1
)

exp
(
α2zi2 + · · · + αSziS

)
= exp

(
α1
)

exp
(
α2zi2

)
· · · exp

(
αSziS

)

Each candidate variable has a separate multiplicative effect. This model does introduce some
new parameters, but as you have seen many times now, when there is an unknown parameter an
econometrician will figure out how to estimate it. That is what we do.

This model is attractive because of the features mentioned above, it is flexible, parsimonious,
and σ2

i > 0, and also because it has several special cases that are very useful.
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Multiplicative Heteroskedasticity, Special Case 1: var
(

ei|xi
)
= "2

i = "2x#2

i
As noted in the food expenditure example, three plausible variance functions are var

(
ei|xi

)
= σ2xi,

var
(
ei|xi

)
= σ2h

(
xi
)
= σ2x2

i , and var
(
ei|xi > 0

)
= σ2h

(
xi
)
= σ2x1∕2

i . These are special cases of

var
(
ei|xi

)
= σ2

i = σ2xα2
i

where α2 is an unknown parameter. In the multiplicative model, let S = 2, zi2 = ln
(
xi
)

and
h
(
zi2
)
= exp

[
α2ln

(
xi
)]

. Using the properties of logarithms and exponentials, we have

σ2
i = exp

(
α1 + α2zi2

)

= exp
(
α1
)

exp
[
α2 ln

(
xi
)]

= exp
(
α1
)

exp
[

ln
(
xi
α2
)]

= σ2xα2
i

Multiplicative Heteroskedasticity, Special Case 2: Grouped Hetero-
skedasticity Data partitions arise naturally in many economic examples. We might be
estimating a wage equation with data on individuals from both urban and rural areas. It is likely
that the labor market in the urban area is more diverse, leading to wage variations from one
person to another that is greater than in a rural area. Or perhaps we are considering wages for
individuals with different education levels, such as those with only primary school education,
those with a high school education, and those with some postsecondary education. Or individuals
in different industries, or countries, etc. It is possible that the same basic structure holds for each
group, with perhaps intercept dummy variables, and an error variance that is different for one
group versus another.

Suppose we are considering just two groups. Create an indicator variable Di = 1 if an
observation is in one group and Di = 0 for observations in the other group. Then the variance
function is

var
(
ei|xi

)
= exp

(
α1 + α2Di

)
=
{

exp
(
α1
)
= σ2 Di = 0

exp
(
α1 + α2

)
= σ2 exp

(
α2
)

Di = 1

Using the multiplicative form σ2
i = exp

(
α1 + α2Di

)
= exp

(
α1
)

exp
(
α2Di

)
= σ2h

(
Di
)
, the

skedastic function is h
(
Di
)
= exp

(
α2Di

)
. Note that if α2 = 0 the error variance is the same for

the two groups, meaning that the assumption of homoskedasticity holds.
The same strategy works if there are more than two groups. Suppose there are g = 1, 2,… ,G

groups or data partitions. Create indicator variables for each group. Let Dig = 1 if an observation
is from group g, and otherwise Dig = 0. If eig is the random error for the ith observation in group g,
then a useful variance function is

var
(
eig|xig

)
= exp

(
α1 + α2Di2 + · · · + αGDiG

)
=

⎧
⎪
⎪
⎨
⎪
⎪⎩

exp
(
α1
)
= σ2 = σ2

1 g = 1; only Di1 = 1
exp

(
α1 + α2

)
= σ2

2 g = 2; only Di2 = 1
⋮

exp
(
α1 + αG

)
= σ2

G g = G; only DiG = 1

In this specification, we have chosen group 1 as the reference group and its indicator variable
is omitted. This is similar to the indicator variable approach in Chapter 7. The variance of the
reference group error can be denoted σ2 or σ2

1, to indicate that it is for group 1. For groups 2,
… , G the skedastic function is h

(
Dg

)
= exp

(
αgDg

)
. Alternatively, let the variance function be

var
(
eig|xig

)
= exp

(
α1Di1 + α2Di2 + · · · + αGDiG

)
. Work out the variance for each group with this

alteration. The end results using these two specifications are identical.
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8.5.1 Estimating the Multiplicative Model
How do we proceed with estimation with an assumption like (8.18)? Our ultimate objective is to
estimate the regression parameters β1, β2, … , βK . With the model of multiplicative heteroskedas-
ticity, we use several estimation steps.

FEASIBLE GLS PROCEDURE

1. Estimate the original model yi = β1 + β2xi2 + · · · + βKxiK + ei by OLS, saving the OLS
residuals êi.

2. Use the least squares residuals and the variables zi2, … , ziS to estimate α1,α2, … , αS.
3. Calculate the estimated skedastic function ĥ

(
zi2,… , ziS

)
.

4. Divide each observation by
√

ĥ
(
zi2,… , ziS

)
and apply OLS to the transformed data, or use

WLS regression with weighting factor 1
/

ĥ
(
zi2,… , ziS

)
.

The resulting estimates, ̂̂β1,
̂̂β2,… , ̂̂βK, are called feasible generalized least squares (FGLS) esti-

mates or estimated generalized least squares (EGLS) estimates. If heteroskedasticity is present,
the FGLS estimator is consistent and more efficient than OLS in large samples. We have placed
a second “hat” on these estimates to differentiate them from the earlier GLS estimates and to
remind us that these estimates depend on a first-stage estimation.

Step 2 in the procedure is accomplished through a very clever manipulation of the model of
multiplicative heteroskedasticity. Taking logarithms of both sides of (8.18), we obtain

ln
(
σ2

i
)
= α1 + α2zi2 + · · · + αSziS

This looks like a regression model except for the fact that the left-hand side is unknown. Add the
log of the squared least squares residuals to each side:

ln
(
σ2

i
)
+ ln

(
ê2

i

)
= α1 + α2zi2 + · · · + αSziS + ln

(
ê2

i

)
(8.19)

Rearrange and simplify equation (8.19):

ln
(

ê2
i

)
= α1 + α2zi2 + · · · + αSziS + ln

(
ê2

i

)
− ln

(
σ2

i
)

= α1 + α2zi2 + · · · + αSziS + ln
(

ê2
i ∕σ

2
i

)

= α1 + α2zi2 + · · · + αSziS + ln
[(

êi∕σi
)2]

= α1 + α2zi2 + · · · + αSziS + vi

We have taken the model of multiplicative heteroskedasticity and through some simple manipu-
lations arrived to

ln
(

ê2
i

)
= α1 + α2zi2 + · · · + αSziS + vi (8.20)

Using this model we can estimate α1, α2, … , αS in (8.19) using OLS and continue with the steps
of the procedure. Whether or not this procedure is a legitimate one depends on the properties of
the new error term vi that we introduced in (8.20). Does it have a zero mean? Is it homoskedastic?
In small samples the answer to these questions is no. However, in large samples the answer is hap-
pier. It can be shown (see Appendix 8C.1) that E

(
vi|zi

)
≅ −1.2704 and var

(
vi|zi

)
≅ 4.9348, where

zi =
(
1, zi2,… , ziS

)
, and if ei ∼ N

(
0, σ2

i
)
. Because the regression error does not have conditional
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mean zero, the estimated value of α1 will be off by −1.2704. But α̂2,… , α̂S are consistent estima-
tors, which for estimating the skedastic function ĥ

(
zi2,… , ziS

)
is all that matters.

E X A M P L E 8.4 Multiplicative Heteroskedasticity in the Food Expenditure
Model

In the food expenditure example, with zi2 defined as
zi2 = ln

(
INCOMEi

)
, the least squares estimate of (8.19) is

ln
(
e2

i
)⋀

= 0.9378 + 2.329 ln
(
INCOMEi

)

Notice that the estimate α̂2 = 2.329 is more than twice the
value of α2 = 1, which was an implicit assumption of the vari-
ance specification used in Example 8.3. This suggests the
earlier transformation was not sufficiently aggressive. Fol-
lowing the steps to obtain FGLS estimates we transform the
model by dividing both sides by

√
ĥ
(
zi2
)
, where ĥ

(
zi2
)
=

exp
[
α̂2 ln

(
INCOMEi

)]
, then apply OLS to the transformed

data, or use WLS with weight 1
/
ĥ
(
zi2
)
. The resulting FGLS

estimates for the food expenditure example are

FOOD_EXPi

⋀

= 76.05 + 10.63INCOMEI
(se) (9.71) (0.97) (8.21)

Compared to the GLS results for the variance specification
σ2

i = σ
2INCOMEi, the estimates for β1 and β2 have not

changed a great deal, but there has been a considerable drop
in the standard errors that, under the previous specification,
were se

(
β̂1

)
= 23.79 and se

(
β̂2

)
= 1.39.
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FIGURE 8.5 GLS- and FGLS-transformed residuals.

We must ask ourselves whether our FGLS transfor-
mation has been adequate; does the transformed model
satisfy the homoskedasticity assumption? In Example 8.3,
we computed the residuals from the transformed model ê∗i =
y∗i − β̂1x∗i1 − β̂2x∗i2. Similarly, let ̂̂e

∗
i = y∗∗i − ̂̂β1x∗∗i1 −

̂̂β2x∗∗i2 ,
where y∗∗i = yi

/√
ĥ
(
zi2
)
, x∗∗i1 = 1

/√
ĥ
(
zi2
)
, and x∗∗i2 =

xi2

/√
ĥ
(
zi2
)
. In Figure 8.5, we plot ê∗i (empty circles) from

the GLS-transformed model, and ̂̂e
∗
i (solid dots), from the

FGLS-transformed model, versus income. Note that the
vertical axis scales in Figures 8.4 and 8.5 are different; so
take that into account when comparing them. By “zooming
in” on ê∗i (empty circles) from the GLS-transformed model,
we see a fan-shaped pattern persisting, meaning that the GLS
transformation did not completely eliminate heteroskedas-
ticity. In Figure 8.4, we saw a great reduction in the “spray”
pattern and in Figure 8.5 the FGLS-transformed model has
yet smaller residuals and shows a further reduction in the
“spray” pattern. Based on visual evidence, the FGLS model
has done a better job at eliminating heteroskedasticity than
the GLS model.
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E X A M P L E 8.5 A Heteroskedastic Partition

To illustrate the idea of a heteroskedastic partition we con-
sider a simple wage equation in which a person’s wage rate
(WAGE) depends on their education (EDUC) and experience
(EXPER). We also include an indicator variable for whether
they live in a metropolitan, more urbanized, area or not. For
convenience, think of the nonmetropolitan areas as “rural.”
That is

METRO =
{

1 if person lives in a metropolitan area
0 if person lives in a rural area

The wage equation is

WAGEi = β1 + β2EDUCi + β3EXPERi + β4METROi + ei

The issue we address here is the possibility that the variance
of the error term is different in metropolitan areas than in rural
areas. That is, we suspect that

var
(
ei|xi

)
=
{
σ2

M if METRO = 1
σ2

R if METRO = 0

For illustration, we use the data file cps5_small and
restrict ourselves to observations from the Midwest region,
MIDWEST = 1. First consider the summary statistics in
Table 8.1 for metropolitan workers, METRO = 1, and rural
workers, METRO = 0.

Observe that the average wage and the standard devia-
tion of wage are higher in metropolitan areas than in rural
areas. This is suggestive but not proof of heteroskedasticity.
The standard deviation is an “unconditional” measure that
does not depend on the regression model. Heteroskedastic-
ity is a concern about the variation in the regression random
errors holding other factors constant, in this case education
and experience.

The OLS estimates with heteroskedasticity robust stan-
dard errors are

WAGEi
(robse)

⋀

= −18.450
(4.023)

+ 2.339EDUCi
(0.261)

+ 0.189EXPERi
(0.0478)

+ 4.991METROi
(1.159)

We save the OLS residuals, êi, and estimate equation
(8.20) using zi2 = METROi, ln

(
ê2

i

)
= α1 + α2METRO + vi,

obtaining

ln
(

ê2
i

)⋀

= 2.895 + 0.700METRO

The estimated skedastic function is

ĥ
(
zi2
)
= exp

(
α̂2METROi

)

= exp(0.700METRO) =
{

2.0147 METRO = 1
1 METRO = 0

We estimate the conditional variance of the random error to
be about twice as large for the metropolitan area as in the
rural area. In the WLS regression, the observations in the
metropolitan area will receive half the weight of the obser-
vations in the rural area. The feasible GLS estimates are

WAGEi
(se)

⋀
⋀

= −16.968
(3.788)

+ 2.258EDUCi
(0.239)

+ 0.175EXPERi
(0.0447)

+ 4.995METROi
(1.214)

The FGLS coefficient estimates and standard errors for
EDUC and EXPER are slightly smaller than in the OLS
estimation.

T A B L E 8.1 Summary Statistics, by METRO

Variable Obs Mean Std. Dev.
METRO = 1 WAGE 213 24.25 14.00

EDUC 213 14.25 2.77
EXPER 213 23.15 13.17

METRO = 0 WAGE 84 18.86 8.52
EDUC 84 13.99 2.26
EXPER 84 24.30 14.32

8.6 Detecting Heteroskedasticity
In our discussion of the food expenditure equation, we used the nature of the economic problem
and data to argue why heteroskedasticity of a particular form might be present. However, in many
applications, there is uncertainty about the presence, or absence, of heteroskedasticity. It is natural
to ask: How do I know if heteroskedasticity is likely to be a problem for my model and my set of
data? Is there a way of detecting heteroskedasticity so that I know whether to use GLS techniques?
We consider three ways of investigating these questions. The first is the informal use of residual
plots. The other two are more formal classes of statistical tests.
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8.6.1 Residual Plots
One way of investigating the existence of heteroskedasticity is to estimate your model using least
squares and to plot the least squares residuals. If the errors are homoskedastic, there should be no
patterns of any sort in the residuals, as shown in Figure 4.7(a). If the errors are heteroskedastic,
they may tend to exhibit greater, or less, variation in some systematic way, as in Figures 4.7(b)–(d).
For example, for the household food expenditure data, we suspect that the variance increases
as incomes increases. We illustrated the use of diagnostic residual plots in Examples 8.1–8.3.
We discovered that the absolute values of the residuals do indeed tend to increase as income
increases. This method of investigating heteroskedasticity can be followed for any simple
regression.

When we have more than one explanatory variable, the estimated least squares function is
not so easily depicted on a diagram. However, what we can do is plot the least squares residuals
against each explanatory variable, or against the fitted values ŷi, to see if those residuals vary in
a systematic way relative to the specified variable.

8.6.2 The Goldfeld–Quandt Test
The second test for heteroskedasticity that we consider is designed for the case where we have
two subsamples with possibly different variances. The sub-samples might be based on an indica-
tor variable. In Example 8.5, we considered metropolitan and rural sub-samples for estimating a
wage equation. Alternatively, we might sort the data according to the magnitude of one continuous
variable and then divide the data into subsamples, omitting a few central observations to create
separation if possible. In either case, the Goldfeld–Quandt test uses the estimated error variances
from separate sub-sample regressions as a basis for the test. The background for this test appears
in Appendix C.7.3. The only difference is in the degrees of freedom. Let the first sub-sample con-
tain N1 observations and let the regression model in this partition have K1 parameters, including
the intercept. Let the true variance of the error in this sample be σ2

1 with estimator σ̂2
1 = SSE1∕(

N1 − K1
)
. Let the second sub-sample contain N2 observations and let the regression model in

this partition have K2 parameters, including the intercept. Let the true variance of the error in this
sample be σ2

2 with estimator σ̂2
2 = SSE2∕

(
N2 − K2

)
. The test statistic is

GQ =
σ̂2

1

σ̂2
2
∼ F(N1−K1, N2−K2) (8.22)

If the null hypothesis H0∶σ2
1∕σ

2
2 = 1 is true, then the test statistic GQ = σ̂2

1∕σ̂
2
2 has an

F-distribution with
(
N1 − K1

)
numerator and

(
N2 − K2

)
denominator degrees of freedom. If

the alternative hypothesis is H1∶σ2
1∕σ

2
2 ≠ 1, then we carry out a two-tail test. If we choose

level of significance α = 0.05, then we reject the null hypothesis if GQ ≥ F(0.975, N1−K1, N2−K2)
or if GQ ≤ F(0.025, N1−K1, N2−K2), where F(α, N1−K1, N2−K2) denotes the 100α-percentile of
the F-distribution with the specified degrees of freedom. If the alternative is one-sided,
H1∶σ2

1∕σ
2
2 > 1, then we reject the null hypothesis if GQ ≥ F(0.95, N1−K1, N2−K2).

