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CHAPTER 7

Using Indicator Variables

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to explain

1. The difference between qualitative and
quantitative economic variables.

2. How to include a 0–1 indicator variable on
the right-hand side of a regression, how this
affects model interpretation, and give an
example.

3. How to interpret the coefficient on an indicator
variable in a log-linear equation.

4. How to include a slope-indicator variable in a
regression, how this affects model
interpretation, and give an example.

5. How to include a product of two indicator
variables in a regression, and how this affects
model interpretation, giving an example.

6. How to model qualitative factors with more than
two categories (similar to region of the country),

and how to interpret the resulting model, giving
an example.

7. The consequences of ignoring a structural
change in parameters during part of the sample.

8. How to test the equivalence of two regression
equations using indicator variables.

9. How to estimate and interpret a regression with
an indicator dependent variable.

10. The difference between a randomized controlled
experiment and a natural experiment.

11. The difference between the average treatment
effect (ATE) and the average treatment effect on
the treated (ATT).

12. How to use a regression discontinuity design
(RDD), and explain when it is useful.

K E Y W O R D S
annual indicator variables
average treatment effect
Chow test
dichotomous variables
difference estimator
differences-in-differences estimator
dummy variables
dummy variable trap

exact collinearity
hedonic model
indicator variable
interaction variable
intercept indicator variable
linear probability model
log-linear model
natural experiment

quasi-experiments
reference group
regional indicator variables
regression discontinuity design
seasonal indicator variables
slope-indicator variable
treatment effect
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318 CHAPTER 7 Using Indicator Variables

7.1 Indicator Variables
Indicator variables, which were first introduced in Section 2.9, allow us to construct models
in which some or all regression model parameters, including the intercept, change for some
observations in the sample. To make matters specific, let us consider an example from real estate
economics. Buyers and sellers of homes, tax assessors, real estate appraisers, and mortgage
bankers are interested in predicting the current market value of a house. A common way to
predict the value of a house is to use a hedonic model, in which the price of the house is
explained as a function of its characteristics, such as its size, location, number of bedrooms, and
age. The idea is to break down a good into its component pieces, and then estimate the value of
each characteristic.1

For the present, let us assume that the size of the house, measured in square feet, SQFT , is
the only relevant variable in determining house price, PRICE. Specify the regression model as

PRICE = β1 + β2SQFT + e (7.1)
In this model, β2 is the value of an additional square foot of living area and β1 is the value of the
land alone.

In real estate, the three most important words are “location, location, and location.” How can
we take into account the effect of a property’s being in a desirable neighborhood, such as one near
a university, or near a golf course? Thought of this way, location is a “qualitative” characteristic
of a house.

Indicator variables are used to account for qualitative factors in econometric models. They
are often called dummy, binary, or dichotomous variables because they take just two values,
usually one or zero, to indicate the presence or absence of a characteristic or to indicate whether a
condition is true or false. They are also called dummy variables, to indicate that we are creating a
numeric variable for a qualitative, nonnumeric characteristic. We use the terms indicator variable
and dummy variable interchangeably. Using zero and one for the values of these variables is
arbitrary, but very convenient, as we will see. Generally, we define an indicator variable D as

D =
{

1 if characteristic is present
0 if characteristic is not present (7.2)

Thus, for the house price model, we can define an indicator variable, to account for a desirable
neighborhood, as

D =
{

1 if property is in the desirable neighborhood
0 if property is not in the desirable neighborhood

Indicator variables can be used to capture changes in the model intercept, or slopes, or both. We
consider these possibilities in turn.

7.1.1 Intercept Indicator Variables
The most common use of indicator variables is to modify the regression model intercept param-
eter. Adding the indicator variable D to the regression model, along with a new parameter δ, we
obtain

PRICE = β1 + δD + β2SQFT + e (7.3)

............................................................................................................................................
1Such models have been used for many types of goods, including personal computers, automobiles and wine. This
famous idea was introduced by Sherwin Rosen (1978) “Hedonic Prices and Implicit Markets,” Journal of Political
Economy, 82, 357–369. The ideas are summarized and applied to asparagus and personal computers in Ernst Berndt
(1991) The Practice of Econometrics: Classic and Contemporary, Reading, MA: Addison-Wesley, Chapter 4.
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SQFT

PRICE

β1 + δ

β1

δ

E(PRICE|SQFT ) = (β1 + δ) + β2SQFT

E(PRICE|SQFT ) = β1 + β2SQFT

FIGURE 7.1 An intercept indicator variable.

The effect of the inclusion of an indicator variable D into the regression model is best seen by
examining the regression function, E(PRICE|SQFT ), in the two locations. If the model in (7.3)
is correctly specified, then E(e|SQFT,D) = 0 and

E(PRICE|SQFT ) =
{(

β1 + δ
)
+ β2SQFT when D = 1

β1 + β2SQFT when D = 0 (7.4)

In the desirable neighborhood D = 1, and the intercept of the regression function is
(
β1 + δ

)
. In

other areas, the regression function intercept is simply β1. This difference is depicted in Figure 7.1,
assuming that δ > 0.

Adding the indicator variable D to the regression model causes a parallel shift in the relation-
ship by the amount δ. In the context of the house price model the interpretation of the parameter
δ is that it is a location premium, the difference in house price due to houses being located in
the desirable neighborhood. An indicator variable that is incorporated into a regression model
to capture a shift in the intercept as the result of some qualitative factor is called an intercept
indicator variable, or an intercept dummy variable. In the house price example, we expect the
price to be higher in a desirable location, and thus we anticipate that δ will be positive.

The least squares estimator’s properties are not affected by the fact that one of the explanatory
variables consists only of zeros and ones—D is treated as any other explanatory variable. We can
construct an interval estimate for δ, or we can test the significance of its least squares estimate.
Such a test is a statistical test of whether the neighborhood effect on house price is “statistically
significant.” If δ = 0, then there is no location premium for the neighborhood in question.

Choosing the Reference Group The convenience of the values D = 0 and D = 1 is
seen in (7.4). The value D = 0 defines the reference group, or base group, of houses that are not
in the desirable neighborhood. The expected price of these houses is simply E(PRICE|SQFT ) =
β1 + β2SQFT. Using (7.3), we are comparing the house prices in the desirable neighborhood to
those in the base group.

A researcher can choose whichever neighborhood is most convenient, for expository pur-
poses, to be the reference group. For example, we can define the indicator variable LD to denote
the less desirable neighborhood:

LD =
{

1 if property is not in the desirable neighborhood
0 if property is in the desirable neighborhood
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This indicator variable is defined just the opposite from D, and LD = 1 − D. If we include LD in
the model specification

PRICE = β1 + λLD + β2SQFT + e

then we make the reference group, LD = 0, the houses in the desirable neighborhood.
You may be tempted to include both D and LD in the regression model to capture the effect

of each neighborhood on house prices. That is, you might consider the model
PRICE = β1 + δD + λLD + β2SQFT + e

In this model, the variables D and LD are such that D + LD = 1. Since the intercept variable
x1 = 1, we have created a model with exact collinearity, and as explained in Section 6.4, the
least squares estimator is not defined in such cases. This error is sometimes described as falling
into the dummy variable trap. By including only one of the indicator variables, either D or LD,
the omitted variable defines the reference group, and we avoid the problem.2

7.1.2 Slope-Indicator Variables
Instead of assuming that the effect of location on house price causes a change in the intercept of
the hedonic regression (7.1), let us assume that the change is in the slope of the relationship. We
can allow for a change in a slope by including in the model an additional explanatory variable
that is equal to the product of an indicator variable and a continuous variable. In our model, the
slope of the relationship is the value of an additional square foot of living area. If we assume that
this is one value for homes in the desirable neighborhood, and another value for homes in other
neighborhoods, we can specify

PRICE = β1 + β2SQFT + γ(SQFT × D) + e (7.5)
The new variable (SQFT × D) is the product of house size and the indicator variable, and is called
an interaction variable, as it captures the interaction effect of location and size on house price.
Alternatively, it is called a slope-indicator variable or a slope dummy variable because it allows
for a change in the slope of the relationship. The slope-indicator variable takes a value equal to
SQFT for houses in the desirable neighborhood, when D = 1, and it is zero for homes in other
neighborhoods. Despite its unusual nature, a slope-indicator variable is treated just like any other
explanatory variable in a regression model. Examining the regression function for the two dif-
ferent locations best illustrates the effect of the inclusion of the slope-indicator variable into the
economic model,

E(PRICE|SQFT, D) = β1 + β2SQFT + γ(SQFT × D) =
{
β1 +

(
β2 + γ

)
SQFT when D = 1

β1 + β2SQFT when D = 0

In the desirable neighborhood, the price per additional square foot of a home is
(
β2 + γ

)
; it is β2

in other locations. We would anticipate γ > 0 if price per additional square foot is higher in the
more desirable neighborhood. This situation is depicted in Figure 7.2a.

Another way to see the effect of including a slope-indicator variable is to use calculus. The
partial derivative of expected house price with respect to size (measured in square feet), which
gives the slope of the relation, is

∂E(PRICE|SQFT, D)
∂SQFT

=
{
β2 + γ when D = 1
β2 when D = 0

If the assumptions of the regression model hold for (7.5), then the least squares estimators have
their usual good properties, as discussed in Section 5.3. A test of the hypothesis that the value of
an additional square foot of living area is the same in the two locations is carried out by testing the

............................................................................................................................................
2Another way to avoid the dummy variable trap is to omit the intercept from the model.
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SQFT
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β1

γ

Slope = β2 

Slope = β2 + γ

(a)

E (PRICE|SQFT ) = β1 + (β2 + γ)SQFT

E (PRICE|SQFT ) = β1 + β2SQFT

E (PRICE|SQFT ) = (β1 + δ) + (β2 + γ)SQFT

E (PRICE|SQFT ) = (β1 + δ) + β2SQFT

E (PRICE|SQFT ) = β1 + β2SQFT

SQFT

PRICE

β1 + δ

β1

γ

δ

(b)

FIGURE 7.2 (a) A slope-indicator variable. (b) Slope- and intercept-indicator
variables.

null hypothesis H0∶γ = 0 against the alternative H1∶γ ≠ 0. In this case, we might test H0∶γ = 0
against H1∶γ > 0, since we expect the effect to be positive.

If we assume that house location affects both the intercept and the slope, then both effects
can be incorporated into a single model. The resulting regression model is

PRICE = β1 + δD + β2SQFT + γ(SQFT × D) + e (7.6)

In this case, the regression functions for the house prices in the two locations are

E(PRICE|SQFT ) =
{(

β1 + δ
)
+
(
β2 + γ

)
SQFT when D = 1

β1 + β2SQFT when D = 0

In Figure 7.2b, we depict the house price relations assuming that δ > 0 and γ > 0.

E X A M P L E 7.1 The University Effect on House Prices

A real estate economist collects information on 1000 house
price sales from two similar neighborhoods, one called “Uni-
versity Town” bordering a large state university, and another
a neighborhood about three miles from the university. A few
of the observations are shown in Table 7.1. The complete data
file is utown.

House prices are given in $1000; size (SQFT ) is
the number of hundreds of square feet of living area. For

example, the first house sold for $205,452 and has 2346
square feet of living area. Also recorded are the house
AGE (in years), location (UTOWN = 1 for homes near the
university, 0 otherwise), whether the house has a pool
(POOL = 1 if a pool is present, 0 otherwise) and whether
the house has a fireplace (FPLACE = 1 if a fireplace is
present, 0 otherwise).
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T A B L E 7.1 Representative Real Estate Data Values

PRICE SQFT AGE UTOWN POOL FPLACE
205.452 23.46 6 0 0 1
185.328 20.03 5 0 0 1
248.422 27.77 6 0 0 0
287.339 23.67 28 1 1 0
255.325 21.30 0 1 1 1
301.037 29.87 6 1 0 1

T A B L E 7.2 House Price Equation Estimates

Variable Coefficient Std. Error t-Statistic Prob.
C 24.5000 6.1917 3.9569 0.0001
UTOWN 27.4530 8.4226 3.2594 0.0012
SQFT 7.6122 0.2452 31.0478 0.0000
SQFT × UTOWN 1.2994 0.3320 3.9133 0.0001
AGE −0.1901 0.0512 −3.7123 0.0002
POOL 4.3772 1.1967 3.6577 0.0003
FPLACE 1.6492 0.9720 1.6968 0.0901
R2 = 0.8706 SSE = 230184.4

The economist specifies the regression equation as

PRICE = β1 + δ1UTOWN + β2SQFT + γ(SQFT × UTOWN)
+ β3AGE + δ2POOL + δ3FPLACE + e (7.7)

We anticipate that all the coefficients in this model will
be positive except β3, which is an estimate of the effect
of age, or depreciation, on house price. Note that POOL
and FPLACE are intercept dummy variables. By intro-
ducing these variables we are asking whether, and by how
much, these features change house price. Because these
variables stand alone, and are not interacted with SQFT
or AGE, we are assuming that they affect the regression
intercept, but not the slope. The estimated regression results
are shown in Table 7.2. The goodness-of-fit statistic is
R2 = 0.8706, indicating that the model fits the data well.
The slope-indicator variable is SQFT × UTOWN. Based
on one-tail t-tests of significance,3 at the α = 0.05 level
we reject zero null hypotheses for each of the parameters
and accept the alternatives that they are positive, except for
the coefficient on AGE, which we accept to be negative.
In particular, based on these t-tests, we conclude that houses
near the university have a significantly higher base price,
and that their price per additional square foot is significantly
higher than in the comparison neighborhood.

The estimated regression function for the houses near
the university is

PRICE
⋀

= (24.5 + 27.453) + (7.6122 + 1.2994)SQFT
− 0.1901AGE + 4.3772POOL + 1.6492FPLACE

= 51.953 + 8.9116SQFT − 0.1901AGE
+ 4.3772POOL + 1.6492FPLACE

For houses in other areas, the estimated regression function is

PRICE
⋀

= 24.5 + 7.6122SQFT − 0.1901AGE
+ 4.3772POOL + 1.6492FPLACE

Based on the regression results in Table 7.2, we estimate that

• The location premium for lots near the university is
$27,453.

• The change in expected price per additional square foot
is $89.12 for houses near the university and $76.12 for
houses in other areas.

• Houses depreciate $190.10 per year.
• A pool increases the value of a home by $4,377.20.
• A fireplace increases the value of a home by $1,649.20.

............................................................................................................................................
3Recall that the p-value for a one-tail test is half of the reported two-tail p-value, providing that the coefficient estimate
has the “correct” sign.
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7.2 Applying Indicator Variables
Indicator variables can be used to ask and answer a rich variety of questions. In this section, we
consider some common applications.

7.2.1 Interactions Between Qualitative Factors
We have seen how indicator variables can be used to represent qualitative factors in a regression
model. Intercept indicator variables for qualitative factors are additive. That is, the effect of each
qualitative factor is added to the regression intercept, and the effect of any indicator variable is
independent of any other qualitative factor. Sometimes, however, we might question whether the
effects of qualitative factors are independent.

For example, suppose we are estimating a wage equation, in which an individual’s wages are
explained as a function of their experience, skill, and other factors related to productivity. It is
customary to include indicator variables for race and sex in such equations. If we have modeled
productivity attributes well, and if wage determination is not discriminatory, then the coefficients
of the race and sex indicator variables should not be significant. Including just race and sex
indicator variables, however, will not capture interactions between these qualitative factors. Is
there a differential in wages for black women? Separate indicator variables for being “black” and
“female” will not capture this extra interaction effect. To allow for such a possibility, consider the
following specification, in which for simplicity we use only education (EDUC) as a productivity
measure:

WAGE = β1 + β2EDUC + δ1BLACK + δ2FEMALE
+ γ(BLACK × FEMALE) + e (7.8)

where BLACK and FEMALE are indicator variables, and thus so is their interaction. These are
intercept dummy variables because they are not interacted with any continuous explanatory vari-
able. They have the effect of causing a parallel shift in the regression, as in Figure 7.1. When
multiple dummy variables are present, and especially when there are interactions between indi-
cator variables, it is important for proper interpretation to write out the regression function,
E(WAGE|EDUC), for each indicator variable combination:

E(WAGE|EDUC) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

β1 + β2EDUC WHITE −MALE(
β1 + δ1

)
+ β2EDUC BLACK −MALE(

β1 + δ2
)
+ β2EDUC WHITE − FEMALE(

β1 + δ1 + δ2 + γ
)
+ β2EDUC BLACK − FEMALE

In this specification, white males are the reference group because this is the group defined when all
indicator variables take the value zero, in this case BLACK = 0 and FEMALE = 0. The parameter
δ1 measures the effect of being black, relative to the reference group; the parameter δ2 measures
the effect of being female, and the parameter γ measures the effect of being black and female.

E X A M P L E 7.2 The Effects of Race and Sex on Wage

Using CPS data (data file cps5_small) from 2013, we obtain
the results in Table 7.3. Holding the effect of education
constant, we estimate that on average black males earn $2.07
per hour less than white males, white females earn $4.22

less than white males, and black females earn $5.76 less
than white males. The coefficients of EDUC and FEMALE
are significantly different from zero using individual t-tests.
The coefficient of BLACK and the interaction effect between
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BLACK and FEMALE are not estimated very precisely using
this sample of 1200 observations, and are not statistically
significant.4

Suppose we are asked to test the joint significance of
all the qualitative factors. How do we test the hypothesis that
neither a person’s race nor sex affects wages? We do it by test-
ing the joint null hypothesis H0∶δ1 = 0, δ2 = 0, γ = 0 against
the alternative that at least one of the tested parameters is not
zero. If the null hypothesis is true, race and sex fall out of the
regression, and thus have no effect on wages.

To test this hypothesis, we use the F-test procedure that
is described in Section 6.1. The test statistic for a joint hypoth-
esis is

F =
(
SSER − SSEU

)
∕J

SSEU∕(N − K)

where SSER is the sum of squared least squares residuals
from the “restricted” model in which the null hypothesis is
assumed to be true, SSEU is the sum of squared residuals
from the original, “unrestricted,” model, J is the number
of joint hypotheses, and N − K is the number of degrees of
freedom in the unrestricted model. If the null hypothesis
is true, then the test statistic F has an F-distribution with
J numerator degrees of freedom and N − K denominator

T A B L E 7.3 Wage Equation with Race and Sex

Variable Coefficient Std. Error t-Statistic Prob.
C −9.4821 1.9580 −4.8428 0.0000
EDUC 2.4737 0.1351 18.3096 0.0000
BLACK −2.0653 2.1616 −0.9554 0.3396
FEMALE −4.2235 0.8249 −5.1198 0.0000
BLACK × FEMALE 0.5329 2.8020 0.1902 0.8492
R2 = 0.2277 SSE = 214400.9

degrees of freedom, F(J, N − K). We reject the null hypothesis
if F ≥ Fc, where Fc is the critical value, illustrated in Figure
B.9, for the level of significance α. To test the J = 3 joint
null hypotheses H0∶δ1 = 0, δ2 = 0, γ = 0, we obtain the
unrestricted sum of squared errors SSEU = 214400.9 from
the model reported in Table 7.3. The restricted sum of
squares is obtained by estimating the model that assumes the
null hypothesis is true, leading to the fitted model

WAGE
⋀

= −10.4000 + 2.3968EDUC
(se) (1.9624) (0.1354)

which has SSER = 220062.3. The degrees of freedom
(N − K) = (1200 − 5) = 1195 come from the unrestricted
model. The value of the F-statistic is

F =
(
SSER − SSEU

)
∕J

SSEU∕(N − K) = (220062.3 − 214400.9)∕3
214400.9∕1195

= 10.52

The 1% critical value [i.e., the 99th percentile value] is
F(0.99, 3, 1195) = 3.798. Thus, we conclude that a worker’s race
and/or sex affect the wage equation.

