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CHAPTER 4

Prediction,
Goodness-of-Fit,
and Modeling Issues

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain how to use the simple linear regression
model to predict the value of y for a given value
of x.

2. Explain, intuitively and technically, why
predictions for x values further from x are less
reliable.

3. Explain the meaning of SST, SSR, and SSE, and
how they are related to R2.

4. Define and explain the meaning of the
coefficient of determination.

5. Explain the relationship between correlation
analysis and R2.

6. Report the results of a fitted regression equation
in such a way that confidence intervals and
hypothesis tests for the unknown coefficients
can be constructed quickly and easily.

7. Describe how estimated coefficients and other
quantities from a regression equation will
change when the variables are scaled. Why
would you want to scale the variables?

8. Appreciate the wide range of nonlinear functions
that can be estimated using a model that is
linear in the parameters.

9. Write down the equations for the log-log,
log-linear, and linear-log functional forms.

10. Explain the difference between the slope of a
functional form and the elasticity from a
functional form.

11. Explain how you would go about choosing a
functional form and deciding that a functional
form is adequate.

12. Explain how to test whether the equation
‘‘errors’’ are normally distributed.

13. Explain how to compute a prediction, a
prediction interval, and a goodness-of-fit
measure in a log-linear model.

14. Explain alternative methods for detecting
unusual, extreme, or incorrect data values.
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K E Y W O R D S
coefficient of determination
correlation
forecast error
functional form
goodness-of-fit
growth model
influential observations
Jarque–Bera test

kurtosis
least squares predictor
linear model
linear relationship
linear-log model
log-linear model
log-log model
log-normal distribution

prediction
prediction interval
R2

residual diagnostics
scaling data
skewness
standard error of the forecast

In Chapter 3, we focused on making statistical inferences, constructing confidence intervals, and
testing hypotheses about regression parameters. Another purpose of the regression model, and
the one we focus on first in this chapter, is prediction. A prediction is a forecast of an unknown
value of the dependent variable y given a particular value of x. A prediction interval, much like
a confidence interval, is a range of values in which the unknown value of y is likely to be located.
Examining the correlation between sample values of y and their predicted values provides a
goodness-of-fit measure called R2 that describes how well our model fits the data. For each
observation in the sample, the difference between the predicted value of y and the actual value is
a residual. Diagnostic measures constructed from the residuals allow us to check the adequacy
of the functional form used in the regression analysis and give us some indication of the
validity of the regression assumptions. We will examine each of these ideas and concepts in turn.

4.1 Least Squares Prediction
In Example 2.4, we briefly introduced the idea that the least squares estimates of the linear regres-
sion model provide a way to predict the value of y for any value of x. The ability to predict is
important to business economists and financial analysts who attempt to forecast the sales and rev-
enues of specific firms; it is important to government policymakers who attempt to predict the
rates of growth in national income, inflation, investment, saving, social insurance program expen-
ditures, and tax revenues; and it is important to local businesses who need to have predictions of
growth in neighborhood populations and income so that they may expand or contract their provi-
sion of services. Accurate predictions provide a basis for better decision making in every type of
planning context. In this section, we explore the use of linear regression as a tool for prediction.

Given the simple linear regression model and assumptions SR1–SR6, let x0 be a given value
of the explanatory variable. We want to predict the corresponding value of y, which we call y0.
In order to use regression analysis as a basis for prediction, we must assume that y0 and x0 are
related to one another by the same regression model that describes our sample of data, so that, in
particular, SR1 holds for these observations

y0 = β1 + β2x0 + e0 (4.1)
where e0 is a random error. We assume that E

(
y0|x0

)
= β1 + β2x0 and E

(
e0
)
= 0. We also assume

that e0 has the same variance as the regression errors, var
(
e0
)
= σ2, and e0 is uncorrelated with

the random errors that are part of the sample data, so that cov
(
e0, ei|x

)
= 0, i = 1, 2, … , N.

The task of predicting y0 is related to the problem of estimating E
(
y0|x0

)
= β1 + β2x0,

which we discussed in Section 3.6. The outcome y0 = E
(
y0|x0

)
+ e0 = β1 + β2x0 + e0 is

composed of two parts, the systematic, nonrandom part E
(
y0|x0

)
= β1 + β2x0, and a random
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component e0. We estimate the systematic portion using Ê
(
y0|x0

)
= b1 + b2x0 and add an

“estimate” of e0 equal to its expected value, which is zero. Therefore, the prediction ŷ0 is given by
ŷ0 = Ê

(
y0|x0

)
+ 0 = b1 + b2x0. Despite the fact that we use the same statistic for both ŷ0 and

Ê
(
y0|x0

)
, we distinguish between them because, although E

(
y0|x0

)
= β1 + β2x0 is not random,

the outcome y0 is random. Consequently, as we will see, there is a difference between the
interval estimate of E

(
y0|x0

)
= β1 + β2x0 and the prediction interval for y0.

Following from the discussion in the previous paragraph, the least squares predictor of y0
comes from the fitted regression line

ŷ0 = b1 + b2x0 (4.2)
That is, the predicted value ŷ0 is given by the point on the least squares fitted line where x = x0,
as shown in Figure 4.1. How good is this prediction procedure? The least squares estimators b1
and b2 are random variables—their values vary from one sample to another. It follows that the
least squares predictor ŷ0 = b1 + b2x0 must also be random. To evaluate how well this predictor
performs, we define the forecast error, which is analogous to the least squares residual,

" = y0 − ŷ0 =
(
β1 + β2x0 + e0

)
−
(
b1 + b2x0

)
(4.3)

We would like the forecast error to be small, implying that our forecast is close to the value we
are predicting. Taking the conditional expected value of f , we find

E(" |x) = β1 + β2x0 + E
(
e0
)
−
[
E
(
b1|x

)
+ E

(
b2|x

)
x0
]

= β1 + β2x0 + 0 −
[
β1 + β2x0

]

= 0
which means, on average, the forecast error is zero, and ŷ0 is an unbiased predictor of y0. How-
ever, unbiasedness does not necessarily imply that a particular forecast will be close to the actual
value. The probability of a small forecast error also depends on the variance of the forecast error.
Although we will not prove it, ŷ0 is the best linear unbiased predictor (BLUP) of y0 if assump-
tions SR1–SR5 hold. This result is reasonable given that the least squares estimators b1 and b2
are best linear unbiased estimators.

Using (4.3) and what we know about the variances and covariances of the least squares esti-
mators, we can show (see Appendix 4A) that the variance of the forecast error is

var(" |x) = σ2
[

1 + 1
N

+
(
x0 − x

)2

∑(
xi − x

)2

]
(4.4)

Notice that some of the elements of this expression appear in the formulas for the variances of the
least squares estimators and affect the precision of prediction in the same way that they affect the
precision of estimation. We would prefer that the variance of the forecast error be small, which

x0

y0

yi = b1 + b2 xi

FIGURE 4.1 A point prediction.



❦

❦ ❦

❦

4.1 Least Squares Prediction 155

x0

y0  + tc se( f ) 

y0

y0  – tc se( f )

y0  = b1 + b2 x0

x

y

FIGURE 4.2 Point and interval prediction.

would increase the probability that the prediction ŷ0 is close to the value y0, we are trying to
predict. Note that the variance of the forecast error is smaller when

i. the overall uncertainty in the model is smaller, as measured by the variance of the random
errors σ2

ii. the sample size N is larger
iii. the variation in the explanatory variable is larger
iv. the value of

(
x0 − x

)2 is small

The new addition is the term
(
x0 − x

)2, which measures how far x0 is from the center of the
x-values. The more distant x0 is from the center of the sample data the larger the forecast variance
will become. Intuitively, this means that we are able to do a better job predicting in the region
where we have more sample information, and we will have less accurate predictions when we try
to predict outside the limits of our data.

In practice we replace σ2 in (4.4) by its estimator σ̂2 to obtain

var
⋀

(" |x) = σ̂2
[

1 + 1
N

+
(
x0 − x

)2

∑(
xi − x

)2

]

The square root of this estimated variance is the standard error of the forecast

se(" ) =
√

var
⋀

(" |x) (4.5)

Defining the critical value tc to be the 100(1 − α∕2)-percentile from the t-distribution, we can
obtain a 100(1 − α)% prediction interval as

ŷ0 ± tcse(" ) (4.6)

See Appendix 4A for some details related to the development of this result.
Following our discussion of var(" |x) in (4.4), the farther x0 is from the sample mean x, the

larger the variance of the prediction error will be, and the less reliable the prediction is likely to
be. In other words, our predictions for values of x0 close to the sample mean x are more reliable
than our predictions for values of x0 far from the sample mean x. This fact shows up in the size
of our prediction intervals. The relationship between point and interval predictions for different
values of x0 is illustrated in Figure 4.2. A point prediction is given by the fitted least squares
line ŷ0 = b1 + b2x0. The prediction interval takes the form of two bands around the fitted least
squares line. Because the forecast variance increases the farther x0 is from the sample mean x, the
confidence bands are their narrowest when x0 = x, and they increase in width as ||x0 − x|| increases.
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E X A M P L E 4.1 Prediction in the Food Expenditure Model

In Example 2.4, we predicted that a household with
x0 = $2,000 weekly income would spend $287.61 on food
using the calculation

ŷ0 = b1 + b2x0 = 83.4160 + 10.2096(20) = 287.6089
Now we are able to attach a “confidence interval” to this pre-
diction. The estimated variance of the forecast error is

var
⋀

(" |x) = σ̂2
[

1 + 1
N

+
(
x0 − x

)2

∑(
xi − x

)2

]

= σ̂2 + σ̂2

N
+
(
x0 − x

)2 σ̂2

∑(
xi − x

)2

= σ̂2 + σ̂2

N
+
(
x0 − x

)2var
⋀(

b2|x
)

In the last line, we have recognized the estimated variance
of b2 from (2.21). In Example 2.5 we obtained the values
σ̂2 = 8013.2941 and var