E X A M P L E 8.6 The Goldfeld–Quandt Test with Partitioned Data

We illustrate the Goldfeld–Quandt test by continuing
Example 8.5. The data partitions are based on the indicator
variable

METRO =
{

1 if person lives in a metropolitan area
0 if person lives in a rural area

The issue we address here is the possibility that the variance
of the error term is different in metropolitan areas than in rural

areas. To test the homoskedasticity assumption, estimate the
wage equation in each data partition:

WAGEMi = βM1 + βM2EDUCMi + βM3EXPERMi + eMi

WAGERi = βR1 + βR2EDUCRi + βR3EXPERRi + eRi

Let var
(
eMi|xMi

)
= σ2

M and var
(
eRi|xRi

)
= σ2

R. Our null
hypothesis is H0∶σ2

M∕σ
2
R = 1. Let the alternative hypothesis
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be H1∶σ2
M∕σ

2
R ≠ 1, so that we use a two-tail test. The

metropolitan subsample has 213 observations and the rural
subsample has 84. In this case, as in most, the number
of parameters in each data-partition regression is the
same, K = K1 = K2 = 3. The test critical values are
F(0.975, 210, 81) = 1.4615 and F(0.025, 210, 81) = 0.7049. Using

var
⋀(

eMi|xMi
)
= σ̂2

M = 147.62 and var
⋀(

eRi|xRi
)
= σ̂2

R = 56.71,
the calculated value of the Goldfeld–Quandt test statistic is
GQ = 2.6033 > F(0.975, 210, 81) = 1.4615, so we reject the null
hypothesis that the error variances in the two subsamples
are equal.

E X A M P L E 8.7 The Goldfeld–Quandt Test in the Food Expenditure Model

Although the Goldfeld–Quandt test is very convenient
for instances where the sample divides naturally into two
subsamples, it can also be used where, under H1, the
variance is a function of a single explanatory variable.
In the food expenditure model, we suspect that the error
variance increases as income increases. We order the
observations according to the magnitude of income so that,
if heteroskedasticity exists, the first half of the sample will
correspond to observations with lower variances and the
last half of the sample will correspond to observations
with higher variances. Then, we split the sample into
two approximately equal halves, carry out two separate
least squares regressions that yield variance estimates,
say σ̂2

1 and σ̂2
2, and proceed with the test as described

previously.

Following these steps for the food expenditure example,
with the observations ordered according to income, we split
the sample into two equal subsamples of 20 observations
each. Because the sample is small, we do not omit any
middle observations. Estimating the model on each subsam-
ple yields σ̂2

1 = 3574.8 and σ̂2
2 = 12, 921.9, from which we

obtain
F =

σ̂2
2

σ̂2
1

= 12, 921.9
3574.8 = 3.61

Believing that the variances could increase, but not decrease
with income, we use a one-tailed test with 5% level of signif-
icance critical value F(0.95, 18, 18) = 2.22. Since 3.61 > 2.22, a
null hypothesis of homoskedasticity is rejected in favor of the
alternative that the variance increases with income.

8.6.3 A General Test for Conditional Heteroskedasticity
In this section we consider a test for conditional heteroskedasticity that is related to some
“explanatory” variables. Our equation of interest is the regression model

yi = β1 + β2xi2 + · · · + βKxiK + ei (8.23)

Under assumptions MR1–MR5 the OLS estimator is the best linear unbiased estimator of the
parameters β1, β2, … , βK . When conditional heteroskedasticity is a possibility, we hypothesize
that the variance of the random error, ei, depends on a set of explanatory variables zi2, zi3, … , ziS
that may include some or all of the explanatory variables xi2, … , xiK . That is, assume a general
expression for the conditional variance

var
(
ei|zi

)
= σ2

i = E
(
e2

i |zi
)
= h

(
α1 + α2zi2 + · · · + αSziS

)
(8.24)

where h( • ) is some smooth function and α2, α3, … , αS are nuisance parameters, meaning that
we are not really interested in their values but must recognize that they are there. The beauty of
the test we are about to present is that we do not have to actually know, or even guess, the function
h( • ). We will test for any relationship between the variance of the error term and any function of
the selected variables. The function h( • ) is similar to the skedastic function in equation (8.4), but
here we have not factored out a constant σ2, and unlike the feasible GLS estimation we do not
have to choose an exponential form for h( • ).

Notice what happens to the function h( • ) when α2 = α3 = · · · = αS = 0. It collapses to

h
(
α1 + α2zi2 + · · · + αSziS

)
= h

(
α1
)

(8.25)
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The term h
(
α1
)
, which we can define to be σ2, is a constant, and var

(
ei|zi

)
= h

(
α1
)
= σ2. In other

words, when α2 = α3 = · · · = αS = 0 the random errors are homoskedastic. On the other hand,
if any of the parameters α2, α3, … , αS are not zero, then heteroskedasticity is present. Conse-
quently, the null and alternative hypotheses for a test for heteroskedasticity based on the variance
function are

homoskedasticity ↔ H0∶α2 = α3 = · · · = αS = 0
heteroskedasticity ↔ H1∶ not all the αs in H0 are zero (8.26)

The null and alternative hypotheses are the first components of a test. The next component is a
test statistic. To obtain a test statistic, consider a linear conditional variance function

σ2
i = E

(
e2

i |zi
)
= α1 + α2zi2 + · · · + αSziS (8.27)

Despite using a linear conditional variance function the test is for the general heteroskedastic-
ity pattern in (8.24). Let vi = e2

i − E
(
e2

i |zi
)

be the difference between a squared error and its
conditional mean. Then, from (8.27), we can write

e2
i = E

(
e2

i |zi
)
+ vi = α1 + α2zi2 + · · · + αSziS + vi (8.28)

This looks very much like a linear regression model. The one problem is that the “dependent
variable” e2

i is not observable. We overcome this problem by replacing e2
i with the squared OLS

residuals ê2
i . In large samples, this is valid because, as we show in Appendix 8B, the difference

ei − êi goes to zero as N →∞. An operational version of (8.28) is

ê2
i = α1 + α2zi2 + · · · + αSziS + vi (8.29)

Strictly speaking, replacing e2
i by ê2

i also changes the definition of vi, but we will retain the same
notation to avoid unnecessary complication.

The test for heteroskedasticity is based on OLS estimation of (8.29). The question we ask is,
do the variables zi2, zi3, … , ziS help explain ê2

i ? Under homoskedasticity the variables zi2, zi3, … ,
ziS should have no relation to ê2

i . One alternative is to use an F-test for the null hypothesis. An
asymptotically equivalent and convenient test is based on the R2, goodness-of-fit statistic, from
(8.29). If the null hypothesis is true, α2 = α3 = · · · = αS = 0, then the R2 should be small and
close to zero. If R2 is large, it is evidence against the assumption of homoskedasticity. How large
does R2 have to be for us to reject homoskedasticity? An answer requires a test statistic and a
rejection region. It can be shown that if the random errors are homoskedastic, then the sample
size multiplied by R2, N × R2 or simply NR2, has a chi-square

(
χ2) distribution with S − 1 degrees

of freedom in large samples. That is,

NR2 a∼χ2
(S−1) if the null hypothesis of homoskedasticity is true (8.30)

Your exposure to the χ2 distribution has been relatively limited. It is discussed in Appendix
B.5.2. It was used for testing for normality in Section 4.3.4, and its relationship with the F-test
was explored in Section 6.1.5. It is a distribution that is used for testing many different kinds of
hypotheses. Like an F random variable, a χ2 random variable only takes positive values. Critical
values of the distribution appear in Statistical Table 3. Locate the test degrees of freedom in the
left-hand column, and find the critical value from the columns, each of which corresponds to a
percentile of the distribution. Because a large R2 value is evidence against the null hypothesis of
homoskedasticity (it suggests the z variables explain some changes in the variance), the rejection
region for the statistic in (8.30) is in the right tail of the distribution. For an α-significance
level test, we reject H0 and conclude that heteroskedasticity exists when NR2 ≥ χ2

(1−α, S−1).
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For example, if α = 0.01 and S = 2, reject the hypothesis of homoskedasticity if
NR2 ≥ χ2

(0.99,1) = 6.635. Your econometric software will have functions to calculate critical
values, and p-values, for χ2-tests.

There are several important features of this test:

1. It is a large sample test. The result in (8.30) holds approximately in large samples.
2. You will often see the test referred to as a Lagrange multiplier test (LM test) or a

Breusch–Pagan test for heteroskedasticity. Breusch and Pagan used the LM principle
(see Appendix C.8.4) to derive an earlier version of the test, which was later modified by
other researchers to the form in (8.30). The test values for these and other slightly different
versions of the test, one of which is the F-test, are automatically calculated by a number of
software packages. The one provided by your software may or may not be exactly the same
as the NR2 version in (8.30). The relationships between the different versions of the test are
described in Appendix 8B. As you proceed through the book and study more econometrics,
you will find that many LM tests can be written in the form NR2, where the R2 comes from
a convenient auxiliary regression related to the hypothesis being tested.

3. We motivated the test in terms of an alternative hypothesis with the very general conditional
variance function σ2

i = h
(
α1 + α2zi2 + · · · + αSziS

)
, yet we proceeded to carry out the test

using the linear function ê2
i = α1 + α2zi2 + · · · + αSziS + vi. One of the amazing features of

the Breusch–Pagan/LM test is that the value of the statistic computed from the linear function
is valid for testing an alternative hypothesis of heteroskedasticity where the variance function
can be of any form given by (8.24).

4. The Breusch–Pagan test is for conditional heteroskedasticity. Unconditional heteroskedas-
ticity exists when the error term variance is completely random, changing from observa-
tion to observation but unrelated to any particular variable. The least squares estimator
properties are unaffected by unconditional heteroskedasticity. We illustrate this point in
Appendix 8D.

8.6.4 The White Test
One problem with the variance function test described so far is that it presupposes that we have
knowledge of what variables will appear in the variance function if the alternative hypothesis of
heteroskedasticity is true. In other words, it assumes we are able to specify z2, z3, … , zS. In reality,
we may wish to test for heteroskedasticity without precise knowledge of the relevant variables.
With this point in mind, White suggested defining the z’s as equal to the x’s, the squares of the x’s,
and their cross-products. Frequently, the variables that affect the variance are the same as those
in the mean function. Also, by using a quadratic function we can approximate a number of other
possible conditional variance functions. Suppose the regression model is

yi = β1 + β2xi2 + β3xi3 + ei

The White test uses
z2 = x2 z3 = x3 z4 = x2

2 z5 = x2
3 and z6 = x2x3

If the regression model contains quadratic terms
(
x3 = x2

2 for example
)
, then some of the z’s are

redundant and are deleted. Also if x3 is an indicator variable, taking the values 0 and 1, then
x2

3 = x3 which is also redundant.
The White test is performed using the NR2 test defined in (8.29), or an F-test (see Appendix

8B for details). One difficulty with the White test is that it can detect problems other than het-
eroskedasticity. Thus, while it is a useful diagnostic, be careful about interpreting the result of a
significant White test. It may be that you have an incorrect functional form, or an omitted variable.
In this sense, it is something like RESET, a specification error test discussed in Chapter 6.
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8.6.5 Model Specification and Heteroskedasticity
As hinted at the end of the previous section, heteroskedasticity can be present because of a model
specification error. If data partitions are not recognized, or important variables omitted, or an
incorrect functional form selected, then heteroskedasticity can appear to be present. Hence, one
piece of advice is to “Trust no one.” Don’t necessarily believe that a significant heteroskedasticity
test means that heteroskedasticity is the problem and that using robust standard errors will be an
adequate fix. Critically examine the model from the point of view of economic reasoning and
look for any specification problems.

One very common specification issue with economic data is the choice of functional form.
In Section 4.3.2, we discussed a variety of model specifications that are useful when considering
nonlinear, or curvilinear, relationships (see Figure 4.5). Many economic applications use
“log-log” or “log-linear” models. Using a logarithmic transformation of the dependent variable
has another feature, variance stabilization, that is useful in the context of heteroskedastic data.3
Economic variables like wages, incomes, house prices, and expenditures are right-skewed,
with a long tail to the right. The log-normal probability distribution is useful when modeling
such variables. This idea was introduced first in the Probability Primer in Figure P.2, and we
discuss the log-normal distribution in Appendix B.3.9. If the random variable y has a log-normal
probability density function, then ln(y) has a normal distribution, which is symmetrical and
bell-shaped, and not skewed. That is, ln(y) ∼ N

(
μ, σ2). The feature of the log-normal random

variable that we are now interested in is that its variance increases when its mean and median
increase. This is illustrated in Appendix B.3.9, Figure B.10, and the surrounding discussion.
In Figure 8.6 we modify Figure 4.5(e) for the log-linear model to show E(y|x), the solid
line, and include E(y|x) ± 2

√
var(y|x), the dashed lines. By choosing a log-linear or log-log

model we are implicitly assuming a curvilinear and heteroskedastic relationship between
the variables y and x. However, there is a linear and homoskedastic relation between ln(y)
and x.

Let’s look at an example.

y

x

FIGURE 8.6 A log-linear relationship.

............................................................................................................................................
3The “Box-Cox Model” nests the linear and log-linear models in a more general nonlinear regression framework. See
William Greene (2018) Econometric Analysis, Eighth Edition, 214–216.
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E X A M P L E 8.8 Variance Stabilizing Log-transformation

Consider the data file cex5_small. Figure 8.7(a) shows a
histogram of household expenditures on entertainment
per person, ENTERT , for those households who have
positive spending, and Figure 8.7(b) is the histogram for
ln(ENTERT).

Note the extremely skewed distribution of entertainment
expenditures in Figure 8.7(a). Figure 8.7(b) shows the effect
of the log-transformation. The distribution of ln(ENTERT)
exhibits little skewness. Figure 8.8(a) shows the entertain-
ment expenses plotted versus income and the least squares
fitted line.

The variation in ENTERT about the fitted line increases
as INCOME increases. Estimating the model ENTERT =
β1 + β2INCOME + β3COLLEGE + β4ADVANCED + e, we
obtain the least squares residuals and then estimate by
OLS the model ê2

i = α1 + α2INCOMEi + vi. From this
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FIGURE 8.7 Histograms of entertainment expenditures.
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FIGURE 8.8 Linear and log-linear models for entertainment expenditures.

regression, NR2 = 31.34. The critical value for a 1% level
of significance, heteroskedasticity test is 6.635, thus we
conclude that heteroskedasticity is present. Figure 8.8(b)
shows the log of entertainment expenses, ln(ENTERT),
plotted versus income and the least squares fitted line. There
is little if any visual evidence of heteroskedasticity and the
value of the heteroskedasticity test statistic is NR2 = 0.36,
so we do not reject the null hypothesis of homoskedasticity.
The log-transformation has “cured” the heteroskedasticity
problem.