7.2.2 Qualitative Factors with Several Categories
Many qualitative factors have more than two categories. An example is the variable region of
the country in our wage equation. The CPS data record worker residence within one of the four
regions: northeast, midwest, south, and west. Again, using just the simple wage specification for
illustration, we can incorporate indicator variables into the wage equation as

WAGE = β1 + β2EDUC + δ1SOUTH + δ2MIDWEST + δ3WEST + e (7.9)

............................................................................................................................................
4Estimating this model using the larger data set cps5, which contains 9799 observations, yields a coefficient estimate for
BLACK of −4.3488 with a t-value of −5.81. Similarly, the coefficient of the interaction variable is 3.0873 with a
t = 3.01. Both of these are statistically significant. Recall from Sections 2.4 and 5.3 that larger sample sizes lead to
smaller standard errors and thus more precise estimation. Labor economists tend to use large data sets so that complex
effects and interactions can be estimated precisely. We use the smaller data set as a text example so that results can be
replicated with student versions of software.
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Notice that we have not included the indicator variables for all regions. Doing so would have
created a model in which exact collinearity exists. Since the regional categories are exhaustive, the
sum of the regional indicator variables is NORTHEAST + SOUTH + MIDWEST + WEST = 1.
Thus, the “intercept variable” x1 = 1 is an exact linear combination of the region indicators.
Recall, from Section 6.4, that the least squares estimator is not defined in such cases. Failure
to omit one indicator variable will lead to your computer software returning a message saying
that least squares estimation fails. This error is the dummy variable trap that we mentioned in
Section 7.1.1.

The usual solution to this problem is to omit one indicator variable, which defines a reference
group, as we shall see by examining the regression function,

E(WAGE|EDUC) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

(
β1 + δ3

)
+ β2EDUC WEST(

β1 + δ2
)
+ β2EDUC MIDWEST(

β1 + δ1
)
+ β2EDUC SOUTH

β1 + β2EDUC NORTHEAST

The omitted indicator variable, NORTHEAST , identifies the reference group for the equation,
to which workers in other regions are compared. It is the group that remains when the regional
indicator variables WEST , MIDWEST , and SOUTH are set to zero. Mathematically, it does not
matter which indicator variable is omitted; the choice can be made that is most convenient for
interpretation. The intercept parameter β1 represents the base wage for a worker with no education
who lives in the northeast. The parameter δ1 measures the expected wage differential between
southern workers relative to those in the northeast; δ2 measures the expected wage differential
between midwestern workers and those in the northeast.

E X A M P L E 7.3 A Wage Equation with Regional Indicators

Using CPS data in data file cps5_small, let us take the speci-
fication in Table 7.3 and add the regional indicators SOUTH,
MIDWEST , and WEST . The results are in Table 7.4. We
estimate that workers in the South earn $1.65 less per hour

T A B L E 7.4 Wage Equation with Regional Indicator Variables

Variable Coefficient Std. Error t-Statistic Prob.
C −8.3708 2.1540 −3.8862 0.0001
EDUC 2.4670 0.1351 18.2603 0.0000
BLACK −1.8777 2.1799 −0.8614 0.3892
FEMALE −4.1861 0.8246 −5.0768 0.0000
BLACK × FEMALE 0.6190 2.8008 0.2210 0.8251
SOUTH −1.6523 1.1557 −1.4297 0.1531
MIDWEST −1.9392 1.2083 −1.6049 0.1088
WEST −0.1452 1.2027 −0.1207 0.9039
R2= 0.2308 SSE = 213552.1

than workers in the Northeast, and workers in the Midwest
earn $1.94 less than workers in the Northeast, holding other
factors constant. These estimates are not significantly differ-
ent from zero at the 10% level.5

............................................................................................................................................
5Using the larger CPS data file, cps5, the estimated regional coefficients are (t-values in parentheses): SOUTH −0.9405
(−2.24), MIDWEST −2.4299 (−5.58), and WEST 0.0088 (0.02).
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How would we test the hypothesis that there are no
regional differences? This would be a joint test of the null
hypothesis that the coefficients of the regional dummies are
all zero. In the context of the CPS data, SSEU = 213552.1 for
the wage equation in Table 7.4. Under the null hypothesis,

the model in Table 7.4 reduces to that in Table 7.3 where
SSER = 214400.9. This yields an F-statistic value of 1.579.
The p-value for this test is 0.1926, so we fail to reject the
null hypothesis that there are no regional differences in the
wage equation intercept, holding other factors constant.6

7.2.3 Testing the Equivalence of Two Regressions
In Section 7.1.2, we introduced both intercept and slope-indicator variables into the hedonic
equation for house price. The result was given in (7.6)

PRICE = β1 + δD + β2SQFT + γ(SQFT × D) + e

The regression functions for the house prices in the two locations are

E(PRICE|SQFT ) =
{
α1 + α2SQFT D = 1
β1 + β2SQFT D = 0

where α1 = β1 + δ and α2 = β2 + γ. Figure 7.2b shows that by introducing both intercept and
slope-indicator variables, we have essentially assumed that the regressions in the two neighbor-
hoods are completely different. We could obtain the estimates for (7.6) by estimating separate
regressions for each of the neighborhoods. In this section, we generalize this idea, which leads
to the Chow test, named after econometrician Gregory Chow. The Chow test is an F-test for the
equivalence of two regressions.

By including an intercept indicator variable and an interaction variable for each additional
variable in an equation, we allow all coefficients to differ based on a qualitative factor. Consider
again the wage equation in (7.8)

WAGE = β1 + β2EDUC + δ1BLACK + δ2FEMALE + γ(BLACK × FEMALE) + e

We might ask “Are there differences between the wage regressions for the south and for the rest
of the country?” If there are no differences, then the data from the south and other regions can
be pooled into one sample, with no allowance made for differing slope or intercept. How can we
test this? We can carry out the test by creating intercept and slope-indicator variables for every
variable in the model, and then jointly testing the significance of the indicator variable coefficients
using an F-test. That is, we specify the model

WAGE = β1 + β2EDUC + δ1BLACK + δ2FEMALE + γ(BLACK × FEMALE)
+ θ1SOUTH + θ2(EDUC × SOUTH) + θ3(BLACK × SOUTH)
+ θ4(FEMALE × SOUTH) + θ5(BLACK × FEMALE × SOUTH) + e (7.10)

In (7.10) we have twice the number of parameters and variables than in (7.8). We have added five
new variables, the SOUTH intercept indicator variable and interactions between SOUTH and the
other four variables, and corresponding parameters. Estimating (7.10) is equivalent to estimating
(7.8) twice—once for the southern workers and again for workers in the rest of the country.

............................................................................................................................................
6Using the larger CPS data file, cps5, the F = 14.7594 which is significant at the 1% level.



❦

❦ ❦

❦

7.2 Applying Indicator Variables 327

To see this, examine the regression functions. Let X represent (EDUC, BLACK, FEMALE,
SOUTH). Then

E(WAGE|X) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

β1 + β2EDUC + δ1BLACK + δ2FEMALE SOUTH = 0
+ γ(BLACK × FEMALE)(
β1 + θ1

)
+
(
β2 + θ2

)
EDUC +

(
δ1 + θ3

)
BLACK

+
(
δ2 + θ4

)
FEMALE +

(
γ + θ5

)
(BLACK × FEMALE) SOUTH = 1

Note that each variable has a separate coefficient for southern and nonsouthern workers.

E X A M P L E 7.4 Testing the Equivalence of Two Regressions: The Chow Test

In column (1) of Table 7.5, we report the estimates and stan-
dard errors for the fully interacted model (7.10), using the full
sample. The base model (7.8) is estimated once for workers
outside the south [column (2)] and again for southern work-
ers [column (3)]. Note that the coefficient estimates on the
nonsouth data in (2) are identical to those using the full sam-
ple in (1). The standard errors differ because the estimates of
the error variance, σ2, differ. The coefficient estimates using
only southern workers are obtained from the full model by
adding the indicator variable interaction coefficients θi to
the corresponding nonsouth coefficients. For example, the
coefficient estimate for BLACK in column (3) is obtained
as

(
δ̂1 + θ̂3

)
= 1.1276 − 4.6204 = −3.4928. Similarly, the

coefficient on FEMALE in column (3) is
(
δ̂2 + θ̂4

)
=

–4.1520 − 0.1886 = −4.3406.

T A B L E 7.5 Comparison of Fully Interacted to Separate Models

(1) (2) (3)
Full sample Nonsouth South

Variable Coefficient
Std.

Error Coefficient
Std.

Error Coefficient
Std.

Error
C −9.9991 2.3872 −9.9991 2.2273 −8.4162 3.8709
EDUC 2.5271 0.1642 2.5271 0.1532 2.3557 0.2692
BLACK 1.1276 3.5247 1.1276 3.2885 −3.4928 3.1667
FEMALE −4.1520 0.9842 −4.1520 0.9182 −4.3406 1.7097
BLACK × FEMALE −4.4540 4.4858 −4.4540 4.1852 3.6655 4.1832
SOUTH 1.5829 4.1821
EDUC × SOUTH −0.1714 0.2898
BLACK × SOUTH −4.6204 4.5071
FEMALE × SOUTH −0.1886 1.8080
BLACK × FEMALE × SOUTH 8.1195 5.8217
SSE 213774.0 125880.0 87893.9
N 1200 810 390

Furthermore, note that the sum of squared residuals for the
full model in column (1), but for a small rounding error, is
the sum of the SSE from the two separate regressions

SSEfull = SSEnonsouth + SSEsouth

= 125880.0 + 87893.9 = 213773.9

Using this indicator variable approach, we can test for a
southern regional difference. We estimate (7.10) and test the
joint null hypothesis

H0∶θ1 = θ2 = θ3 = θ4 = θ5 = 0

against the alternative that at least one θi ≠ 0. This is the
Chow test. If we reject this null hypothesis, we conclude that
there is some difference in the wage equation in the southern
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region relative to the rest of the country. The test can also be
thought of as comparing the estimates in the nonsouth and
south in columns (2) and (3) in Table 7.5.

The test ingredients are the unrestricted SSEU =
213774.0 from the full model in Table 7.5 [or the sum of
the SSE’s from the two separate regressions], the restricted
SSER = 214400.9 comes from Table 7.3. The test statistic
for the J = 5 hypotheses is

F =
(
SSER − SSEU

)
∕J

SSEU∕(N − K)

= (214400.9 − 213774.0)∕5
213774.0∕1190 = 0.6980

The denominator degrees of freedom come from the unre-
stricted model, N − K = 1200 − 10. The p-value of this test
is p = 0.6250, and thus we fail to reject the null hypothesis
that the wage regression in the South is no different from that
in the rest of the country.7

Remark
The usual F-test of a joint hypothesis relies on the assumptions MR1–MR6 of the linear
regression model. Of particular relevance for testing the equivalence of two regressions is
assumption MR3, that the variance of the error term, var

(
ei|!

)
= σ2, is the same for all

observations. If we are considering possibly different slopes and intercepts for parts of the
data, it might also be true that the error variances are different in the two parts of the data.
In such a case, the usual F-test is not valid. Testing for equal variances is covered in Section
8.2, and the question of pooling in this case is covered in Section 8.4. For now, be aware
that we are assuming constant error variances in the calculations above.

7.2.4 Controlling for Time
The earlier examples we have given apply indicator variables to cross-sectional data. Indicator
variables are also used in regressions using time-series data, as the following examples illustrate.

Seasonal Indicators Summer means outdoor cooking on barbeque grills. What effect
might this have on the sales of charcoal briquettes, a popular fuel for grilling? To investigate,
let us define a model with dependent variable yt = the number of 20-pound bags of Royal Oak
charcoal sold in week t at a supermarket. Explanatory variables would include the price of Royal
Oak, the price of competitive brands (Kingsford and the store brand), the prices of complemen-
tary goods (charcoal lighter fluid, pork ribs, and sausages), and advertising (newspaper ads and
coupons). While these standard demand factors are all relevant, we may also find strong seasonal
effects. All other things being equal, more charcoal is sold in the warm summer months than in
other seasons. Thus, we may want to include either monthly indicator variables (e.g., AUG = 1
if month is August, AUG = 0 otherwise) or seasonal indicator variables (in North America,
SUMMER = 1 if month = June, July, or August; SUMMER = 0 otherwise) into the regression.
In addition to these seasonal effects, holidays are special occasions for cookouts. In the United
States, these are Memorial Day (last Monday in May), Independence Day (July 4), and Labor Day
(first Monday in September). Additional sales can be expected in the week before these holidays,
meaning that indicator variables for each should be included into the regression.

............................................................................................................................................
7The p-value of this test using the larger CPS data set, cps5, is 0.7753, so that we again fail to reject the null hypothesis.
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Year Indicators In the same spirit as seasonal indicator variables, annual indicator vari-
ables are used to capture year effects not otherwise measured in a model. The real estate model
discussed earlier in this chapter provides an example. Real estate data are available continuously,
every month, every year. Suppose we have data on house prices for a certain community covering
a 10-year period. In addition to house characteristics, such as those employed in (7.7), the overall
price level is affected by demand factors in the local economy, such as population change, inter-
est rates, unemployment rate, and income growth. Economists creating “cost-of-living” or “house
price” indexes for cities must include a component for housing that takes the pure price effect into
account. Understanding the price index is important for tax assessors, who must reassess the mar-
ket value of homes in order to compute the annual property tax. It is also important to mortgage
bankers and other home lenders, who must reevaluate the value of their portfolio of loans with
changing local conditions, as well as to homeowners trying to sell their houses, and to potential
buyers as they attempt to agree upon a selling price.

The simplest method for capturing these price effects is to include annual indicator vari-
ables (e.g., D99 = 1 if year = 1999; D99 = 0 otherwise) into the hedonic regression model.
An example can be found in Exercise 7.3.

Regime Effects An economic regime is a set of structural economic conditions that exist
for a certain period. The idea is that economic relations may behave one way during one regime,
but may behave differently during another. Economic regimes may be associated with political
regimes (conservatives in power, liberals in power), unusual economic conditions (oil embargo,
recession, hyperinflation), or changes in the legal environment (tax law changes). An investment
tax credit8 was enacted in 1962 in an effort to stimulate additional investment. The law was sus-
pended in 1966, reinstated in 1970, and eliminated in the Tax Reform Act of 1986. Thus, we
might create an indicator variable

ITCt =
{

1 if t = 1962 − 1965, 1970 − 1986
0 otherwise

A macroeconomic investment equation might be
INVt = β1 + δITCt + β2GNPt + β3GNPt−1 + et

If the tax credit was successful, then δ > 0.

7.3 Log-Linear Models
In Section 4.5, we examined the log-linear model in some detail. In this section, we explore the
interpretation of indicator variables in log-linear models. Some additional detail is provided in
Appendix 7A. Let us consider the log-linear model in (7.11). We do not introduce an error term,
and we take EDUC and FEMALE to be given, in order to simplify the exposition.

ln(WAGE) = β1 + β2EDUC + δFEMALE (7.11)
What is the interpretation of the parameter δ? FEMALE is an intercept dummy variable, creating
a parallel shift of the log-linear relationship when FEMALE = 1. That is,

ln(WAGE) =
{
β1 + β2EDUC MALES (FEMALE = 0)(
β1 + δ

)
+ β2EDUC FEMALES (FEMALE = 1)

............................................................................................................................................
8Intriligator, Bodkin and Hsiao, Econometric Models, Techniques and Applications, 2nd edition, Upper Saddle River,
NJ: Prentice-Hall, 1996, p. 53.
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But what about the fact that the dependent variable is ln(WAGE)? Does that have an effect?
The answer is yes—and there are two solutions.

7.3.1 A Rough Calculation
First, take the difference between ln(WAGE) of females and males:

ln(WAGE)FEMALES − ln(WAGE)MALES = δ

Recall from Appendix A.1.6 and equation (A.3) that 100 times the log-difference, 100δ, is approx-
imately the percentage difference.

E X A M P L E 7.5 Indicator Variables in a Log-Linear Model:
The Rough Approximation

Using the data file cps5_small, the estimated log-linear model
(7.11) is

ln(WAGE)
⋀

= 1.6229 + 0.1024EDUC − 0.1778FEMALE
(se) (0.0692) (0.0048) (0.0279)

Thus, we would estimate that there is a 17.78% differential
between male and female wages. This is quick and simple, but
there is an approximation error with a difference this large.

7.3.2 An Exact Calculation
We can overcome the approximation error by doing a little algebra. The wage difference is

ln(WAGE)FEMALES − ln(WAGE)MALES = ln
(WAGEFEMALES

WAGEMALES

)
= δ

using the property of logarithms that ln(x) − ln(y) = ln(x∕y). These are natural logarithms, and
the antilog is the exponential function,

WAGEFEMALES
WAGEMALES

= eδ

Subtract 1 from each side (in a tricky way) to obtain
WAGEFEMALES
WAGEMALES

−
WAGEMALES
WAGEMALES

=
WAGEFEMALES −WAGEMALES

WAGEMALES
= eδ − 1

The percentage difference between wages of females and males is 100
(
eδ – 1

)
%. See Appendix 7A

for a more detailed approach.

E X A M P L E 7.6 Indicator Variables in a Log-Linear Model: An Exact Calculation

Using the data cps5_small, we estimate the wage differential
between males and females to be

100
(

eδ̂ − 1
)
% = 100

(
e−0.1778 − 1

)
% = −16.29%

The approximate standard error for this estimate is 2.34%,
which is a calculation that may be provided by your software.
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7.4 The Linear Probability Model
Economics is sometimes described as the “theory of choice.” Many of the choices we make in
life are “either—or” in nature. A few examples include the following:

• A consumer who must choose between Coke and Pepsi
• A married woman who must decide whether to enter the labor market or not
• A bank official must choose to accept a loan application or not
• A high school graduate must decide whether to attend college or not
• A member of Parliament, a Senator, or a Representative must vote for or against a piece of

legislation.

To analyze and predict such outcomes using an econometric model, we represent the choice using
an indicator variable, the value one if one alternative is chosen and the value zero if the other
alternative is chosen. Because we are attempting to explain choice between two alternatives, the
indicator variable will be the dependent variable rather than an independent variable in a regres-
sion model.

To begin, let us represent the variable indicating a choice as

y =
{

1 if first alternative is chosen
0 if second alternative is chosen

If we observe the choices that a random sample of individuals makes, then y is a random variable.
If p is the probability that the first alternative is chosen, then P[y = 1] = p. The probability that the
second alternative is chosen is P[y = 0] = 1 − p. The probability function for the binary indicator
variable y is

" (y) = py(1 − p)1−y, y = 0, 1

The indicator variable y is said to follow a Bernoulli distribution. The expected value of y is
E(y) = p, and its variance is var(y) = p(1 − p).

We are interested in identifying factors that might affect the probability p using a linear
regression function, or, in this context, a linear probability model,

E(y|X) = p = β1 + β2x2 + · · · + βKxK

Proceeding as usual, we break the observed outcome y into a systematic portion, E(y|!), and an
unpredictable random error, e, so that the econometric model is

y = E(y|X) + e = β1 + β2x2 + · · · + βKxK + e

One difficulty with using this model for choice behavior is that the usual error term assumptions
cannot hold. The outcome y only takes two values, implying that the error term e also takes only
two values, so that the usual “bell-shaped” curve describing the distribution of errors does not
hold. The probability functions for y and e are

y value e value Probability
1 1 −

(
β1 + β2x2 + · · · + βKxK

)
p

0 −
(
β1 + β2x2 + · · · + βKxK

)
1 − p

The variance of the error term e is

var(e|X) = p(1 − p) =
(
β1 + β2x2 + · · · + βKxK

)(
1 − β1 − β2x2 − · · · − βKxK

)
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This error is not homoskedastic, so the usual formula for the variance of the least squares estimator
is incorrect. A second problem associated with the linear probability model is that predicted
values, E(y)

⋀

= p̂, can fall outside the (0, 1) interval, meaning that their interpretation as prob-
abilities does not make sense. Despite these weaknesses, the linear probability model has the
advantage of simplicity, and it has been found to provide good estimates of the marginal effects
of changes in explanatory variables xk on the choice probability p, as long as p is not too close to
zero or one.9

E X A M P L E 7.7 The Linear Probability Model: An Example from Marketing

A shopper is deciding between Coke and Pepsi. Define the
variable COKE:

COKE =
{

1 if Coke is chosen
0 if Pepsi is chosen

The expected value of this variable is E(COKE|!) =
pCOKE = probability that Coke is chosen given some
conditioning factors. What factors might enter the choice
decision? The relative price of Coke to Pepsi (PRATIO) is
a potential factor. As the relative price of Coke rises, we
should observe a reduced probability of its choice. Other
factors influencing the consumer might be the presence
of store displays for these products. Let DISP_COKE and
DISP_PEPSI be indicator variables taking the value one if
the respective store display is present and zero if it is not.
We expect that the presence of a Coke display will increase
the probability of a Coke purchase, and the presence of
a Pepsi display will decrease the probability of a Coke
purchase.