⋀(
b2|x

)
= 4.3818. For the food

expenditure data, N = 40 and the sample mean of
the explanatory variable is x = 19.6048. Using these
values, we obtain the standard error of the forecast
se(" ) =

√
var
⋀

(" |x) =
√

8214.31 = 90.6328. If we select
1 − α = 0.95, then tc = t(0.975, 38) = 2.0244 and the 95%
prediction interval for y0 is

ŷ0 ± tcse(" ) = 287.6069 ± 2.0244(90.6328)
=[104.1323, 471.0854]

Our prediction interval suggests that a household with $2,000
weekly income will spend somewhere between $104.13 and
$471.09 on food. Such a wide interval means that our point
prediction $287.61 is not very reliable. We have obtained this
wide prediction interval for the value of x0 = 20 that is close
to the sample mean x = 19.60. For values of x that are more
extreme, the prediction interval would be even wider. The
unreliable predictions may be slightly improved if we col-
lect a larger sample of data, which will improve the precision
with which we estimate the model parameters. However, in
this example the magnitude of the estimated error variance
σ̂2 is very close to the estimated variance of the forecast error
var
⋀

(" |x), indicating that the primary uncertainty in the fore-
cast comes from large uncertainty in the model. This should
not be a surprise, since we are predicting household behav-
ior, which is a complicated phenomenon, on the basis of a
single household characteristic, income. Although income is
a key factor in explaining food expenditure, we can imagine
that many other household demographic characteristics may
play a role. To more accurately predict food expenditure, we
may need to include these additional factors into the regres-
sion model. Extending the simple regression model to include
other factors will begin in Chapter 5.

4.2 Measuring Goodness-of-Fit
Two major reasons for analyzing the model

yi = β1 + β2xi + ei (4.7)
are to explain how the dependent variable

(
yi
)

changes as the independent variable
(
xi
)

changes
and to predict y0 given an x0. These two objectives come under the broad headings of estimation
and prediction. Closely allied with the prediction problem discussed in the previous section is the
desire to use xi to explain as much of the variation in the dependent variable yi as possible. In the
regression model (4.7), we call xi the “explanatory” variable because we hope that its variation
will “explain” the variation in yi.

To develop a measure of the variation in yi that is explained by the model, we begin by
separating yi into its explainable and unexplainable components. We have assumed that

yi = E
(
yi|x

)
+ ei (4.8)

where E
(
yi|x

)
= β1 + β2xi is the explainable, “systematic” component of yi, and ei is the random,

unsystematic, and unexplainable component of yi. While both of these parts are unobservable to
us, we can estimate the unknown parameters β1 and β2 and, analogous to (4.8), decompose the
value of yi into

yi = ŷi + êi (4.9)
where ŷi = b1 + b2xi and êi = yi − ŷi.
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x xi x

y

y y

(x, y)

y = b1 + b2x

yi – y = explained component

ei = yi – yi = unexplained component

(xi, yi)

(xi, yi)

yi – y

FIGURE 4.3 Explained and unexplained components of yi.

In Figure 4.3, the “point of the means”
(
x, y

)
is shown, with the least squares fitted line passing

through it. This is a characteristic of the least squares fitted line whenever the regression model
includes an intercept term. Subtract the sample mean y from both sides of the equation to obtain

yi − y =
(
ŷi − y

)
+ êi (4.10)

As shown in Figure 4.3, the difference between yi and its mean value y consists of a part that is
“explained” by the regression model ŷi − y and a part that is unexplained êi.

The breakdown in (4.10) leads to a decomposition of the total sample variability in y into
explained and unexplained parts. Recall from your statistics courses (see Appendix C4) that if we
have a sample of observations y1, y2, …, yN, two descriptive measures are the sample mean y and
the sample variance

s2
y =

∑(
yi − y

)2

N − 1
The numerator of this quantity, the sum of squared differences between the sample values yi
and the sample mean y, is a measure of the total variation in the sample values. If we square
and sum both sides of (4.10) and use the fact that the cross-product term ∑(

ŷi − y
)
êi = 0 (see

Appendix 4B), we obtain ∑(
yi − y

)2 = ∑(
ŷi − y

)2 +∑
ê2

i (4.11)
Equation (4.11) gives us a decomposition of the “total sample variation” in y into explained and
unexplained components. Specifically, these “sums of squares” are as follows:

1. ∑(
yi − y

)2 = total sum of squares = SST: a measure of total variation in y about the sample
mean.

2. ∑(
ŷi − y

)2 = sum of squares due to the regression = SSR: that part of total variation in y,
about the sample mean, that is explained by, or due to, the regression. Also known as the
“explained sum of squares.”

3. ∑
ê2

i = sum of squares due to error = SSE: that part of total variation in y about its mean
that is not explained by the regression. Also known as the unexplained sum of squares, the
residual sum of squares, or the sum of squared errors.

Using these abbreviations, (4.11) becomes
SST = SSR + SSE
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This decomposition of the total variation in y into a part that is explained by the regression model
and a part that is unexplained allows us to define a measure, called the coefficient of determina-
tion, or R2, that is the proportion of variation in y explained by x within the regression model.

R2 = SSR
SST

= 1 − SSE
SST

(4.12)

The closer R2 is to 1, the closer the sample values yi are to the fitted regression equation
ŷi = b1 + b2xi. If R2 = 1, then all the sample data fall exactly on the fitted least squares line, so
SSE = 0, and the model fits the data “perfectly.” If the sample data for y and x are uncorrelated
and show no linear association, then the least squares fitted line is “horizontal,” and identical
to y, so that SSR = 0 and R2 = 0. When 0 < R2 < 1, it is interpreted as “the proportion of the
variation in y about its mean that is explained by the regression model.”

4.2.1 Correlation Analysis
In Appendix B.1.5, we discuss the covariance and correlation between two random variables x
and y. The correlation coefficient ρxy between x and y is defined in (B.21) as

ρxy =
cov(x, y)√

var(x)
√

var(y)
=
σxy

σxσy
(4.13)

In Appendix B, we did not discuss estimating the correlation coefficient. We will do so now to
develop a useful relationship between the sample correlation coefficient and R2.

Given a sample of data pairs
(
xi, yi

)
, i = 1,… ,N, the sample correlation coefficient is

obtained by replacing the covariance and standard deviations in (4.13) by their sample analogs:

rxy =
sxy

sxsy
where

sxy =
∑(

xi − x
)(

yi − y
)/
(N − 1)

sx =
√∑(

xi − x
)2/(N − 1)

sy =
√∑(

yi − y
)2/(N − 1)

The sample correlation coefficient rxy has a value between −1 and 1, and it measures the strength
of the linear association between observed values of x and y.

4.2.2 Correlation Analysis and R2

There are two interesting relationships between R2 and rxy in the simple linear regression
model.

1. The first is that r2
xy = R2. That is, the square of the sample correlation coefficient between

the sample data values xi and yi is algebraically equal to R2 in a simple regression model.
Intuitively, this relationship makes sense: r2

xy falls between zero and one and measures the
strength of the linear association between x and y. This interpretation is not far from that
of R2: the proportion of variation in y about its mean explained by x in the linear regression
model.

2. The second, and more important, relation is that R2 can also be computed as the square of
the sample correlation coefficient between yi and ŷi = b1 + b2xi. That is, R2 = r2

yŷ. As such,
it measures the linear association, or goodness-of-fit, between the sample data and their
predicted values. Consequently, R2 is sometimes called a measure of “goodness-of-fit.” This
result is valid not only in simple regression models but also in multiple regression models
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that we introduce in Chapter 5. Furthermore, as you will see in Section 4.4, the concept
of obtaining a goodness-of-fit measure by predicting y as well as possible and finding the
squared correlation coefficient between this prediction and the sample values of y can be
extended to situations in which the usual R2 does not strictly apply.

E X A M P L E 4.2 Goodness-of-Fit in the Food Expenditure Model

Look at the food expenditure example, Example 2.4, and
in particular, the data scatter and fitted regression line in
Figure 2.8, and the computer output in Figure 2.9. Go ahead.
I will wait until you get back. The question we would like
to answer is “How well does our model fit the data?” To
compute R2, we can use the sums of squares

SST =∑(
yi − y

)2 = 495132.160

SSE =∑(
yi − ŷi

)2 = ∑
ê2

i = 304505.176
Then

R2 = 1 − SSE
SST

= 1 − 304505.176
495132.160 = 0.385

We conclude that 38.5% of the variation in food expenditure
(about its sample mean) is explained by our regression
model, which uses only income as an explanatory variable.
Is this a good R2? We would argue that such a question
is not useful. Although finding and reporting R2 provides
information about the relative magnitudes of the different
sources of variation, debates about whether a particular R2

is “large enough” are not particularly constructive. Microe-
conomic household behavior is very difficult to explain.
With cross-sectional data, R2 values from 0.10 to 0.40 are
very common even with much larger regression models.

Macroeconomic analyses using time-series data, which often
trend together smoothly over time, routinely report R2 values
of 0.90 and higher. You should not evaluate the quality of
the model based only on how well it predicts the sample
data used to construct the estimates. To evaluate the model,
it is as important to consider factors such as the signs and
magnitudes of the estimates, their statistical and economic
significance, the precision of their estimation, and the
ability of the fitted model to predict values of the dependent
variable that were not in the estimation sample. Other model
diagnostic issues will be discussed in the following section.

Correlation analysis leads to the same conclusions and
numbers, but it is worthwhile to consider this approach in
more detail. The sample correlation between the y and x sam-
ple values is

rxy =
sxy

sxsy
= 478.75
(6.848)(112.675) = 0.62

The correlation is positive, indicating a positive associa-
tion between food expenditure and income. The sample
correlation measures the strength of the linear association,
with a maximum value of 1. The value rxy = 0.62 indicates
a non-negligible but less than perfect fit. As expected
r2

xy = 0.622 = 0.385 = R2.