Among the 1200 households in the sample, 100
did not report any spending on entertainment. The log-
transformation can only be used for positive values. We
dropped the 100 with no spending, but that is not necessarily
the best approach. In Section 16.7 we will discuss this type
of data, which is called a censored sample.
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8.7 Heteroskedasticity in the Linear
Probability Model
In Section 7.4 we introduced the linear probability model for explaining choice between two
alternatives. We can represent this choice by an indicator variable y that takes the value one
with probability p if the first alternative is chosen, and the value zero with probability 1 − p if
the second alternative is chosen. An indicator variable with these properties is a Bernoulli ran-
dom variable with mean E(y) = p and variance var(y) = p(1 − p). Interest centers on measuring
the effect of explanatory variables x2, x3, … , xk on the probability p. In the linear probabil-
ity model the relationship between p and the explanatory variables is specified as the linear
function

E
(
yi|xi

)
= p = β1 + β2xi2 + · · · + βKxiK

Defining the error ei as the difference yi − E
(
yi|xi

)
for the ith observation, we have the

model
yi = E

(
yi|xi

)
+ ei = β1 + β2xi2 + · · · + βKxiK + ei (8.31)

This model can be estimated with least squares—an example was given in Section 7.4—but it
suffers from heteroskedasticity because

var
(
yi|xi

)
= var

(
ei|xi

)
= pi

(
1 − pi

)

=
(
β1 + β2xi2 + · · · + βKxiK

)(
1 − β1 − β2xi2 − · · · − βKxiK

)
(8.32)

The error variance depends on the values of the explanatory variables. We can rectify this problem
by applying the techniques described earlier in this chapter. Instead of using least squares standard
errors, we can use heteroskedasticity-robust standard errors. Or, alternatively, we can apply a GLS
procedure.

The first step toward obtaining GLS estimates is to estimate the variance in (8.32). An esti-
mate of pi can be obtained from the least squares predictions

p̂i = b1 + b2xi2 + · · · + bKxiK (8.33)

giving an estimated variance of
var
⋀(

ei|x
)
= p̂i

(
1 − p̂i

)
(8.34)

A word of caution is required at this point. It is possible that some of the p̂i obtained from (8.33)
will not lie within the interval 0 < p̂i < 1. If that happens, the corresponding variance estimate in
(8.34) will be negative or zero, a nonsensical outcome. Thus, before proceeding to calculate the
estimated variances from (8.34), it is necessary to check the estimated probabilities from (8.33)
to ensure that they lie between zero and one. For those observations that violate this requirement,
one possible solution is to set p̂i’s greater than 0.99 equal to 0.99, and p̂i’s less than 0.01 equal to
0.01. Another possible solution is to omit the offending observations. Neither of these solutions
is totally satisfactory. Truncating at 0.99 or 0.01 is arbitrary, and the results could be sensitive
to the truncation point. Omitting observations means that we are throwing away information. It
might be preferable to use least squares with robust standard errors—that should, at least, be one
of the options that is tried.
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Once positive variance estimates have been obtained using (8.34), with adjustments where
necessary, GLS estimates can be obtained by applying least squares to the transformed equation

yi√
p̂i
(
1 − p̂i

) = β1
1√

p̂i
(
1 − p̂i

) + β2
xi2√

p̂i
(
1 − p̂i

) + · · · + βK
xiK√

p̂i
(
1 − p̂i

) +
ei√

p̂i
(
1 − p̂i

)

E X A M P L E 8.9 The Marketing Example Revisited

In Example 7.7 the choice of purchasing either Coke
(COKE = 1) or Pepsi (COKE = 0) was modeled as depend-
ing on the relative price of Coke to Pepsi (PRATIO), and
whether store displays for Coke and Pepsi were present
(DISP_COKE = 1 if a Coke display was present, otherwise
0; DISP_PEPSI = 1 if a Pepsi display was present, oth-
erwise 0). The data file coke contains 1140 observations
on these variables. Table 8.2 contains the results for (1)
least squares, (2) least squares with robust standard errors,
(3) GLS with variances below 0.01 truncated to 0.01, and
(4) GLS with observations not satisfying 0 < p̂i < 1 omitted.
For the GLS estimates there were no observations for which
p̂i > 0.99 and there were 16 observations where p̂i < 0.01;
for these latter cases it was also true that p̂i < 0.

Since the variance function in (8.32) contains the x’s,
their squares, and their cross products, a suitable test for het-
eroskedasticity is the White test described in Section 8.6.4.
Applying this test to the residuals from the least squares esti-
mated equation yields

χ2 = N × R2 = 25.817 p-value = 0.0005
leading us to reject a null hypothesis of homoskedasticity
at a 1% level of significance. Note that, when carrying out
this test, your software will omit the squares of DISP_COKE
and DISP_PEPSI. Because these variables are indicator vari-
ables, DISP_COKE2 = DISP_COKE and DISP_PEPSI2 =
DISP_PEPSI, leaving a χ2-test with 7 degrees of freedom.

Examining the estimates in Table 8.2, we see there is
little difference in the four sets of standard errors. In this
particular case the use of least squares standard errors does
not seem to matter. The four sets of coefficient estimates are

also similar with the exception of those from GLS where the
negative p̂’s were truncated to 0.01. The weight on obser-
vations with variance var

(
ei
)
= 0.01(1 − 0.01) = 0.0099 is a

relatively large one. It appears that the large weights placed
on those 16 observations are having a noticeable impact on
the estimates. The signs are all as expected. Making Coke
more expensive leads more people to purchase Pepsi. A Coke
display encourages purchase of Coke, and a Pepsi display
encourages purchase of Pepsi.

In Chapter 16 we study models which are specifically
designed for modeling choice between two or more alterna-
tives, and which do not suffer from the problems of the linear
probability model.

T A B L E 8.2 Linear Probability Model Estimates

LS- GLS- GLS-
LS robust trunc omit

C 0.8902 0.8902 0.6505 0.8795
(0.0655) (0.0652) (0.0568) (0.0594)

PRATIO −0.4009 −0.4009 −0.1652 −0.3859
(0.0613) (0.0603) (0.0444) (0.0527)

DISP
_COKE

0.0772 0.0772 0.0940 0.0760
(0.0344) (0.0339) (0.0399) (0.0353)

DISP
_PEPSI

−0.1657 −0.1657 −0.1314 −0.1587
(0.0356) (0.0343) (0.0354) (0.0360)

8.8 Exercises

8.8.1 Problems
8.1 For the simple regression model with heteroskedasticity, yi = β1 + β2xi + ei and var

(
ei|xi

)
= σ2

i show
that the variance var

(
b2|xi

)
=
[∑N

i=1
(
xi − x

)2]−1 [∑N
i=1

(
xi − x

)2σ2
i

] [∑N
i=1

(
xi − x

)2]−1
reduces to

var
(
b2|x

)
= σ2/∑N

i=1
(
xi − x

)2 under homoskedasticity.
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8.2 Consider the regression model yi = β1xi1 + β2xi2 + ei with two explanatory variables, xi1 and xi2, but
no constant term.
a. The sum of squares function is S

(
β1, β2|x1, x2

)
= ∑N

i=1
(
yi − β1xi1 − β2xi2

)2. Find the partial deriva-
tives with respect to the parameters β1 and β2. Setting these derivatives to zero and solving, as in
Appendix 2A, show that the least squares estimator of β2 is

b2 =
(∑

x2
i1
) (∑

xi2yi
)
−
(∑

xi1xi2
) (∑

xi1yi
)

(∑
x2

i1
) (∑

x2
i2
)
−
(∑

xi1xi2
)2

b. Let xi1 = 1 and show that the estimator in (a) reduces to

b2 =

∑
xi2yi

N
−

∑
xi2

N

∑
yi

N∑
x2

i2
N

−
(∑

xi2
N

)2

Compare this equation to equation (2A.5) and show that they are equivalent.
c. In the estimator in part (a), replace yi, xi1 and xi2 by y∗i = yi

/√
hi, x∗i1 = xi1

/√
hi and x∗i2 = xi2

/√
hi.

These are transformed variables for the heteroskedastic model σ2
i = σ

2h
(zi

)
= σ2hi. Show that the

resulting GLS estimator can be written as

β̂2 =
∑

aixi2yi −
∑

aixi2
∑

aiyi∑
aix2

i2 −
(∑

aixi2
)2

where ai = 1∕
(
chi

)
and c = ∑(

1∕hi
)
. Find ∑N

i=1 ai.
d. Show that under homoskedasticity β̂2 = b2.
e. Explain how β̂2 can be said to be constructed from “weighted data averages” while the usual least

squares estimator b2 is constructed from “arithmetic data averages.” Relate your discussion to the
difference between WLS and ordinary least squares.

8.3 Suppose that an outcome variable yij = β1 + β2xij + eij, i = 1,… ,N; j = 1,… ,Ni. Assume
E
(
eij|X

)
= 0 and var

(
eij|X

)
= σ2. One illustration is yij = the ith farm’s production on the jth acre

of land, with each farm consisting of Ni acres. The variable xij is the amount of an input, labor or
fertilizer, used by the ith farm on the jth acre.
a. Suppose that we do not have data on each individual acre, but only aggregate, farm-level data,∑Ni

j=1 yij = yAi,
∑Ni

j=1 xij = xAi. If we specify the linear model yAi = β1 + β2xAi + eAi, i = 1,… ,N,
what is the conditional variance of the random error?

b. Suppose that we do not have data on each individual acre, but only average data for each farm,∑Ni
j=1 yij∕Ni = yi,

∑Ni
j=1 xij∕Ni = xi. If we specify the linear model yi = β1 + β2xi + ei, i = 1,… ,N,

what is the conditional variance of the random error?
c. Suppose the outcome variable is binary. For example, suppose yij = 1 if a crop shows evidence

of blight on the jth acre of the ith farm, and yij = 0 otherwise. In this case ∑Ni
j=1 yij∕Ni = pi,

where pi is the sample proportion of acres that show the blight on the ith farm. Suppose
the probability of the ith farm showing blight on a particular acre is Pi. If we specify the
linear model yi = β1 + β2xi + ei, i = 1,… ,N, what is the conditional variance of the random
error?

8.4 Consider the simple regression model yi = β1 + β2xi + ei where we hypothesize heteroskedasticity of
the form σ2

i = σ
2x2

i . We have N = 4 observations, with x =
(
1 2 3 4

)
and y =

(
3 4 3 5

)
.

a. Use the formula for the least squares estimator in Exercise 8.2(b) to compute the OLS estimate of
β2. In this case ∑

xi2yi∕N = 10, ∑
x2

i2∕N = 7.
b. Referring to Exercise 8.2(c), what is the value c = ∑(

1∕hi
)
?

c. Referring to Exercise 8.2(c), what are the values ai = 1∕
(
chi

)
, i = 1,… , 4? What is ∑4

i=1 ai?
d. Use the formula for the generalized least squares estimator in Exercise 8.2(c) to compute the GLS

estimate of β2.
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e. Suppose that we know that σ2 = 0.2. Calculate the true OLS variance given in equation (8.8). The
values of

(
xi − x

)2 are
(
2.25, 0.25, 0.25, 2.25

)
. What is the value of the incorrect variance in

equation (8.6)?
8.5 Consider the simple regression model yi = β1 + β2xi2 + ei. Suppose N = 5 and the values of xi2 are

(1, 2, 3, 4, 5). Let the true values of the parameters be β1 = 1, β2 = 1. Let the true random error values,
which are never known in reality, be ei = (1, −1, 0, 6, −6).
a. Calculate the values of yi.
b. The OLS estimates of the parameters are b1 = 3.1 and b2 = 0.3. Compute the least squares residual,

ê1, for the first observation, and ê4, for the fourth observation. What is the sum of all the least squares
residuals? In this example, what is the sum of the true random errors? Is the sum of the residuals
always equal to the sum of the random errors? Explain.

c. It is hypothesized that the data are heteroskedastic with the variance of the first three random errors
being σ2

1, and the variance of the last two random errors being σ2
2. We regress the squared residuals

ê2
i on the indicator variable zi, where zi = 0, i = 1, 2, 3 and zi = 1, i = 4, 5. The overall model

F-statistic value is 12.86. Does this value provide evidence of heteroskedasticity at the 5% level of
significance? What is the p-value for this F-value (requires computer)?

d. R2 = 0.8108 from the regression in (c). Use this value to carry out the LM (Breusch–Pagan)
test for heteroskedasticity at the 5% level of significance. What is the p-value for this test
(requires computer)?

e. We now regress ln
(

ê2
i

)
on zi. The estimated coefficient of zi is 3.81. We discover that the software

reports using only N = 4 observations in this calculation. Why?
f. In order to carry out feasible generalized least squares using information from the regression in

part (e), we first create the transformed variables
(
y∗i , x∗i1, x∗i2

)
. List the values of the transformed

observations for i = 1 and i = 4.
8.6 Consider the wage equation

WAGEi = β1 + β2EDUCi + β3EXPERi + β4METROi + ei (XR8.6a)

where wage is measured in dollars per hour, education and experience are in years, and METRO = 1
if the person lives in a metropolitan area. We have N = 1000 observations from 2013.
a. We are curious whether holding education, experience, and METRO constant, there is the same

amount of random variation in wages for males and females. Suppose var
(
ei|xi,FEMALE = 0

)
=

σ2
M and var

(
ei|xi,FEMALE = 1

)
= σ2

F. We specifically wish to test the null hypothesis σ2
M = σ2

F
against σ2

M ≠ σ2
F. Using 577 observations on males, we obtain the sum of squared OLS residu-

als, SSEM = 97161.9174. The regression using data on females yields σ̂F = 12.024. Test the null
hypothesis at the 5% level of significance. Clearly state the value of the test statistic and the rejection
region, along with your conclusion.

b. We hypothesize that married individuals, relying on spousal support, can seek wider employ-
ment types and hence holding all else equal should have more variable wages. Suppose
var

(
ei|xi,MARRIED = 0

)
= σ2

SINGLE and var
(
ei|xi,MARRIED = 1

)
= σ2

MARRIED. Specify the null
hypothesis σ2

SINGLE = σ2
MARRIED versus the alternative hypothesis σ2

MARRIED > σ2
SINGLE. We add

FEMALE to the wage equation as an explanatory variable, so that

WAGEi = β1 + β2EDUCi + β3EXPERi + β4METROi + β5FEMALE + ei (XR8.6b)

Using N = 400 observations on single individuals, OLS estimation of (XR8.6b) yields a sum of
squared residuals is 56231.0382. For the 600 married individuals, the sum of squared errors is
100,703.0471. Test the null hypothesis at the 5% level of significance. Clearly state the value of the
test statistic and the rejection region, along with your conclusion.

c. Following the regression in part (b), we carry out the NR2 test using the right-hand-side variables
in (XR8.6b) as candidates related to the heteroskedasticity. The value of this statistic is 59.03.
What do we conclude about heteroskedasticity, at the 5% level? Does this provide evidence about
the issue discussed in part (b), whether the error variation is different for married and unmarried
individuals? Explain.

d. Following the regression in part (b) we carry out the White test for heteroskedasticity. The value
of the test statistic is 78.82. What are the degrees of freedom of the test statistic? What is the 5%
critical value for the test? What do you conclude?
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e. The OLS fitted model from part (b), with usual and robust standard errors, is

WAGE
⋀

= −17.77 + 2.50EDUC + 0.23EXPER + 3.23METRO − 4.20FEMALE
(se) (2.36) (0.14) (0.031) (1.05) (0.81)
(robse) (2.50) (0.16) (0.029) (0.84) (0.80)

For which coefficients have interval estimates gotten narrower? For which coefficients have interval
estimates gotten wider? Is there an inconsistency in the results?

f. If we add MARRIED to the model in part (b), we find that its t-value using a White heteroskedas-
ticity robust standard error is about 1.0. Does this conflict with, or is it compatible with, the result
in (b) concerning heteroskedasticity? Explain.