The data file coke10 contains “scanner” data on 1140
individuals who purchased Coke or Pepsi. In this sample,
44.7% of the customers chose Coke. The estimated linear

probability model is

p̂COKE = 0.8902 − 0.4009PRATIO + 0.0772DISP_COKE
(se) (0.0655) (0.0613) (0.0344)

−0.1657DISP_PEPSI
(0.0356)

Assuming for the moment that the standard errors are
reliable,11 all the coefficients are significantly different from
zero at the α = 0.05 level. Recall that PRATIO = 1 if the
prices of Coke and Pepsi are equal, and that PRATIO = 1.10
would represent a case in which Coke was 10% more
expensive than Pepsi. Such an increase is estimated to reduce
the probability of purchasing Coke by 0.04. A store display
for Coke is estimated to increase the probability of a Coke
purchase by 0.077, and a Pepsi display is estimated to reduce
the probability of a Coke purchase by 0.166. The concerns
about predicted probabilities falling outside (0,1) are well
founded in general, but in this example only 16 of the 1140
sample observations resulted in predicted probabilities less
than zero, and there were no predicted probabilities greater
than one.

7.5 Treatment Effects
Consider the question “Do hospitals make people healthier?” Angrist and Pischke12 report
the results of a National Health Interview Survey that included the question “During the past
12 months, was the respondent a patient in a hospital overnight?” Also asked was “Would you
say your health in general is excellent, very good, good, fair or poor?” Using the number 1 for
poor health and 5 for excellent health, those who had not gone to the hospital had an average
health score of 3.93, and those who had been to the hospital had an average score of 3.21. That
is, individuals who had been to the hospital had poorer health than those who had not.

............................................................................................................................................
9See Chapter 16 for nonlinear models of choice, called probit and logit, which ensure that predicted probabilities fall
between zero and one. These models require the use of more complex estimators and methods of inference.
10Obtained from the ERIM public data base, James M. Kilts Center, University of Chicago Booth School of Business.
Scanner data is information recorded at the point of purchase by an electronic device reading a barcode.
11The estimates and standard errors are not terribly dissimilar from those obtained using more advanced options
discussed in Chapters 8 and 16.
12Mostly Harmless Econometrics: An Empiricist’s Guide, Princeton, 2009, pp. 12–13.
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Books on principles of economics warn in the first chapter13 about the faulty line of reasoning
known as post hoc, ergo propter hoc, which means that one event preceding another does not
necessarily make the first the cause of the second. Going to the hospital does not cause the poorer
health status. Those who were less healthy chose to go to the hospital because of an illness or
injury, and at the time of the survey were still less healthy than those who had not gone to the
hospital. Another way to say this is embodied in the warning that “correlation is not the same as
causation.” We observe that those who had been in a hospital are less healthy, but observing this
association does not imply that going to the hospital causes a person to be less healthy. Still another
way to describe the problem we face in this example is to say that data exhibit a selection bias
because some people chose (or self-selected) to go to the hospital and the others did not. When
membership in the treated group is in part determined by choice, then the sample is not a random
sample. There are systematic factors, in this case health status, contributing to the composition
of the sample.

A second example of selection bias may bring the concept closer to home. Are you reading
this great book because you are enrolled in an econometrics class? Is the course required, or not? If
your class is an “elective,” then you and your classmates are not a random sample from the broader
student population. It is our experience that students taking econometrics as an elective have an
ability level and quantitative preparation that is higher, on average, than a random sample from
the university population. We also observe that a higher proportion of undergraduate students
who take econometrics enroll in graduate programs in economics or related disciplines. Is this
a causal relationship? In part, it certainly is, but also your abilities and future plans for graduate
training may have drawn you to econometrics, so that the high success rate of our students is in
part attributed to selection bias.

Selection bias is also an issue when asking

• “How much does an additional year of education increase the wages of married women?”
The difficulty is that we are able to observe a woman’s wages only if she chooses to join the
labor force, and thus the observed data is not a random sample.

• “How much does participation in a job-training program increase wages?” If participation is
voluntary, then we may see a greater proportion of less skilled workers taking advantage of
such a program.

• “How much does a dietary supplement contribute to weight loss?” If those taking the supple-
ment are among the severely overweight, then the results we observe may not be “typical.”

In each of these cases, selection bias interferes with a straightforward examination of the data,
and makes more difficult our efforts to measure a causal effect, or treatment effect.

In some situations, usually those involving the physical or medical sciences, it is clearer how
we might study causal effects. For example, if we wish to measure the effect of a new type of
fertilizer on rice production, we can randomly assign identical rice fields to be treated with a
new fertilizer (the treatment group), with the others being treated with an existing product (the
control group). At the end of the growing period, we compare the production on the two types
of fields. The key here is that we perform a randomized controlled experiment. By randomly
assigning subjects to treatment and control groups, we ensure that the differences we observe
will result from the treatment. In medical research, the effectiveness of a new drug is measured
by such experiments. Test subjects are randomly assigned to the control group, who receive a
placebo drug, and the treatment group, who receive the drug being tested. By random assignment
of treatment and control groups, we prevent any selection bias from occurring.

As economists, we would like to have the type of information that arises from randomized
controlled experiments to study the consequences of social policy changes, such as changes in

............................................................................................................................................
13See, for example, Campbell R. McConnell and Stanley L. Brue, Economics, Twelfth Edition, McGraw-Hill, 1993,
pp. 8–9.
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laws, or changes in types and amounts of aid and training we provide the poor. The ability to
perform randomized controlled experiments is limited because the subjects are people, and their
economic well-being is at stake. However, there are some examples. Before we proceed, we will
examine the statistical consequences of selection bias for the measurement of treatment effects.

7.5.1 The Difference Estimator
In order to understand the measurement of treatment effects, consider a simple regression model
in which the explanatory variable is a dummy variable, indicating whether a particular individual
is in the treatment or control group. Let y be the outcome variable, the measured characteristic
the treatment is designed to effect. In the rice production example, y would be the output of rice
on a particular rice field. Define the indicator variable d as

di =
{

1 individual in treatment group
0 individual in control group (7.12)

The effect of the treatment on the outcome can be modeled as

yi = β1 + β2di + ei, i = 1,… ,N (7.13)

where ei represents the collection of other factors affecting the outcome. The regression functions
for the treatment and control groups are

E
(
yi
)
=
{
β1 + β2 if in treatment group, di = 1
β1 if in control group, di = 0

This is the same model we used in Section 2.9 to study the effect of location on house prices.
The treatment effect that we wish to measure is β2. The least squares estimator of β2 is

b2 =

N∑
i=1

(
di − d

)(
yi − y

)

N∑
i=1

(
di − d

)2
= y1 − y0 (7.14)

where y1 = ∑NI
i=1 yi∕N1 is the sample mean of the N1 observations on y for the treatment group

(d = 1) and y0 = ∑N0
i=1 yi∕N0 is the sample mean of the N0 observations on y for the control group

(d = 0). In this treatment/control framework, the estimator b2 is called the difference estimator
because it is the difference between the sample means of the treatment and control groups.14

7.5.2 Analysis of the Difference Estimator
The statistical properties of the difference estimator can be examined using the same strategy
employed in Section 2.4.2. We can rewrite the difference estimator as

b2 = β2 +

∑N
i=1

(
di − d

)(
ei − e

)

∑N
i=1

(
di − d

)2 = β2 +
(
e1 − e0

)

............................................................................................................................................
14See Appendix 7B for an algebraic derivation.
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In the middle equality, the factor added to β2 has the same form as the difference estimator in
(7.14), with ei replacing yi—hence the final equality. The difference estimator b2 equals the true
treatment effect β2 plus the difference between the averages of the unobserved factors affect-
ing the outcomes y for the treatment group

(
e1
)

and for the control group
(
e0
)
. In order for the

difference estimator to be unbiased, E
(
b2
)
= β2, it must be true that

E
(
e1 − e0

)
= E

(
e1
)
− E

(
e0
)
= 0

In words, the expected value of all the factors affecting the outcome, other than the treatment,
must be equal for the treatment and control groups.

If we allow individuals to “self-select” into treatment and control groups, then E
(
e1
)
− E

(
e0
)

is the selection bias in the estimation of the treatment effect. For example, we observed that those
who had not gone to the hospital (control group) had an average health score of 3.93, and those
who had been to the hospital (treatment group) had an average health score of 3.21. The estimated
effect of the treatment is (y1 − y0) = 3.21 − 3.93 = −0.72. The estimator bias in this case arises
because the preexisting health conditions for the treated group, captured by E

(
e1
)
, are poorer than

the pre-existing health of the control group, captured by E
(
e0
)
, so that in this example there is a

negative bias in the difference estimator.
We can anticipate that anytime some individuals select treatment there will be factors lead-

ing to this choice that are systematically different from those leading individuals in the control
group to not select treatment, resulting in a selection bias in the difference estimator. How can
we eliminate the self-selection bias? The solution is to randomly assign individuals to treatment
and control groups, so that there are no systematic differences between the groups, except for the
treatment itself. With random assignment, and the use of a large number of experiment subjects,
we can be sure that E

(
e1
)
= E

(
e0
)

and E
(
b2
)
= β2.

E X A M P L E 7.8 An Application of Difference Estimation: Project STAR

Medical researchers use white mice to test new drugs
because these mice, surprisingly, are genetically similar to
humans. Mice that are bred to be identical are randomly
assigned to treatment and control groups, making estimation
of the treatment effect of a new drug on the mice a relatively
straightforward and reproducible process. Medical research
on humans is strictly regulated, and volunteers are given
incentives to participate, then randomly assigned to treatment
and control groups. Randomized controlled experiments in
the social sciences are equally attractive from a statistician’s
point of view but are rare because of the difficulties in
organizing and funding them. A notable example of a
randomized experiment is Tennessee’s Project STAR.15

A longitudinal experiment was conducted in Tennessee
beginning in 1985 and ending in 1989. A single cohort
of students was followed from kindergarten through third

grade. In the experiment, children were randomly assigned
within schools into three types of classes: small classes with
13–17 students, regular-sized classes with 22–25 students,
and regular-sized classes with a full-time teacher aide to
assist the teacher. Student scores on achievement tests were
recorded, as was some information about the students,
teachers, and schools. Data for the kindergarten classes is
contained in the data file star.

Let us first compare the performance of students in small
classes versus regular classes.16

The variable TOTALSCORE is the combined reading
and math achievement scores and SMALL = 1 if the student
was assigned to a small class, and zero if the student is in
a regular class. In Table 7.6a and b are summary statistics
for the two types of classes. First, note that on all measures
except TOTALSCORE the variable means reported are very

............................................................................................................................................
15See https://dataverse.harvard.eduldataset.xhtml?persistentld=hdl: 1902.1/10766 for program description, public use
data and extensive literature.
16Interestingly there is no significant difference in outcomes comparing a regular class to a regular class with an aide.
For this example all observations for students in the third treatment group are dropped.
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similar. This is because students and teachers were randomly
assigned to the classes, so that there should be no patterns
evident. The average value of TOTALSCORE in the regular
classes is 918.0429 and in small classes it is 931.9419, a
difference of 13.899 points. The test scores are higher in the
smaller classes. The difference estimator obtain using regres-
sion will yield the same estimate, along with significance
levels.

T A B L E 7.6a
Summary Statistics for Regular-
Sized Classes

Variable Mean Std. Dev. Min Max
TOTALSCORE 918.0429 73.1380 635 1229
SMALL 0.0000 0.0000 0 0
TCHEXPER 9.0683 5.7244 0 24
BOY 0.5132 0.4999 0 1
FREELUNCH 0.4738 0.4994 0 1
WHITE_ASIAN 0.6813 0.4661 0 1
TCHWHITE 0.7980 0.4016 0 1
TCHMASTERS 0.3651 0.4816 0 1
SCHURBAN 0.3012 0.4589 0 1
SCHRURAL 0.4998 0.5001 0 1

N = 2005

T A B L E 7.6b
Summary Statistics for Small
Classes

Variable Mean Std. Dev. Min Max
TOTALSCORE 931.9419 76.3586 747 1253
SMALL 1.0000 0.0000 1 1
TCHEXPER 8.9954 5.7316 0 27
BOY 0.5150 0.4999 0 1
FREELUNCH 0.4718 0.4993 0 1
WHITE_ASIAN 0.6847 0.4648 0 1
TCHWHITE 0.8625 0.3445 0 1
TCHMASTERS 0.3176 0.4657 0 1
SCHURBAN 0.3061 0.4610 0 1
SCHRURAL 0.4626 0.4987 0 1

N = 1738
The model of interest is

TOTALSCORE = β1 + β2SMALL + e (7.15)

The regression results are in column (1) of Table 7.7. The
estimated “treatment effect” of putting kindergarten children
into small classes is 13.899 points, the same as the difference
in sample means computed above, on their achievement score
total; the difference is statistically significant at the 0.01 level.

E X A M P L E 7.9 The Difference Estimator with Additional Controls

Because of the random assignment of the students to
treatment and control groups, there is no selection bias in
the estimate of the treatment effect. However, if additional
factors might affect the outcome variable, they can be
included in the regression specification. For example, it is
possible that a teacher’s experience leads to greater learning
and higher achievement test scores. Adding TCHEXPER to
the base model, we obtain

TOTALSCORE = β1 + β2SMALL + β3TCHEXPER + e
(7.16)

The least squares estimates of (7.16) are in column (2) of
Table 7.7. We estimate that each additional year of teaching
experience increases the test score performance by 1.156
points, which is statistically significant at the 0.01 level.
This increases our understanding of the effect of small
classes. The results show that the effect of small classes is
the same as the effect of approximately 12 years of teaching
experience.

Note that adding TCHEXPER to the regression changed
the estimate of the effect of SMALL classes very little.
This is exactly what we would expect if TCHEXPER is
uncorrelated with SMALL. The simple correlation between
SMALL and TCHEXPER is only −0.0064. Recall that
omitting a variable that is uncorrelated with an included
variable does not change the estimated coefficient of the
included variable. Comparing the models in columns (1) and
(2) of Table 7.7, the model in (1) omits the significant
variable TCHEXPER, but there is little change in the
estimate of β2 introduced by omitting this nearly uncor-
related variable. Furthermore, we can expect, in general,
to obtain an estimator with smaller standard errors if we
are able to include additional controls. In (7.15), any and
all factors other than small class size are included in the
error term. By taking some of those factors out of the error
term and including them in the regression, the variance
of the error term σ2 is reduced, which reduces estimator
variance.
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T A B L E 7.7 Project STAR: Kindergarten

(1) (2) (3) (4)
C 918.0429*** 907.5643*** 917.0684*** 908.7865***

(1.6672) (2.5424) (1.4948) (2.5323)
SMALL 13.8990*** 13.9833*** 15.9978*** 16.0656***

(2.4466) (2.4373) (2.2228) (2.2183)
TCHEXPER 1.1555*** 0.9132***

(0.2123) (0.2256)
SCHOOL EFFECTS No No Yes Yes

N 3743 3743 3743 3743
adj. R2 0.008 0.016 0.221 0.225
SSE 20847551 20683680 16028908 15957534

Standard errors in parentheses
Two-tail p-values: *p < 0.10, **p < 0.05, ***p < 0.01

E X A M P L E 7.10 The Difference Estimator with Fixed Effects

It may be that assignment to treatment groups is related to
one or more observable characteristics. That is, treatments are
randomly assigned given an external factor. Prior to a medi-
cal experiment concerning weight loss, participants may fall
into the “overweight” category and the “obese” category. Of
those in the overweight group 30% are randomly assigned for
treatment, and of the obese group 50% are randomly assigned
for treatment. Given pretreatment status, the treatment is ran-
domly assigned. If such conditioning factors are omitted and
put into the error term in (7.15) or (7.16), then these fac-
tors are correlated with the treatment variable and the least
squares estimator of the treatment effect is biased and incon-
sistent. The way to adjust to “conditional” randomization is
to include the conditioning factors into the regression.

In the STAR data, another factor that we might consider
affecting the outcome is the school itself. The students were
randomized within schools (conditional randomization), but
not across schools. Some schools may be located in wealthier
school districts that can pay higher salaries, thus attracting
better teachers. The students in our sample are enrolled in 79
different schools. One way to account for school effects is to
include an indicator variable for each school. That is, we can
introduce 78 new indicators:

SCHOOL_ j =
{

1 if student is in school j
0 otherwise

This is an “intercept” indicator variable, allowing the
expected total score to differ for each school. The model

including these indicator variables is

TOTALSCOREi = β1 + β2SMALLi + β3TCHEXPERi

+∑79
j=2 δjSCHOOL_ ji + ei (7.17)

The regression function for a student in school j is

E
(
TOTALSCOREi|X

)
=

{(
β1 + δj

)
+ β3TCHEXPERi student in regular class

(
β1 + δj + β2

)
+ β3TCHEXPERi student in small class

Here X represents the variables SMALL, TCHEXPER, and all
the indicator variables SCHOOL_ j. The expected score for a
student in a regular class for a teacher with no experience is
adjusted by the fixed amount δj. This fixed effect controls for
some differences in the schools that are not accounted for by
the regression model.

Columns (3) and (4) in Table 7.7 contain the estimated
coefficients of interest but not the 78 indicator variable
coefficients. The joint F-test of the hypothesis that all δj = 0
consists of J = 78 hypotheses with N – K = 3662 degrees
of freedom. The F-value = 14.118 is significant at the 0.001
level. We conclude that there are statistically significant
individual differences among schools. The important
coefficients on SMALL and TCHEXPER change a little. The
estimated effect of being in a small class increases to 16.0656
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achievement test points in model (4), as compared to 13.9833
points in the corresponding model (2). It appears that some
effect of small classes was masked by unincorporated
individual school differences. This effect is small, however,

as the 95% interval estimate for the coefficient of SMALL
[11.7165, 20.4148] in model (4) includes 13.9833. Similarly,
the estimated effect of teacher experience is slightly different
in the models with and without the school fixed effects.

E X A M P L E 7.11 Linear Probability Model Check of Random Assignment

In Table 7.6a and b, we examined the summary statistics for
the data sorted by whether pupils were in a regular class or a
small class. Except for TOTALSCORE, we did not find much
difference in the sample means of the variables examined.
Another way to check for random assignment is to regress
SMALL on these characteristics and check for any significant
coefficients, or an overall significant relationship. If there
is random assignment, we should not find any significant
relationships. Because SMALL is an indicator variable, we
use the linear probability model discussed in Section 7.4.
The estimated linear probability model is

SMALL
⋀

= 0.4665 + 0.0014BOY + 0.0044WHITE_ASIAN
(t) (0.09) (0.22)

− 0.0006TCHEXPER − 0.0009FREELUNCH
(−0.42) (−0.05)

First, note that none of the right-hand-side variables are
statistically significant. Second, the overall F-statistic for

this linear probability model is 0.06 with a p = 0.99. There
is no evidence that students were assigned to small classes
based on any of these criteria. Also, recall that the linear
probability model is so named because E(SMALL|!) is
the probability of observing SMALL = 1 in a random draw
from the population. If the coefficients of all the potential
explanatory factors are zero, the estimated intercept gives
the estimated probability of observing a child in a small class
to be 0.4665, with 95% interval estimate [0.4171, 0.5158].
We cannot reject the null hypothesis that the intercept equals
0.5, which is what it should be if students are allocated by
a “flip” of a coin. The importance of this, again, is that by
randomly assigning students to small classes we can estimate
the “treatment” effect using the simple difference estimator
in (7.15). The ability to isolate the important class size effect
is a powerful argument in favor of randomized controlled
experiments.

7.5.3 The Differences-in-Differences Estimator
Randomized controlled experiments are somewhat rare in economics because they are expen-
sive and involve human subjects. Natural experiments, also called quasi-experiments, rely on
observing real-world conditions that approximate what would happen in a randomized controlled
experiment. Treatment appears as if it were randomly assigned. In this section, we consider esti-
mating treatment effects using “before and after” data.

Suppose that we observe two groups before and after a policy change, with the treatment
group being affected by the policy, and the control group being unaffected by the policy. Using
such data, we will examine any change that occurs to the control group and compare it to the
change in the treatment group.