E X A M P L E 4.3 Reporting Regression Results

In any paper where you write the results of a simple regres-
sion, with only one explanatory variable, these results can
be presented quite simply. The key ingredients are the coeffi-
cient estimates, the standard errors (or t-values), an indication
of statistical significance, and R2. Also, when communicat-
ing regression results, avoid using symbols like x and y. Use
abbreviations for the variables that are readily interpreted,
defining the variables precisely in a separate section of the
report. For the food expenditure example, we might have the
variable definitions:

FOOD_EXP = weekly food expenditure by a household of
size 3, in dollars

INCOME = weekly household income, in $100 units

Then the estimated equation results are as follows:

FOOD_EXP = 83.42 + 10.21 INCOME R2 = 0.385
(se) (43.41)∗ (2.09)∗∗∗

Report the standard errors below the estimated coefficients.
The reason for showing the standard errors is that an approx-
imate 95% interval estimate (if the degrees of freedom N – 2
are greater than 30) is bk ± 2(se). If desired, the reader may
divide the estimate by the standard error to obtain the value of
the t-statistic for testing a zero null hypothesis. Furthermore,
testing other hypotheses is facilitated by having the standard
error present. To test the null hypothesis H0∶β2 = 8.0, we
can quickly construct the t-statistic t = [(10.21 – 8)∕2.09] and
proceed with the steps of the test procedure.
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Asterisks are often used to show the reader the statisti-
cally significant (i.e., significantly different from zero using
a two-tail test) coefficients, with explanations in a table foot-
note:

* indicates significant at the 10% level
** indicates significant at the 5% level

*** indicates significant at the 1% level

The asterisks are assigned by checking the p-values from the
computer output, as shown in Figure 2.9.

4.3 Modeling Issues
4.3.1 The Effects of Scaling the Data

Data we obtain are not always in a convenient form for presentation in a table or use in a regression
analysis. When the scale of the data is not convenient, it can be altered without changing any of
the real underlying relationships between variables. For example, the real personal consumption
in the United States, as of the second quarter of 2015, was $12228.4 billion annually. That is,
$12,228,400,000,000 written out. While we could use the long form of the number in a table or
in a regression analysis, there is no advantage to doing so. By choosing the units of measurement
to be “billions of dollars,” we have taken a long number and made it comprehensible. What are
the effects of scaling the variables in a regression model?

Consider the food expenditure model. In Table 2.1 we report weekly expenditures in dollars
but we report income in $100 units, so a weekly income of $2,000 is reported as x = 20. Why
did we scale the data in this way? If we had estimated the regression using income in dollars, the
results would have been

FOOD_EXP = 83.42 + 0.1021 INCOME($) R2 = 0.385
(se) (43.41)∗ (0.0209)∗∗∗

There are two changes. First, the estimated coefficient of income is now 0.1021. The interpretation
is “If weekly household income increases by $1 then we estimate that weekly food expenditure
will increase by about 10 cents.” There is nothing mathematically wrong with this, but it leads to a
discussion of changes that are so small as to seem irrelevant. An increase in income of $100 leads
to an estimated increase in food expenditure of $10.21, as before, but these magnitudes are more
easily discussed.

The other change that occurs in the regression results when income is in dollars is that the
standard error becomes smaller, by a factor of 100. Since the estimated coefficient is smaller by
a factor of 100 also, this leaves the t-statistic and all other results unchanged.

Such a change in the units of measurement is called scaling the data. The choice of the scale is
made by the researcher to make interpretation meaningful and convenient. The choice of the scale
does not affect the measurement of the underlying relationship, but it does affect the interpretation
of the coefficient estimates and some summary measures. Let us list the possibilities:

1. Changing the scale of x : In the linear regression model y = β1 + β2x + e, suppose we change
the units of measurement of the explanatory variable x by dividing it by a constant c. In
order to keep intact the equality of the left- and right-hand sides, the coefficient of x must
be multiplied by c. That is, y = β1 + β2x + e = β1 +

(
cβ2

)
(x∕c) + e = β1 + β∗2x∗ + e, where

β∗2 = cβ2 and x∗ = x∕c. For example, if x is measured in dollars, and c = 100, then x∗ is
measured in hundreds of dollars. Then β∗2 measures the expected change in y given a $100
increase in x, and β∗2 is 100 times larger than β2. When the scale of x is altered, the only
other change occurs in the standard error of the regression coefficient, but it changes by the
same multiplicative factor as the coefficient, so that their ratio, the t-statistic, is unaffected.
All other regression statistics are unchanged.
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2. Changing the scale of y: If we change the units of measurement of y, but not x, then
all the coefficients must change in order for the equation to remain valid. That is,
y∕c =

(
β1∕c

)
+
(
β2∕c

)
x + (e∕c) or y∗ = β∗1 + β

∗
2x + e∗. In this rescaled model, β∗2 measures

the change we expect in y∗ given a 1-unit change in x. Because the error term is scaled in
this process, the least squares residuals will also be scaled. This will affect the standard
errors of the regression coefficients, but it will not affect t-statistics or R2.

3. If the scale of y and the scale of x are changed by the same factor, then there will be no
change in the reported regression results for b2, but the estimated intercept and residuals
will change; t-statistics and R2 are unaffected. The interpretation of the parameters is made
relative to the new units of measurement.

4.3.2 Choosing a Functional Form
In our ongoing example, we have assumed that the mean household food expenditure is a linear
function of household income. That is, we assumed the underlying economic relationship to be
E(y|x) = β1 + β2x, which implies that there is a linear, straight-line relationship between E(y|x)
and x. Why did we do that? Although the world is not “linear,” a straight line is a good approxima-
tion to many nonlinear or curved relationships over narrow ranges. Moreover, in your principles of
economics classes, you may have begun with straight lines for supply, demand, and consumption
functions, and we wanted to ease you into the more “artistic” aspects of econometrics.

The starting point in all econometric analyses is economic theory. What does economics
really say about the relation between food expenditure and income, holding all else constant?
We expect there to be a positive relationship between these variables because food is a normal
good. But nothing says the relationship must be a straight line. In fact, we do not expect that as
household income rises, food expenditures will continue to rise indefinitely at the same constant
rate. Instead, as income rises, we expect food expenditures to rise, but we expect such expenditures
to increase at a decreasing rate. This is a phrase that is used many times in economics classes. What
it means graphically is that there is not a straight-line relationship between the two variables. For a
curvilinear relationship like that in Figure 4.4, the marginal effect of a change in the explanatory
variable is measured by the slope of the tangent to the curve at a particular point. The marginal
effect of a change in x is greater at the point

(
x1, y1

)
than it is at the point

(
x2, y2

)
. As x increases,

the value of y increases, but the slope is becoming smaller. This is the meaning of “increasing at a
decreasing rate.” In the economic context of the food expenditure model, the marginal propensity
to spend on food is greater at lower incomes, and as income increases the marginal propensity to
spend on food declines.

y

Slope at
point y1, x1

Slope at
point y2, x2

xx1 x2

FIGURE 4.4 A nonlinear relationship between food
expenditure and income.
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The simple linear regression model is much more flexible than it appears at first glance. By
transforming the variables y and x we can represent many curved, nonlinear relationships and
still use the linear regression model. In Section 2.8, we introduced the idea of using quadratic
and log-linear functional forms. In this and subsequent sections, we introduce you to an array of
other possibilities and give some examples.

Choosing an algebraic form for the relationship means choosing transformations of the orig-
inal variables. This is not an easy process, and it requires good analytic geometry skills and some
experience. It may not come to you easily. The variable transformations that we begin with are
as follows:

1. Power: If x is a variable, then xp means raising the variable to the power p; examples are
quadratic

(
x2) and cubic

(
x3) transformations.

2. The natural logarithm: If x is a variable, then its natural logarithm is ln(x).

Using just these two algebraic transformations, there are amazing varieties of “shapes” that we
can represent, as shown in Figure 4.5.

A difficulty introduced when transforming variables is that regression result interpretations
change. For each different functional form, shown in Table 4.1, the expressions for both the slope
and elasticity change from the linear relationship case. This is so because the variables are related
nonlinearly. What this means for the practicing economist is that great attention must be given to

Quadratic equations Cubic equations

(a) (b)

(c) (d)

(e) (f)

Log-log models Log-log models

Log-linear models Linear-log models

y = β1 + β2x2 y = β1 + β2x3

ln(y) = β1 + β2ln(x)

y = β1 + β2ln(x)ln(y) = β1 + β2x

ln(y) = β1 + β2ln(x)

y y

y y

y y

x x

x x

x x

β2 < 0

β2 > 1

0 < β2 < 1 –1 < β2 < 0

β2 < –1

β2 = –1

β2 < 0

β2 > 0

β2 > 0 β2 > 0

β2 < 0 β2 < 0

β2 > 0

FIGURE 4.5 Alternative functional forms.
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T A B L E 4.1
Some Useful Functions, Their Derivatives, Elasticities, and Other
Interpretation

Name Function Slope = dy/dx Elasticity
Linear y = β1 + β2x β2 β2

x
y

Quadratic y = β1 + β2x2 2β2x
(
2β2x

) x
y

Cubic y = β1 + β2x3 3β2x2 (
3β2x2) x

y
Log-log ln(y) = β1 + β2ln(x) β2

y
x

β2

Log-linear ln(y) = β1 + β2x β2y β2x
or, a 1-unit change in x leads to (approximately) a 100β2% change in y

Linear-log y = β1 + β2ln(x) β2
1
x

β2
1
y

or, a 1% change in x leads to (approximately) a β2∕100 unit change in y

result interpretation whenever variables are transformed. Because you may be less familiar with
logarithmic transformations, let us summarize the interpretation in three possible configurations.