8.7 Consider the simple treatment effect model yi = β1 + β2di + ei. Suppose that di = 1 or di = 0 indicating
that a treatment is given to randomly selected individuals or not. The dependent variable yi is the
outcome variable. See the discussion of the difference estimator in Section 7.5.1. Suppose that N1
individuals are given the treatment and N0 individual are in the control group, who are not given the
treatment. Let N = N0 + N1 be the total number of observations.
a. Show that if var

(
ei|d

)
= σ2 then the variance of the OLS estimator b2 of β2 is

var
(
b2|d

)
= Nσ2∕

(
N0N1

)
. [Hint: See Appendix 7B.]

b. Let y0 = ∑N0
i=1 yi∕N0 be the sample mean of the outcomes for the N0 observations on

the control group. Let SST0 =
∑N0

i=1
(
yi − y0

)2 be the sum of squares about the sample
mean of the control group, where di = 0. Similarly, let y1 = ∑N1

i=1 yi∕N1 be the sample
mean of the outcomes for the N1 observations on the treated group, where di = 1. Let
SST1 =

∑N1
i=1

(
yi − y1

)2 be the sum of squares about the sample mean of the treatment group. Show
that σ̂2 = ∑N

i=1 ê2
i
/
(N − 2) =

(
SST0 + SST1

)
∕(N − 2) and therefore that

var
⋀(

b2|d
)
= Nσ̂2/(N0N1

)
=
( N

N − 2
)(SST0 + SST1

N0N1

)

c. Using equation (2.14) find var
(
b1|d

)
, where b1 is the OLS estimator of the intercept parameter β1.

What is var
⋀(

b1|d
)
?

d. Suppose that the treatment and control groups have not only potentially different means but poten-
tially different variances, so that var

(
ei|di = 1

)
= σ2

1 and var
(
ei|di = 0

)
= σ2

0. Find var
(
b2|d

)
.

What is the unbiased estimator for var
(
b2|d

)
? [Hint: See Appendix C.4.1.]

e. Show that the White heteroskedasticity robust estimator in equation (8.9) reduces in this case to
var
⋀(

b2|d
)
= N

N−2

(
SST0
N2

0
+ SST1

N2
1

)
. Compare this estimator to the unbiased estimator in part (d).

f. What does the robust estimator become if we drop the degrees of freedom correction N∕(N − 2) in
the estimator proposed in part (e)? Compare this estimator to the unbiased estimator in part (d).

8.8 It can be shown that the theoretically useful form of the OLS estimator of β1 in the simple
linear regression model yi = β1 + β2xi2 + ei is b1 = β1 +

∑(
−xwi + N−1) ei =

∑
viei, where

vi =
(
−xwi + N−1) and wi =

(
xi − x

)
∕∑(

xi − x
)2. Using this formula consider the simple treatment

effect model yi = β1 + β2di + ei. Suppose that di = 1 or di = 0 indicating that a treatment is given
to a randomly selected individual or not. The dependent variable yi is the outcome variable. See the
discussion of the difference estimator in Section 7.5.1. Suppose that N1 individuals are given
the treatment and N0 individuals in the control group are not given the treatment. Let N = N0 + N1 be
the total number of observations.
a. Show that when di = 0, vi = 1∕N and that when di = 1, vi = 0.
b. Derive var

(
b1|d

)
under the assumption of homoskedastic errors, var

(
ei|d

)
= σ2. What is an unbi-

ased estimator of var
(
b1|d

)
in this case?

c. Derive var
(
b1|d

)
under the assumption of heteroskedastic errors, var

(
ei|di = 1

)
= σ2

1 and
var

(
ei|di = 0

)
= σ2

0. What is an unbiased estimator of var
(
b1|d

)
in this case?

8.9 We wish to estimate the hedonic regression model

PRICEi = β1 + β2SQFTi + β3CLOSEi + β4AGEi + β5FIREPLACEi + β6POOLi

+ β7TWOSTORYi + ei
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The variables are PRICE ($1000), SQFT (100s), CLOSE = 1 if located near a major university,
0 otherwise, AGE (years), FIREPLACE, POOL, TWOSTORY = 1 if present, 0 otherwise.
a. Using Table 8.3, comment on the sign, significance, and interpretation of the OLS coefficient esti-

mate for the variable CLOSE.
b. Answer each of the following True or False. In a regression model with heteroskedasticity, (i) the

OLS estimator is biased; (ii) the OLS estimator is inconsistent; (iii) the OLS estimator does not
have an approximate normal distribution in large samples; (iv) the usual OLS standard error is
too small; (v) the usual OLS estimator standard error is incorrect; (vi) the usual R2 is no longer
meaningful; (vii) the usual overall F-test is reliable in large samples.

c. Following the OLS regression, the residuals are saved as EHAT . In the regression labeled AUX in
Table 8.3, the dependent variable is EHAT2. Test for the presence of heteroskedasticity, using the
5% level of significance. State the test statistic, the test critical value, and your conclusion.

d. The model is reestimated by OLS using White heteroskedasticity-consistent standard errors. In
what way are these standard errors robust? Are they valid when there is homoskedasticity, het-
eroskedasticity, in small samples and large? Which of the statistically significant coefficients has
wider confidence intervals using the robust standard errors? Do any coefficients switch from being
significant at 5% to not significant at 5%, or vice versa?

e. Our researcher estimates the equation after dividing each variable, and the constant term, by SQFT
to obtain the GLS estimates. What assumption has been made about the form of heteroskedasticity
in this estimation? Are the GLS estimates, shown in Table 8.3, noticeably different from the OLS
estimates? Do any coefficients switch from being significant at 5% to not significant at 5%, or vice
versa?

f. The residuals from the transformed regression in part (e) are called ESTAR. The researcher
regresses ESTAR2 on all the transformed variables and includes an intercept. The R2 = 0.0237.
Has the researcher eliminated heteroskedasticity?

g. The researcher estimates the model in (e) again but uses robust standard errors. These are
reported in Table 8.3 as “Robust GLS.” Do you consider this a prudent thing to do? Explain your
reasoning.

T A B L E 8.3 Estimates for Exercise 8.9

OLS AUX Robust OLS GLS Robust GLS
C −101.072∗∗∗ −25561.243∗∗∗ −101.072∗∗∗ −4.764 −4.764

(27.9055) (5419.9443) (34.9048) (21.1357) (35.8375)
SQFT 13.3417∗∗∗ 1366.8074∗∗∗ 13.3417∗∗∗ 7.5803∗∗∗ 7.5803∗∗∗

(0.5371) (104.3092) (1.1212) (0.5201) (0.9799)
CLOSE 26.6657∗∗∗ 1097.8933 26.6657∗∗∗ 39.1988∗∗∗ 39.1988∗∗∗

(9.8602) (1915.0902) (9.6876) (7.0438) (7.2205)
AGE −2.7305 52.4499 −2.7305 1.4887 1.4887

(2.7197) (528.2353) (3.2713) (2.1034) (2.5138)
FIREPLACE −2.2585 −3005.1375 −2.2585 17.3827∗∗ 17.3827∗

(10.5672) (2052.4109) (10.6369) (7.9023) (9.3531)
POOL 0.3601 6878.0158∗ 0.3601 8.0265 8.0265

(19.1855) (3726.2941) (27.2499) (17.3198) (15.6418)
TWOSTORY 5.8833 −7394.3869∗∗ 5.8833 26.7224∗ 26.7224∗

(14.8348) (2881.2790) (20.8733) (13.7616) (16.0651)
R2 0.6472 0.3028 0.6472 0.4427 0.4427

Standard errors in parentheses
∗p < 0.10
∗∗p < 0.05
∗∗∗p < 0.01
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8.10 Does having more children drive parents to drink more alcohol? We have data on the following
variables: WALC = budget share (percent of income spent) for alcohol expenditure; INCOME =
total net household income (10,000 UK pounds); AGE = age of household head

/
10; NK = number of

children (1 or 2). We are interested in the equation

ln(WALC) = β1 + β2INCOME + β3AGE + β4NK + e

a. The data we have is based on a survey. If we hope to establish a causal relationship between NK and
the budget share spent on alcohol, what assumptions are sufficient to prove that the least squares
estimator is BLUE?

b. Using 1278 observations on households with a positive budget share for alcohol, the OLS estimated
equation, with conventional standard errors, is

ln(WALC)
⋀

= −1.956 + 0.837INCOME − 0.228AGE − 0.251NK
(se) (0.166) (0.516) (0.039) (0.058)

Test the null hypothesis that an increase in the number of children from one to two has no effect
on the budget share of alcohol versus the alternative that an increase in the number of children
increases the budget share of alcohol. Use the 5% level of significance.

c. We suspect that the regression error variance might be larger for households with two children
rather than one. We estimate the budget share equation by least squares separately for households
with one and two children. For the 489 households with one child, the sum of squared residuals
is 465.83. For the 789 households with two children, the sum of squared residuals is 832.77. Test
the null hypothesis that there is no difference between the regression error variances for these two
groups, against the alternative that there is a difference. Use the Goldfeld–Quandt test at the 5%
level of significance. Repeat the test using the alternative that the regression error variance for the
subsample of households with two children is greater than the regression error variance for the
subsample of households with one child. What do you conclude?

d. We save the least squares residuals from the estimation in part (b), calling them EHAT . We
then obtain the second-stage regression results EHAT2 = 0.012 + 0.279AGE + 0.025NK with an
R2 = 0.0208. Is there evidence of heteroskedasticity? Set up the appropriate hypothesis and carry
out the test at the 1% level of significance. What do you conclude?

e. We then carry out the regression ln
(
EHAT2)
⋀

= −2.088 + 0.291AGE − 0.048NK. Holding
NK constant, calculate the estimated variance ratio var

⋀(
ei|AGE = 40

)/
var
⋀(

ei|AGE = 30
)
.

[Hint: Recall that AGE is measured in units of 10 years.] What is the estimated ratio
var
⋀(

ei|AGE = 60
)/

var
⋀(

ei|AGE = 30
)
? Holding AGE constant, calculate the estimated variance

ratio var
⋀(

ei|NK = 2
)/

var
⋀(

ei|NK = 1
)
.

f. Based on the results we have obtained so far, can we claim that the least squares estimator used in
(b) is BLUE?

g. What model would we estimate by OLS to implement feasible generalized least squares estimation?
8.11 We are interested in the relationship between rice production, inputs of labor and fertilizer, and the

area planted using data on N = 44 farms.

RICEi = β1 + β2LABORi + β3FERTi + β4ACRESi + ei

a. We observe the least squares residuals, êi, increase in magnitude when plotted against ACRES.
We regress ê2

i on ACRES and obtain a regression with R2 = 0.2068. The estimated coefficient of
ACRES is 2.024 with the standard error of 0.612. What can we conclude about heteroskedasticity
based on these results? Explain your reasoning.

b. We instead estimate the model

RICEi∕ACRESi = α + β1
(
1∕ACRESi

)
+ β2LABORi∕ACRESi + β3FERTi∕ACRESi + ei

What is the implicit assumption about the heteroskedasticity pattern?
c. Many economists would omit

(
1∕ACRESi

)
from the equation. What argument can you propose

that would make this defensible?
d. Following the estimation of the model in (b) or (c), the squared residuals, ẽ2

i , are regressed on
ACRES. The estimated coefficient is negative and significant at the 10% level. The regression
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R2 = 0.0767. What might you conclude about the models in (b) or (c)? That is, what could have
led to such results?

e. In a further step, we estimate ln
(

ê2
i

)
= −1.30 + 1.11 ln(ACRES) and ln

(
ẽ2

i
)
= −1.20 −

1.21 ln(ACRES). What evidence does this provide about the question in part (d)?
f. If we estimate the model in (c), omitting

(
1∕ACRESi

)
, would you advise using White heteroskedas-

ticity robust standard errors? Explain why or why not.
8.12 An econometrician wishes to study the properties of an estimator using simulated data. Suppose the

sample size N is set to be 100. The intercept and slope parameters are 100, and 10, respectively.
The one explanatory variable, x, has a normal distribution with mean 10 and standard deviation 10.
A standard normal random variable, z, independent of x, is created. The data generating process is
yi = β1 + β2xi + ei, where

ei =
{

zi if i is an odd number
2zi if i is an even number

a. The OLS estimator is not the best linear unbiased estimator using the 100 data pairs
(
yi, xi

)
. True

or false? Explain.
b. If we divide y and x for the even number observations by

√
2, leaving the odd number observations

alone, and then run a least squares regression, the resulting estimator is BLUE. True or false?
Explain.

c. Suppose you were assigned the task of showing that the heteroskedasticity in the data was “statis-
tically significant.” Using the 100 data pairs

(
yi, xi

)
, how exactly would you do it?

8.13 A researcher has 1100 observations on household expenditures on entertainment (per person in the
previous quarter, $) ENTERT . The researcher wants to explain these expenditures as a function of
INCOME (monthly income during past year, $100 units), whether the household lives in an URBAN
area, and whether someone in the household has a COLLEGE degree (Bachelor’s) or an ADVANCED
degree (Master’s or Ph.D.). COLLEGE and ADVANCED are indicator variables.
a. The OLS estimates and t-values are given in Table 8.4, on the next page. Taking the residuals

from this regression, and regressing their squared values on all explanatory variables yields an
R2 = 0.0344. Such a small value implies there is no heteroskedasticity, correct? If that statement
is not correct, then carry out the proper test. What do you conclude about the presence of
heteroskedasticity?

b. To be safe the researcher uses White heteroskedasticity robust standard errors, given in Table 8.4.
The researcher’s paper has to do with the effect on entertainment expenditures of having someone
with an advanced degree in the household. Compare the significance of ADVANCED in the two
OLS regressions. What do you find? It is generally true that robust standard errors are larger than
ones that are not robust. Is that true or false in this case?

c. Because of the importance of the variable ADVANCED in the model, the researcher takes some
additional effort. Using the OLS residuals êi, the researcher obtains

ln
(

ê2
i

)
= 4.9904 + 0.0177INCOMEi + 0.2902ADVANCEDi

(t) (10.92) (1.80)
What evidence about heteroskedasticity is present in these results?

d. The researcher takes the results in (c) and then calculates
hi = exp

(
0.0177INCOMEi + 0.2902ADVANCEDi

)

Each variable, including the intercept, is divided by
√

hi and the model reestimated to obtain the
FGLS results in Table 8.4. Based on these results, how much of an effect on entertainment expen-
ditures is there for households including someone with an advanced degree? Is this statistically
significant? To which set of OLS results, can we make a valid comparison with the FGLS esti-
mates? Have we improved the estimation of the effect of ADVANCED on entertainment by taking
the steps in (c) and (d)? Provide a very careful answer to this question.

e. Looking for an easier way the researcher estimates a log-linear model shown in Table 8.4. Following
this estimation, regressing the squared residuals on the explanatory variables, we find NR2 = 2.46.
Using White’s test, including all the squares and cross-products of the explanatory variables, we
obtain NR2 = 6.63. What are the critical values for each of these test statistics? Using a test at the
5% level, do we reject homoskedasticity in the log-linear model or not?
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f. Interpret the regression results in (e) from the point of view of the researcher interested in the effect
of ADVANCED on entertainment expenditures. What exactly has happened by using the log-linear
model? Provide an intuitive explanation. As a hint, Figure 8.9 shows entertainment expenditures
for one range of income, between $7000/mo and $8000/mo.

T A B L E 8.4 Estimates for Exercise 8.13

OLS Robust OLS FGLS Log-linear
C 20.5502 20.5502 18.5710 2.7600

(3.19) (3.30) (4.16) (25.79)
INCOME 0.5032 0.5032 0.4447 0.0080

(10.17) (6.45) (8.75) (9.77)
URBAN −6.4629 −6.4629) −0.8420 0.0145

(−1.06) (−0.81) (−0.20) (0.14)
COLLEGE −0.7155 −0.7155 1.7388 0.0576

(−0.16) (−0.15) (0.52) (0.77)
ADVANCED 9.8173 9.8173 9.0123 0.2315

(1.87) (1.58) (1.92) (2.65)

t-values in parentheses
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FIGURE 8.9 Histogram for entertainment expenditure.