The analysis is explained by Figure 7.3. The outcome variable y might be an employment
rate, a wage rate, a price, or so on. Before the policy change we observe the treatment group
value y = B, and after the policy is implemented the treatment group value is y = C. Using only
the data on the treatment group we cannot separate out the portion of the change from y = B
to y = C that is due to the policy from the portion that is due to other factors that may affect the
outcome. We say that the treatment effect is not “identified.”

We can isolate the effect of the treatment by using a control group that is not affected by
the policy change. Before the policy change, we observe the control group value y = A, and
after the policy change, the control group value is y = E. In order to estimate the treatment
effect using the four pieces of information contained in the points A, B, C, and E, we make the
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strong assumption that the two groups experience a common trend. In Figure 7.3, the dashed
line BD represents what we imagine the treatment group growth would have been (the term
counterfactual from psychology is sometimes used to describe this imagined outcome) in the
absence of the policy change. The growth described by the dashed line BD is unobservable, and
is obtained by assuming that the growth in the treatment group that is unrelated to the policy
change is the same as the growth in the control group.

The treatment effect δ = CD is the difference between the treatment and control values of y
in the “after” period, after subtracting DE, which is what the difference between the two groups
would have been in the absence of the policy. Using the common growth assumption, the differ-
ence DE equals the initial difference AB. Using the four observable points A, B, C, and E depicted
in Figure 7.3, estimation of the treatment effect is based on data averages for the two groups in
the two periods,

δ̂ =
(
Ĉ − Ê

)
−
(
B̂ − Â

)

=
(
yTreatment, After − yControl, After

)
−
(
yTreatment, Before − yControl, Before

)
(7.18)

In (7.18), the sample means are

yControl, Before = Â = sample mean of y for control group before policy implementation
yTreatment, Before = B̂ = sample mean of y for treatment group before policy implementation

yControl, After = Ê = sample mean of y for control group after policy implementation
yTreatment, After = Ĉ = sample mean of y for treatment group after policy implementation

The estimator δ̂ is called a differences-in-differences (abbreviated as D-in-D, DD, or DID)
estimator of the treatment effect.

The estimator δ̂ can be conveniently calculated using a simple regression. Define yit to be the
observed outcome for individual i in period t. Let AFTERt be an indicator variable that equals
one in the period after the policy change (t = 2) and zero in the period before the policy change
(t = 1). Let TREATi be a dummy variable that equals one if individual i is in the treatment group
and zero if the individual is in the control group. Consider the regression model

yit = β1 + β2TREATi + β3AFTERt + δ
(
TREATi × AFTERt

)
+ eit (7.19)

y

Treatment

B

A Control

Before After

Treatment group with
unobserved trend

Treatment effect = δ
C

D

E

FIGURE 7.3 Difference-in-Differences Estimation.
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The regression function is

E
(
yit|X

)
=
⎧
⎪
⎨
⎪⎩

β1 TREAT = 0, AFTER = 0 [Control before = A]
β1 + β2 TREAT = 1, AFTER = 0 [Treatment before = B]
β1 + β3 TREAT = 0, AFTER = 1 [Control after = E]
β1 + β2 + β3 + δ TREAT = 1, AFTER = 1 [Treatment after = C]

Here X contains the variables on the right-hand side of equation (7.19). In Figure 7.3, points
A = β1,B = β1 + β2, E = β1 + β3 and C = β1 + β2 + β3 + δ. Then

δ = (C − E) − (B − A)
=
[(
β1 + β2 + β3 + δ

)
−
(
β1 + β3

)]
−
[(
β1 + β2

)
− β1

]

Using this the least squares estimates b1, b2, b3 and δ̂ from (7.19), we have

δ̂ =
[(

b1 + b2 + b3 + δ̂
)
−
(
b1 + b3

)]
−
[(

b1 + b2
)
− b1

]

=
(
yTreatment, After − yControl, After

)
−
(
yTreatment,Before − yControl,Before

)

E X A M P L E 7.12 Estimating the Effect of a Minimum Wage Change:
The DID Estimator

Card and Krueger (1994)17 provide an example of a natural
experiment and the differences-in-differences estimator.
On April 1, 1992, New Jersey’s minimum wage was
increased from $4.25 to $5.05 per hour, while the minimum
wage in Pennsylvania stayed at $4.25 per hour. Card and
Krueger collected data on 410 fast-food restaurants in New
Jersey (the treatment group) and eastern Pennsylvania (the
control group). These two groups are similar economically
and close geographically, separated by only a river with
multiple bridges. The “before” period is February 1992, and
the “after” period is November 1992. Using these data, they
estimate the effect of the “treatment,” raising the New Jersey
minimum wage on employment at fast-food restaurants
in New Jersey. Their interesting finding, that there was
no significant reduction18 in employment, sparked a great
debate and much further research.19 In model (7.19), we will
test the null and alternative hypotheses

H0∶δ ≥ 0 versus H1∶δ < 0 (7.20)
The relevant Card and Krueger data is in the data file njmin3 .
We use the sample means of FTE, the number of full-time

equivalent20 employees, given in Table 7.8, to estimate
the treatment effect δ using the differences-in-differences
estimator.

T A B L E 7.8
Full-time Equivalent Employees by
State and Period

Variable N Mean se
Pennsylvania (PA)
Before 77 23.3312 1.3511
After 77 21.1656 0.9432
New Jersey (NJ)
Before 321 20.4394 0.5083
After 319 21.0274 0.5203

In Pennsylvania, the control group, employment fell
during the period February to November. Recall that the

............................................................................................................................................
17David Card and Alan Krueger (1994) “Minimum Wages and Employment: A Case Study of the Fast Food Industry in
New Jersey and Pennsylvania,” The American Economic Review, 84, 316–361. We thank David Card for letting us use
the data.
18Remember that failure to reject a null hypothesis does not make it true!
19The issue is hotly contested and the literature extensive. See, for example, http://en.wikipedia.org/wiki/Minimum_
wage, and the references listed, as a starting point.
20Card and Krueger calculate FTE = 0.5 × number of part time workers + number of full time workers + number of
managers.
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minimum wage level was changed in New Jersey, but not
in Pennsylvania, so that employment levels in Pennsylvania
were not affected. In New Jersey we see an increase in FTE
in the same period. The differences-in-differences estimate
of the change in employment due to the change in the
minimum wage is

δ̂ =
(

FTENJ,After− FTEPA,After

)
−
(

FTENJ,Before− FTEPA,Before

)

=(21.0274 − 21.1656) −(20.4394 − 23.3312)
= 2.7536 (7.21)

We estimate that FTE employment increased by 2.75
employees during the period in which the New Jersey min-
imum wage was increased. This positive effect is contrary to
what is predicted by economic theory.

Rather than compute the differences-in-differences
estimate using sample means, it is easier and more gen-
eral to use the regression format. In (7.19) let y = FTE
employment, the treatment variable is the indicator variable
NJ = 1 if observation is from New Jersey, and zero if from
Pennsylvania. The time indicator is D = 1 if the obser-
vation is from November and zero if it is from February.
The differences-in-differences regression is then

FTEit = β1 + β2NJi + β3Dt + δ
(
NJi × Dt

)
+ eit (7.22)

Using the 794 complete observations in the file njmin3 ,
the least squares estimates are reported in column (1) of
Table 7.9. At the α = 0.05 level of significance the rejection
region for the left-tail test in (7.20) is t ≤ −1.645, so we
fail to reject the null hypothesis. We cannot conclude that
the increase in the minimum wage in New Jersey reduced
employment at New Jersey fast-food restaurants.

As with randomized control experiments, it is inter-
esting to see the robustness of these results. In Table 7.9
column (2), we add indicator variables for fast-food chain
and whether the restaurant was company-owned rather than
franchise-owned. In column (3) we add indicator variables
for geographical regions within the survey area. None of
these changes alter the differences-in-differences estimate,
and none lead to rejection of the null hypothesis in (7.20).

T A B L E 7.9
Difference-in-Differences
Regressions

(1) (2) (3)
C 23.3312*** 25.9512*** 25.3205***

(1.072) (1.038) (1.211)
NJ −2.8918* −2.3766* −0.9080

(1.194) (1.079) (1.272)
D −2.1656 −2.2236 −2.2119

(1.516) (1.368) (1.349)
D_NJ 2.7536 2.8451 2.8149

(1.688) (1.523) (1.502)
KFC −10.4534*** −10.0580***

(0.849) (0.845)
ROYS −1.6250 −1.6934*

(0.860) (0.859)
WENDYS −1.0637 −1.0650

(0.929) (0.921)
CO_OWNED −1.1685 −0.7163

(0.716) (0.719)
SOUTHJ −3.7018***

(0.780)
CENTRALJ 0.0079

(0.897)
PA1 0.9239

(1.385)
N 794 794 794
R2 0.007 0.196 0.221
adj. R2 0.004 0.189 0.211

Standard errors in parentheses
Two-tail p-values: *p < 0.05, **p < 0.01, ***p < 0.001

E X A M P L E 7.13 Estimating the Effect of a Minimum Wage Change:
Using Panel Data

In the previous section’s differences-in-differences analysis,
we did not exploit one very important feature of Card and
Krueger’s data—namely, that the same fast-food restaurants
were observed on two occasions. We have “before” and
“after” data on 384 of the 410 restaurants. These are called
paired data observations, or repeat data observations,

or panel data observations. In Chapter 1 we introduced
the notion of a panel of data—we observe the same
individual-level units over several periods. The Card and
Krueger data includes T = 2 observations on N = 384
individual restaurants among the 410 restaurants surveyed.
The remaining 26 restaurants had missing data on FTE
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either in the “before” or “after” period. There are powerful
advantages to using panel data, some of which we will
describe here. See Chapter 15 for a much more extensive
discussion.

Using panel data, we can control for unobserved
individual-specific characteristics. There are charac-
teristics of the restaurants that we do not observe. Some
restaurants will have preferred locations, some may have
superior managers, and so on. These unobserved individual
specific characteristics are included in the error term of the
regression (7.22). Let ci denote any unobserved characteris-
tics of individual restaurant i that do not change over time.
Adding ci to (7.22), we have

FTEit = β1 + β2NJi + β3Dt + δ
(
NJi × Dt

)
+ ci + eit (7.23)

Whatever ci might be, it contaminates this regression model.
A solution is at hand if we have a panel of data. If we have
T = 2 repeat observations, we can eliminate ci by analyzing
the changes in FTE from period one to period two. Recall that
Dt = 0 in period one, so D1 = 0; and Dt = 1 in period two, so
D2 = 1. Subtract the observation for t = 1 from that for t = 2

FTEi2 = β1 + β2NJi + β31 + δ
(
NJi × 1

)
+ ci + ei2

−
(
FTEi1 = β1 + β2NJi + β30 + δ

(
NJi × 0

)
+ ci + ei1

)

ΔFTEi = β3 + δNJi + Δei

where ΔFTEi = FTEi2 – FTEi1 and Δei = ei2 – ei1. Using the
differenced data, the regression model of interest becomes

ΔFTEi = β3 + δNJi + Δei (7.24)

Observe that the contaminating factor ci has dropped out!
Whatever those unobservable features might have been, they
are now gone. The intercept β1 and the coefficient β2 have
also dropped out, with the parameter β3 becoming the new
intercept. The most important parameter, δ, measuring the
treatment effect is the coefficient of the indicator variable NJi,
which identifies the treatment (New Jersey) and control group
(Pennsylvania) observations.

The estimated model (7.24) is

ΔFTE
⋀

= −2.2833 + 2.7500NJ R2 = 0.0146
(se) (1.036) (1.154)

The estimate of the treatment effect δ̂ = 2.75 using the dif-
ferenced data, which accounts for any unobserved individual
differences, is very close to the differences-in-differences
estimate. Once again we fail to conclude that the minimum
wage increase has reduced employment in these New Jersey
fast-food restaurants.

7.6 Treatment Effects and Causal Modeling
In Section 7.5, we provided the basics of treatment effect models. In this section, we present exten-
sions and enhancements using the framework of potential outcomes, sometimes called the Rubin
Causal Model (RCM), in recognition of Donald B. Rubin who formulated this approach.21

7.6.1 The Nature of Causal Effects
Economists are interested in causal relationships between variables. Causality, or causation,
means that a change in one variable is the direct consequence of a change in another variable.
For example, if you receive an hourly wage rate, then increasing your work hours (the cause) will
lead to an increase in your income (the effect). Another example is from the standard supply and
demand model for a normal good. If consumer incomes rise (the cause), demand increases, and
there is a subsequent increase in the market price and quantities bought and sold (the effect).

A cause must precede, or be contemporaneous with, the effect. The confusion between cor-
relation and causation is widespread, and correlation does not imply causation. We observe many
associations between variables that are not causal. The correlation between the divorce rate in

............................................................................................................................................
21The literature in this area has grown dramatically in recent years, and continues to grow. In this section we draw
heavily on a survey by Guido W. Imbens and Jeffrey M. Wooldridge (2009) “Recent Developments in the Econometrics
of Program Evaluation,” Journal of Economic Literature, 47(1), 5–86, Jeffrey M. Wooldridge (2010) Econometric
Analysis of Cross Section and Panel Data, Second Edition, MIT Press, Chapter 21; and Joshua D. Angrist and
Jörn-Steffen Pischke (2009) Mostly Harmless Econometrics: An Empiricist’s Companion, Princeton University Press.
These references are advanced. See also Joshua D. Angrist and Jörn-Steffen Pischke (2015) Mastering Metrics: The
Path from Cause to Effect, Princeton University Press.
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the state of Maine and the U.S. per capita consumption of margarine is 0.992622 over the period
2000–2009. We doubt that this high correlation is a causal relationship. Not all confusions, or
spurious correlations, are amusing and harmless. There is a concern among some parents about
the relationship between childhood vaccinations and subsequent negative health outcomes, such
as autism. Despite intense study by the U.S. Centers for Disease Control and Prevention (CDC),
finding no causal relationship, there has been a movement among parents to not have some vac-
cinations for their children, resulting in concern by health officials that some childhood diseases
will make a widespread comeback.

7.6.2 Treatment Effect Models
Treatment effect models seek to estimate a causal effect. Let the treatment, which might be an
individual receiving a new drug, or some additional job training, be denoted as di = 1, whereas
not receiving the treatment is di = 0. The outcome of interest might be a cholesterol level if the
treatment is a new drug. If the treatment is job training, the outcome might be a worker’s perfor-
mance on completing a particular task. For each individual there are two possible, or potential,
outcomes, y1i if an individual receives treatment

(
di = 1

)
, and y0i if the individual does not receive

treatment
(
di = 0

)
. We would like to know the causal effect y1i – y0i, the difference in the out-

come for individual i if they receive the treatment versus if they do not. An advantage of the
potential outcomes framework is that it forces us to recognize that the treatment effect varies
across individuals—it is individual specific. The difficulty is that we never observe both y1i and
y0i. We only observe one or the other. The outcome we observe is

yi =
{

y1i if di = 1
y0i if di = 0 (7.25)

Written another way, what we observe is
yi = y1idi + y0i

(
1 − di

)
= y0i +

(
y1i − y0i

)
di (7.26)

Instead of being able to estimate y1i – y0i for each individual, what we are able to estimate is
the population average treatment effect (ATE), τATE = E

(
y1i – y0i

)
. To see this, express the

difference between the conditional expectation of yi, the outcome we actually observe, for those
who receive treatment,

(
di = 1

)
, and those who do not,

(
di = 0

)
;

E
(
yi|di = 1

)
− E

(
yi|di = 0

)
= E

(
y1i|di = 1

)
− E

(
y0i|di = 0

)
(7.27)

In a randomized, controlled experiment, individuals are randomly selected from the population
and then randomly assigned to a group receiving the treatment (the treatment group), for whom(
di = 1

)
, or to a group not receiving the treatment (the control group), for whom (di = 0). In this

way the treatment, di, is statistically independent of the potential outcomes y1i and y0i so that
E
(
yi|di = 1

)
− E

(
yi|di = 0

)
= E

(
y1i|di = 1

)
− E

(
y0i|di = 0

)

= E
(
y1i

)
− E

(
y0i

)
= E

(
y1i − y0i

)

= τATE (7.28)
From the first line to the second we use the fact that if two random variables, say X and Y , are
statistically independent,23 then E(Y|X = x) = E(Y). To see that this is true, suppose X and Y are
discrete random variables. Then

E(Y) = ∑
yP(Y = y) and E(Y|X = x) = ∑

yP(Y = y|X = x)

............................................................................................................................................
22http://www.tylervigen.com/
23We revert to the notation from the probability primer here, with upper case Y and X being random variables and lower
case y and x being values of the random variables.
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If X and Y are statistically independent, then
P(Y = y|X = x) = P(Y = y)

so that
E(Y|X = x) = ∑

yP(Y = y|X = x) = ∑
yP(Y = y) = E(Y)

If we randomly choose population members and randomly assign them to the treatment and
control groups, then treatment, di, is statistically independent of the potential outcomes of the
experiment. An unbiased estimator of E

(
yi|di = 1

)
is the sample mean of the N1 outcomes for

the treatment group, y1 = ∑N1
i=1 y1i∕N1. An unbiased estimator of E

(
yi|di = 0

)
is the sample mean

of the N0 outcomes for the control group, y0 = ∑N0
i=1 y0i∕N0. An unbiased estimator of the popula-

tion average treatment effect is τ̂ATE = y1 − y0. This is the difference estimator in equation (7.14).
That is, we can obtain the estimator of the average treatment effect from the simple regression
yi = α + τATEdi + ei using all N = N0 + N1 observations.

7.6.3 Decomposing the Treatment Effect
Using equation (7.27)

[
E
(
yi|di = 1

)
− E

(
yi|di = 0

)
= E

(
y1i|di = 1

)
− E

(
y0i|di = 0

)]
, we can

gain additional insight into the simple regression yi = α + τATEdi + ei. Add and subtract
E
(
y0i|di = 1

)
to the right-hand side, and rearrange to obtain

E
(
yi|di = 1

)
− E

(
yi|di = 0

)
=
[
E
(
y1i|di = 1

)
− E

(
y0i|di = 1

)]

+
[
E
(
y0i|di = 1

)
− E

(
y0i|di = 0

)]
(7.29)

The left-hand side is the difference in average outcomes for the treatment group
(
di = 1

)
and the control group

(
di = 0

)
. The difference

[
E(y1i|di = 1) − E(y0i|di = 1)

]
is average

difference in potential outcomes for those who received the treatment, or as called in this
literature, the average treatment effect on the treated (ATT), which we denote by τATT.
The second term E

(
y0i|di = 1

)
− E

(
y0i|di = 0

)
is the average potential outcome for those in

the treatment group should they not receive treatment minus the average outcome for those
in the control group. If individuals are truly randomly assigned to treatment and control
groups E

(
y0i|di = 1

)
− E

(
y0i|di = 0

)
will be zero, meaning that there are no differences

between the expected potential outcomes for the treatment and control groups if they had
remained untreated. In this case, the treatment effect τATE = E

(
yi|di = 1

)
− E

(
yi|di = 0

)
equals

τATT = E
(
y1i|di = 1

)
− E

(
y0i|di = 1

)
, the average treatment effect on the treated.

In equation (7.29), if the second term in brackets is not zero, or E
(
y0i|di = 1

)
−

E
(
y0i|di = 0

) ≠ 0, then there is selection bias. It means that individuals are not randomly
assigned to the treatment and control groups because the average of the potential outcomes if
untreated, y0i, in the treatment and control groups are different. If the treatment is receiving a new
drug, there is selection bias if (i) a screener looks at a randomly chosen person and thinks “This
person looks sickly and could use this drug, so I’ll assign him to the treatment group;” or (ii) a
person thinks the treatment might be good for him, and manages to be added to the treatment
group. Either way, there is a difference in the average untreated health y0i of the treatment and
control groups. The term E

(
y0i|di = 1

)
− E

(
y0i|di = 0

)
is called selection bias for this reason.

Random assignment of individuals to treatment and control groups eliminates selection bias.
If there is selection bias, then the difference estimator τ̂ATE = y1 − y0 is not an unbiased estimator
of the average treatment effect, and the average treatment effect is not the average treatment
effect on the treated.