1. In the log-log model, both the dependent and independent variables are transformed by the
“natural” logarithm. The model is ln(y) = β1 + β2ln(x). In order to use this model, both y and
x must be greater than zero because the logarithm is defined only for positive numbers. The
parameter β2 is the elasticity of y with respect to x. Referring to Figure 4.5, you can see why
economists use the constant elasticity, log-log model specification so frequently. In panel (c),
if β2 > 1, the relation could depict a supply curve, or if 0 < β2 < 1, a production relation.
In panel (d), if β2 < 0, it could represent a demand curve. In each case, interpretation is
convenient because the elasticity is constant. An example is given in Section 4.6.

2. In the log-linear model ln(y) = β1 + β2x, only the dependent variable is transformed by
the logarithm. The dependent variable must be greater than zero to use this form. In this
model, a 1-unit increase in x leads to (approximately) a 100β2% change in y. The log-linear
form is common; it was introduced in Sections 2.8.3–2.8.4 and will be further discussed in
Section 4.5. Note its possible shapes in Figure 4.5(e). If β2 > 0, the function increases at an
increasing rate; its slope is larger for larger values of y. If β2 < 0, the function decreases, but
at a decreasing rate.

3. In the linear-log model y = β1 + β2ln(x) the variable x is transformed by the natural loga-
rithm. See Figure 4.5(f). We can say that a 1% increase in x leads to a β2∕100-unit change
in y. An example of this functional form is given in the following section.

Remark
Our plan for the remainder of this chapter is to consider several examples of the uses of
alternative functional forms. In the following section we use the linear-log functional form
with the food expenditure data. Then we take a brief detour into some diagnostic measures
for data and model adequacy based on the least squares residuals. After discussing the diag-
nostic tools we give examples of polynomial equations, log-linear equations, and log-log
equations.

4.3.3 A Linear-Log Food Expenditure Model
Suppose that in the food expenditure model, we wish to choose a functional form that is consis-
tent with Figure 4.4. One option is the linear-log functional form. A linear-log equation has a
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linear, untransformed term on the left-hand side and a logarithmic term on the right-hand side,
or y = β1 + β2ln(x). Because of the logarithm, this function requires x > 0. It is an increasing
or decreasing function, depending on the sign of β2. Using Derivative Rule 8, Appendix A, the
slope of the function is β2∕x, so that as x increases, the slope decreases in absolute magnitude. If
β2 > 0, then the function increases at a decreasing rate. If β2 < 0, then the function decreases at a
decreasing rate. The function shapes are depicted in Figure 4.5(f). The elasticity of y with respect
to x in this model is ε = slope × x∕y = β2∕y.

There is a convenient interpretation using approximations to changes in logarithms. Consider
a small increase in x from x0 to x1. Then y0 = β1 + β2ln

(
x0
)

and y1 = β1 + β2ln
(
x1
)
. Subtract-

ing the former from the latter, and using the approximation developed in Appendix A, equation
(A.3), gives

Δy = y1 − y0 = β2
[
ln
(
x1
)
− ln

(
x0
)]

=
β2

100 × 100
[
ln
(
x1
)
− ln

(
x0
)]

≅
β2

100 (%Δx)

The change in y, represented in its units of measure, is approximately β2∕100 times the percentage
change in x.

E X A M P L E 4.4 Using the Linear-Log Model for Food Expenditure

Using a linear-log equation for the food expenditure relation
results in the regression model

FOOD_EXP = β1 + β2 ln(INCOME) + e

For β2 > 0 this function is increasing but at a decreasing rate.
As INCOME increases the slope β2∕INCOME decreases. In
this context, the slope is the marginal propensity to spend
on food from additional income. Similarly, the elasticity,
β2∕FOOD_EXP, becomes smaller for larger levels of food
expenditure. These results are consistent with the idea that at
high incomes, and large food expenditures, the effect of an
increase in income on food expenditure is small.
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FIGURE 4.6 The fitted linear-log model.

The estimated linear-log model using the food expendi-
ture data is

FOOD_EXP
⋀

= −97.19 +132.17 ln(INCOME) R2 = 0.357
(se) (84.24) (28.80)∗∗∗

(4.14)
The fitted model is shown in Figure 4.6.

As anticipated, the fitted function is not a straight line.
The fitted linear-log model is consistent with our theoretical
model that anticipates declining marginal propensity to
spend additional income on food. For a household with
$1,000 weekly income, we estimate that the household
will spend an additional $13.22 on food from an additional
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$100 income, whereas we estimate that a household with
$2,000 per week income will spend an additional $6.61 from
an additional $100 income. The marginal effect of income
on food expenditure is smaller at higher levels of income.
This is a change from the linear, straight-line relationship we
originally estimated, in which the marginal effect of a change
in income of $100 was $10.21 for all levels of income.

Alternatively, we can say that a 1% increase in income
will increase food expenditure by approximately $1.32 per
week or that a 10% increase in income will increase food
expenditure by approximately $13.22. Although this inter-
pretation is conveniently simple to state, the diminishing
marginal effect of income on food expenditure is somewhat
disguised, though still implied. At $1,000 per week income,

a 10% increase is $100, while at $2,000 income a 10%
increase is $200. At higher levels of income, a larger dollar
increase in income is required to elicit an additional $13.22
expenditure on food.

In terms of how well the model fits the data, we see
that R2 = 0.357 for the linear-log model, as compared to
R2 = 0.385 for the linear, straight-line relationship. Since
these two models have the same dependent variable,
FOOD_EXP, and each model has a single explanatory
variable, a comparison of R2 values is valid. However, there
is a very small difference in the fit of the two models, and in
any case, a model should not be chosen only on the basis of
model fit with R2 as the criterion.

Remark
Given alternative models that involve different transformations of the dependent and inde-
pendent variables, and some of which have similar shapes, what are some guidelines for
choosing a functional form?

1. Choose a shape that is consistent with what economic theory tells us about the relation-
ship.

2. Choose a shape that is sufficiently flexible to “fit” the data.
3. Choose a shape so that assumptions SR1–SR6 are satisfied, ensuring that the least

squares estimators have the desirable properties described in Chapters 2 and 3.

Although these objectives are easily stated, the reality of model building is much more difficult.
You must recognize that we never know the “true” functional relationship between economic vari-
ables; also, the functional form that we select, no matter how elegant, is only an approximation.
Our job is to choose a functional form that satisfactorily meets the three objectives stated above.

4.3.4 Using Diagnostic Residual Plots
When specifying a regression model, we may inadvertently choose an inadequate or incorrect
functional form. Even if the functional form is adequate, one or more of the regression model
assumptions may not hold. There are two primary methods for detecting such errors. First, exam-
ine the regression results. Finding an incorrect sign or a theoretically important variable that is
not statistically significant may indicate a problem. Second, evidence of specification errors can
reveal themselves in an analysis of the least squares residuals. We should ask whether there is any
evidence that assumptions SR3 (homoskedasticity), SR4 (no serial correlation), and SR6 (normal-
ity) are violated. Usually, heteroskedasticity might be suspected in cross-sectional data analysis,
and serial correlation is a potential time-series problem. In both cases, diagnostic tools focus on
the least squares residuals. In Chapters 8 and 9, we will provide formal tests for homoskedasticity
and serial correlation. In addition to formal tests, residual plots of all types are useful as diagnostic
tools. In this section, residual analysis reveals potential heteroskedasticity and serial correlation
problems and also flawed choices of functional forms.

We show a variety of residual plots in Figure 4.7. If there are no violations of the assumptions,
then a plot of the least squares residuals versus x, y, or the fitted value of y, ŷ, should reveal no
patterns. Figure 4.7(a) is an example of a random scatter.



❦

❦ ❦

❦

166 CHAPTER 4 Prediction, Goodness-of-Fit, and Modeling Issues
R

es
id

ua
ls

x

Random
(a)

R
es

id
ua

ls

x

Spray
(b)

R
es

id
ua

ls

x

Funnel
(c)

R
es

id
ua

ls

x

Bowtie
(d)

R
es

id
ua

ls

Time

Positive correlation
(e)

R
es

id
ua

ls

Time

Negative correlation
(f)

R
es

id
ua

ls

x

Missed quadratic
(g)

R
es

id
ua

ls

x

Missed cubic
(h)

FIGURE 4.7 Residual patterns.
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Figures 4.7(b)–(d) show patterns associated with heteroskedasticity. Figure 4.7(b) has a
“spray-shaped” residual pattern that is consistent with the variance of the error term increasing
as x-values increase; Figure 4.7(c) has a “funnel-shaped” residual pattern that is consistent
with the variance of the error term decreasing as x-values increase; and Figure 4.7(d) has a
“bow-tie” residual pattern that is consistent with the variance of the error term decreasing and
then increasing as x-values increase.

Figure 4.7(e) shows a typical pattern produced with time-series regression when the error
terms display a positive correlation, corr

(
et, et−1

)
> 0. Note that there are sequences of positive

residuals followed by sequences of negative residuals, and so on. If assumption SR4 holds there
should be no such sign patterns. Figure 4.7(f) shows a typical pattern produced with time-series
regression when the error terms display a negative correlation, corr

(
et, et−1

)
< 0. In this case,

each positive residual tends to be followed by a negative residual, which is then followed by a
positive residual and so on. The sequence of residuals tends to alternate in sign.

If the relationship between y and x is curvilinear, such as a U-shaped quadratic function, like
an average cost function, and we mistakenly assume that the relationship is linear, then the least
squares residuals may show a U-shape like in Figure 4.7(g). If the relationship between y and
x is curvilinear, such as a cubic function, like a total cost function, and we mistakenly assume
that the relationship is linear, then the least squares residuals may show a serpentine shape like
Figure 4.7(h).

The bottom line is that when least squares residuals are plotted against another variable there
should be no patterns evident. Patterns of the sorts shown in Figure 4.7, except for panel (a),
indicate that there may be some violation of assumptions and/or incorrect model specification.