8.14 Using data on 1000 home loan borrowers, we estimate the linear probability model

DEFAULT = β1 + β2LTV + β3RATE + β4AMOUNT + β5FICO + e

where DEFAULT = 1 if the borrower has made a mortgage payment more than 90 days late,
LTV = 100(loan amount/property value), RATE is the interest rate, AMOUNT ($10,000 units) of the
loan, and FICO is the borrower’s credit score.
a. Figure 8.10(a) is the histogram of the least squares residuals, ê. Explain the bimodal shape.



❦

❦ ❦

❦

8.8 Exercises 399

b. Figure 8.10(b) is the histogram of the least squares fitted values,

DEFAULT
⋀

= 0.6887 + 0.0055LTV + 0.0482RATE − 0.0012AMOUNT − 0.0014FICO

Explain the interpretation of the fitted values. Do you find any unusual fitted values in the figure?
c. Let Y be a Bernoulli random variable, taking the values 1 and 0 with probabilities P and 1 – P.

Show that var(Y) = P(1 − P).
d. Regressing ê2

i on the explanatory variables, we obtain R2 = 0.0206 and the model F-statistic is
5.22. What does each of these values tell us about the null hypothesis of homoskedasticity in this
model? Provide any relevant test statistics, and their 5% level of significance critical values. In light
of part (c), are the results surprising?

e. Consider two hypothetical borrowers:
Borrower 1: LTV = 85, RATE = 11, AMOUNT = 400, FICO = 500
Borrower 2: LTV = 50, RATE = 5, AMOUNT = 100, FICO = 700
The 95% interval estimates, for the expected probability of default for the hypothetical borrowers
using OLS, OLS with heteroskedasticity robust standard errors, and FGLS are given in Table 8.5.
Discuss these interval estimates. If two such borrowers came for a loan, to whom would you
offer one?

f. To obtain the FGLS estimates in (e), negative predicted values in nine observations are turned to
positives by taking their absolute value. Why did we do that? What other alternatives did we have?

T A B L E 8.5 Interval Estimates for Exercise 8.14(e)

Borrower Method Lower Bound DEFAULT
⋀

Upper Bound Std. Err.
1 OLS −0.202 0.527 1.257 0.372
1 OLS (robust) −0.132 0.527 1.187 0.337
1 FGLS −0.195 0.375 0.946 0.291
2 OLS −0.043 0.116 0.275 0.082
2 OLS (robust) −0.025 0.116 0.257 0.072
2 FGLS −0.019 0.098 0.215 0.060

(a) (b)
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FIGURE 8.10 Histograms for residuals and fitted values for Exercise 8.14.
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8.15 We have N = 396 observations on employment at fast-food restaurants in two neighboring states, New
Jersey and Pennsylvania. In Pennsylvania, the control group di = 0, there is no minimum wage law. In
New Jersey, the treatment group di = 1, there is a minimum wage law. Let the observed outcome vari-
able be full-time employment FTEi at comparable fast-food restaurants. Some sample summary statis-
tics for FTEi in the two states are in Table 8.6. For Pennsylvania, the sample size is N0 = 77, the sample
mean is FTE0 =

∑N0
i=1,di=0 FTEi∕N0, the sample variance is s2

0 =
∑N0

i=1,di=0

(
FTEi − FTE0

)2/(
N0 − 1

)
=

SST0∕
(
N0 − 1

)
, the sample standard deviation is s0 =

√
s2

0, and the standard error of mean is

se0 =
√

s2
0
/
N0 = s0

/√
N0. For New Jersey, the definitions are comparable with subscripts “1”.

T A B L E 8.6 Summary Statistics for Exercise 8.15

Sample Standard
Sample Sample Standard Error of

State d N Mean Variance Deviation the Mean
Pennsylvania (control) 0 77 21.16558 68.50429 8.276732 0.9432212
New Jersey (treatment) 1 319 21.02743 86.36029 9.293024 0.5203094

a. Consider the regression model FTEi = β1 + β2di + ei. The OLS estimates are given below, along
with the usual standard errors (se), the White heteroskedasticity robust standard errors (robse), and
an alternative robust standard error (rob2).

FTEi

⋀

= 21.16558 − 0.1381549di

(se) (1.037705) (1.156182)
(robse) (0.9394517) (1.074157)
(rob2) (0.9432212) (1.077213)

Show the relationship between the least squares estimates of the coefficients, the estimated slope
and intercept, and the summary statistics in Table 8.6.

b. Calculate var
⋀(

b2|d
)
= Nσ̂2/(N0N1

)
=
(

N
N − 2

)(
SST0 + SST1

N0N1

)
, derived in Exercise 8.7(b). Compare

the standard error of the slope using this expression to the regression output in part (a).
c. Suppose that the treatment and control groups have not only potentially different means but

potentially different variances, so that var
(
ei|di = 1

)
= σ2

1 and var
(
ei|di = 0

)
= σ2

0. Carry out the
Goldfeld–Quandt test of the null hypothesis σ2

0 = σ
2
1 at the 1% level of significance. [Hint: See

Appendix C.7.3.]
d. In Exercise 8.7(e), we showed that the heteroskedasticity robust variance for the slope estima-

tor is var
⋀(

b2|d
)
= N

N − 2

(
SST0
N2

0
+ SST1

N2
1

)
. Use the summary statistic data to calculate this quantity.

Compare the heteroskedasticity robust standard error of the slope using this expression to those
from the regression output. In Appendix 8D, we discuss several heteroskedasticity robust variance
estimators. This one is most common and usually referred to as “HCE1,” where HCE stands for
“heteroskedasticity consistent estimator.”

e. Show that the alternative robust standard error, rob2, can be computed from var
⋀(

b2|d
)
=

SST0
N0(N0 − 1) +

SST1
N1(N1 − 1) . In Appendix 8D, this estimator is called “HCE2.” Note that it can be

written var
⋀(

b2|d
)
=
(
σ̂2

0∕N0

)
+
(
σ̂2

1∕N1

)
, where σ̂2

0 = SST0∕
(
N0 − 1

)
and σ̂2

1 = SST1∕
(
N1 − 1

)
.

These estimators are unbiased and are discussed in Appendix C.4.1. Is the variance estimator
unbiased if σ2

0 = σ
2
1?

f. The estimator HCE1 is var
⋀(

b2|d
)
= N

N − 2

(
SST0
N2

0
+ SST1

N2
1

)
. Show that dropping the degrees

of freedom correction N∕(N − 2) it becomes HCE0, var
⋀(

b2|d
)
=
(
σ̃2

0∕N0
)
+
(
σ̃2

1∕N1
)
, where

σ̃2
0 = SST0∕N0 and σ̃2

1 = SST1∕N1 are biased but consistent estimators of the variances. See
Appendix C.4.2. Calculate the standard error for b2 using this alternative.
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g. A third variant of a robust variance estimator, HCE3, is var
⋀(

b2|d
)
=
(

σ̂2
0

N0 − 1

)
+
(

σ̂2
1

N1 − 1

)
, where

σ̂2
0 = SST0∕

(
N0 − 1

)
and σ̂2

1 = SST1∕
(
N1 − 1

)
. Calculate the robust standard error using HCE3 for

this example. In this application, comparing HCE0 to HCE2 to HCE3, which is largest? Which is
smallest?

8.8.2 Computer Exercises
8.16 A sample of 200 Chicago households was taken to investigate how far American households tend to

travel when they take a vacation. Consider the model

MILES = β1 + β2INCOME + β3AGE + β4KIDS + e

MILES is miles driven per year, INCOME is measured in $1000 units, AGE is the average age of the
adult members of the household, and KIDS is the number of children.
a. Use the data file vacation to estimate the model by OLS. Construct a 95% interval estimate for the

effect of one more child on miles traveled, holding the two other variables constant.
b. Plot the OLS residuals versus INCOME and AGE. Do you observe any patterns suggesting that

heteroskedasticity is present?
c. Sort the data according to increasing magnitude of income. Estimate the model using the first

90 observations and again using the last 90 observations. Carry out the Goldfeld–Quandt test for
heteroskedastic errors at the 5% level. State the null and alternative hypotheses.

d. Estimate the model by OLS using heteroskedasticity robust standard errors. Construct a 95% inter-
val estimate for the effect of one more child on miles traveled, holding the two other variables
constant. How does this interval estimate compare to the one in (a)?

e. Obtain GLS estimates assuming σ2
i = σ

2INCOME2
i . Using both conventional GLS and robust GLS

standard errors, construct a 95% interval estimate for the effect of one more child on miles traveled,
holding the two other variables constant. How do these interval estimates compare to the ones in
(a) and (d)?

8.17 In this exercise, we explore the relationship between total household expenditures and expenditures on
clothing. Use the data file malawi_small (malawi has more observations) and observations for which
PCLOTHES is positive. We consider three models:

PCLOTHES = β1 + β2 ln(TOTEXP) + e (XR8.17a)
ln(CLOTHES) = α1 + α2 ln(TOTEXP) + v (XR8.17b)

CLOTHES = γ1 + γ2TOTEXP + u (XR8.17c)

a. Plot PCLOTHES versus ln(TOTEXP) and include the least squares fitted line. Calculate the point
elasticity of clothing expenditures with respect to total expenditures at the means. See Exercise
4.12 for the elasticity in this model.

b. Calculate CLOTHES = PCLOTHES × TOTEXP. Then plot ln(CLOTHES) versus ln(TOTEXP)
and include the least squares fitted line. Calculate a 95% interval estimate of the elasticity of
clothing expenditures with respect to total expenditures. Is the elasticity computed in part (a)
within this interval?

c. Plot CLOTHES versus TOTEXP and include the least squares fitted line. Calculate a 95% interval
estimate of the elasticity of clothing expenditures with respect to total expenditures at the means.
Is the elasticity computed in part (a) within this interval?

d. Test for the presence of heteroskedasticity in each model in parts (a)–(c). Use the 1% level of
significance. What are your conclusions? For which specification does heteroskedasticity seem
less of an issue?

e. For the models in which heteroskedasticity was significant at the 1% level, use OLS with robust
standard errors. Calculate a 95% interval estimate for the elasticity of clothing expenditures with
respect to total expenditures at the means. How do the intervals compare to the ones based on
conventional standard errors?
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8.18 Consider the wage equation,

ln
(
WAGEi

)
= β1 + β2EDUCi + β3EXPERi + β4EXPER2

i + β5FEMALEi + β6BLACK
+ β7METROi + β8SOUTHi + β9MIDWESTi + β10WEST + ei

where WAGE is measured in dollars per hour, education and experience are in years, and METRO = 1
if the person lives in a metropolitan area. Use the data file cps5 for the exercise.
a. We are curious whether holding education, experience, and METRO equal, there is the same amount

of random variation in wages for males and females. Suppose var
(
ei|xi,FEMALE = 0

)
= σ2

M and
var

(
ei|xi,FEMALE = 1

)
= σ2

F. We specifically wish to test the null hypothesis σ2
M = σ2

F against
σ2

M ≠ σ2
F. Carry out a Goldfeld–Quandt test of the null hypothesis at the 5% level of significance.

Clearly state the value of the test statistic and the rejection region, along with your conclusion.
b. Estimate the model by OLS. Carry out the NR2 test using the right-hand-side variables METRO,

FEMALE, BLACK as candidates related to the heteroskedasticity. What do we conclude about
heteroskedasticity, at the 1% level? Do these results support your conclusions in (a)? Repeat the
test using all model explanatory variables as candidates related to the heteroskedasticity.

c. Carry out the White test for heteroskedasticity. What is the 5% critical value for the test? What do
you conclude?

d. Estimate the model by OLS with White heteroskedasticity robust standard errors. Compared to OLS
with conventional standard errors, for which coefficients have interval estimates gotten narrower?
For which coefficients have interval estimates gotten wider? Is there an inconsistency in the results?

e. Obtain FGLS estimates using candidate variables METRO and EXPER. How do the interval esti-
mates compare to OLS with robust standard errors, from part (d)?

f. Obtain FGLS estimates with robust standard errors using candidate variables METRO and EXPER.
How do the interval estimates compare to those in part (e) and OLS with robust standard errors,
from part (d)?

g. If reporting the results of this model in a research paper which one set of estimates would you
present? Explain your choice.

8.19 In this exercise we explore the relationship between total household expenditures and expenditures on
telephone services. Use the data file malawi_small (malawi has more observations).
a. Using observations for which PTELEPHONE > 0, create the variable ln(TELEPHONE) =

ln(PTELEPHONE × TOTEXP). Plot ln(TELEPHONE) versus ln(TOTEXP) and include the least
squares fitted line.

b. Based on the OLS regression of ln(TELEPHONE) on ln(TOTEXP) what is the estimated elasticity
of telephone expenditures with respect to total expenditure. Compute a 95% interval estimate for
the elasticity. Based on the estimates, would you classify telephone services as a necessity or a
luxury?

c. Test for the presence of heteroskedasticity in the regression in part (b). What do you conclude?
d. Estimate the model PTELEPHONEi = β1 + β2 ln

(
TOTEXPi

)
+ ei by OLS. Test the null hypothesis

that β2 ≤ 0 against β2 > 0 using the 5% level of significance.
e. Calculate the elasticity of telephone expenditures with respect to total expenditure at the sam-

ple median of total expenditures. The expression for an elasticity in such a model was derived in
Exercise 4.12. Use your software to compute a 95% interval estimate for the elasticity. Compare
the estimated elasticity to that in (b).

f. Test for the presence of heteroskedasticity in the regression in part (d). What do you conclude?
g. Estimate the model in (d) using FGLS with ln

(
TOTEXPi

)
being the variable that may be associated

with the heteroskedasticity. Using the conventional FGLS standard errors, test the null hypothesis
that β2 ≤ 0 against β2 > 0 using the 5% level of significance.

h. Repeat part (g) but using FGLS with robust standard errors.
i. Summarize your findings about the elasticity of telephone services expenditure with respect to total

expenditure.
8.20 The data file br2 contains data on 1080 houses sold in Baton Rouge, Louisiana, during mid-2005. We

will be concerned with the selling price (PRICE), the size of the house in square feet (SQFT), the age
of the house in years (AGE), whether the house is on a waterfront (WATERFRONT = 1, 0), and if it is
of a traditional style (TRADITIONAL = 1, 0).
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a. Find OLS estimates of the following equation and save the residuals.

ln(PRICE) = β1 + β2 ln(SQFT) + β3AGE + β4AGE2

+ β5WATERFRONT + β6TRADITIONAL + e

At some point, is it possible that an old house will become “historic” with age increasing its value?
Construct a 95% interval estimate for the age at which age begins to have a positive effect on price.

b. Use the NR2 test for heteroskedasticity with the candidate variables AGE, AGE2, WATERFRONT ,
and TRADITIONAL. Repeat the test dropping AGE, but keeping AGE2. Plot the least residuals
against AGE. Is there any visual evidence of heteroskedasticity?

c. Estimate the model in (a) by OLS with White heteroskedasticity robust standard errors. Construct
a 95% interval estimate for the age at which age begins to have a positive effect on price. How does
the interval compare to the one in (a)?

d. Assume σ2
i = σ

2 exp
(
α2AGE2

i + α3WATERFRONTi + α4TRADITIONAL
)
. Obtain FGLS estimates

of the model in (a) and compare the results to those in (c). Construct a 95% interval estimate for
the age at which age begins to have a positive effect on price. How does the interval compare to
the one in (c)?

e. Obtain the residuals from the transformed model based on the skedastic function in (d). Regress the
squares of these residuals on AGE2, WATERFRONT , TRADITIONAL, and a constant term. Using
the NR2, is there any evidence of remaining heteroskedasticity in the transformed model? Repeat
the test using the transformed model version of the variables and a constant term. How do the
results compare?