To summarize, in a randomized experiment the treatment indicator di is statistically indepen-
dent of the potential outcomes y0i and y1i. We do not observe both potential outcomes but rather
yi = y0i +

(
y1i − y0i

)
di. If treatment di is statistically independent of the potential outcomes, then

τATE = τATT = E
(
yi|di = 1

)
− E

(
yi|di = 0

)
(7.30)
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and an unbiased estimator is
τ̂ATE = τ̂ATT = y1 − y0 (7.31)

The equality τATE = τATT actually holds under a weaker assumption than statistical independence.
From (7.29)

τATE = τATT + E
(
y0i|di = 1

)
− E

(
y0i|di = 0

)
(7.32)

The selection bias term E
(
y0i|di = 1

)
− E

(
y0i|di = 0

)
= 0 if E

(
y0i|di = 1

)
= E

(
yi0

)
and

E
(
y0i|di = 0

)
= E

(
yi0

)
. This is called the conditional independence assumption (CIA),

or conditional mean independence. While this is a less stringent condition than statistical
independence between the treatment and the potential outcomes, it is still strong. It suggests that
being in the treatment or control group is unrelated to the average outcome for the untreated.

7.6.4 Introducing Control Variables
A control variable, xi, is not the object of interest in a study. It is included in the model to hold
constant factors that, if neglected, would lead to selection bias. See Section 6.3.4. In treatment
effect models, control variables are introduced in order to allow unbiased estimation of the
treatment effect when the potential outcomes, y0i and y1i, might be correlated with the treatment
variable, di. Ideally, by conditioning on a control variable xi the treatment becomes “as good
as” randomized, allowing us to estimate the average causal or treatment effect. We consider
only a single control variable to simplify our presentation. The methods discussed as follows
carry over to the case with multiple control variables. The key is an extension of the conditional
independence assumption,24

E
(
y0i|di, xi

)
= E

(
y0i|xi

)
and E

(
y1i|di, xi

)
= E

(
y1i|xi

)
(7.33)

Once we condition on the control variables, then the expected potential outcomes do not depend
the treatment. In a sense, having good control variables is as good as having a randomized
controlled experiment. Good control variables have the feature of being “predetermined” in
the sense that they are fixed, and given, at the time the treatment is assigned. Enough control
variables should be added so that the conditional independence assumption holds. Avoid “bad
control” variables that might be outcomes of the treatment.

When potential outcomes depend on xi, then the average treatment effect depends on xi,
and is

τATE
(
xi
)
= E

(
y1i|di, xi

)
− E

(
y0i|di, xi

)
= E

(
y1i|xi

)
− E

(
y0i|xi

)

Assuming a linear regression structure for the expectations, and recalling that the observed out-
come is yi = y0i +

(
y1i − y0i

)
di, let

E
(
yi|xi, di = 0

)
= E

(
yi0|xi, di = 0

)
= E

(
yi0|xi

)
= α0 + β0xi (7.34a)

E
(
yi|xi, di = 1

)
= E

(
yi1|xi, di = 1

)
= E

(
yi1|xi

)
= α1 + β1xi (7.34b)

The treatment effect is the difference between equations (7.34b) and (7.34a), or

τATE
(
xi
)
=
(
α1 + β1xi

)
−
(
α0 + β0xi

)
=
(
α1 − α0

)
−
(
β1 − β0

)
xi (7.35)

Because τATE
(
xi
)

depends on xi, the average treatment effect will be obtained by “averaging” over
the population distribution of xi. Recall from the probability primer that a “population average”

............................................................................................................................................
24This assumption has been called unconfoundedness and also ignorability. The literature on causal modeling spans
several disciplines, and the terminology can be quite different in each. The following development follows Woodridge
(2010, 919–920).
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is an expected value. So we define the average treatment effect as τATE = Ex
[
τATE

(
xi
)]

where the
subscript x on the expectation operator means that we are treating x as random.

In practice, we can estimate the regression functions separately on the treatment and control
groups:

1. Obtain α̂0 + β̂0xi from a regression of yi on xi for the control group,
(
di = 0

)

2. Obtain α̂1 + β̂1xi from a regression of yi on xi for the treatment group,
(
di = 1

)

Then
τ̂ATE

(
xi
)
= α̂1 + β̂1xi −

(
α̂0 + β̂0xi

)
=
(
α̂1 − α̂0

)
+
(
β̂1 − β̂0

)
xi (7.36)

Averaging the estimated value across the sample values gives

τ̂ATE = N−1
N∑

i=1
τ̂ATE

(
xi
)
= N−1

N∑
i=1

[(
α̂1 − α̂0

)
+
(
β̂1 − β̂0

)
xi

]

=
(
α̂1 − α̂0

)
+
(
β̂1 − β̂0

)(
N−1

N∑
i=1

xi

)

=
(
α̂1 − α̂0

)
+
(
β̂1 − β̂0

)
x (7.37)

Using slope and intercept indicator variables, we can estimate the average treatment effect in a
pooled regression, and calculate a standard error for the estimate τ̂ATE. The pooled regression is

yi = α + θdi + βxi + γ
(
dixi

)
+ ei (7.38)

The regression functions for the treatment and control groups are

E
(
yi|di, xi

)
=
{
α + βxi if di = 0
(α + θ) + (β + γ)xi if di = 1 (7.39)

In terms of the separate regression coefficients
α = α0, β = β0, α + θ = α1, and β + γ = β1 (7.40)

It follows that from the pooled regression (7.38) the estimates θ̂ = α̂1 − α̂0 and γ̂ = β̂1 − β̂0. The
relation of these estimates to τ̂ATE is

θ̂ = τ̂ATE − x
(
β̂1 − β̂0

)
= τ̂ATE − xγ̂

or
τ̂ATE = θ̂ + xγ̂

We can modify the pooled regression so that τATE appears in the pooled regression. In the pooled
regression (7.38) add and subtract the term γ

(
dix

)

yi = α + θdi + βxi + γ
(
dixi

)
+
[
γdix − γdix

]
+ ei

= α +
(
θ + γx

)
di + βxi + γ

[
di
(
xi − x

)]
+ ei

= α + τATEdi + βxi + γ
(
dix̃i

)
+ ei (7.41)

Now the population average treatment effect τATE is a parameter in the pooled regression. The
term x̃i =

(
xi − x

)
is notation for deviations about the mean. By using least squares regression,

we obtain τ̂ATE. Your software will also report a standard error se
(
τ̂ATE

)
.25

The average treatment effect in the population, τATE = E
(
y1i − y0i

)
, may not be the parameter

of interest in some applications. By slightly modifying the pooled regression, we can obtain the

............................................................................................................................................
25Wooldridge (2010, p. 919) notes that the usual estimator of the standard error is not quite valid in this case because it
ignores the additional variability added by including the sample mean in x̃i =

(
xi − x

)
. One alternative to the usual

standard error is to use the bootstrap standard error, discussed in Appendix 5B.5.
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average treatment effect of a subpopulation. For example, how large is the average treatment effect
on those who actually received treatment? The average treatment effect on the treated, τATT,
where the subscript ATT denotes the target group, is obtained by estimating the pooled regression

yi = α + τATTdi + βxi + γ
(
dix̃i1

)
+ ei (7.42)

where x̃i1 =
(
xi − x1

)
and x1 = N−1

1
∑N1

i=1 xi for the treatment group, where di = 1.
Similarly, we can restrict measurement of the treatment effect to other subpopulations of

interest. For example, if we are considering the effects of a job training program, we may not
want to include the extremely wealthy. We could specify the population of interest to be those
with incomes in the lowest 25% of society. Denote this restricted group of interest by R and let
τATE, R be the average treatment effect on this group. Let x̃iR =

(
xi − xR

)
, where xR = N−1

R
∑

i∈ Rxi,
with i ∈ R indicating that we are restricting the sum to those individuals i falling in the target
group, R, and NR is the number of individuals in the sample satisfying the condition. Then we
can estimate τATE,R from the pooled regression

yi = α + τATE,Rdi + βxi + γ
(
dix̃iR

)
+ ei (7.43)

7.6.5 The Overlap Assumption
The so-called overlap assumption must hold, in addition to the conditional independence
assumption in equation (7.33). The overlap assumption says that for each value of xi it must
be possible to see an individual in the treatment and control groups, or 0 < P

(
di = 1|xi

)
< 1

and 0 < P
(
di = 0|xi

)
= 1 − P

(
di = 1|xi

)
< 1. A rule of thumb is to compute the normalized

difference
x1 − x0(

s2
1 + s2

0
)1∕2 (7.44)

where s2
1 and s2

0 are the sample variances of the explanatory variable x for the treatment and control
groups. If the normalized difference is greater in absolute value than 0.25,26 then there is cause
for concern. If the overlap assumption fails, then redefining the population of interest may be
required. To see the impact of the difference of means, x1 − x0, on the average treatment effect,
let f0 = N0∕N and f1 = N1∕N be the fractions of observations in the control and treatment groups,
respectively. In Appendix 7C, we show that

τ̂ATE =
(
y1 − y0

)
−
(
"0β̂1 + "1β̂0

)(
x1 − x0

)

If the difference in the sample means of the treatment and control groups is large, the estimated
slopes from the regressions in (7.34), β̂1 and β̂0, have a larger influence in the estimate τ̂ATE of
the average treatment effect.

7.6.6 Regression Discontinuity Designs
Regression discontinuity (RD) designs27 arise when the separation into treatment and control
groups follows a deterministic rule, such as “Students receiving 75% or higher on the midterm
exam will receive an award.” How the award affects future academic outcomes might be the
question of interest. The key insight about the RD designs is that that students receiving “close to

............................................................................................................................................
26Wooldridge (2010, p. 917)
27In this section we draw heavily on a survey by David S. Lee and Thomas Lemieux (2010) “Regression Discontinuity
Designs in Economics,” Journal of Economic Literature, 48(1), 5-86, Jeffrey M. Wooldridge (2010) Econometric
Analysis of Cross Section and Panel Data, Second Edition, MIT Press, Chapter 21 and Joshua D. Angrist and
Jörn-Steffen Pischke (2009) Mostly Harmless Econometrics: An Empiricist’s Companion, Princeton University Press,
Chapter 6. These references are advanced. See also Joshua D. Angrist and Jörn-Steffen Pischke (2015) Mastering
Metrics: The Path from Cause to Effect, Princeton University Press, Chapter 4.



❦

❦ ❦

❦

348 CHAPTER 7 Using Indicator Variables

75%” are likely very similar in most regards (a condition that can be checked) so that those just
below the cutoff point are a good comparison group for those just above the cutoff. Using indi-
viduals close to the cutoff is “just as good as” a random assignment, for the purpose of estimating
a treatment effect.

Suppose that xi is the single variable determining whether an individual is assigned to the
treatment group or control group. In this literature, xi is called the forcing variable. The treatment
indicator variable di = 1 if xi ≥ c, where c is a preassigned cutoff value and di = 0 if xi < c. This
is said to be a sharp regression discontinuity design because the treatment is definitely given if
the forcing variable crosses the threshold. The observed outcome is yi =

(
1 − di

)
y0i + diy1i, where

y0i is the potential outcome for individual i when not receiving treatment and y1i is the potential
outcome for individual i when receiving the treatment. For the sharp RD design, the conditional
independence assumption in equation (7.33)

E
(
y0i|di, xi

)
= E

(
y0i|xi

)
and E

(
y1i|di, xi

)
= E

(
y1i|xi

)

is automatically satisfied because the treatment is completely determined by the forcing variable,
xi. Interestingly, the overlap assumption fails completely. For a given value of xi, we cannot hope
to observe individuals in both treatment and control groups. Rather than trying to estimate a
population average treatment effect, in the RD design we estimate the treatment effect “at the
cutoff,”

τc = E
(
y1i − y0i|xi = c

)
= E

(
y1i|xi = c

)
− E

(
y0i|xi = c

)
(7.45)

One required assumption is “continuity.” That is, E
(
y1i|xi

)
and E

(
y0i|xi

)
must meet smoothly at

xi = c except for a “jump.” The jump is the treatment effect at the cutoff, τc.
A picture is worth a thousand words, especially with RD designs, so let us look at a graph.

Suppose we give a 100 point midterm exam (the forcing variable x) and award a new laptop
computer to students receiving a score of 75 (the cutoff value c) or over. The outcome we measure
is student performance, y, on a 400 point final exam.

In Figure 7.4, based on simulated data, we see that at midterm score 75 there is a jump in the
final exam score. That jump is what we seek to measure. The RDD idea is that students receiving
just under and just over 75 are basically very similar, so that if we compare them it is just as good
as randomly assigning treatment. Another way to picture the outcomes is to divide the forcing
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FIGURE 7.4 Regression Discontinuity Design.
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FIGURE 7.5 Conditional Means Graph.

variable (x) into intervals, or bins, and calculate and plot the mean, or median, of the outcome
variable (y). Figure 7.5 is based on five point bins.

The difference between the mean scores of the two groups (A and B) just to either side of
the cutoff is an estimate of the treatment effect at the cutoff, in this case τ̂c = B − A = 326.7 −
243.6 = 83.1. We estimate that for students near the cutoff, getting a 75 or higher on the midterm,
and thus receiving a new computer, had scores on the final exam that were 83.1 points higher
than those who were also near the cutoff, but not receiving the prize, all other things being equal.
This estimator is reasonable and intuitive. The difficulty is that students in the 70–75 range of
test scores may not be as similar as we would like to students with test scores 75–80. If we make
the bin widths smaller and smaller, then the groups to either side of the cutoff become more and
more similar, but the number of observations in each bin gets smaller and smaller, reducing the
reliability of this estimator of the treatment effect.28

Instead, let us use all the observations and use regression analysis to estimate the treatment
effect at the cutoff, τc. Estimate the regression functions separately on the two groups, using as
explanatory variable xi − c:

1. Obtain α̂0 + β̂0
(
xi − c

)
from a regression of yi on xi − c for individuals below the cutoff,(

xi < c
)
.

2. Obtain α̂1 + β̂1
(
xi − c

)
from a regression of yi on xi − c for individuals above the cutoff,(

xi ≥ c
)
.

The estimate of τc is τ̂c = α̂1 − α̂0. Equivalently, we can use a pooled regression with an indicator
variable. Define di = 1 if xi ≥ c, and di = 0 if xi < c. Then the equivalent pooled regression is

yi = α + τcdi + β
(
xi − c

)
+ γ

[
di
(
xi − c

)]
+ ei (7.46)

There are some additional considerations when using RD designs. First, using the full range of
the data may not be a good idea. The goal is to estimate the regression “jump” at the cutoff value

............................................................................................................................................
28Selecting bin width is an important issue in RDD analysis. See Lee and Lemieux (2010, pp. 307–314).
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xi = c. With sufficient observations, we can make the estimate “local” by only using data within a
certain distance h of the cutoff. That is, use observations for which c − h ≤ xi ≤ c + h. Checking
the robustness of findings to various choices of h is a good idea.

Second, it is important to build into the regression sufficient flexibility to capture a nonlinear
relationship. For example, if the true relationship between the outcome y and the test score x is
nonlinear, then using linear relationships in the RDD can give a biased estimator of the treatment
effect. In Figure 7.6, we illustrate a situation when there is no “jump” in the underlying relation-
ship but using RDD with an assumed linear fit makes there appear be a positive treatment effect
at xi = c.

For this reason, researchers often use additional powers of
(
xi − c

)
in the regression relation,

such as
(
xi − c

)2,
(
xi − c

)3, and
(
xi − c

)4. If we use up to the third power, the pooled regression
becomes

yi = α + τcdi +
3∑

q=1
βq
(
xi − c

)q +
3∑

p=1
γp
[
di
(
xi − c

)p] + ei (7.47)

For the data in Figure 7.6, the estimated treatment effect from (7.47), τ̂c, is not statistically
different from zero, with a t = 1.11 and a p-value of 0.268. Alternatively, the recognition of a
“nonjump” could be detected by using local observations for which c − h ≤ xi ≤ c + h.

Third, it is possible that variables other than the forcing variable, say zi, may influence the
outcome. These can be added to the RDD model in equation (7.47).

Fourth, the illustration we have provided assumes that those with test scores at 75 or above
are given a new computer whether they want one or not. We could instead offer those with test
scores 75 and above a heavily discounted price on a new computer before the final exam. Some
will elect to purchase the new machine using the discount and others will not. Some with test
scores below 75 could, of course, also buy new computers. These issues lead to what is known
as a fuzzy regression discontinuity design. The key in this case is that there is a “jump” in the
probability of treatment (receiving a new computer before the final exam) at xi = c. In this case,
we must use an estimation alternative to least squares called instrumental variables estimation.
This topic is considered in Chapter 10.
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FIGURE 7.6 RDD bias.
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7.7 Exercises

7.7.1 Problems
7.1 Suppose we are able to collect a random sample of data on economics majors at a large univer-

sity. Further suppose that, for those entering the workforce, we observe their employment status and
salary 5 years after graduation. Let SAL = $ salary for those employed, GPA = grade point average
on a 4.0 scale during their undergraduate program, with METRICS = 1 if student took econometrics,
METRICS = 0 otherwise.
a. Consider the regression model SAL = β1 + β2GPA + β3METRICS + e. Should we consider this a

causal model, or a predictive model? Explain your reasoning.
b. Assuming β2 and β3 are positive, draw a sketch of E(SAL|GPA,METRICS) = β1 + β2GPA +

β3METRICS.
c. Define a dummy variable FEMALE = 1, if the student is female; 0 otherwise. Modify the regression

model to be SAL = β1 + β2GPA + β3METRICS + δ1FEMALE + e. What is the expected salary of
a male who has not taken econometrics? What is the expected salary of a female who has taken
econometrics?

d. Consider the regression model

SAL = β1 + β2GPA + β3METRICS + δ1FEMALE
+ δ2(FEMALE ×METRICS) + e (XR7.1.1)

What is the expected salary of a male who has not taken econometrics? What is the expected salary
of a female who has taken econometrics?

e. In the equation (XR7.1.1), assume that δ1 < 0 and δ2 < 0. Sketch E(SAL|GPA,METRICS,
FEMALE) versus GPA for (i) males not taking econometrics, (ii) males taking econometrics,
(iii) females not taking econometrics, and (iv) females taking econometrics.

f. In equation (XR7.1.1), what are the null and alternative hypotheses, in terms of model parameters,
for testing that econometrics training does not affect the average salary of economics majors? In
order to use the test statistic in equation (6.4), what regression must you estimate in addition to
(XR7.1.1)? What is the distribution of the test statistic if the null hypothesis is true assuming
N = 300? What is the rejection region for a 5% test?

7.2 In September of 1998, a local TV station contacted an econometrician to analyze some data for
them. They were going to do a Halloween story on the legend of full moons affecting behavior
in strange ways. They collected data from a local hospital on emergency room cases for the
period from January 1, 1998 until mid-August. There were 229 observations. During this time,
there were eight full moons and seven new moons (a related myth concerns new moons) and
three holidays (New Year’s day, Memorial Day, and Easter). If there is a full-moon effect, then
hospital administrators will adjust numbers of emergency room doctors and nurses, and local
police may change the number of officers on duty. Let T be a time trend (T = 1, 2, 3,… , 229).
Let the indicator variables HOLIDAY = 1 if the day is a holiday, = 0 otherwise; FRIDAY = 1
if the day is a Friday, = 0 otherwise; SATURDAY = 1 if the day is a Saturday, = 0 otherwise;
FULLMOON = 1 if there is a full moon, = 0 otherwise; NEWMOON = 1 if there is a new moon, = 0
otherwise. Consider the model

CASES = β1 + β2T + δ1HOLIDAY + δ2FRIDAY + δ3SATURDAY
+ θ1FULLMOON + θ2NEWMOON + e (XR7.2.1)

a. What is the expected number of emergency room cases for day T = 100, which was a Friday with
neither a full or new moon?

b. What is the expected number of emergency room cases for day T = 185, which was a holiday
Saturday?

c. In terms of the model parameters, what are the null and alternative hypotheses for testing that
neither a full moon nor a new moon have any effect on the number of emergency room cases?
What is the test statistic? What is the distribution of the test statistic if the null hypothesis is true?
What is the rejection region for a 5% test?
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d. The sum of squared residuals from the regression in (XR7.2.1) is 27109. If full moon and new
moon are omitted from the model the sum of squared residuals is 27424. Carry out the test in (c).
What is your conclusion?

e. Using the model in equation (XR7.2.1), the estimated coefficient of SATURDAY is 10.59 with
standard error 2.12, and the estimated coefficient for FRIDAY is 6.91, with standard error 2.11.
The estimated covariance between the coefficient estimators is 0.75. Should the hospitals prepare
for significantly more emergency room patients on Saturday than Friday? State the relevant null
and alternative hypotheses in terms of the model parameters. What is the test statistic? What is the
distribution of the test statistic if the null hypothesis is true? What is the rejection region for a test
at the 10% level? Carry out the test and state your conclusion?