E X A M P L E 4.5 Heteroskedasticity in the Food Expenditure Model

The least squares residuals from the linear-log food expendi-
ture model in (4.14) are plotted in Figure 4.8. These exhibit
an expanding variation pattern with more variation in the
residuals as INCOME becomes larger, which may suggest
heteroskedastic errors. A similar residual plot is implied by
Figure 2.8.

We must conclude that at this point we do not have a sat-
isfactory model for the food expenditure data. The linear and
linear-log models have different shapes and different implied
marginal effects. The two models fit the data equally well, but
both models exhibit least squares residual patterns consistent
with heteroskedastic errors. This example will be considered
further in Chapter 8.
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FIGURE 4.8 Residuals from linear-log food expenditure
model.

4.3.5 Are the Regression Errors Normally Distributed?
Recall that hypothesis tests and interval estimates for the coefficients rely on SR6 assumption,
that given x, the errors, and hence the dependent variable y, are normally distributed. Though our
tests and confidence intervals are valid in large samples whether the data are normally distributed
or not, it is nevertheless desirable to have a model in which the regression errors are normally
distributed, so that we do not have to rely on large sample approximations. If the errors are not
normally distributed, we might be able to improve our model by considering an alternative func-
tional form or transforming the dependent variable. As noted in the last “Remark,” when choosing
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a functional form, one of the criteria we might examine is whether a model specification satisfies
regression assumptions, and in particular, whether it leads to errors that are normally distributed
(SR6). How do we check out the assumption of normally distributed errors?

We cannot observe the true random errors, so we must base our analysis of their normality
on the least squares residuals, êi = yi − ŷi. Substituting for yi and ŷi, we obtain

êi = yi − ŷi = β1 + β2xi + ei −
(
b1 + b2xi

)

=
(
β1 − b1

)
+
(
β2 − b2

)
xi + ei

= ei −
(
b1 − β1

)
−
(
b2 − β2

)
xi

In large samples,
(
b1 – β1

)
and

(
b2 – β2

)
will tend toward zero because the least squares esti-

mators are unbiased and have variances that approach zero as N → ∞. Consequently, in large
samples, the difference êi − ei is close to zero, so that these two random variables are essentially
the same and thus have the same distribution.

A histogram of the least squares residuals gives us a graphical representation of the empirical
distribution.

E X A M P L E 4.6 Testing Normality in the Food Expenditure Model

The relevant EViews output for the food expenditure
example, using the linear relationship with no transformation
of the variables, appears in Figure 4.9. What does this
histogram tell us? First, notice that it is centered at zero.
This is not surprising because the mean of the least squares
residuals is always zero if the model contains an intercept,
as shown in Appendix 4B. Second, it seems symmetrical,
but there are some large gaps, and it does not really appear
bell shaped. However, merely checking the shape of the
histogram, especially when the number of observations is
relatively small, is not a statistical “test.”

There are many tests for normality. The Jarque–Bera
test for normality is valid in large samples. It is based on
two measures, skewness and kurtosis. In the present context,
skewness refers to how symmetric the residuals are around

Series: Residuals
Sample 140
Observations 40

–200 –100 2001000

Mean
Median
Maximum
Minimum
Std. Dev.
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Kurtosis
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Probability
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–6.324473
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–223.0255
88.36190

–0.097319
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0.968826
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FIGURE 4.9 EViews output: residuals histogram and summary statistics
for food expenditure example.

zero. Perfectly symmetric residuals will have a skewness of
zero. The skewness value for the food expenditure residuals
is −0.097. Kurtosis refers to the “peakedness” of the dis-
tribution. For a normal distribution, the kurtosis value is 3.
For more on skewness and kurtosis, see Appendices B.1.2
and C.4.2. From Figure 4.9, we see that the food expenditure
residuals have a kurtosis of 2.99. The skewness and kurtosis
values are close to the values for the normal distribution. So,
the question we have to ask is whether 2.99 is sufficiently dif-
ferent from 3, and −0.097 is sufficiently different from zero,
to conclude that the residuals are not normally distributed.
The Jarque–Bera statistic is given by

JB = N
6

(
S2 + (K − 3)2

4

)
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where N is the sample size, S is skewness, and K is kurtosis.
Thus, large values of the skewness, and/or values of kurto-
sis quite different from 3, will lead to a large value of the
Jarque–Bera statistic. When the residuals are normally dis-
tributed, the Jarque–Bera statistic has a chi-squared distribu-
tion with two degrees of freedom. We reject the hypothesis of
normally distributed errors if a calculated value of the statistic
exceeds a critical value selected from the chi-squared distri-
bution with two degrees of freedom. Using Statistical Table 3,
the 5% critical value from a χ2-distribution with two degrees
of freedom is 5.99, and the 1% critical value is 9.21.

Applying these ideas to the food expenditure example,
we have

JB = 40
6

(
(−0.097)2 + (2.99 − 3)2

4

)
= 0.063

Because 0.063 < 5.99, there is insufficient evidence from the
residuals to conclude that the normal distribution assumption
is unreasonable at the 5% level of significance. The same con-
clusion could have been reached by examining the p-value.
The p-value appears in Figure 4.9 described as “Probability.”
Thus, we also fail to reject the null hypothesis on the grounds
that 0.9688 > 0.05.

For the linear-log model of food expenditure reported
in Example 4.4, the Jarque–Bera test statistic value is 0.1999
with a p-value of 0.9049. We cannot reject the null hypoth-
esis that the regression errors are normally distributed, and
this criterion does not help us choose between the linear
and linear-log functional forms for the food expenditure
model.

In these examples, we should remember that the Jarque–Bera test is strictly valid only in large
samples. Applying tests that are valid in large samples to smaller samples, such as N = 40, is not
uncommon in applied work. However, we should remember in such applications that we should
not give great weight to the test significance or nonsignificance.

4.3.6 Identifying Influential Observations
One worry in data analysis is that we may have some unusual and/or influential observations.
Sometimes, these are termed “outliers.” If an unusual observation is the result of a data error,
then we should correct it. If an unusual observation is not the result of a data error, then under-
standing how it came about, the story behind it, can be informative. One way to detect whether
an observation is influential is to delete it and reestimate the model, comparing the results to the
original results based on the full sample. This “delete-one” strategy can help detect the influence
of the observation on the estimated coefficients and the model’s predictions. It can also help us
identify unusual observations.

The delete-one strategy begins with the least squares parameter estimates based on the sam-
ple with the ith observation deleted. Denote these as b1(i) and b2(i). Let σ̂2(i) be the delete-one
estimated error variance. The residual ê(i) = yi −

[
b1(i) + b2(i) xi

]
is the actual value of y for the

ith observation, yi, minus the fitted value that uses estimates from the sample with the ith obser-
vation deleted. It is the forecast error (4.3) with yi taking the place of y0 and xi taking the value
of x0 and using the estimates b1(i) and b2(i). Modifying the variance of the forecast error (4.4),
we obtain the variance of ê(i) (and its estimator) as

var
⋀[

ê(i)|x] = σ̂2(i)
⎡
⎢
⎢⎣
1 + 1

(N − 1) +
(
xi − x(i)

)2

∑
j≠i
(
xj − x(i)

)2

⎤
⎥
⎥⎦

where x(i) is the delete-one sample mean of the x-values. The ratio

êstu
i = ê(i)

{
var
⋀[

ê(i)|x]
}1∕2

is called a studentized residual. It is the standardized residual based on the delete-one sample.
The rule of thumb is to calculate these values and compare their values to ± 2, which is roughly
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a 95% interval estimate. If the studentized residual falls outside the interval, then the observation
is worth examining because it is “unusually” large.

After considerable algebra, the studentized residual can also be written as

êstu
i =

êi

σ̂(i)
(
1 − hi

)1∕2

where

hi =
1
N

+
(
xi − x

)2

∑(
xi − x

)2

The term hi is called the leverage of the ith observation, with values 0 ≤ hi ≤ 1. If the lever-
age value is high, then the value of the studentized residual is inflated. The second component
of hi is

(
xi − x

)2/∑(
xi − x

)2. Recall that the sample variance of the xi-values is estimated by
s2

x = ∑(
xi − x

)2/(N − 1) so that ∑(
xi − x

)2 is a measure of the total variation in the sample
xi-values about their mean. If one observation’s contribution

(
xi − x

)2 to the total is large, then
that observation may have a strong effect on the least squares estimates and fitted values. The
sum of the leverage terms hi is K, the number of parameters in the regression model. Thus, the
average value in the simple regression model is h = K∕N = 2∕N. When checking data, it is a
common rule of thumb to examine observations with leverage greater than two or three times
the average.

Another measure of the influence of a single observation on the least squares estimates is
called DFBETAS. For the slope estimate in the simple regression model, we calculate

DFBETAS2i =
b2 − b2(i)

σ̂(i)
/√∑N

i=1
(
xi − x

)2

The effect of the ith observation on the slope estimate is measured by the change in the
coefficient estimate by dropping the ith observation and then standardizing. The magnitude of
DFBETAS2i will be larger when leverage is larger and/or the studentized residual is larger. A
common rule of thumb for identifying influential observations in the simple regression model is
||DFBETAS2i

|| > 2
/√

N.
The effect of the ith observation on the fitted value from the least squares regression is again a

measurement using the delete-one approach. Let ŷi = b1 + b2xi and ŷ(i) = b1(i) + b2(i) xi with ŷ(i)
being the fitted value using parameter estimates from the delete-one sample. The measure called
DFFITS is

DFFITSi =
ŷi − ŷ(i)
σ̂(i) h1∕2

i

=
( hi

1 − hi

)1∕2
êstu

i

This measure will be larger when leverage is larger and/or the studentized residual is larger. A rule
of thumb to identify unusual observations is ||DFFITSi

|| > 2(K∕N)1∕2 or ||DFFITSi
|| > 3(K∕N)1∕2

where K = 2 is the number of parameters in the simple regression model.
These constructs may look difficult to compute, but modern software usually computes

some or all of these measures. We are not suggesting that you toss out unusual observations. If
these measures lead you to locate an observation with an error, you can try to fix it. By looking
at unusual observations, ones that have a high leverage, a large studentized residual, a large
DFBETAS, or a large DFFITS, you may learn something about which data characteristics are
important. All data analysts should examine their data, and these tools may help organize such
an examination.
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E X A M P L E 4.7 Influential Observations in the Food Expenditure Data

Examining the influential observation measures for the food
expenditure data, using a linear relationship and no trans-
formations of the variables, reveals few real surprises. First
the leverage values have the average h = 2∕40 = 0.05. Isolat-
ing observations with leverage more than twice the average,
we have

obs h FOOD_EXP INCOME

1 0.1635 115.22 3.69
2 0.1516 135.98 4.39
3 0.1457 119.34 4.75
4 0.1258 114.96 6.03

40 0.1291 375.73 33.4

The observations with the greatest leverage are those with
the four lowest incomes and the highest income. The mean
of INCOME is 19.6.