f. Modify the estimation in (d) to use FGLS with heteroskedasticity robust standard errors. Construct
a 95% interval estimate for the age at which age begins to have a positive effect on price. How does
the interval compare to the ones in (c) and (d)?

g. What do you conclude about the age at which historical value increases a house price?
8.21 In Example 8.9 we estimated the linear probability model

COKE = β1 + β2PRATIO + β3DISP_COKE + β4DISP_PEPSI + e

where COKE = 1 if a shopper purchased Coke and COKE = 0 if a shopper purchased Pepsi. The
variable PRATIO was the relative price ratio of Coke to Pepsi and DISP_COKE and DISP_PEPSI
were indicator variables equal to one if the relevant display was present. Suppose now that we have
1140 observations on randomly selected shoppers from 50 different grocery stores. Each grocery store
has its own settings for PRATIO, DISP_COKE and DISP_PEPSI. Let an (i, j) subscript denote the jth
shopper at the ith store, so that we can write the model as

COKEij = β1 + β2PRATIOi + β3DISP_COKEi + β4DISP_PEPSIi + eij

Average this equation over all shoppers in the ith store so that we have

COKEi • = β1 + β2PRATIOi + β3DISP_COKEi + β4DISP_PEPSIi + ei • (XR8.21)

where

ei • = 1
Ni

Ni∑
j=1

eij and COKEi • = 1
Ni

Ni∑
j=1

COKEij

and Ni is the number of sampled shoppers in the ith store.
a. What is the interpretation of COKEi • for the ith store?
b. Assume that E

(
COKEij|xij

)
= Pi and var

(
COKEij|xij

)
= Pi

(
1 − Pi

)
, show that E

(
COKEi • |X

)
=

Pi and var
(

COKEi • |X
)
= Pi

(
1 − Pi

)
∕Ni.

c. Interpret Pi and express it in terms of PRATIOi, DISP_COKEi, and DISP_PEPSIi.
d. Observations on the variables COKEi • , PRATIOi, DISP_COKEi, DISP_PEPSIi, and Ni appear in

the data file coke_grouped. Obtain summary statistics for the data. Calculate the sample coefficient
of variation, CV = 100sx

/
x, for COKEi • and PRATIOi. How much variation is there in these vari-

ables relative to their mean? Would we prefer larger or smaller coefficients of variation in these
variables? Why? Construct histograms for COKEi • and PRATIOi. What do you observe?
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e. Find least squares estimates of equation (XR8.21) and use robust standard errors. Summarize the
results. Test the null hypothesis β3 = −β4. Choose an appropriate alternative hypothesis and use
the 5% level of significance. If the null hypothesis is true, what does it imply about the effect of
store displays for COKE and PEPSI?

f. Create the variable DISP = DISP_COKE − DISP_PEPSI. Estimate the model COKEi • = β1 +
β2PRATIOi + β3DISPi + ei • by OLS. Test for heteroskedasticity by applying the White test. Also
carry out the NR2 test for heteroskedasticity using the candidate variable Ni. What are your con-
clusions, at the 5% level?

g. Obtain the fitted values from (e), pi, and estimate var
(

COKEi •

)
for each of the stores. Report the

mean, standard deviation, maximum and minimum values of the pi.
h. Find generalized least squares estimates of the model in part (f). Comment on the results and com-

pare them with those obtained in part (f). How might the results of part (d) help you?
8.22 Use data file cps5 for this exercise.

a. Estimate the following wage equation by OLS and use heteroskedasticity robust standard errors:

ln(WAGE) = β1 + β2EDUC + β3EXPER + β4EXPER2 + β5(EXPER × EDUC)
+ β6FEMALE + β7BLACK + δ1SOUTH + δ2MIDWEST + δ3WEST + e

(XR8.22)

Discuss the results.
b. Add MARRIED to the equation and reestimate. Holding education and experience constant, do

white male married workers in the northeast get higher wages? Using a 5% significance level, test
a null hypothesis that wages of married workers are less than or equal to those of unmarried workers
against the alternative that wages of married workers are higher.

c. Examine the residuals from part (a) for the two values of MARRIED. Is there evidence of het-
eroskedasticity?

d. Estimate the model in part (a) twice—once using observations on only married workers and once
using observations on only unmarried workers. Use the Goldfeld–Quandt test and a 5% significance
level to test whether the error variances for married and unmarried workers are different.

e. Hypothesize that σ2
i = σ2 exp

(
α2MARRIED

)
. Find generalized least squares of the model in part

(a). Compare the estimates and standard errors with those obtained in part (a).
f. Find two 95% interval estimates for the marginal effect ∂E

(
ln(WAGE )

)
∕∂EDUC for a white male

worker living in the northeast with 16 years of education and 10 years of experience. Use the results
from part (a) for one interval and the results from part (e) for the other interval. Comment on any
differences.

8.23 Using the data in cps5 obtain OLS estimates of the wage equation

ln(WAGE) = β1 + β2EDUC + β3EXPER + β4EXPER2 + β5(EXPER × EDUC)
+ β6FEMALE + β7BLACK + β8UNION + β9METRO (XR8.23)
+ δ1SOUTH + δ2MIDWEST + δ3WEST + e

a. Interpret the coefficient of UNION. Test the null hypothesis that the coefficient of UNION is less
than or equal to zero, against the alternative that is positive. What do you conclude?

b. Test for the presence of heteroskedasticity related to the variables UNION and METRO using the
NR2 test. What do you conclude at the 1% level of significance?

c. Regress the squared least squares residuals, ê2
i , from (a) on EDUC, UNION, and METRO. Also

regress ln
(

ê2
i

)
on EDUC, UNION, and METRO. What do these results suggest about the effect of

UNION membership on the variation in the random error? What do these results suggest about the
effect of METRO on the variation in the random error?

d. Hypothesize that σ2
i = σ

2 exp
(
α2EDUC + α3UNION + α4METRO

)
. Find generalized least squares

estimates of the wage equation. For the coefficient of UNION, compare the estimates and stan-
dard errors with those obtained from OLS estimation of (XR8.23) with heteroskedasticity robust
standard errors.

8.24 In this exercise, we will explore some of the factors predicting costs at American universities
using the data file poolcoll2 . Let TC = the real (2008 dollars) total cost per student, FTUG = number
of full-time undergraduate students, FTGRAD = number of full-time graduate students, FTEF =
full-time faculty per 100 students, CF = number of contract faculty per 100 students, FTENAP = full
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time nonacademic professionals per 100 students, PRIVATE = 1 if the school is private, and 0 if it is
public.
a. Estimate the regression of ln(TC) on the remaining variables. What are the predicted effects of

additional graduate students on total cost per student? What are the predicted effects of additional
full-time faculty?

b. Include in the model not only PRIVATE but also PRIVATE × FTEF. Are these variables individu-
ally and jointly significant at the 5% level?

c. Use the NR2 test for heteroskedasticity that is possibly related to PRIVATE. What do you conclude
at the 1% level of significance?

d. Test the hypothesis in (b) using OLS estimates with robust standard errors.
e. Include in the model not only PRIVATE but also PRIVATE times all the other variables. Test

the joint significance of PRIVATE and PRIVATE times all the other variables using an F-test.
Use robust standard errors and carry out a robust F-test. Can we say “We reject the hypothesis
that the models determining total cost per student are the same for public and private universities?”

f. Hypothesize σ2
i = exp

(
α1 + α2PRIVATE

)
. Obtain FGLS estimates of the model in (e) and carry

out the F-test on PRIVATE and PRIVATE times all the other variables. What is the value of the
F-test statistic? What is the 1% critical value?

8.25 What effect does having public health insurance have on the number of doctor visits a person has during
a year? Using 1988 data, in the data file rwm88_small, from Germany, we will explore this question.
The data file rwm88 contains more observations.
a. Estimate the regression model with the dependent variable DOCVIS and the explanatory variables

PUBLIC, FEMALE, HHKIDS, MARRIED, SELF, EDUC2 , HHNINC2 . Test the null hypothesis
that the coefficient on PUBLIC is less than or equal to zero, versus the alternative that it is greater
than zero at the 1% level of significance.

b. Test for the presence of heteroskedasticity. Obtain the squared least squares residuals from the
regression in (a), regress them on all the explanatory variables, and carry out an F-test of their
joint significance. What do we conclude about the presence of heteroskedasticity at the 1% level of
significance?

c. Estimate the regression model with the dependent variable DOCVIS and the explanatory variables
FEMALE, HHKIDS, MARRIED, SELF, EDUC2 , HHNINC2 separately for those with public insur-
ance and those who do not have public insurance. Use equation (7.37) to obtain the estimate of the
average treatment effect of public insurance.

d. Estimate the regression model with the dependent variable DOCVIS and the explanatory vari-
ables PUBLIC, FEMALE, HHKIDS, MARRIED, SELF, EDUC2 , HHNINC2 in “deviation from
the mean” form. That is, for each variable x, create the variable x̃ = x − x, where x is the sample
mean. Using robust standard errors, test the significance of the coefficient on PUBLIC.

e. Estimate the regression model with the dependent variable DOCVIS and the explanatory vari-
ables FEMALE, HHKIDS, MARRIED, SELF, EDUC2 , HHNINC2 , along with PUBLIC and PUB-
LIC times each of the variables in deviation about the mean form. What is the estimated aver-
age treatment effect? Using a robust standard error, is it statistically significant at the 5% level?
[Hint: See equation (7.41) and the surrounding discussion.]

8.26 In the STAR experiment, Example 7.8, children were randomly assigned within schools into three
types of classes: small classes with 13–17 students, regular-sized classes with 22–25 students, and
regular–sized classes with a full-time teacher aide to assist the teacher. Student scores on achievement
tests were recorded as well as some information about the students, teachers, and schools. Data for the
kindergarten classes is contained in the data file star5_small2 .
a. Regress MATHSCORE on SMALL, AIDE, TCHEXPER, SCHRURAL, FREELUNCH, and BOY .

Test for heteroskedasticity related to SMALL and AIDE using the NR2 test. What do you conclude
at the 5% level?

b. Estimate the regression model in (a) by OLS including interactions between FREELUNCH and the
other variables. Test for heteroskedasticity related to SMALL and AIDE using the NR2 test. What
do you conclude at the 5% level?

c. Using the model in (b), and both conventional and robust standard errors, test the joint significance
of the interactions between FREELUNCH and SMALL, AIDE, and TCHEXPER at the 10% level
in each regression. What do you conclude?
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d. Estimate the model in (b) and include indicator variables for each school (SCHOOLID). Test for
heteroskedasticity related to SMALL and AIDE using the NR2 test. What do you conclude at the
5% level?

e. Using the model in (d), and both conventional and robust standard errors, test the joint significance
of the interactions between FREELUNCH and SMALL, AIDE, and TCHEXPER at the 10% level
in each regression. What do you conclude?

8.27 There were 64 countries who competed in the 1992 Olympics and won at least one medal. For each of
these countries, let MEDALTOT be the total number of medals won, POP be population in millions,
and GDP be GDP in billions of 1995 dollars.
a. Use the data file olympics5, excluding the United Kingdom, and use the N = 63 remaining obser-

vations. Estimate the model MEDALTOT = β1 + β2 ln(POP) + β3 ln(GDP) + e by OLS.
b. Calculate the squared least squares residuals ê2

i from the regression in (a). Regress ê2
i on ln(POP)

and ln(GDP). Use the F-test from this regression to test for heteroskedasticity at the 5% level of
significance. Use the R2 from this regression to test for heteroskedasticity. What are the p-values
of the two tests?

c. Reestimate the model in (a) but using heteroskedasticity robust standard errors. Using a 10% sig-
nificance level, test the hypothesis that there is no relationship between the number of medals won
and GDP against the alternative that there is a positive relationship. What happens if you change
the significance level to 5%?

d. Using a 10% significance level, test the hypothesis that there is no relationship between the number
of medals won and population against the alternative that there is a positive relationship. What
happens if you change the significance level to 5%?

e. Use the model in (c) to find point and 95% interval estimates for the expected number of medals
won by the United Kingdom whose population and GDP in 1992 were 58 million and $1010 billion,
respectively.

f. The United Kingdom won 20 medals in 1992. Was the model successful in predicting the mean
number of medals for the United Kingdom? Using the estimation in (c), with robust standard errors,
what is the p-value for a test of H0∶β1 + ln(58) × β2 + ln(1010) × β3 = 20 versus H1∶β1 + ln(58) ×
β2 + ln(1010) × β3 ≠ 20?

8.28 In this exercise you will create some simulated data and try out estimation and testing methods. Use
your software to create a new data set, or “workfile,” with N = 100 observations. All modern soft-
ware has functions, called random number generators, to create uniformly distributed and normally
distributed random values. Follow these steps.
1. Create X2 = 1 + 5 × U1 , where U1 is a random number between zero and one.
2. Create X3 = 1 + 5 × U2 , where U2 is another random number between zero and one.
3. Create E =

√
exp(2 + 0.6X2 ) × Z, where Z ∼ N(0, 1).

4. Create Y = 5 + 4X2 + E
You should now have 100 values for Y , X2 , and X3 . Note: Your results should be different from your
classmates, and your results might change from one experiment to the next. To prevent this from hap-
pening, you can set the random number’s “seed.” See your software documentation for instructions.
a. Regress Y on X2 and X3 and obtain conventional OLS standard errors. Compare the estimated coef-

ficients to the true values of the regression parameters, β1 = 5, β2 = 4, β3 = 0. Do the t-values
suggest that the coefficients are significantly different from 0 at the 5% level?

b. Calculate the least squares residuals ê from the OLS estimation in (a) and regress ê2 on X2 and X3 .
What evidence, if any, do you find for the presence of heteroskedasticity?

c. Regress Y on X2 and X3 and obtain robust standard errors. Compare these to the conventional
standard errors in (a).

d. Assume the heteroskedasticity pattern is σ2X2 2. Obtain GLS estimates with conventional and
robust standard errors. Are the GLS parameter estimates closer to the true parameter values or
not? Which set of standard errors should be used?

e. Assume the multiplicative heteroskedasticity model exp
(
α1 + α2X2 + α3X3

)
. Obtain FGLS

estimates with conventional and robust standard errors. Are the FGLS estimates closer to the
true parameter values than the GLS or OLS estimates? Which set of standard errors should
be used?
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8.29 The data file mexican contains data collected in 2001 from the transactions of 754 Mexican sex
workers.
a. Using OLS, estimate the hedonic log-linear model with LNPRICE as the dependent variable and

independent variables BAR, STREET , SCHOOL, AGE, RICH, ALCOHOL, ATTRACTIVE. Interpret
the estimated coefficients.

b. Test for heteroskedasticity related to ATTRACTIVE using the NR2 test at the 1% level of signifi-
cance.

c. Estimate the model separately by OLS for observations with ATTRACTIVE = 1 and ATTRACTIVE
= 0. Using the results, carry out the Goldfeld–Quandt test for heteroskedasticity across the two
regressions. Use a two-tailed test at the 5% level. Which regression has a larger estimated error
variance?

d. Compare the estimates from the two estimations in (c). Do they appear similar or dissimilar? Which
coefficients are noticeably different? Use OLS to estimate the model that includes the original
variables and interactions between ATTRACTIVE and the other explanatory variables. Test the
joint significance of ATTRACTIVE and the interaction variables at the 1% level of significance. Is
this a “valid” Chow test? Is homoskedasticity a necessary condition for this test? Recall that the
test is described in Section 7.2.3.

e. Using the estimation results in (d), test for heteroskedasticity related to ATTRACTIVE using the
NR2 test at the 1% level of significance.

f. Use OLS with heteroskedasticity robust standard errors to estimate the model that includes the
original variables and interactions between ATTRACTIVE and the other explanatory variables. Test
the joint significance of ATTRACTIVE and the interaction variables at the 1% level of significance.
Is this a “valid” Chow test?