7.3 One of the key problems regarding housing prices in a region concerns construction of “price indexes.”
That is, holding other factors constant, have prices increased, decreased or stayed relatively constant in
a particular area? As an illustration, consider a regression model for house prices (in $1000s) on home
sales from 1991 to 1996 in Stockton, CA, including as explanatory variables the size of the house
(SQFT , in 100s of square feet), the age of the house (AGE) and annual indicator variables, such as
D92 = 1 if the year is 1992 and 0 otherwise.

PRICE = β1 + β2SQFT + β3AGE + δ1D92 + δ2D93 + δ3D94 + δ4D95
+ δ5D96 + e (XR7.3.1)

An alternative model employs a “trend” variable YEAR = 0, 1,… , 5 for the years 1991–1996.
PRICE = β1 + β2SQFT + β3AGE + τYEAR + e (XR7.3.2)

a. What is the expected selling price of a 10-year-old house with 2000 square feet of living space in
each of the years 1991–1996 using equation (XR7.3.1)?

b. What is the expected selling price of a 10-year-old house with 2000 square feet of living space in
each of the years 1991–1996 using equation (XR7.3.2)?

c. In order to choose between the models in (XR7.3.1) and (XR7.3.2), we propose a hypothesis
test. What set of parameter constraints, or restrictions, would result in equation (XR7.3.1) equal-
ing (XR7.3.2)? The sum of squared residuals from (XR7.3.1) is 2385745 and from (XR7.3.2) is
2387476. What is the test statistic for testing the restrictions that would make the two models
equivalent? What is the distribution of the test statistic if the null hypotheses are true? What is the
rejection region for a test at the 5% level? If the sample size is N = 4682, what do you conclude?

d. Using the model in (XR7.3.1) the estimated coefficients of the indicator variables for 1992 and
1994, and their standard errors, are −4.393 (1.271) and −13.174 (1.211), respectively. The esti-
mated covariance between these two coefficient estimators is 0.87825. Test the null hypothesis that
δ3 = 3δ1 against the alternative that δ3 ≠ 3δ1 if N = 4682, at the 5% level.

e. The estimated value of τ in equation (XR7.3.2) is –4.12. What is the estimated difference in the
expected house price for a 10-year-old house with 2000 square feet of living space in 1992 and
1994. Using information in (d), how does this compare to the result using (XR7.3.1)?

7.4 Angrist and Pischke29 report estimation results of log-earnings equations using a large sample
of college graduates. The predictors of interest (there are others included in their model) are
the indicator variable PRIVATE (=1 if the individual attended a private college or university, = 0
if the individual attended a public college or university) and SAT/100, the individual’s SAT score
divided by 100. In the estimated regression equations, the dependent variable is ln(EARNINGS)
and they include an intercept. The coefficient estimates, with standard errors in brackets, for two
regressions that they estimate, are as follows.

0.212[0.060]PRIVATE (XR7.4.1)

0.152 [0.057]PRIVATE + 0.051[0.008](SAT∕100) (XR7.4.2)
a. In each model, what is the approximate effect on earnings of attending a private university rather

than a public university?

............................................................................................................................................................
29Joshua D. Angrist and Jörn-Steffen Pischke (2015) Mastering Metrics: The Path from Cause to Effect, Princeton
University Press, p. 66.
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b. In the second model, what is the predicted effect on earnings of a 100-point increase in SAT
score?

c. The estimated coefficient of PRIVATE is smaller in the second model than in the first model. Use
the concept of “omitted variables bias” to explain this result.

d. What should happen to the estimated coefficients in equation (XR7.4.2) if parental income is
included as an explanatory variable? Explain.

7.5 In 1985, the state of Tennessee carried out a statewide experiment with primary school students. Teach-
ers and students were randomly assigned to be in a regular-sized class or a small class. The outcome of
interest is a student’s score on a math achievement test (MATHSCORE). Let SMALL = 1 if the student
is in a small class and SMALL = 0 otherwise. The other variable of interest is the number of years of
teacher experience, TCHEXPER.
a. Write down the econometric specification of the linear regression model explaining MATHSCORE

as a function of SMALL and TCHEXPER. Use β1, β2, and β3 as the model parameters. In this model,
what is the expected math score for a child in a regular-sized class with a teacher having 10 years
of experience? What is the expected math score for a child in a small class with a teacher having
10 years of experience?

b. Let BOY = 1 if the child is male and BOY = 0 if the child is female. Modify the model in part (a)
to include the variables BOY and BOY × SMALL, with parameters θ1 and θ2. Using this model

i. What is the expected math score for a boy in a small class with a teacher having 10 years of
experience?

ii. What is the expected math score for a girl in a regular-sized class with a teacher having
10 years of experience?

iii. What is the null hypothesis, written in terms of the model parameters, that the sex of the child
has no effect on expected math score? What is the alternative hypothesis? What is the test
statistic for the null hypothesis and what is its distribution if the null hypothesis is true? What
is the test rejection region for a 5% test when N = 1200?

iv. It is conjectured that boys may benefit from small classes more than girls. What null and alter-
native hypothesis would you test to examine this conjecture? [Hint: Let the conjecture be the
alternative hypothesis.]

7.6 In 1985, the state of Tennessee carried out a statewide experiment with primary school students. Teach-
ers and students were randomly assigned to be in a regular-sized class or a small class. The outcome
of interest is a student’s score on a math achievement test (MATHSCORE). Let SMALL = 1 if the
student is in a small class and SMALL = 0 otherwise. The other variable of interest is the number of
years of teacher experience, TCHEXPER. Let BOY = 1 if the child is male and BOY = 0 if the child
is female.
a. Write down the econometric specification of the linear regression model explaining MATHSCORE

as a function of SMALL, TCHEXPER, BOY and BOY × TCHEXPER, with parameters β1, β2, . . . .
i. What is the expected math score for a boy in a small class with a teacher having 10 years of

experience?
ii. What is the expected math score for a girl in a regular-sized class with a teacher having

10 years of experience?
iii. What is the change in the expected math score for a boy in a small class with a teacher having

11 years of experience rather than 10?
iv. What is the change in the expected math score for a boy in a small class with a teacher having

13 years of experience rather than 12?
v. State, in terms of the model parameters, the null hypothesis that the marginal effect of teacher

experience on expected math score does not differ between boys and girls, against the alterna-
tive that boys benefit more from additional teacher experience. What test statistic would you use
to carry out this test? What is the distribution of the test statistic assuming then null hypothesis
is true, if N = 1200? What is the rejection region for a 5% test?

b. Modify the model in part (a) to include SMALL × BOY .
i. What is the expected math score for a boy in a small class with a teacher having 10 years of

experience?
ii. What is the expected math score for a girl in a regular-sized class with a teacher having

10 years of experience?
iii. What is the expected math score for a boy? What is it for a girl?
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iv. State, in terms of the part (b) model parameters, the null hypothesis that the expected math
score does not differ between boys and girls, against the alternative that there is a difference in
expected math score for boys and girls. What test statistic would you use to carry out this test?
What is the distribution of the test statistic assuming the null hypothesis is true, if N = 1200?
What is the rejection region for a 5% test?

7.7 Can monetary policy reduce the impact of a severe recession? A natural experiment is provided by
the State of Mississippi. In December of 1930, there were a series of bank failures in the southern
United States. The central portion of Mississippi falls into two Federal Reserve Districts: the sixth
(Atlanta Fed) and the eighth (St. Louis Fed). The Atlanta Fed offered “easy money” to banks while
the St. Louis Fed did not. On July 1, 1930 (just before the crisis), there were 105 State Charter banks
in Mississippi in the sixth district and 154 banks in the eighth district. On July 1, 1931 (just after
the crisis), there were 96 banks remaining in the sixth district and 126 in the eighth district. These
data values are from Table 1, Gary Richardson and William Troost (2009) “Monetary Intervention
Mitigated Banking Panics during the Great Depression: Quasi-Experimental Evidence from a Federal
Reserve District Border, 1929–1933,” Journal of Political Economy, 117(6), 1031–1073.
a. Let the eighth district be the control group and the sixth district be the treatment group. Construct

a figure similar to Figure 7.3 using the four observations rather than sample means. Identify the
treatment effect on the figure.

b. How many banks did each district lose during the crisis? Calculate the magnitude of the treatment
effect using (7.18) with these four observations, rather than sample means.

c. Suppose we have data on these two districts for 1929–1934, so N = 12. Let AFTERt = 1 for years
after 1930, and let AFTERt = 0 for years 1929 and 1930. Let TREATi = 1 for the sixth district and
let TREATi = 0 for banks in the eighth district. Let BANKSit be the number of banks in each district
in each year. Angrist and Pischke (2015, p. 188) report the estimated equation

BANKSit

⋀

= 167 − 2.9TREATi − 49AFTERt + 20.5
(
TREATi × AFTERt

)

(se) (8.8) (7.6) (10.7)

Compare the estimated treatment effect from this equation to the calculation in (b). Is the estimated
treatment effect significant, at the 5% level?

7.8 Using N = 2005 observations, we examine the relationship between food expenditures away from home
per person in the past month as a function of household monthly income, the highest level of education
of a household member, and region of the country. The full equation of interest is

ln(FOODAWAY) = β1 + β2ln(INCOME) + δ1COLLEGE + δ2ADVANCED
+ θ1MIDWEST + θ2SOUTH + θ3WEST + e

where COLLEGE = 1 if the highest education of a household member is a college degree,
ADVANCED = 1 if the highest education of a household member is an advanced degree (such as a
Master’s or Ph.D.). The regional indicators equal one if the household lives in that region and are zero
otherwise.
a. The estimated value of β2 is 0.427 with a standard error of 0.035. Construct and interpret a 95%

interval estimate.
b. The estimated value of δ2 is 0.270 with a standard error of 0.0544. Construct and interpret a 95%

interval estimate using the rough calculation in Section 7.3.1.
c. Use the exact calculation discussed in Section 7.3.1 to estimate the predicted effect on food expen-

diture per person away from home for a household having a member with an advanced degree.
d. What is the null hypothesis, in terms of the model parameters, that the highest level of education

achieved by a household member does not matter? What is the test statistic for this hypothesis?
What is the 5% rejection region? The sum of squared residuals from the full model is 1586 and
SSE from the model omitting the education variables is 1609. Can we conclude that the education
variables are important predictors of food expenditures away from home?

e. In the full model, the reported t-value for COLLEGE is 0.34. What can we conclude from that?
[Hint: What is the reference group?]
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f. The estimated value of θ2 is 0.088. What is the estimated expected value of ln(FOODAWAY) for
a household with $10,000 per month income, with a member with an advanced degree, and who
live in the south? Calculate the natural and corrected predictors of expenditure on food away from
home per member for this household. [Hint: A relevant piece of information is in part (b).]

7.9 Suppose we wish to estimate a model of household expenditures on alcohol (ALC, in dollars per
month) as a function of household income (INCOME, $100’s per month), and some other demographic
variables.
a. Let KIDS = 0, 1, 2,… be the number children in the household. Is KIDS a qualitative or quantitative

variable? Interpret the coefficient of KIDS in the model

ALC = β1 + β2INCOME + δKIDS + e (XR7.9.1)

What is the marginal impact of the second child? What is the marginal impact of the fourth child?
b. Let ONEKID = 1 if there is one child, and zero otherwise. Let TWOKIDS = 1 if there are two

children, and zero otherwise. Let MANY = 1 if there are three or more children, and zero otherwise.
Consider the model

ALC = β1 + β2INCOME + δ1ONEKID + δ2TWOKIDS + δ3MANY + e (XR7.9.2)

Compare the interpretation of this model to that in part (a). Is the impact of an additional child the
same as in the model in (a)? What is the impact of the first child on expected household expenditure
on alcohol? What is the impact of having a fourth child on the expected household expenditure on
alcohol?

c. Is there a set of parameter restrictions, or constraints, that we can impose on equation (XR7.9.2) to
make it equivalent to equation (XR7.9.1)?

7.10 Suppose we wish to estimate a model of household expenditures on alcohol (ALC, in dollars per
month) as a function of household income (INCOME, $100’s per month), and some other demographic
variables.
a. Let RELIGIOUS = 0, 1, 2, 3, or 4 if the household considers itself not religious, a little religious,

moderately religious, very religious, or extremely religious, respectively. Is RELIGIOUS a quanti-
tative or qualitative variable? Explain your choice.

b. Consider the model
ALC = β1 + β2INCOME + β3RELIGIOUS + e

What is the expected household expenditure on alcohol for a household that considers itself not
religious? What is the expected household expenditure for a household that considers itself a lit-
tle religious? What is the expected household expenditure for a household that considers itself
moderately religious?

c. If we test the hypothesis β3 = 0 in model (b), what behavioral assumption are we testing? What is
the expected household expenditure on alcohol if the hypothesis is true?

d. Let LITTLE = 1 if the household considers itself a little religious, and zero otherwise. Similarly
define the indicator variables MODERATELY , VERY , and EXTREMELY . Consider the model

ALC = γ0 + γ1INCOME + γ2LITTLE + γ3MODERATELY + γ4VERY + γ5EXTREMELY + e

What is the expected household expenditure for a household that considers itself not reli-
gious? What is the expected household expenditure for a household that considers itself a little
religious? What is the expected household expenditure for a household that considers itself
moderately religious? Very religious? Extremely religious?

e. If we impose the restrictions γ3 = 2γ2, γ4 = 3γ2, γ5 = 4γ2 on the model in part (d), how does the
restricted model compare to the model in (b)?

7.11 Consider the log-linear regression model ln(y) = β1 + β2x + δ1D + δ2(x × D) + e. If the regression
errors are normally distributed N

(
0, σ2), then

E(y|x,D) = exp
(
β1 + β2x + δ1D + δ2(x × D)

)
exp

(
σ2∕2

)
(XR7.11.1)
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a. Use Derivative Rule 7 to show that
∂E(y|x,D)

∂x = exp
(
β1 + β2x + δ1D + δ2(x × D)

)
exp

(
σ2∕2

)(
β2 + δ2D

)
(XR7.11.2)

b. Divide both sides of the result in (a) by E(y|x,D) to show that
∂E(y|x,D)

∂x
1

E(y|x,D) =
∂E(y|x,D)∕E(y|x,D)

∂x =
(
β2 + δ2D

)
(XR7.11.3)

c. Multiply both sides of the equation in (b) by 100 to obtain

100∂E(y|x,D)∕E(y|x,D)
∂x = %ΔE(y|x,D) = 100

(
β2 + δ2D

)
(XR7.11.4)

This is the marginal effect, the percentage change, in E(y|x,D) given a unit change in x in the
log-linear model.

d. A fitted log-linear model for house price, where SQFT(x) is the house’s living area (100s of square
feet) and UTOWN(D) is an indicator variable with UTOWN = 1 for houses near a university, and
zero otherwise, is

ln(PRICE)
⋀

= 4.456 + 0.362SQFT + 0.336UTOWN − 0.00349(SQFT × UTOWN)

Use equation (XR7.11.4) to calculate the marginal effect of SQFT on house price, for a house with
UTOWN = 1 and for a house with UTOWN = 0.

e. Let b2 and d2 be the least squares estimators of β2 and δ2 in equation (XR7.11.4). Write down the
formula for the standard error of the estimated value 100

(
b2 + d2D

)
, for a given D.

f. Multiply both sides in (XR7.11.3) by x, and by 100/100, and rearrange to obtain
∂E(y|x,D)∕E(y|x,D)

∂x x = 100∂E(y|x,D)∕E(y|x,D)
100∂x∕x

=
(
β2 + δ2D

)
x (XR7.11.5)

Interpreting 100∂x∕x as the percentage change in x, we find that the elasticity of expected price
with respect to a percentage change in x is

(
β2 + δ2D

)
x.

g. Apply the result in equation (XR7.11.5) to calculate the elasticities of expected house price
with respect to a change in price for a house of 2500 square feet, when UTOWN = 1 and when
UTOWN = 0.

h. Let b2 and d2 be the least squares estimators of β2 and δ2 in equation (XR7.11.5). Write down the
formula for the standard error of the estimated value

(
b2 + d2D

)
x, given D and x.

7.12 Consider the log-linear regression model ln(y) = β1 + β2x + δ1D + δ2(x × D) + e. If the regression
errors are normally distributed N

(
0, σ2), then E(y|x,D) is given in equation (XR7.11.1).

a. Find E(y|x,D = 1) and E(y|x,D = 0).
b. Show that

100
[
E(y|x,D = 1) − E(y|x,D = 0)

]

E(y|x,D = 0) = 100
[
exp

(
δ1 + δ2x

)
− 1

]
(XR7.12.1)

This is the percentage change in the expected value of y, given x, when the indicator variable
changes from D = 0 to D = 1.

c. Given the log-linear model, the value of ln(y) when D = 0 is ln(y|D = 0, x) = β1 + β2x + e, and
when D = 1 we have ln(y|D = 1, x) =

(
β1 + δ1

)
+
(
β2 + δ2

)
x + e. Subtract ln(y|D = 0, x) from

ln(y|D = 1, x), and multiply by 100, to obtain

100
[
ln(y|D = 1, x) − ln(y|D = 0, x)

]
≃ %Δ(y|x) = 100

(
δ1 + δ2x

)
(XR7.12.2)

d. A fitted log-linear model for house price, where SQFT(x) is the house’s living area (100s of square
feet) and UTOWN(D) is an indicator variable with UTOWN = 1 for houses near a university, and
zero otherwise, is

ln(PRICE)
⋀

= 4.456 + 0.362SQFT + 0.336UTOWN − 0.00349(SQFT × UTOWN)

Calculate the percentage change in the expected value of PRICE for a house of 2500 square feet
using (XR7.12.1). Also calculate the approximate value in (XR7.12.2).
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e. If d1 and d2 are the least squares estimators of δ1 and δ2 in equation (XR7.12.2), write down the
formula for the standard error of 100(d1 + d2x), given x.

f. Let λ = 100
[
exp(δ1 + δ2x) − 1

]
and λ̂ = 100

[
exp

(
d1 + d2x

)
− 1

]
. Use Derivative Rule 7, in

Appendix A.3.1, to show that ∂λ∕∂δ1 = 100 exp
(
δ1 + δ2x

)
and ∂λ∕∂δ2 = 100 exp(δ1 + δ2x)x.

The “delta method” for finding the variance of a nonlinear function, such as λ̂, is discussed in
Section 5.7.4 and also Appendix 5B.5. Using the delta method, write out the expression for
standard error of λ̂.

7.13 Many cities in California have passed Inclusionary Zoning policies (also known as below-market hous-
ing mandates) as an attempt to make housing more affordable. These policies require developers to sell
some units below the market price on a percentage of the new homes built. For example, in a develop-
ment of 10 new homes each with market value $850,000, the developer may have to sell 5 of the units
at $180,000. Means and Stringham (2012)30 examine the effects of such policies on house prices and
number of housing units available using 1990 and 2000 census data on 311 California cities.
a. Let LNPRICE be the log of average home price, and let LNUNITS be the log of the number of hous-

ing units. Using only the data for 2000, we compare the sample means of LNPRICE and LNUNITS
for cities with an Inclusionary Zoning policy, IZLAW = 1, to those without the policy, IZLAW = 0.
The following table displays the sample means of LNPRICE and LNUNITS.

2000 IZLAW = 1 IZLAW = 0
LNPRICE 12.8914 12.2851
LNUNITS 9.9950 9.5449

Based on these estimates, what is the percentage difference in prices and number of units for cities
with and without the law? Use the approximation 100

[
ln(y1) – ln

(
y0
)]

for the percentage difference
between y0 and y1. Does the law appear to achieve its purpose?

b. Using the data for 1990, we compare the sample means of LNPRICE and LNUNITS for cities with
an Inclusionary Zoning policy, IZLAW = 1, to those without the policy, IZLAW = 0. The following
table displays the sample means of LNPRICE and LNUNITS.