The observations with studentized residuals,
EHATSTU, larger than two in absolute value are

obs EHATSTU FOOD_EXP INCOME

31 −2.7504 109.71 24.42
38 2.6417 587.66 28.62

These two observations are interesting because the food
expenditures for these two households are the minimum
and maximum, despite both incomes being above the mean.

In fact, the income for household 31 is the 75th percentile
value, and the income for household 38 is the third largest.
Thus, household 31 is spending significantly less on food
than we would predict, and household 38 more than we
would predict, based on income alone. These might be
observations worth checking to ensure they are correct. In
our case, they are.

The DFBETAS values greater than 2
/√

N = 0.3162 in
absolute value are

obs DFBETAS FOOD_EXP INCOME

38 0.5773 587.66 28.62
39 −0.3539 257.95 29.40

Again household 38 has a relatively large influence on the
least squares estimate of the slope. Household 39 shows up
because it has the second highest income but spends less than
the mean value (264.48) on food.

Finally, DFFITS values larger than 2(K∕N)1∕2 = 0.4472
are as follows:

obs DFFITS FOOD_HAT FOOD_EXP INCOME

31 −0.5442 332.74 109.71 24.42
38 0.7216 375.62 587.66 28.62

The observations with a high influence of the least squares
fitted values are the previously mentioned households 31
and 38, which also have large studentized residuals.

4.4 Polynomial Models
In Sections 2.8.1–2.8.2, we introduced the use of quadratic polynomials to capture curvilin-
ear relationships. Economics students will have seen many average and marginal cost curves
(U-shaped) and average and marginal product curves (inverted-U shaped) in their studies. Higher
order polynomials, such as cubic equations, are used for total cost and total product curves.
A familiar example to economics students is the total cost curve, shaped much like the solid
curve in Figure 4.5(b). In this section, we review simplified quadratic and cubic equations and
give an empirical example.

4.4.1 Quadratic and Cubic Equations
The general form of a quadratic equation y = a0 + a1x + a2x2 includes a constant term a0, a
linear term a1x, and a squared term a2x2. Similarly, the general form of a cubic equation is
y = a0 + a1x + a2x2 + a3x3. In Section 5.6, we consider multiple regression models using the
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general forms of quadratic and cubic equations. For now, however, because we are working with
“simple” regression models that include only one explanatory variable, we consider the simple
quadratic and cubic forms, y = β1 + β2x2 and y = β1 + β2x3, respectively. The properties of the
simple quadratic function are discussed in Section 2.8.1.

The simple cubic equation y = β1 + β2x3 has possible shapes shown in Figure 4.5(b). Using
Derivative Rules 4 and 5 from Appendix A, the derivative, or slope, of this cubic equation is
dy∕dx =3β2x2. The slope of the curve is always positive if β2 > 0, except when x = 0, yielding a
direct relationship between y and x like the solid curve shown in Figure 4.5(b). If β2 < 0, then the
relationship is an inverse one like the dashed curve shown in Figure 4.5(b). The slope equation
shows that the slope is zero only when x = 0. The term β1 is the y-intercept. The elasticity of y
with respect to x is ε = slope × x∕y = 3β2x2 × x∕y. Both the slope and elasticity change along
the curve.

E X A M P L E 4.8 An Empirical Example of a Cubic Equation

Figure 4.10 is a plot of average wheat yield (in tonnes per
hectare—a hectare is about 2.5 acres, and a tonne is a metric
ton that is 1000 kg or 2205 lb—we are speaking Australian
here!) for the Greenough Shire in Western Australia, against
time. The observations are for the period 1950–1997, and
time is measured using the values 1, 2, …, 48. These data
can be found in the data file wa_wheat. Notice in Figure 4.10
that wheat yield fluctuates quite a bit, but overall, it tends to
increase over time, and the increase is at an increasing rate,
particularly toward the end of the time period. An increase
in yield is expected because of technological improvements,
such as the development of varieties of wheat that are higher
yielding and more resistant to pests and diseases. Suppose
that we are interested in measuring the effect of technological
improvement on yield. Direct data on changes in technology
are not available, but we can examine how wheat yield has
changed over time as a consequence of changing technol-
ogy. The equation of interest relates YIELD to TIME, where
TIME = 1,… , 48. One problem with the linear equation

YIELDt = β1 + β2TIMEt + et
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FIGURE 4.10 Scatter plot of wheat yield over time.

is that it implies that yield increases at the same constant
rate β2, when, from Figure 4.10, we expect this rate to be
increasing. The least squares fitted line (standard errors in
parentheses) is

YIELD
⋀

t = 0.638 + 0.0210TIMEt R2 = 0.649
(se) (0.064) (0.0022)

The residuals from this regression are plotted against time
in Figure 4.11. Notice that there is a concentration of posi-
tive residuals at each end of the sample and a concentration
of negative residuals in the middle. These concentrations are
caused by the inability of a straight line to capture the fact that
yield is increasing at an increasing rate. Compare the residual
pattern in Figure 4.11 to Figures 4.7(g) and (h). What alter-
native can we try? Two possibilities are TIME2 and TIME3.
It turns out that TIME3 provides the better fit, and so we con-
sider the functional form

YIELDt = β1 + β2TIME3
t + et
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FIGURE 4.11 Residuals from a linear yield equation.
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The slope of the expected yield function is 3β2TIME2.
Thus, so long as the estimate of β2 turns out to be positive,
the function will be increasing. Furthermore, the slope is
increasing as well. Thus, the function itself is “increasing at
an increasing rate.” Before estimating the cubic equation,
note that the values of TIME3 can get very large. This variable
is a good candidate for scaling. If we define TIMECUBEt =(

TIMEt
/
100

)3, the estimated equation is

YIELD
⋀

t = 0.874 + 9.682TIMECUBEt R2 = 0.751
(se) (0.036) (0.822)

The residuals from this cubic equation are plotted in
Figure 4.12. The predominance of positive residuals at the
ends and negative residuals in the middle no longer exists.
Furthermore, the R2 value has increased from 0.649 to 0.751,
indicating that the equation with TIMECUBE fits the data
better than the one with just TIME. Both these equations
have the same dependent variable and the same number

of explanatory variables (only 1). In these circumstances,
the R2 can be used legitimately to compare goodness-of-fit.
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FIGURE 4.12 Residuals from a cubic yield equation.

What lessons have we learned from this example? First, a plot of the original dependent variable
series y against the explanatory variable x is a useful starting point for deciding on a functional
form in a simple regression model. Secondly, examining a plot of the residuals is a useful device
for uncovering inadequacies in any chosen functional form. Runs of positive and/or negative
residuals can suggest an alternative. In this example, with time-series data, plotting the resid-
uals against time was informative. With cross-sectional data, using plots of residuals against both
independent and dependent variables is recommended. Ideally, we will see no patterns, and the
residual histogram and Jarque–Bera test will not rule out the assumption of normality. As we
travel through the book, you will discover that patterns in the residuals, such as those shown in
Figure 4.7, can also mean many other specification inadequacies, such as omitted variables, het-
eroskedasticity, and autocorrelation. Thus, as you become more knowledgeable and experienced,
you should be careful to consider other options. For example, wheat yield in Western Australia is
heavily influenced by rainfall. Inclusion of a rainfall variable might be an option worth consider-
ing. Also, it makes sense to include TIME and TIME2 in addition to TIME3. A further possibility
is the constant growth rate model that we consider in the following section.

4.5 Log-Linear Models
Econometric models that employ natural logarithms are very common. We first introduced the
log-linear model in Section 2.8.3. Logarithmic transformations are often used for variables that are
monetary values, such as wages, salaries, income, prices, sales, and expenditures, and, in general,
for variables that measure the “size” of something. These variables have the characteristic that
they are positive and often have distributions that are positively skewed, with a long tail to the
right. Figure P.2 in the Probability Primer is representative of the income distribution in the United
States. In fact, the probability density function f (x) shown is called the “log-normal” because ln(x)
has a normal distribution. Because the transformation ln(x) has the effect of making larger values
of x less extreme, ln(x) will often be closer to a normal distribution for variables of this kind. The
log-normal distribution is discussed in Appendix B.3.9.
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The log-linear model, ln(y) = β1 + β2x, has a logarithmic term on the left-hand side of the
equation and an untransformed (linear) variable on the right-hand side. Both its slope and elas-
ticity change at each point and are the same sign as β2. Using the antilogarithm, we obtain
exp[ln(y)] = y = exp

(
β1 + β2x

)
, so that the log-linear function is an exponential function. The

function requires y > 0. The slope at any point is β2y, which for β2 > 0 means that the marginal
effect increases for larger values of y. An economist might say that this function is increasing at an
increasing rate. The shapes of the log-linear model are shown in Figure 4.5(e), and its derivative
and elasticity given in Table 4.1. To make discussion relevant in a specific context, the slope can
be evaluated at the sample mean y, or the elasticity β2x can be evaluated at the sample mean x, or
other interesting values can be chosen.