8.30 The data file grunfeld2 contains annual data on the gross investment, capital stock, and the value of the
firm, measured by the value of common and preferred stock for General Electric and Westinghouse,
during the period 1935–1954. These data have been used to train econometricians for almost 60 years,
and still provide valuable lessons.
a. Create an indicator variable GE = 1 for General Electric and GE = 0 for Westinghouse. Using the

combined data on both firms, use OLS to estimate the model of investment, INV , as a function of
the value of the firms, V , and capital stock, K, also the indicator variable GE and the interactions
of GE with V and K. That is INV = # (const,V,K,GE,GE × V,GE × K). Test the joint significance
of the variables GE,GE × V,GE × K at the 5% level. What does this test reveal about the two firms’
investment characteristics?

b. Obtain the OLS residuals from (a) and regress their squares on the indicator variable GE. Use the
result of this regression to test for heteroskedasticity across the firms at the 1% level.

c. Reestimate the model in (a) using OLS with heteroskedasticity robust standard errors. Test the joint
significance of the variables GE,GE × V,GE × K at the 5% level. Does your conclusion change?

d. Estimate the investment model separately for General Electric and Westinghouse. Let the estimated
error variances be σ̂2

GE and σ̂2
WE. For which firm is the estimated error variance smaller?

e. Create a variable W that takes the value σ̂2
GE when GE = 1 and takes the value σ̂2

WE when GE = 0.
Estimate the model in (a) by FGLS with weighting variable W. Test the joint significance of the
variables GE,GE × V,GE × K at the 5% level. Does your conclusion change?

Appendix 8A Properties of the Least Squares
Estimator
In Appendix 2D, we wrote the least squares estimator for β2 in the simple regression model as
b2 = β2 +

∑
wiei, where

wi =
xi − x

∑(
xi − x

)2

This expression is a useful one for exploring the properties of the least squares estimator under
heteroskedasticity. The first property that we establish is that of unbiasedness. This property was
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derived under homoskedasticity in equation (2.13) of Chapter 2. The same proof holds under
heteroskedasticity because the only error term assumption that was used is E

(
ei|x

)
= 0.

E
(
b2|x

)
= E

(
β2 +

∑
wiei|x

)
= E

(
β2 + w1e1 + w2e2 + · · · + wNeN|x

)

= E
(
β2
)
+ E

(
w1e1|x

)
+ E

(
w2e2|x

)
+ · · · + E

(
wNeN|x

)

= β2 +
∑

E
(
wiei|x

)
= β2 +

∑
wiE

(
ei|x

)
= β2

The least squares estimators are unbiased as long as E
(
ei|x

)
= 0, even if the errors are het-

eroskedastic. This is true in both the simple and multiple regression models.
The variance of the least squares estimator is

var
(
b2|x

)
= var

(∑
wiei|x

)

= ∑
w2

i var
(
ei|x

)
+∑

i≠j

∑
wiwjcov

(
ei, ej|x

)

= ∑
w2

i σ
2
i (8A.1)

= ∑
{ (

xi − x
)

∑(
xi − x

)2

}2

σ2
i = ∑

⎧
⎪
⎨
⎪⎩

(
xi − x

)2

[∑(
xi − x

)2]2 σ
2
i

⎫
⎪
⎬
⎪⎭

=
[∑(

xi − x
)2]−1∑[(

xi − x
)2σ2

i

][∑(
xi − x

)2]−1

Going from the second line to the third we used assumption MR4, conditionally uncorrelated
errors, cov

(
ei, ej|x

)
= 0. If the variances are all the same

(
σ2

i = σ2), then the third line becomes
σ2∑w2

i = var
(
b2|x

)
= σ2/∑(

xi − x
)2, which is the usual OLS variance expression. This simpli-

fication is not possible under heteroskedasticity. The fourth and fifth lines are equivalent ways of
writing the variance of the least squares estimator, equation (8.8), when the random errors are
heteroskedastic.

Appendix 8B Lagrange Multiplier Tests for
Heteroskedasticity
More insights into LM and other variance function tests can be developed by relating them to the
F-test introduced in (6.8) for testing the significance of a mean function. To put that test in the
context of a variance function, consider (8.15)

ê2
i = α1 + α2zi2 + · · · + αSziS + vi (8B.1)

and assume that our objective is to test H0∶α2 = α3 = · · · = αS = 0 against the alternative that at
least one αs, for s = 2,… , S, is nonzero. In Section 8.2.2 we considered a more general variance
function than that in (8B.1), but we also pointed out that using the linear function in (8B.1) is
valid for testing more general alternative hypotheses.

Adapting the F-value reported in (6.8) to test the overall significance of (8B.1), we have

F = (SST − SSE)∕(S − 1)
SSE∕(N − S) (8B.2)

where

SST =
N∑

i=1

[
ê2

i − ê2
]2

and SSE =
N∑

i=1
v̂2

i
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are the total sum of squares and sum of squared errors from estimating (8B.1). Note that ê2 is the
mean of the dependent variable in (8B.1), or, equivalently, the average of the squares of the least
squares residuals from the regression function. At a 5% significance level, a valid test is to reject
H0 if the F-value is greater than a critical value given by F(0.95, S−1, N−S).

Two further tests, the original Breusch–Pagan test and its N × R2 version, can be obtained
by modifying (8B.2). Please be patient as we work through these modifications. We begin by
rewriting (8B.2) as

χ2 = (S − 1) × F = SST − SSE
SSE∕(N − S) ∼ χ

2
(S−1) (8B.3)

The chi-square statistic χ2 = (S − 1) × F has an approximate χ2
(S−1) -distribution in large samples.

That is, multiplying an F-statistic by its numerator degrees of freedom gives another statistic that
follows a chi-square distribution. The degrees of freedom of the chi-square distribution are S − 1,
the same as that for the numerator of the F-distribution. The background for this result is given
in Appendix 6A.

Next, note that

var
⋀(

e2
i
)
= var
⋀(

vi
)
= SSE

N − S
(8B.4)

That is, the variance of the dependent variable is the same as the variance of the error, which can
be estimated from the sum of squared errors in (8B.1). Substituting (8B.4) into (8B.3) yields

χ2 = SST − SSE
var
⋀(

e2
i
) (8B.5)

This test statistic represents the basic form of the Breusch–Pagan statistic. Its two different ver-
sions occur because of the alternative estimators used to replace var

⋀(
e2

i
)
.

If it is assumed that ei is normally distributed, it can be shown that var
(
e2

i
)
= 2σ4

e , and the
statistic for the first version of the Breusch–Pagan test is

χ2 = SST − SSE
2σ̂4

e

(8B.6)

Note that σ4
e =

(
σ2

e
)2 is the square of the error variance from the mean function; unlike

SST and SSE, its estimate comes from estimating (8.16). The result var
(
e2

i
)
= 2σ4

e might be
unexpected—here is a little proof so that you know where it comes from. When ei ∼ N

(
0, σ2

e
)
,

then
(
ei∕σe

)
∼ N(0, 1), and

(
e2

i ∕σ
2
e
)
∼ χ2

(1). The variance of a χ2
(1) random variable is 2. Thus,

var
(

e2
i

σ2
e

)
= 2 ⇒

1
σ4

e
var

(
e2

i
)
= 2 ⇒ var

(
e2

i
)
= 2σ4

e

Using (8B.6), we reject a null hypothesis of homoskedasticity when the χ2-value is greater than
a critical value from the χ2

(S−1) distribution.
For the second version of (8B.5) the assumption of normally distributed errors is not

necessary. Because this assumption is not used, it is often called the robust version of the
Breusch–Pagan test. The sample variance of the squared least squares residuals, the ê2

i , is used
as an estimator for var

(
e2

i
)
. Specifically, we set

var
⋀(

e2
i
)
= 1

N

N∑
i=1

[
ê2

i − ê2
]2
= SST

N
(8B.7)

This quantity is an estimator for var
(
e2

i
)

under the assumption that H0 is true. It can also be written
as the total sum of squares from estimating the variance function divided by the sample size.
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Substituting (8B.7) into (8B.5) yields

χ2 = SST − SSE
SST∕N

= N ×
(

1 − SSE
SST

)
(8B.8)

= N × R2

where R2 is the R2 goodness-of-fit statistic from estimating the variance function. At a 5% sig-
nificance level, a null hypothesis of homoskedasticity is rejected when χ2 = N × R2 exceeds the
critical value χ2

(0.95,S−1).
Software often reports the outcome of the White test described in Section 8.6.4 a as an

F-value or a χ2-value. The F-value is from the statistic in (8B.4), with the z’s chosen as the x’s
and their squares and possibly cross-products. The χ2-value is from the statistic in (8B.8), with
the z’s chosen as the x’s and their squares and possibly cross-products.

Appendix 8C Properties of the Least Squares
Residuals
The least squares residuals are êi = yi − ŷi. Substituting in the fitted value ŷi = b1 + b2xi we obtain
for the simple regression model

êi = yi − ŷi = β1 + β2xi + ei −
(
b1 + b2xi

)

=
(
β1 − b1

)
+
(
β2 − b2

)
xi + ei

= ei −
(
b1 − β1

)
−
(
b2 − β2

)
xi

Using the last line we find
E
(
êi|x

)
= E

(
ei|x

)
− E

(
b1 − β1|x

)
− E

(
b2 − β2|x

)
xi = 0

The expected value of the least squares residual is zero under assumptions SR1–SR5. Also, note
what happens if we consider large samples, with N → ∞. The least squares estimators b1 and b2
are unbiased, and recall from Section 2.4.4 that their variances get smaller and smaller as N gets
larger. This means that in large samples

(
b1 − β1

)
and

(
b2 − β2

)
are close to zero, so that in large

samples the difference êi − ei is close to zero. In econometric terms, the probability limit of êi − ei
is zero, that is, plim

(
êi − ei

)
= 0. The two random variables become essentially the same and

thus have the same probability distribution. This means, that in large samples, if ei ∼ N
(
0, σ2)

then êi
a∼N

(
0, σ2), where “ a∼” means approximately distributed, or asymptotically (in large

samples) distributed. Learning asymptotic analysis is an important feature of econometrics. See
Section 5.7 for further discussion.

It can be shown that the conditional variance of the least squares residual is

var
(
êi|x

)
= E

(
ê2

i |x
)
= σ2

{
1 − 1

N
−

(
xi − x

)2

∑(
xi − x

)2

}
= σ2(1 − hi

)
(8C.1)

where hi is the leverage of the ith observation, a term we introduced in Section 4.3.6. Note that:
i. The conditional variance of the least squares residual is not constant even if the random

error is homoskedastic.
ii. Because 0 ≤ hi ≤ 1 and 0 ≤(

1 − hi
) ≤ 1, var

(
êi|x

)
< var

(
ei|x

)
= σ2. The variation in the

least squares residual is less than the variance of the true random error.
iii. The variance of the least squares residual is closest to var

(
ei|x

)
= σ2 when xi = x, reflecting

the fact that the fitted value ŷi has the least prediction error at that point.
iv. The expression (8C.1) is valid in both simple and multiple regression, with hi redefined in

multiple regression.
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v. The sum of the leverage values is K, ∑hi = K. As a check, verify that for the simple regres-
sion model ∑hi = 2.

vi. ∑N
i=1 var

(
êi|x

)
= ∑N

i=1 E
(

ê2
i |x

)
= σ2(N − K) while ∑N

i=1 var
(
ei|x

)
= ∑N

i=1 E
(
e2

i |x
)
= Nσ2

8C.1 Details of Multiplicative Heteroskedasticity Model
We showed that the least squares residuals and the true random error have the same probability
distribution in large samples. If ei ∼ N

(
0, σ2

i
)

then in large samples the least squares residual
êi

a∼N
(
0, σ2

i
)
. In large samples, then

(
êi∕σi

) a∼N(0, 1) and
(
êi∕σi

)2 a∼ [N(0, 1)]2 ∼ χ2
(1). Thus,

ln
[(

êi∕σi
)2] = vi

a∼ ln
[
χ2
(1)

]

Statisticians have studied this random variable and found that E
{

ln
[
χ2
(1)

]}
= −1.2704 and

var
{

ln
[
χ2
(1)

]}
= 4.9348.

Appendix 8D Alternative Robust Sandwich
Estimators
The robust variance estimators carry over to the multiple regression model yi = β1 + β2xi2 + · · · +
βKxiK + ei quite easily. Recall from Appendix 6B that we can express the least squares estimator
b2 as

b2 =
∑(

xi2 − x̃i2
)

yi
∑(

xi2 − x̃i2
)2

where x̃i2 is the fitted value from the auxiliary regression of x2 on all the other explanatory vari-
ables, xi2 = c1 + c3xi3 + · · · + cKxiK + ri2. Substituting for yi and simplifying leads us to

b2 = β2 +
∑(

xi2 − x̃i2
)

ei
∑(

xi2 − x̃i2
)2

If the errors are heteroskedastic and serially uncorrelated, then the conditional variance of b2 is

var
(
b2|X

)
= var

[ ∑(
xi2 − x̃i2

)
ei

∑(
xi2 − x̃i2

)2

||||||
X
]
=

∑(
xi2 − x̃i2

)2var
(
ei|X

)
[∑(

xi2 − x̃i2
)2]2

=
∑(

xi2 − x̃i2
)2σ2

i[∑(
xi2 − x̃i2

)2]2 (8D.1)

=
[∑(

xi2 − x̃i2
)2]−1 {∑(

xi2 − x̃i2
)2σ2

i

}[∑(
xi2 − x̃i2

)2]−1

The original White heteroskedasticity corrected variance estimator replaces σ2
i by the squared

OLS residuals

var
⋀(

b2
)
=
[∑(

xi2 − x̃i2
)2]−1 {∑(

xi2 − x̃i2
)2ê2

i

}[∑(
xi2 − x̃i2

)2]−1
= HCE0 (8D.2)

The version in equation (8D.2) is valid in large samples. In practice, some alternatives are used
that are designed to work better in smaller samples. These alternatives account for the fact that
the least squares residuals are on average a little smaller than the true random errors. As noted in
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Appendix 8C, in the simple regression model, with assumptions SR1–SR5 holding, the variance
of the least squares residual is

var
(
êi|X

)
= E

(
ê2

i
||X

)
= σ2

{
1 − 1

N
−

(
xi − x

)2

∑(
xi − x

)2

}
= σ2(1 − hi

)
(8D.3)

where hi is the leverage of the ith observation, a term we introduced in Section 4.3.6. In the simple
regression model

hi =
1
N

+
(
xi − x

)2

∑(
xi − x

)2

The expression
var

(
êi|X

)
= σ2(1 − hi

)
(8D.4)

is valid in both simple and multiple regression, with hi redefined when K > 2. For both simple
and multiple regression, 0 ≤ hi ≤ 1 and 0 ≤(

1 − hi
) ≤ 1.

The first modification of HCE0 is based on the observation that the expected value of the
squared least squares residual is smaller than the expected value of the squared random errors.

var
(
êi|X

)
= E

(
ê2

i |X
)
= σ2(1 − hi

)
< var

(
ei|X

)
= E

(
e2

i |X
)
= σ2

The average value of E
(

ê2
i |X

)
is
[
(N − K)∕N

]
σ2 while the average value of E

(
e2

i |X
)
= σ2. To

adjust for the size difference of the least squares residuals, multiply ê2
i in HCE0 by N∕(N − K).

That is,

var
⋀(

b2
)
=
[∑(

xi2 − x̃i2
)2]−1 {∑[(

xi2 − x̃i2
)2 ( N

N − K

)
ê2

i

]}[∑(
xi2 − x̃i2

)2]−1

= HCE1 (8D.5)
This correction will have little effect if the sample is large, but it may have an effect when the
number of explanatory variables in the model, K − 1, is large.