1990 IZLAW = 1 IZLAW = 0
LNPRICE 12.3383 12.0646
LNUNITS 9.8992 9.4176

Use the existence of an Inclusionary Zoning policy as a “treatment.” Consider those cities that did
not pass such a law, IZLAW = 0, the “control” group. Draw a figure similar to Figure 7.3 com-
paring treatment and control groups for LNPRICE, and determine the “treatment effect.” Are your
conclusions about the effect of the policy the same as in (a)?

c. Draw a figure similar to Figure 7.3 comparing treatment and control groups for LNUNITS, and
determine the “treatment effect.” Are your conclusions about the effect of the policy the same as
in (a)?

7.14 Consider a model explaining the weekly sales (SALES = 100’s cans sold) of a popular brand (the “tar-
get” brand) of canned tuna as a function of its price (PRICE = average price in cents), the average
prices of two competitors (PRICE2, PRICE3, also in cents). Also included is an indicator variable
DISP = 1 if there is a store display but no newspaper ad during the week for the target brand, and 0
otherwise. The indicator variable DISPAD = 1 if there is a store display during the week for the target

............................................................................................................................................................
30Tom Means and Edward P. Stringham (2012) “Unintended or Intended consequences? The effect of below-market
housing mandates on housing markets in California,” Journal of Public Finance and Public Choice, p. 39–64. The
authors wish to thank Tom Means for providing the data and insights into this exercise.
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brand and newspaper ads, 0 otherwise. The estimated log-linear model is

ln(SALES)
⋀

= 2.077 − 0.0375PRICE + 0.0115PRICE2 + 0.0129PRICE3 + 0.424DISP
(se) (0.646) (0.00577) (0.00449) (0.00605) (0.105)

+ 1.431DISPAD R2 = 0.84 N = 52
(0.156)

a. Discuss and interpret the coefficients of the price variables.
b. Are the signs and relative magnitudes of the advertising variables consistent with economic logic?

Provide both the “rough” and “exact” calculations for the effects of DISP and DISPAD from
Sections 7.3.1 and 7.3.2.

c. Test the significance of the advertising variables using a two-tail test, at the 1% level of significance.
What do you conclude?

d. The F-test statistic value for the joint significance of the two advertising variables is 42.0. What
can we conclude about the significance of advertising? If you were going to use the form of the
F-statistic in equation (6.4), what additional regression would you need to run?

e. Label the parameters in the equation β1, β2, … If the null hypothesis is H0∶β6 ≤ β5, state the alter-
native hypothesis. Why is the test of this null hypothesis and alternative hypothesis interesting?
Carry out the test at the 1% level of significance, given that the calculated t-value is 6.86. What do
you conclude?

7.15 Mortgage lenders are interested in determining borrower and loan characteristics that may lead
to delinquency or foreclosure. We estimate a regression model using 1000 observations and
the following variables. The dependent variable of interest is MISSED, an indicator variable = 1 if
the borrower missed at least three payments (90+ days late), but 0 otherwise. Explanatory variables are
RATE = initial interest rate of the mortgage; AMOUNT = dollar value of mortgage (in $100, 000);
and ARM = 1 if mortgage has an adjustable rate, and = 0 if mortgage has a fixed rate. The estimated
equation is

MISSED
⋀

= −0.348 + 0.0452RATE + 0.0732AMOUNT + 0.0834ARM
(se) (0.00841) (0.0144) (0.0326)

a. Interpret the signs and significance of each of the coefficients.
b. Two borrowers who did not miss a payment had loans with the following characteristics:

(RATE = 8.2, AMOUNT = 1.912, ARM = 1) and (RATE = 9.1, AMOUNT = 8.6665, ARM = 1).
For each of these borrowers, predict the probability that they will miss a payment.

c. Two borrowers who did miss a payment had loans with the following characteristics:
(RATE = 12.0, AMOUNT = 0.71, ARM = 0) and (RATE = 6.45, AMOUNT = 8.5, ARM = 1). For
each of these borrowers, predict the probability that they will miss a payment.

d. For a borrower seeking an adjustable rate mortgage, with an initial interest rate of 6.0, above what
loan amount would you predict a missed payment with probability 0.51?

7.7.2 Computer Exercises
7.16 In this exercise, we examine the hours of market work by married women as a function of their edu-

cation and number of children. Use data file cps5mw_small for this exercise. The data file cps5mw
contains more observations.
a. Estimate the linear regression model

HRSWORK = β1 + β2WAGE + β3EDUC + β4NCHILD + e (XR7.16.1)

Interpret the coefficient of NCHILD. Estimate the expected hours worked by a married woman
whose wage is $20 per hour, who has 16 years of education, and who has no children. Do the
same calculation for a woman with one child, two children, and three children. How much does the
expected number of hours change with each additional child?

b. Define the indicator variables POSTGRAD = 1 if EDUC > 16, 0 otherwise; COLLEGE = 1 if
EDUC = 16, 0 otherwise; and SOMECOLLEGE if 12 < EDUC < 16. Estimate the HRSWORK
equation (XR7.16.1) replacing EDUC by these three indicator variables. Interpret the coefficients
of the education indicator variables. Estimate the expected hours worked by a married woman
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whose wage is $20 per hour, who has 12 years of education, and who has no children. Do the same
calculation for a woman with EDUC = 13, 14, 15, 16, and 17. Is the marginal effect of education
constant?

c. Define indicator variables ONEKID = 1 if NCHILD = 1, 0 otherwise; TWOKIDS = 1 if
NCHILD = 2, 0 otherwise; and MOREKIDS = 1 if NCHILD > 2, 0 otherwise. Estimate the
HRSWORK equation (XR7.16.1) but replace NCHILD by these three indicator variables. Interpret
the estimated coefficients of the three indicator variables. Estimate the expected hours worked by a
married woman with 16 years of education, whose wage is $20 per hour with no children, one child,
two children, and more than two children. Compare and contrast these estimates to those in (a).

d. Estimate the model (XR7.16.1) replacing EDUC with the three indicator variables in (b) and replac-
ing NCHILD with the three indicator variables in (c). Compare and contrast this model to the
models in (a)–(c).

e. Define the indicator variable EDUC12 = 1 if EDUC = 12, 0 otherwise. Define indicator vari-
ables EDUC12, EDUC13 , EDUC14 , EDUC16 similarly. In this sample, there are no women with
15 years of education. Define EDUC18 = 1 if EDUC > 16, 0 otherwise. Estimate the HRSWORK
equation (XR7.16.1) replacing NCHILD by the three indicator variables and EDUC by the five new
indicator variables. Have any essential conclusions changed by using this specification?

f. Which of the specifications in (a)–(e) has the highest R2? The highest adjusted-R2, the smallest
SCHWARZ criterion (SC or BIC) value? Which model do you prefer taking into account economic,
econometric, and fit aspects?

7.17 Does a mother’s smoking affect the birthweight of her child? Using data in the file bweight_small taken
from Cattaneo (2010),31 we explore this question. The file bweight contains more observations.
a. Calculate the sample means of BWEIGHT for mothers who smoke (MBSMOKE = 1) and those

who do not smoke (MBSMOKE = 0). Use the t-test of the equality of population means given
in Appendix C.7.2, Case 1, to test whether the mean birthweight for smoking and nonsmoking
mothers is the same. Use the 5% level of significance.

b. Estimate the regression BWEIGHT = β1 + β2MBSMOKE + e. Interpret the coefficient of
MBSMOKE. Can we interpret the coefficient as the “average treatment effect” of smoking? Test
the null hypothesis that β2 ≥ 0 against β2 < 0 at the 5% level of significance.

c. Add to the model in (b) control variables MMARRIED, MAGE, PRENATAL1, and FBABY . Are
any of these variables significant predictors of an infant’s birthweight? Which signs of the sig-
nificant coefficients are consistent with your expectations? Does the estimate of the coefficient of
MBSMOKE change much?

d. Estimate the regression of BWEIGHT on MMARRIED, MAGE, PRENATAL1, and FBABY for
mothers who smoke (MBSMOKE = 1) and those who do not smoke (MBSMOKE = 0). Carry out
a Chow test of the equivalence of these two regressions at the 5% level.

e. Use equation (7.37) to obtain the estimate of the average treatment effect using the results from (d).
Compare this estimate of the average treatment effect to the estimates in (b) and (c).

7.18 Does a mother’s smoking affect the birthweight of her child? Using the data file bweight_small, we
explore this question. The file bweight contains more observations.
a. Estimate the regression model represented by equation (7.38) for BWEIGHT . Include as explana-

tory variables MMARRIED, MAGE, PRENATAL1, and FBABY , along with MBSMOKE and inter-
actions between MBSMOKE and the other variables. Use equation (7.40), and the discussion below
equation (7.40), to estimate the average treatment effect.

b. Use equation (7.41) to estimate the average treatment effect of mother smoking on infant birth-
weight, and construct a 95% interval estimate for τATE.

c. Calculate the normalized difference equation (7.44) for each of the variables MMARRIED, MAGE,
PRENATAL1, and FBABY . Are any of the normalized differences bigger than the rule of thumb
threshold of 0.25?

d. Use equation (7.42) to estimate the average treatment effect on the treated, τATT. How much does
it differ from your estimate of the population average treatment effect?

............................................................................................................................................................
31Efficient semiparametric estimation of multi-valued treatment effects under ignorability, Journal of Econometrics,
155, 138–154. The authors would like to thank Matias Cattaneo for providing the data. The dataset is used in Stata
Treatment-Effects Reference Manual, Release 14 for examples as well.
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e. Use equation (7.43) to estimate the average treatment effect on the population of mothers who are
Hispanic (MHISP = 1). How does it compare to the estimated population average treatment effect?

f. Use equation (7.43) to estimate the average treatment effect on the population of mothers who are
white (MWHITE = 1). How does this compare to the population average treatment effect estimate?

7.19 Does a mother’s smoking affect the birthweight of her child? Using the data file bweight_small we
explore this question. The file bweight contains more observations. The variable MSMOKE is the
number of cigarettes smoked daily during pregnancy. Nonsmokers (MBSMOKE = 0) smoke zero daily.
Among smokers (MBSMOKE = 1), the variable MSMOKE = 1 if 1–5 cigarettes are smoked daily;
MSMOKE = 2 if 6–10 cigarettes are smoked daily; and MSMOKE = 3 if 11 or more cigarettes are
smoked daily.
a. Estimate a regression model for BWEIGHT . Include as explanatory variables MMARRIED, MAGE,

PRENATAL1, and FBABY , along with MSMOKE. Interpret the estimated coefficient of MSMOKE.
b. From MSMOKE create three indicator variables, SMOKE2 = 1 if a mother smokes 1–5 cigarettes

per day, 0 otherwise; SMOKE3 = 1 if a mother smokes 6–10 cigarettes per day, 0 otherwise;
SMOKE4 = 1 if a mother smokes 11 or more cigarettes per day, 0 otherwise. Estimate a regres-
sion model for BWEIGHT . Include as explanatory variables MMARRIED, MAGE, PRENATAL1,
and FBABY , along with SMOKE2, SMOKE3 , and SMOKE4 . Interpret the estimated coefficients
of SMOKE2, SMOKE3 , and SMOKE4 . Does smoking 1–5 cigarettes per day have a statistically
significant negative effect on infant birthweight?

c. Using the results in (b), test the null hypothesis that smoking 11 or more cigarettes per day reduces
birthweight by no more than smoking 6–10 cigarettes per day, against the alternative that smok-
ing 11 or more cigarettes per day reduces birthweight by more than smoking 6–10 cigarettes
per day.

d. Using the results in (b), test the null hypothesis that smoking 11 or more cigarettes per day reduces
birthweight by no more than smoking 1–5 cigarettes per day, against the alternative that smoking
11 or more cigarettes per day reduces birthweight by more than smoking 1–5 cigarettes per day.

e. Estimate a regression model for BWEIGHT . Include as explanatory variables MMARRIED,
MAGE, PRENATAL1, and FBABY . Estimate the model separately for MSMOKE = 0, 1, 2, and
3. Using each model, estimate the expected birthweight of a child of a married woman who is
25 years old whose first prenatal visit was in the first trimester and who had already given birth to
at least one child. What do you observe?

f. Estimate the linear probability model with dependent variable LBWEIGHT as a function of
explanatory variables MMARRIED, MAGE, PRENATAL1, and FBABY , along with MSMOKE.
Predict the probability of a low-birthweight infant for MSMOKE = 0, 1, 2, and 3 of a married
woman who is 25 years old whose first prenatal visit was in the first trimester and who had already
given birth to at least one child. What do you observe?

7.20 In this exercise, we will explore some of the factors predicting costs at American universi-
ties using the data file poolcoll2 and observations outside the great recession. Let TC = the
real ($2008) total cost per student, FTUG = number of full-time undergraduate students, FTGRAD =
number of full-time graduate students, FTEF = full-time faculty per 100 students, CF = number of
contract faculty per 100 students, FTENAP = full-time nonacademic professionals per 100 students.
a. Estimate the regression of ln(TC) on the remaining variables. What are the predicted effects of

additional undergraduate students and graduate students on total cost per student?
b. What are the predicted effects of additional full-time faculty, contract faculty, and nonacademic

professionals on total cost per student?
c. Add the indicator variable PRIVATE to the model. Do you predict higher or lower total cost per

student at private universities? Is this a statistically significant factor in predicting total cost per
student?

d. Add to the model not only PRIVATE but also PRIVATE × FTEF. Are these variables individually
and jointly significant at the 5% level?

e. Add to the model not only PRIVATE but also PRIVATE times all the other variables. Test the
joint significance of PRIVATE and PRIVATE times all the other variables using an F-test. What
do you conclude about the model in (a) that does not distinguish between private and public
universities?

f. Estimate the model in (a) twice, once for private universities and once for public universities. Call
the sum of squared residuals for the private universities SSE1, and the sum of squared residuals for
the public universities SSE0. Compare SSE1 + SSE0 to the sum of squared residuals in part (e).
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7.21 In this exercise, we explore some of the factors predicting costs at American public universities
using the data file pubcoll. Let TC = the real ($2008) total cost per student, FTUG = number of
full-time undergraduate students, FTGRAD = number of full-time graduate students, FTEF = full-
time faculty per 100 students, CF = number of contract faculty per 100 students, and FTENAP =
full-time nonacademic professionals per 100 students.
a. Estimate the regression of ln(TC) on the remaining variables. What are the predicted effects of

additional undergraduate students and graduate students on total cost per student?
b. What are the predicted effects of additional full-time faculty, contract faculty, and nonacademic

professionals on total cost per student?
c. Add indicator variables for the years 1989, 1991, 1999, 2005, 2008, 2010, and 2011. Are these

variables jointly and individually significant? Using your favorite site for macroeconomic data,
plot the quarterly percentage change in the real U.S. GDP from January 1987 to January 1993.
Does this help explain the signs and significance of any of the indicator variable coefficients?

d. The variable CRASH = 1 during 2008, 2010, and 2011. Add to the model in (c) interactions
between CRASH and each of the variables FTEF, CF, and FTENAP. Are these variables
individually significant at the 5% level? Are they jointly significant?

e. Add to the model in (d) interactions between CRASH and each of the variables FTUG and
FTGRAD. Considering all the interaction variables, which are significant at the 5% level? Test the
joint significance of all the interaction variables at the 5% level.

7.22 In this exercise, we explore some of the factors predicting costs at American public universities using
the data file pubcoll. Let TC = the real ($2008) total cost per student, FTUG = number of full-time
undergraduate students, FTGRAD = number of full-time graduate students, FTEF = full-time faculty
per 100 students, CF = number of contract faculty per 100 students, and FTENAP = full-time nonaca-
demic professionals per 100 students. Use only the data for years prior to 2008. Include in the model
year indicator variables D1989, D1991, D1999, and D2005.
a. Estimate the regression of ln(TC) on the remaining variables. What are the predicted effects of

additional undergraduate students and graduate students on total cost per student?
b. What are the predicted effects of additional full-time faculty, contract faculty, and nonacademic

professionals on total cost per student?
c. Using the estimates from part (a), compute the normal and corrected predictors of total cost using

2005 data for University of Arizona (unitid = 104179), Indiana University-Bloomington (unitid
151351), and The University of Texas at Austin (unitid = 228778). Compare the predicted values
to the reported TC for 2005. Which schools had actual total cost TC higher than predicted?

d. Add an indicator variable for each different university except the first, which is the reference group.
Test the joint significance of these indicator variables at the 5% level of significance using the F-test
given in equation (6.4). Are there individual differences among the universities?

e. Using the estimates from part (d), compute the normal and corrected predictors of total cost using
2005 data for University of Arizona (unitid = 104179), Indiana University-Bloomington (unitid
151351), and The University of Texas at Austin (unitid = 228778). Compare the predicted values
to the reported TC for 2005. Which schools had actual total cost TC higher than predicted?

7.23 In the STAR experiment (Section 7.5.3), children were randomly assigned within schools into three
types of classes: small classes with 13–17 students, regular-sized classes with 22–25 students, and
regular-sized classes with a full-time teacher aide to assist the teacher. Student scores on achievement
tests were recorded as well as some information about the students, teachers, and schools. Data for the
kindergarten classes is contained in the data file star5_small2.
a. Calculate the average of MATHSCORE for (i) students in regular-sized classrooms with full-time

teachers but no aide; (ii) students in regular-sized classrooms with full-time teachers and an aide;
and (iii) students in small classrooms. What do you observe about test scores in these three types
of learning environments?

b. Estimate the regression model MATHSCOREi = β1 + β2SMALLi + β3AIDEi + ei, where AIDE is
an indicator variable equaling 1 for classes taught by a teacher and an aide, and 0 otherwise. What
is the relation of the estimated coefficients from this regression to the sample means in part (a)?
Test the statistical significance of β3 at the 5% level.

c. To the regression in (b) add the additional explanatory variable TCHEXPER. Is this variable
statistically significant? Does its addition to the model affect the estimates of β2 and β3? Construct
a 95% interval estimate of expected math score for a student in a small class with a teacher having
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10 years of experience. Construct a 95% interval estimate of expected math score for a student in
a class with an aide and having a teacher with 10 years of experience. Calculate the least squares
residuals from this model, calling them EHAT . This variable will be used in the next part.

d. To the regression in (c), add the additional indicator variable FREELUNCH. Students from lower
income households receive a free lunch at school. Is this variable statistically significant? Does its
addition to the model affect the estimates of β2 and β3? What explains the sign of FREELUNCH?
Calculate the sample average of EHAT , from part (c), for students receiving a free lunch, and for
students who do not receive a free lunch. Are the residual averages consistent with the regression
that includes FREELUNCH?

e. To the model in (d), add interaction variables between FREELUNCH and SMALL, AIDE and
TCHEXPER. Are any of these individually significant? Test the joint significance of these three
interaction variables at the 5% level. What do you conclude?

f. Carry out a Chow test for the equivalence of the regression MATHSCOREi = β1 + β2SMALLi +
β3AIDEi + β4TCHEXPER + ei for students who receive a free lunch and those who do not receive
a free lunch. How does this test result compare to the test result in part (e)?

7.24 Many cities in California have passed Inclusionary Zoning policies (also known as below-market hous-
ing mandates) as an attempt to make housing more affordable. These policies require developers to sell
some units below the market price on a percentage of the new homes built. For example, in a develop-
ment of 10 new homes each with market value $850,000, the developer may have to sell 5 of the units
at $180,000. Means and Stringham (2012), and exercise 7.13, examine the effects of such policies on
house prices and number of housing units available using 1990 and 2000 census data on California
cities. Use the data file means for the following exercises.
a. Use LNPRICE and LNUNITS as dependent variables in difference-in-difference regressions, with

explanatory variables D, the indicator variable for year 2000; IZLAW, and the interaction of D and
IZLAW. Is the estimate of the treatment effect statistically significant, and of the anticipated sign?

b. To the regressions in (a) add the control variable LMEDHHINC. Interpret the estimate of the new
variable, including its sign and significance. How does this addition affect the estimates of the
treatment effect?

c. To the regressions in (b) add the variables 100(EDUCATTAIN), 100(PROPPOVERTY), and LPOP.
Interpret the estimates of these new variables, including their signs and significance. How do these
additions affect the estimates of the treatment effect?

d. Consider the differences-in-differences regression for LNPRICE

ln
(
PRICEit

)
= β1 + β2IZLAWi + β3Dt + δ

(
IZLAWi × Dt

)
+ θCITYi + eit

In this model, CITYi represents some unobservable characteristic of each city that stays constant
over time. Write this model for the year 2000

(
Dt = 1

)
. Write this model for the year 1990

(
Dt = 0

)
.