Using the properties of logarithms, we can obtain a useful approximation. Consider an
increase in x from x0 to x1. The change in the log-linear model is from ln

(
y0
)
= β1 + β2x0

to ln
(
y1
)
= β1 + β2x1. Subtracting the first equation from the second gives ln

(
y1
)
− ln

(
y0
)
=

β2
(
x1 – x0

)
= β2Δx. Multiply by 100, and use the approximation introduced in Appendix A,

equation (A.3) to obtain

100
[
ln
(
y1
)
− ln

(
y0
)]
≅ %Δy = 100β2

(
x1 − x0

)
=
(
100β2

)
× Δx

A 1-unit increase in x leads approximately to a 100β2% change in y.
In the following two examples, we apply the familiar concept of compound interest to derive

a log-linear economic model for growth arising from technology, and a model explaining the
relation between an individual’s wage rate and their years of schooling. Recall the compound
interest formula. If an investor deposits an initial amount V0 (the principal amount) into an account
that earns a rate of return r, then after t periods the value V of the account is Vt = V0(1 + r)t. For
example, if r = 0.10, so that the rate of return is 10%, and if V0 = $100, after one period the
account value is V1 = $110; after two periods, the account value is V2 = $121, and so on. The
compound interest formula also explains the account growth from year to year. The accumulated
value earns the rate r in each period so that Vt = V0(1 + r)t = (1 + r)Vt−1.

E X A M P L E 4.9 A Growth Model

Earlier in this chapter, in Example 4.8, we considered an
empirical example in which the production of wheat was
tracked over time, with improvements in technology leading
to wheat production increasing at an increasing rate. We
observe wheat production in time periods t = 1,… , T.
Assume that in each period YIELD grows at the constant rate
g due to technological progress. Let the YIELD at time t = 0,
before the sample begins, be YIELD0. This plays the role of
the initial amount. Applying the compound interest formula
we have YIELDt = YIELD0(1 + g)t. Taking logarithms,
we obtain

ln
(
YIELDt

)
= ln

(
YIELD0

)
+
[
ln(1 + g)

]
× t

= β1 + β2t

This is simply a log-linear model with dependent variable
ln
(
YIELDt

)
and explanatory variable t, or time. We expect

growth to be positive, so that β2 > 0, in which case the
plot of YIELD against time looks like the upward-sloping
curve in Figure 4.5(c), which closely resembles the scatter
diagram in Figure 4.11.

Estimating the log-linear model for yield, we obtain

ln
(
YIELDt

)⋀

= −0.3434 + 0.0178t
(se) (0.0584) (0.0021)

The estimated coefficient b2 = ln(1 + g)
⋀

= 0.0178. Using
the property that ln(1 + x) ≅ x if x is small [see Appendix A,
equation (A.4) and the discussion following it], we esti-
mate that the growth rate in wheat yield is approximately
ĝ = 0.0178, or about 1.78% per year, over the period of
the data.
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E X A M P L E 4.10 A Wage Equation

The relationship between wages and education is a key rela-
tionship in labor economics (and, no doubt, in your mind).
Suppose that the rate of return to an extra year of education is
a constant r. Let WAGE0 represent the wage of a person with
no education. Applying the compound interest formula to
the investment in human capital, we anticipate that the wage
of a person with one year of education will be WAGE1 =
WAGE0(1 + r). A second year of education will compound
the human capital so that WAGE2 = WAGE1(1 + r) =
WAGE0(1 + r)2. In general, WAGE = WAGE0(1 + r)EDUC,
where EDUC is years of education. Taking logarithms,
we have a relationship between ln(WAGE) and years of
education (EDUC)

ln(WAGE) = ln
(
WAGE0

)
+
[
ln(1 + r)

]
× EDUC

= β1 + β2EDUC

An additional year of education leads to an approximate
100β2% increase in wages.

Data on hourly wages, years of education, and other vari-
ables are in the file cps5_small. These data consist of 1200
observations from the May 2013 Current Population Survey
(CPS). The CPS is a monthly survey of about 50000 house-
holds conducted in the United States by the Bureau of the
Census for the Bureau of Labor Statistics. The survey has
been conducted for more than 50 years. Using these data, the
estimated log-linear model is

ln(WAGE)
⋀

= 1.5968 + 0.0988 × EDUC
(se) (0.0702) (0.0048)

We estimate that an additional year of education increases the
wage rate by approximately 9.9%. A 95% interval estimate for
the value of an additional year of education is 8.9% to 10.89%.

4.5.1 Prediction in the Log-Linear Model
You may have noticed that when reporting regression results in this section, we did not include
an R2 value. In a log-linear regression, the R2 value automatically reported by statistical soft-
ware is the percentage of the variation in ln(y) explained by the model. However, our objec-
tive is to explain the variations in y, not ln(y). Furthermore, the fitted regression line predicts
ln(y)
⋀

= b1 + b2x, whereas we want to predict y. The problems of obtaining a useful measure of
goodness-of-fit and prediction are connected, as we discussed in Section 4.2.2.

How shall we obtain the predicted value of y? A first inclination might be to take the antilog
of ln(y)
⋀

= b1 + b2x. The exponential function is the antilogarithm for the natural logarithm, so
that a natural choice for prediction is

ŷn = exp
(

ln(y)
⋀)

= exp
(
b1 + b2x

)

In the log-linear model, this is not necessarily the best we can do. Using properties of the
log-normal distribution it can be shown (see Appendix B.3.9) that an alternative predictor is

ŷc = E(y)
⋀

= exp
(

b1 + b2x + σ̂2/2
)
= ŷneσ̂

2∕2

If the sample size is large, the “corrected” predictor ŷc is, on average, closer to the actual value
of y and should be used. In small samples (less than 30), the “natural” predictor may actually
be a better choice. The reason for this incongruous result is that the estimated value of the error
variance σ̂2 adds a certain amount of “noise” when using ŷc, leading it to have increased variability
relative to ŷn that can outweigh the benefit of the correction in small samples.
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E X A M P L E 4.11 Prediction in a Log-Linear Model

The effect of the correction can be illustrated using the
wage equation. What would we predict the wage to be for a
worker with 12 years of education? The predicted value of
ln(WAGE) is

ln(WAGE)
⋀

= 1.5968 + 0.0988 × EDUC
= 1.5968 + 0.0988 × 12 = 2.7819

Then the value of the natural predictor is ŷn = exp
(

ln(y)
⋀)

=
exp(2.7819) = 16.1493. The value of the corrected predictor,
using σ̂2 = 0.2349 from the regression output, is

ŷc = E(y)
⋀

= ŷneσ̂
2∕2 = 16.1493 × 1.1246 = 18.1622

We predict that the wage for a worker with 12 years of edu-
cation will be $16.15 per hour if we use the natural predictor
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FIGURE 4.13 The natural and corrected predictors of wage.

and $18.16 if we use the corrected predictor. In this case,
the sample is large (N = 1200), so we would use the cor-
rected predictor. Among the 1200 workers, there are 307 with
12 years of education. Their average wage is $17.31, so the
corrected predictor is consistent with the sample of data.

How does the correction affect our prediction? Recall
that σ̂2 must be greater than zero and e0 = 1. Thus, the effect
of the correction is always to increase the value of the pre-
diction because eσ̂2∕2 is always greater than one. The natural
predictor tends to systematically underpredict the value of y
in a log-linear model, and the correction offsets the downward
bias in large samples. The “natural” and “corrected” predic-
tions are shown in Figure 4.13.

4.5.2 A Generalized R2 Measure
It is a general rule that the squared simple correlation between y and its fitted value ŷ, where
ŷ is the “best” prediction one can obtain, is a valid measure of goodness-of-fit that we can use
as an R2 in many contexts. As we have seen, what we may consider the “best” predictor can
change depending on the model under consideration. That is, a general goodness-of-fit measure,
or general R2, is

R2
g =

[
corr

(
y, ŷ

)]2 = r2
yŷ

In the wage equation R2
g =

[
corr

(
y, ŷc

)]2 = 0.46472 = 0.2159, as compared to the reported
R2 = 0.2577 from the regression of ln(WAGE) on EDUC. (In this case since the corrected and nat-
ural predictors differ only by a constant factor, the correlation is the same for both.) These R2 val-
ues are small, but we repeat our earlier message: R2 values tend to be small with microeconomic,
cross-sectional data because the variations in individual behavior are difficult to fully explain.
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4.5.3 Prediction Intervals in the Log-Linear Model
We have a corrected predictor ŷc for y in the log-linear model. It is the “point” predictor, or point
forecast, that is relevant if we seek the single number that is our best prediction of y.

If we prefer a prediction or forecast interval for y, then we must rely on the natural pre-
dictor ŷn.1 Specifically, we follow the procedure outlined in Section 4.1 and then take antilogs.
That is, compute ln(y)

⋀

= b1 + b2x and then ln (y)
⋀

± tcse(" ), where the critical value tc is the
100(1 − α∕2)-percentile from the t-distribution and se( f ) is given in (4.5). Then, a 100(1 − α)%
prediction interval for y is

[
exp

(
ln(y)
⋀

− tcse(" )
)
, exp

(
ln(y)
⋀

+ tcse(" )
)]

E X A M P L E 4.12 Prediction Intervals for a Log-Linear Model

For the wage data, a 95% prediction interval for the wage of
a worker with 12 years of education is
[
exp(2.7819 − 1.96 × 0.4850) , exp(2.7819 + 1.96 × 0.4850)

]

=[6.2358, 41.8233]

The interval prediction is $6.24–$41.82, which is so wide that
it is basically useless. What does this tell us? Nothing we did

0
50

10
0

15
0

20
0

W
ag

e

0 5 10 15 20
Years of education

FIGURE 4.14 The 95% prediction interval for wage.

not already know. Our model is not an accurate predictor of
individual behavior in this case. In later chapters, we will see
if we can improve this model by adding additional explana-
tory variables, such as experience, that should be relevant.
The prediction interval is shown in Figure 4.14.