A second modification adjusts the squared least squares residual to have the same conditional
expectation as the random error. That is,

E
(

ê2
i

1 − hi

||||||
X
)

= σ2 = E
(
e2

i |X
)

Then, HCE2 is

var
⋀(

b2
)
=
[∑(

xi2 − x̃i2
)2]−1

{
∑
[
(
xi2 − x̃i2

)2 ê2
i(

1 − hi
)
]}[∑(

xi2 − x̃i2
)2]−1

= HCE2 (8D.6)
In large samples HCE0, HCE1, and HCE2 are equivalent, but in samples that are not very
large, the adjustments make useful differences. In econometric software, the “default” robust
variance estimator is HCE0 or HCE1. If the random errors are actually homoskedastic, using
HCE2 seems appropriate. Recall that part of the genius of the White heteroskedasticity robust
variance estimators is that in large samples they can be applied whether the random errors are
heteroskedastic or not. The modification introduced in HCE2 “tweaks” the robust estimator in
such a way that it works when the errors are heteroskedastic and a little better than HCE0 and
HCE1 when errors are homoskedastic.

Recall that 0 ≤(
1 − hi

) ≤ 1 so HCE2 inflates the least squares residuals and the larger the
leverage, hi, the larger the adjustment becomes. Observations with high leverage, ones that have
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a larger impact on regression estimates and predictions, are also the observations for which the
least squares residual is much too small, thus the third modification inflates the residual again,
using

ê2
i
/(

1 − hi
)

(
1 − hi

) =
ê2
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= HCE3 (8D.7)

Some research shows that if heteroskedasticity is present in the data, then HCE3 is a good
choice.

To summarize, replacing σ2
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leads to the robust sandwich variance estimators HCE0, HCE1, HCE2, or HCE3. These robust
sandwich variance estimators are equivalent in large samples but may yield different results in
small samples. “Robust” means that the variance estimates, and standard errors, are valid whether
heteroskedasticity is present or not. When a priori reasoning does not lead you to suspect het-
eroskedasticity, but you are suspicious and/or risk averse, and if your sample is not small, then
using the robust sandwich variance estimator HCE2 may be the best choice. When a priori rea-
soning does lead you to suspect heteroskedasticity, and if your sample is not small, then using the
robust sandwich variance estimator HCE3 may be the better choice. Because the calculations are
complex, it is best to use proper econometric software for robust variances.

E X A M P L E 8.10 Alternative Robust Standard Errors in the Food
Expenditure Model

Most regression packages include an option for calculating
standard errors using White’s estimator. If we do so for the
food expenditure example, we obtain

FOOD_EXP
⋀

= 83.42 + 10.21INCOME
(27.46) (1.81) (White robust se-HCE1 )
(27.69) (1.82) (White robust se-HCE2 )
(28.65) (1.89) (White robust se-HCE3 )
(43.41) (2.09) (incorrect OLS se)

In this case, ignoring heteroskedasticity and using incorrect
standard errors, based on the usual formula in (8.6), tends
to understate the precision of estimation; we tend to get
confidence intervals that are wider than they should be.
Specifically, following the result in (3.6) in Chapter 3, we
can construct four corresponding 95% confidence intervals
for β2.
White HCE1∶ b2 ± tcse

(
b2
)

= 10.21 ± 2.024 × 1.81 = [6.55, 13.87]

White HCE2∶ b2 ± tcse
(
b2
)

= 10.21 ± 2.024 × 1.82 = [6.52, 13.90]
White HCE3∶ b2 ± tcse

(
b2
)

= 10.21 ± 2.024 × 1.89 = [6.39, 14.03]
Incorrect∶ b2 ± tcse

(
b2
)

= 10.21 ± 2.024 × 2.09 = [5.97, 14.45]

If we ignore heteroskedasticity, we estimate that β2 lies
between 5.97 and 14.45. When we recognize the existence
of heteroskedasticity, our information is more precise, and
using HCE3 we estimate that β2 lies between 6.39 and
14.03. Why HCE3? Because a priori we could reason that
heteroskedasticity should be present. A caveat here is that the
sample is small, which does mean that the robust standard
error formulas we have provided may not be as accurate as if
the sample were large.
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Appendix 8E Monte Carlo Evidence: OLS, GLS,
and FGLS
White’s estimator for the standard errors helps us avoid computing incorrect interval estimates or
incorrect values for test statistics in the presence of heteroskedasticity. The least squares estimator
is no longer best, but failing to use the “best” estimator may not be too grave a sin if estimates are
sufficiently precise for useful economic analysis. Many cross-sectional data sets have thousands of
observations, resulting in robust standard errors that are small, making interval estimates narrow
and t-tests powerful. Nothing further is required in these cases. If, however, your estimates are
not sufficiently precise for economic analysis, then a better, more efficient estimator is called for.
In order to use such an estimator, we must specify the skedastic function h

(xi
)
> 0, a function

of xi and also perhaps other variables, that describe the pattern of conditional heteroskedastic-
ity. In this appendix, we use a Monte Carlo study to illustrate an alternative estimator, feasible
generalized least squares, that has a smaller variance than the least squares estimator in large
samples.

Using Monte Carlo experiments, we illustrate the properties of the OLS estimator, the correct
FGLS estimator and an incorrect GLS estimator. The data generating process4 is based on the
population model

yi = β1 + β2xi2 + β3xi3 + ei = 5 + xi2 + 0xi3 + ei

The variables x2 and x3 are statistically independent uniform (Appendix B.3.4) random variables
over the interval (1, 5). They vary randomly with all values being equally likely in the interval.
The random error is ei = h

(xi
)
zi, where zi ∼ N(0, 1). The skedasticity function h

(
!i
)

is

h
(xi

)
= 3 exp

(
1 + α2xi2 + 0xi3

)/
h

The value of α2 changes from α2 = 0, homoskedasticity, to α2 = 0.3, strong heteroskedasticity,
to α2 = 0.5, very strong heteroskedasticity. The scalar h is a constant such that ∑N

i=1 h
(xi

)
∕N ≅ 3

so that ∑N
i=1 var

(
ei|xi

)
∕N ≅ 9. We use two sample sizes, N = 100, a moderate sample size, and

N = 5000, a large sample. We use M = 1000 Monte Carlo replications and do not hold x2 and x3
constant across these experiments.

In Table 8E.1 we report the results of the experiments. The FGLS procedure follows the
description in Section 8.5.1, with equation (8.20) being ln

(
ê2

i

)
= α1 + α2xi2 + α3xi3 + vi. The

GLS estimation incorrectly assumes var
(
ei|xi

)
= σ2xi2. This is the proportional heteroskedasticity

assumption illustrated in Section 8.4.1. In the first row of Table 8E.1 is the sample size, N, and
in the second row is the value of α2. First, the results of experiments (1)–(4):

1. Let the OLS estimator of β2 be b2. The OLS estimator is unbiased in the presence of het-
eroskedasticity, which is revealed by the Monte Carlo average across 1000 samples b2 in
row (3) that is close to the true value β2 = 1. The averages of the (correct) FGLS estimates,
̂̂β2, in row (8) and the (incorrect) GLS estimates, β̂2, in row (13) are also close to the true
parameter value.

2. The sample standard deviation of the 1000 Monte Carlo OLS estimates is sd
(
b2
)

in row (4).
It measures the actual amount of sampling variation of the OLS estimator—how much it
varies from sample to sample due solely to randomness inherent in sampling from a popu-
lation. Compare to it the sample average of the 1000 Monte Carlo calculated values of the

............................................................................................................................................
4This design is adapted from James G. MacKinnon (2013) “Thirty Years of Heteroskedasticity-Robust Inference,” in
Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis: Essays in Honor of
Halbert L. White Jr, editors Xiaohong Chen and R. Norman Swanson, New York: Springer, 437–461.
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usual, or nominal, OLS standard error of the estimator b2, se
(
b2
)

in row (5). Note that when
N = 100 and α2 ≠ 0 the average standard error is less than the standard deviation, meaning
that the OLS standard error is too small on average. When N = 5000 both of these values
are dramatically reduced, but the OLS standard error is still on average too small. Now com-
pare the average of the White robust standard errors HCE1 with the simple inflation factor
N∕(N − 3) as described in Appendix 8C, robse

(
b2
)

in row (6). The average of these standard
errors is very close to the actual variation measured by sd

(
b2
)
. That means that the robust

standard error correction for the OLS estimator is doing its job, on average, in measuring
actual sampling variation.

3. When heteroskedasticity is present, the actual variation in the FGLS estimates, sd
( ̂̂β2

)

in row (9) is less than the actual variation in the OLS estimates, sd
(
b2
)
. The ratio

sd
( ̂̂β2

)/
sd
(
b2
)

in row (10) shows the improvement obtained by using FGLS. By using
FGLS, we have obtained estimates that are more precise than the OLS estimates, as we
should have. The sample average of the standard error estimates se

( ̂̂β2
)

, row (11), is
slightly smaller than sd

( ̂̂β2
)

when N = 100. In this sample size, the FGLS standard errors
are a little too small. When N = 5000 this is no longer the case. We are reminded that the
properties of the FGLS estimator are valid in large samples. We used the correct model for
the heteroskedasticity in the FGLS calculations; hence, there is no need to compute FGLS

T A B L E 8E.1 Monte Carlo Simulation Results

Experiment
Result Item (1) (2) (3) (4) (5)
1 N 100 100 100 5000 5000
2 α2 0 0.3 0.5 0.5 NA
3 b2 1.0058 1.0044 1.0033 0.9996 1.0007
4 sd

(
b2
)

0.2657 0.3032 0.3574 0.0496 0.0414
5 se

(
b2
)

0.2626 0.2831 0.3081 0.0423 0.0406
6 robse

(
b2
)

0.2614 0.3035 0.3586 0.0498 0.0406
7 rej

(
NR2) 0.0570 0.9620 1.0000 1.0000 0.0420

8 ̂̂β2 1.0070 1.0114 1.0116 1.0000 1.0013

9 sd
( ̂̂β2

)
0.2746 0.2731 0.2522 0.0312 0.0452

10 sd
( ̂̂β2

)/
sd
(
b2
)

1.0338 0.9007 0.7058 0.6299 1.0920

11 se
( ̂̂β2

)
0.2608 0.2555 0.2351 0.0323 0.0415

12 robse
( ̂̂β2

)
0.2610 0.2565 0.2371 0.0323 0.0442

13 β̂2 1.0124 1.0092 1.0073 0.9996 1.0007

14 sd
(
β̂2

)
0.2924 0.2680 0.2894 0.0392 0.0414

15 sd
(
β̂2

)/
sd
(
b2
)

1.1009 0.8839 0.8099 0.7900 0.0406

16 se
(
β̂2

)
0.2677 0.2512 0.2561 0.0349 0.0406

17 robse
(
β̂2

)
0.2794 0.2645 0.2888 0.0395 0.0420
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with robust standard errors, but we report these values for reference in row (12), robse
( ̂̂β2

)
.

The averages are not much different from se
( ̂̂β2

)
, as we would have guessed.

4. The sampling variation of the GLS estimator, sd
(
β̂2
)

, is in row (14). The average of the
usual, or nominal, GLS standard errors, se

(
β̂2
)

, in row (16) is a bit too small. On average
the usual GLS standard error understates the true sampling variation of the GLS estimator.
However, using the heteroskedasticity robust standard error, HCE1, in row (17), on average
closely measures the actual variation sd

(
β̂2
)

.
5. How well does the incorrect GLS estimator do relative to OLS and the correct FGLS estima-

tor? When the random errors are homoskedastic, α2 = 0, the standard deviation of the GLS
estimator is larger than that of the OLS estimator. Using GLS when OLS is appropriate is not
a good idea. Note that FGLS does almost as well as OLS in this case, so there is not as much
of a penalty when the pattern of heteroskedasticity is estimated. When heteroskedasticity
is present the incorrect, but reasonable, GLS transformation yields estimates that are more
precise than the OLS estimates. In row (15) we see that the ratio sd

(
β̂2
)
∕sd

(
b2
)
< 1 when

α2 ≠ 0. Partially curing the heteroskedasticity has produced an improvement. However, the
GLS estimator improvement is not as great as for the FGLS estimator when heteroskedas-
ticity is severe, α2 = 0.5.

6. How well does the NR2 test do in detecting heteroskedasticity? Using the OLS residuals, the
rejection rates of the test are rej

(
NR2) in row (7). When errors are homoskedastic, α2 = 0,

the test rejects about 5% of the time as desired. When heteroskedasticity is present the test
rejects homoskedasticity a very large percentage of the time, which is also desirable.

7. Finally, compare experiment (4) to experiment (3). These experiments have the same data
generating process, except in experiment (3) we have 100 observations in a sample and in
experiment (4) we have 5000 observations per sample. With 100 observations the standard
deviation of the OLS estimates, which is the true sampling variation, is about 0.36. Using a
two standard deviation rule, would being within ± 0.72 of the true parameter value β2 = 1.0
be adequately informative for your work? If not, then the sampling variation can be reduced
using FGLS, in this case so that the margin of error is ± 0.50. If that is not adequate you
will need to build a better model or obtain more sample data. With 5000 observations the
two standard deviation margin of error of the OLS estimates is about ± 0.10. Would that
be adequate for your work? If so then nothing beyond OLS estimation with robust standard
errors is needed. If not, then pursuing FGLS can reduce the margin of error to about ± 0.06.
Having more good data facilitates statistical inference.

Experiment (5) is based on a different skedasticity function, h
(xi

)
= 3ui

/
h, where ui ∼

uniform(1, 11) is a uniform random variable, varying over the range (1,11). In this case var
(
ei
)
=

h
(xi

)
zi = σ2

i is different for each observation, heteroskedasticity is present, but the variance
changes randomly from one observation to the next with no pattern and no relationship to the
model explanatory variables or any other variables. This is unconditional heteroskedasticity
and it has no effect on the properties of the OLS estimator and OLS is the best linear unbiased
estimator. The NR2 test has no ability to detect this type of heteroskedasticity.


	Chapter 8: Heteroskedasticity
	8.1 The Nature of Heteroskedasticity�������������������������������������������
	8.2 Heteroskedasticity in the Multiple Regression Model��������������������������������������������������������������
	8.2.1 The Heteroskedastic Regression Model�������������������������������������������������
	8.2.2 Heteroskedasticity Consequences for the OLS Estimator������������������������������������������������������������������

	8.3 Heteroskedasticity Robust Variance Estimator�������������������������������������������������������
	8.4 Generalized Least Squares: Known Form of Variance������������������������������������������������������������
	8.4.1 Transforming the Model: Proportional Heteroskedasticity��������������������������������������������������������������������
	8.4.2 Weighted Least Squares: Proportional Heteroskedasticity��������������������������������������������������������������������

	8.5 Generalized Least Squares: Unknown Form of Variance��������������������������������������������������������������
	8.5.1 Estimating the Multiplicative Model������������������������������������������������

	8.6 Detecting Heteroskedasticity���������������������������������������
	8.6.1 Residual Plots���������������������������
	8.6.2 The Goldfeld-Quandt Test
	8.6.3 A General Test for Conditional Heteroskedasticity��������������������������������������������������������������
	8.6.4 The White Test���������������������������
	8.6.5 Model Specification and Heteroskedasticity�������������������������������������������������������

	8.7 Heteroskedasticity in the Linear Probability Model�������������������������������������������������������������
	8.8 Exercises
	8.8.1 Problems
	8.8.2 Computer Exercises

	Appendix 8A Properties of the Least Squares Estimator
	Appendix 8B Lagrange Multiplier Tests for Heteroskedasticity
	Appendix 8C Properties of the Least Squares Residuals
	8C.1 Details of Multiplicative Heteroskedasticity Model��������������������������������������������������������������

	Appendix 8D Alternative Robust Sandwich Estimators
	Appendix 8E Monte Carlo Evidence: OLS, GLS, and FGLS