Subtract the expression for 1990 from the expression for 2000. The dependent variable is

DLNPRICEi =
[
ln
(
PRICEi,2000

)
− ln

(
PRICEi,2000

)]
≃ %ΔPRICEi∕100

which is the decimal equivalent of the percentage change in price for city i. What parameters and
variables remain on the right-hand side after the subtraction?

e. Regress DLNPRICEi against IZLAWi and compare the result to the LNPRICE regression in part (a).
7.25 Professor Ray C. Fair’s voting model was introduced in Exercise 2.23. He builds models that explain

and predict the U.S. presidential elections. See his website at http://fairmodel.econ.yale.edu/vote2016/
index2.htm and see in particular his paper entitled “Presidential and Congressional Vote-Share
Equations: November 2014 Update.” The basic premise of the model is that the Democratic
party’s share of the two-party [Democratic and Republican] popular vote is affected by a number
of factors relating to the economy, and variables relating to the politics, such as how long the
incumbent party has been in power, and whether the President is running for reelection. Data
for 1916–2016 are in the data file fair5. The dependent variable is VOTE = percentage share of
the popular vote won by the Democratic party. In addition to GROWTH and INFLAT , the explanatory
variables include the following:

INCUMB = 1 if there is a Democratic incumbent at the time of the election and −1 if there is a
Republican incumbent.

GOODNEWS = (number of quarters in the first 15 quarters of the administration in which the
growth rate of real per capita GDP is greater than 3.2% at an annual rate except for 1920,
1944, and 1948, where the values are zero) × INCUMB.

http://fairmodel.econ.yale.edu/vote2016/index2.htm
http://fairmodel.econ.yale.edu/vote2016/index2.htm
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DPER = 1 if the incumbent is running for election and 0 otherwise.
DUR = 0 if the Democratic party has been in power for one term, 1[−1] if the Democratic

[Republican] party has been in power for two consecutive terms, 1.25[−1.25] if the
Democratic [Republican] party has been in power for three consecutive terms, 1.50 for four
consecutive terms, and so on.

WAR = 1 for the elections of 1920, 1944, and 1948 and 0 otherwise.
a. Consider the regression model

VOTE = β1 + β2GROWTH + β3INFLAT + β4GOODNEWS + β5DPER
+ β6DUR + β7INCUMB + β8WAR + e

Discuss the anticipated effects of the dummy variable DPER.
b. The variable INCUMB is somewhat different than dummy variables we have considered. Write out

the regression function E(VOTE) when there is a Democratic incumbent. Write out the regression
function E(VOTE) when there is a Republican incumbent. Recall that the signs of GOODNEWS,
GROWTH, and INFLAT depend on INCUMB. Discuss the effects of this specification.

c. Use the data for the period 1916–2012 to estimate the proposed model. Discuss the estimation
results. Are the signs as expected? Are the estimates statistically significant? How well does the
model fit the data?

d. Use the regression result from part (c) to predict the value of VOTE for the 2016 election using the
actual values of the explanatory variables.

e. Use the regression result from part (c) to construct a 95% prediction interval for the value of VOTE
for the 2016 election using the actual values of the explanatory variables.

f. Use the data for the period 1916–2012 to estimate the proposed model. In election year 2016,
INCUMB = 1, DPER = 0, DUR = 1, and WAR = 0. Using GROWTH = 2.16, INFLAT = 1.37,
and GOODNEWS = 3, predict the vote in favor of the Democratic party candidate in 2016.

g. Using the results in (f ), predict the vote in favor of the Democratic party in 2016 if GOODNEWS
= 3, GROWTH = 2.16, and INFLAT = 0.

h. Using the results in (f ), predict the vote in favor of the Democratic party in 2016 if GOODNEWS
= 3, GROWTH = 4.0, and INFLAT = 0.

7.26 The data file br2 contains data on 1080 house sales in Baton Rouge, Louisiana, during July and
August 2005. The variables are: PRICE ($), SQFT (total square feet), BEDROOMS (number),
BATHS (number), AGE (years), OWNER (= 1 if occupied by owner; 0 if vacant or rented), TRADI-
TIONAL (= 1 if traditional style; 0 if other style), FIREPLACE (= 1 if present),WATERFRONT (= 1
if on waterfront).
a. Compute the data summary statistics and comment. In particular, construct a histogram of PRICE.

What do you observe?
b. Estimate a regression model explaining ln(PRICE/1000) as a function of the remaining variables.

Divide the variable SQFT by 100 prior to estimation. Comment on how well the model fits the
data. Discuss the signs and statistical significance of the estimated coefficients. Are the signs what
you expect? Give an exact interpretation of the coefficient of WATERFRONT.

c. Create a variable that is the product of WATERFRONT and TRADITIONAL. Add this variable to
the model and reestimate. What is the effect of adding this variable? Interpret the coefficient of this
interaction variable and discuss its sign and statistical significance.

d. It is arguable that the traditional style homes may have a different regression function from the
diverse set of nontraditional styles. Carry out a Chow test of the equivalence of the regression
models for traditional versus nontraditional styles. What do you conclude?

e. Predict the value of a traditional style house with 2500 square feet of area, that is 20 years old, which
is owner occupied at the time of sale, with a fireplace, but no pool, and not on the waterfront.

7.27 The three most important words in real estate are “location, location, location!” We explore this ques-
tion using 500, single-family home sales in Baton Rouge, LA from 2009 to 2013 in the data file
collegetown. See collegetown.def for variable definitions.
a. Estimate the log-log model ln(PRICE ) = β1 + β2ln(SQFT ) + δ1CLOSE + e. Interpret the

estimated coefficients of ln(SQFT) and CLOSE. Is the location variable CLOSE statistically
significant at the 5% level?

b. Estimate the log-log model ln(PRICE ) = β1 + β2ln(SQFT ) + δ2[CLOSE × ln(SQFT )] + e. Inter-
pret the estimated coefficients of ln(SQFT) and [CLOSE × ln(SQFT )]. Is the location variable
[CLOSE × ln(SQFT )] statistically significant at the 5% level?
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c. Estimate the log-log model
ln(PRICE ) = β1 + β2 ln(SQFT ) + δ1CLOSE + δ2[CLOSE × ln(SQFT )] + e

Are the location variables CLOSE and [CLOSE × ln(SQFT )] individually and jointly statistically
significant at the 5% level?

d. Using the model in (c), predict the prices of two houses with 2500 square feet, one close to the
university and another that is not close. Use the corrected predictor.

e. Add FIREPLACE, TWOSTORY , and OCCUPIED to the model in (c). How do these features affect
the price of a house?

f. Carry out a Chow test for the log-log model, comparing houses that are close to the university
to those that are not close, using explanatory variables ln(SQFT), FIREPLACE, TWOSTORY, and
OCCUPIED. What is the p-value of the test?

7.28 How much of an incumbency advantage do winners in U.S. House elections enjoy? This is the topic of
a paper by David S. Lee (2008) “Randomized experiments from nonrandom selection in U.S. House
elections,” Journal of Econometrics, 142(2), 675–697. Lee uses a regression discontinuity approach
to estimate the effect. There are 435 Congressional districts in the United States and elections are held
every 2 years. Representatives serve a term of 2 years. We employ a subset of Lee’s data. The data
file rddhouse_small has 1200 observations. See the rddhouse_small.def for data details. The data file
rddhouse is larger. The forcing variable is SHARE, which is the Democratic share of the votes in a
election in year t minus 0.50, so that SHARE is the Democratic margin of victory. The outcome of
interest is the Democratic share of the vote in the next election, SHARENEXT .
a. Create a scatter plot with SHARE on the horizontal axis and SHARENEXT on the vertical axis.

Does there appear to be positive relationship, an inverse relationship, or no relationship?
b. The dummy variable D = 1 if SHARE > 0 and D = 0 if SHARE < 0. Estimate the regression model

with SHARENEXT as dependent variable, and SHARE, D, and SHARE × D as explanatory vari-
ables. Interpret the magnitudes, signs, and significance of the coefficients of D and SHARE × D.
Graph the fitted value from this regression against SHARE.

c. The variable BIN is the center of an interval of width 0.005, starting at −0.25. There are 100 bins
between −0.25 and 0.25. Define a “narrow” win or loss as being an election where the margin of
victory, or loss, is within the interval−0.005 to 0.005. Calculate the sample means of SHARENEXT
when BIN = −0.0025 and when BIN = 0.0025. Is the difference in means an estimate of the value
of incumbency? Explain how.

d. Treat the two groups created in (c) as two populations. Carry out a test of the difference between
the two population means using the test in Appendix C.7.2, Case 1. Using a two-tail test and the
5% level of significance, do we reject the equality of the two population means, or not?

e. The variables SHARE2, SHARE3 , and SHARE4 are SHARE raised to the second, third, and fourth
power, respectively. Estimate the regression model with SHARENEXT as dependent variable, with
explanatory variables SHARE and its powers, D and D times SHARE and its powers. Interpret the
magnitudes, signs, and significance of the coefficients of D, and D times SHARE.

f. Graph the fitted value from the regression in (e) against SHARE. Is the fitted line similar to the one
in (b)?

g. Estimate the regression with SHARENEXT as dependent variable with explanatory variables
SHARE and its powers, for the observations when D = 0. Reestimate the regression for the
observations when D = 1. Compare these results to those in (e).

h. The variable BIN in part (c) was created using the equation BIN = SHARE −mod(SHARE, 0.005) +
0.0025, where “mod” is the “modulus operator,” a common software function. In particular,
mod(x, y) = x − y × floor(x∕y) where the operator “floor” rounds the argument down to the next
integer. Explain how this operator works in this application to create “bins” of width 0.005.

7.29 How much of an incumbency advantage do winners in U.S. Senate elections enjoy? This issue is
examined by Matias D. Cattaneo, Brigham R. Frandsen and Rocío Titiunik (2015) “Randomization
Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S.
Senate, Journal of Causal Inference, 3(1): 1–24.32 As they describe (p. 11): “Term length in the
U.S. Senate is 6 years and there are 100 seats. These Senate seats are divided into three classes of

............................................................................................................................................................
32Also in “Robust Data-Driven Inference in the Regression-Discontinuity Design,” by Sebastian Calonico, Matias D.
Cattaneo and Rocio Titiunik, Stata Journal 14(4): 909–946, 4th Quarter 2014.
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roughly equal size (Class I, Class II, and Class III), and every 2 years only the seats in one class are
up for election. As a result, the terms are staggered: In every general election, which occurs every
2 years, only one-third of Senate seats are up for election. Each state elects two senators in different
classes to serve a 6-year term in popular statewide elections. Since its two senators belong to different
classes, each state has Senate elections separated by alternating 2-year and 4-year intervals.” We
employ a subset of their data, contained in the file rddsenate. See rddsenate.def for data details. The
forcing variable is MARGIN, which is the Democratic share of the votes in an election in year t minus
50: it is the Democratic margin of victory. The outcome of interest is the Democratic share of the vote
in the next election for that Senate seat, VOTE.
a. Create a scatter plot with MARGIN on the horizontal axis and VOTE on the vertical axis. Does

there appear to be a positive relationship, an inverse relationship, or no relationship?
b. The dummy variable D = 1 if MARGIN > 0 and D = 0 if MARGIN < 0. Estimate the regression

model with VOTE as dependent variable, and MARGIN, D, and MARGIN × D as explanatory vari-
ables. Interpret the magnitudes, signs, and significance of the coefficients of D and MARGIN × D.
Graph the fitted value from this regression against MARGIN.

c. The variable BIN is the center of an interval of width 5, starting at −97.5 and ending at 102.5.
Define a “narrow” win or loss as being an election where the margin of victory, or loss, is within the
interval −2.5 to 2.5. Calculate the sample means of VOTE when BIN = −2.5 and when BIN = 2.5.
Is the difference in means an estimate of the value of incumbency? Explain how.

d. Treat the two groups created in (c) as two populations. Carry out a test of the difference between
the two population means using the test in Appendix C.7.2, Case 1: Using a two-tail test and the
5% level of significance, do we reject the equality of the two population means, or not?

e. The variables MARGIN2, MARGIN3 , and MARGIN4 are MARGIN raised to the second, third, and
fourth powers, respectively. Estimate the regression model with VOTE as dependent variable, with
explanatory variables MARGIN and its powers, D and D times MARGIN and its powers. Interpret
the magnitudes, signs, and significance of the coefficients of D and D times MARGIN.

f. Graph the fitted value from the regression in (e) against MARGIN. Is the fitted line similar to the
one in (b)?

g. How would the results of (e) compare to the regression with VOTE as dependent variable with
explanatory variables MARGIN and its powers, for the observations when D = 0. What if the
regression was estimated for the observations when D = 1?

7.30 What effect does having public health insurance have on the number of doctor visits a person has
during a year? Using 1988 data, rwm88_small, from Germany we will explore this question. The data
file rwm88 contains more observations. The data were used by Regina T. Riphahn, Achim Wambach,
and Andreas Million, “Incentive Effects in the Demand for Health Care: A Bivariate Panel Count Data
Estimation,” Journal of Applied Econometrics, Vol. 18, No. 4, 2003, pp. 387–405.
a. Construct a histogram of DOCVIS. How many doctor visits do most patients in the survey have dur-

ing the year? What are the mean and median number of doctor visits? What is the 90th percentile?
b. Test the null hypothesis that the population mean number of doctor visits for those with public

insurance is the same as those who do not have public insurance. Use the 5% level of significance
and a one-tail test.

c. Estimate the regression model with dependent variable DOCVIS and explanatory variables
FEMALE, HHKIDS, MARRIED, SELF, EDUC2, HHNINC2. Comment on the signs and
significance of these predictor variables.

d. Estimate the regression model with dependent variable DOCVIS and explanatory variables
FEMALE, HHKIDS, MARRIED, SELF, EDUC2, HHNINC2 separately for those with public
insurance and those who do not have public insurance. Use equation (7.37) to obtain the estimate
of the average treatment effect of public insurance.

e. Estimate the regression model with dependent variable DOCVIS and the explanatory variables
FEMALE, HHKIDS, MARRIED, SELF, EDUC2, HHNINC2 in “deviation from the mean” form.
That is, for each variable x create the variable x̃ = x − x, where x is the sample mean. Compare
these results to those in (c).

f. Estimate the regression model with dependent variable DOCVIS and the explanatory variables
FEMALE, HHKIDS, MARRIED, SELF, EDUC2, HHNINC2, along with PUBLIC and PUBLIC
times each of the variables in deviation about the mean form. What is the estimated average treat-
ment effect? Is it statistically significant at the 5% level?
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Appendix 7A Details of Log-Linear Model
Interpretation
You may have noticed that in Section 7.3, while discussing the interpretation of the log-linear
model, we omitted the error term, and we did not discuss the regression function E(WAGE|").
To do so, we make use of the properties of the log-normal distribution in Appendix B.3.9 and
discussed in Problem 7.11. There we noted that for the log-linear model ln(y) = β1 + β2x + e, if
the error term e ∼ N

(
0, σ2), then the expected value of y is

E(y|x) = exp
(
β1 + β2x + σ2∕2

)
= exp

(
β1 + β2x

)
× exp

(
σ2∕2

)

Starting from this equation, we can explore the interpretation of dummy variables and interaction
terms.

Let D be a dummy variable. Adding this to our log-linear model, we have ln(y) = β1 + β2x +
δD + e and

E(y|x) = exp
(
β1 + β2x + δD

)
× exp

(
σ2∕2

)

If we let E
(
y1|"

)
and E

(
y0|"

)
denote the cases when D = 1 and D = 0, respectively, then we can

compute their percentage difference as

%ΔE(y|x) = 100
[

E
(
y1|x

)
− E

(
y0|x

)

E
(
y0|x

)
]
%,

= 100
[

exp
(
β1 + β2x + δ

)
× exp

(
σ2∕2

)
− exp

(
β1 + β2x

)
× exp

(
σ2∕2

)

exp
(
β1 + β2x

)
× exp

(
σ2∕2

)
]
%

= 100
[

exp
(
β1 + β2x

)
exp(δ) − exp

(
β1 + β2x

)

exp
(
β1 + β2x

)
]
% = 100

[
exp(δ) − 1

]
%

The interpretation of dummy variables in log-linear models carries over to the regression function.
The percentage difference in the expected value of y is 100[exp(δ) − 1]%.

Appendix 7B Derivation of the Differences-in-
Differences Estimator
To verify the expression for the differences-in-differences estimator in (7.14), note that the numer-
ator can be expressed as

N∑
i=1

(
di − d

)(
yi − y

)
=

N∑
i=1

di
(
yi − y

)
− d

N∑
i=1

(
yi − y

)

=
N∑

i=1
di
(
yi − y

)
[

using
N∑

i=1

(
yi − y

)
= 0

]

=
N∑

i=1
diyi − y

N∑
i=1

di

= N1y1 − N1y
= N1y1 − N1

(
N1y1 + N0y0

)
∕N

= N0N1
N

(
y1 − y0

) [
using N = N1 + N0

]



❦

❦ ❦

❦

Appendix 7C The Overlap Assumption: Details 367

The denominator of b2 is
N∑

i=1

(
di − d

)2
=

N∑
i=1

d2
i − 2d

N∑
i=1

di +
N∑

i=1
d

2

=
N∑

i=1
di − 2dN1 + Nd

2
[

using d2
i = di and

N∑
i=1

di = N1

]

= N1 − 2N1
N

N1 + N
(N1

N

)2

= N0N1
N

[
using N = N0 + N1

]

Combining the expressions for numerator and denominator, we obtain the result for the difference
estimator in (7.14).

Appendix 7C The Overlap Assumption: Details
To see the impact of the difference of means, x1 − x0, on the average treatment effect we begin
with the separate regressions on the control and treatment groups used to compute the average
treatment effect in Section 7.6.4, α̂0 + β̂0xi and α̂1 + β̂1xi. Using the property of least squares fitted
lines, the estimated intercepts are

α̂0 = y0 − β̂0x0 and α̂1 = y1 − β̂0x1

We can express the sample mean of the control variable as

x = N−1
N∑

i=1
xi = N−1

[
N0∑
i=1

xi +
N∑

i=N0+1
xi

]
= N−1[N0x0 + N1x1

]

=
N0x0

N
+

N1x1
N

= "0x0 + "1x1

The control variable sample mean x is a weighted average of x0 and x1, where the weight f 0 is
the fraction of the observations in the control group and f 1 is the fraction of observations in the
treatment group. Then

τ̂ATE =
(
α̂1 − α̂0

)
+
(
β̂1 − β̂0

)
x

=
[(

y1 − β̂1x1
)
−
(

y0 − β̂0x0
)]

+
(
β̂1 − β̂0

)(
"0x0 + "1x1

)

=
(
y1 − y0

)
− β̂1x1 + β̂0x0 + "0β̂1x0 + "1β̂1x1 − "0β̂0x0 − "1β̂0x1

=
(
y1 − y0

)
+
(
"1β̂1x1 − β̂1x1

)
−
(
"0β̂0x0 − β̂0x0

)
+ "0β̂1x0 − "1β̂0x1

=
(
y1 − y0

)
+
(
"1 − 1

)
β̂1x1 −

(
"0 − 1

)
β̂0x0 + "0β̂1x0 − "1β̂0x1

But
"1 − 1 =

N1 −
(
N0 + N1

)

N0 + N1
= −

N0
N0 + N1

= −"0

and
"0 − 1 =

N0 −
(
N0 + N1

)

N0 + N1
= −

N1
N0 + N1

= −"1

Therefore,
τ̂ATE =

(
y1 − y0

)
− "0β̂1x1 + "1β̂0x0 + "0β̂1x0 − "1β̂0x1

=
(
y1 − y0

)
+
(
"0β̂1 + "1β̂0

)
x0 −

(
"0β̂1 + "1β̂0

)
x1

=
(
y1 − y0

)
−
(
"0β̂1 + "1β̂0

)(
x1 − x0

)
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