4.6 Log-Log Models
The log-log function, ln(y) = β1 + β2ln(x), is widely used to describe demand equations and pro-
duction functions. The name “log-log” comes from the fact that the logarithm appears on both
sides of the equation. In order to use this model, all values of y and x must be positive. Using the

............................................................................................................................................
1See Appendix 4A. The corrected predictor includes the estimated error variance, making the t-distribution no longer
relevant in (4A.1).
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properties of logarithms, we can see how to interpret the parameter of a log-log model. Consider
an increase in x from x0 to x1. The change in the log-log model is from ln

(
y0
)
= β1 + β2ln

(
x0
)

to
ln
(
y1
)
= β1 + β2ln

(
x1
)
. Subtracting the first equation from the second gives ln

(
y1
)
− ln

(
y0
)
=

β2
[
ln
(
x1
)
− ln

(
x0
)]

. Multiply by 100, and use the approximation introduced in Appendix A,
equation (A.3) to obtain 100

[
ln
(
y1
)
− ln

(
y0
)]
≅ %Δy and 100

[
ln
(
x1
)
− ln

(
x0
)]
≅ %Δx, so that

%Δy = β2%Δx, or β2 = %Δy∕%Δx = εyx. That is, in the log-log model, the parameter β2 is the
elasticity of y with respect to a change in x, and it is constant over the entire curve.

A useful way to think about the log-log model comes from a closer inspection of its slope. The
slope of the log-log model changes at every point, and it is given by dy∕dx = β2(y∕x). Rearrange
this so that β2 = (dy∕y)∕(dx∕x). Thus, the slope of the log-log function exhibits constant relative
change, whereas the linear function displays constant absolute change. The log-log function is
a transformation of the equation y = Axβ2 , with β1 = ln(A). The various shape possibilities for
log-log models are depicted in Figure 4.5(c), for β2 > 0, and Figure 4.5(d), for β2 < 0.

If β2 > 0, then y is an increasing function of x. If β2 > 1, then the function increases at an
increasing rate. That is, as x increases the slope increases as well. If 0 < β2 < 1, then the function
is increasing, but at a decreasing rate; as x increases, the slope decreases.

If β2 < 0, then there is an inverse relationship between y and x. If, for example, β2 = −1,
then y = Ax−1 or xy = A. This curve has “unit” elasticity. If we let y = quantity demanded and
x = price, then A = total revenue from sales. For every point on the curve xy = A, the area under
the curve A (total revenue for the demand curve) is constant. By definition, unit elasticity implies
that a 1% increase in x (price, for example) is associated with a 1% decrease in y (quantity
demanded), so that the product xy (price times quantity) remains constant.

E X A M P L E 4.13 A Log-Log Poultry Demand Equation

The log-log functional form is frequently used for demand
equations. Consider, for example, the demand for edible
chicken, which the U.S. Department of Agriculture calls
“broilers.” The data for this exercise are in the data file
newbroiler, which is adapted from the data provided
by Epple and McCallum (2006).2 The scatter plot of
Q = per capita consumption of chicken, in pounds, versus
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FIGURE 4.15 Quantity and price of chicken.

P = real price of chicken is shown in Figure 4.15 for 52
annual observations, 1950–2001. It shows the characteristic
hyperbolic shape that was displayed in Figure 4.5(d).

The estimated log-log model is

ln(Q)
⋀

= 3.717 − 1.121 × ln(P) R2
g = 0.8817

(se) (0.022) (0.049)
(4.15)

............................................................................................................................................
2“Simultaneous Equation Econometrics: The Missing Example,” Economic Inquiry, 44(2), 374–384.
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We estimate that the price elasticity of demand is 1.121: a 1%
increase in real price is estimated to reduce quantity con-
sumed by 1.121%.

The fitted line shown in Figure 4.15 is the “corrected”
predictor discussed in Section 4.5.3. The corrected predic-
tor Q̂c is the natural predictor Q̂n adjusted by the factor
exp

(
σ̂2∕2

)
. That is, using the estimated error variance

σ̂2 = 0.0139, the predictor is

Q̂c = Q̂neσ̂
2∕2 = exp

(
ln(Q)
⋀)

eσ̂
2∕2

= exp
(
3.717 − 1.121 × ln(P)

)
e0.0139∕2

The goodness-of-fit statistic R2
g = 0.8817 is the generalized

R2 discussed in Section 4.5.4. It is the squared correlation
between the predictor Q̂c and the observations Q

R2
g =

[
corr

(
Q, Q̂c

)]2
=[0.939]2 = 0.8817

4.7 Exercises

4.7.1 Problems
4.1 Answer each of the following:

a. Suppose that a simple regression has quantities N = 20, ∑
y2

i = 7825.94, y = 19.21, and
SSR = 375.47, find R2.

b. Suppose that a simple regression has quantities R2 = 0.7911, SST = 725.94, and N = 20, find σ̂2.
c. Suppose that a simple regression has quantities ∑(

yi − y
)2 = 631.63 and ∑

ê2
i = 182.85, find R2.

4.2 Consider the following estimated regression equation (standard errors in parentheses):
ŷ = 64.29 + 0.99x R2 = 0.379

(se) (2.42) (0.18)
Rewrite the estimated equation, including coefficients, standard errors, and R2, that would result if
a. All values of x were divided by 10 before estimation.
b. All values of y were divided by 10 before estimation.
c. All values of y and x were divided by 10 before estimation.

4.3 We have five observations on x and y. They are xi = 3, 2, 1,−1, 0 with corresponding y values
yi = 4, 2, 3, 1, 0. The fitted least squares line is ŷi = 1.2 + 0.8xi, the sum of squared least squares
residuals is ∑5

i=1 ê2
i = 3.6, ∑5

i=1
(
xi − x

)2 = 10, and ∑5
i=1

(
yi − y

)2 = 10. Carry out this exercise with
a hand calculator. Compute
a. the predicted value of y for x0 = 4.
b. the se( f ) corresponding to part (a).
c. a 95% prediction interval for y given x0 = 4.
d. a 99% prediction interval for y given x0 = 4.
e. a 95% prediction interval for y given x = x. Compare the width of this interval to the one computed

in part (c).
4.4 The general manager of a large engineering firm wants to know whether the experience of techni-

cal artists influences their work quality. A random sample of 50 artists is selected. Using years of
work experience (EXPER) and a performance rating (RATING, on a 100-point scale), two models are
estimated by least squares. The estimates and standard errors are as follows:

Model 1:
RATING
⋀

= 64.289 + 0.990EXPER N = 50 R2 = 0.3793
(se) (2.422) (0.183)

Model 2:
RATING
⋀

= 39.464 + 15.312 ln(EXPER) N = 46 R2 = 0.6414
(se) (4.198) (1.727)
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a. Sketch the fitted values from Model 1 for EXPER = 0 to 30 years.
b. Sketch the fitted values from Model 2 against EXPER = 1 to 30 years. Explain why the four artists

with no experience are not used in the estimation of Model 2.
c. Using Model 1, compute the marginal effect on RATING of another year of experience for (i) an

artist with 10 years of experience and (ii) an artist with 20 years of experience.
d. Using Model 2, compute the marginal effect on RATING of another year of experience for (i) an

artist with 10 years of experience and (ii) an artist with 20 years of experience.
e. Which of the two models fits the data better? Estimation of Model 1 using just the technical artists

with some experience yields R2 = 0.4858.
f. Do you find Model 1 or Model 2 more reasonable, or plausible, based on economic reasoning?

Explain.
4.5 Consider the regression model WAGE = β1 + β2EDUC + e. WAGE is hourly wage rate in U.S. 2013

dollars. EDUC is years of education attainment, or schooling. The model is estimated using individu-
als from an urban area.

WAGE
⋀

= −10.76 + 2.461965EDUC, N = 986
(se) (2.27) (0.16)

a. The sample standard deviation of WAGE is 15.96 and the sum of squared residuals from the regres-
sion above is 199,705.37. Compute R2.

b. Using the answer to (a), what is the correlation between WAGE and EDUC? [Hint: What is the
correlation between WAGE and the fitted value WAGE

⋀

?]
c. The sample mean and variance of EDUC are 14.315 and 8.555, respectively. Calculate the leverage

of observations with EDUC = 5, 16, and 21. Should any of the values be considered large?
d. Omitting the ninth observation, a person with 21 years of education and wage rate $30.76, and

reestimating the model we find σ̂ = 14.25 and an estimated slope of 2.470095. Calculate DFBETAS
for this observation. Should it be considered large?

e. For the ninth observation, used in part (d), DFFITS = −0.0571607. Is this value large? The leverage
value for this observation was found in part (c). How much does the fitted value for this observation
change when this observation is deleted from the sample?

f. For the ninth observation, used in parts (d) and (e), the least squares residual is −10.18368. Calcu-
late the studentized residual. Should it be considered large?

4.6 We have five observations on x and y. They are xi = 3, 2, 1,−1, 0 with corresponding y values
yi = 4, 2, 3, 1, 0. The fitted least squares line is ŷi = 1.2 + 0.8xi, the sum of squared least squares
residuals is ∑5

i=1 ê2
i = 3.6 and ∑5

i=1
(
yi − y

)2 = 10. Carry out this exercise with a hand calculator.
a. Calculate the fitted values ŷi and their sample mean ŷ. Compare this value to the sample mean of

the y values.
b. Calculate ∑5

i=1
(
ŷi − y

)2 and ∑5
i=1

(
ŷi − y

)2/∑5
i=1

(
yi − y

)2.
c. The least squares residuals are êi = 0.4,−0.8, 1, 0.6, and −1.2. Calculate ∑5

i=1
(
ŷi − y

)
êi.

d. Calculate 1 −∑5
i=1 ê2

i
/∑5

i=1
(
yi − y

)2 and compare it to the results in part (b).
e. Show, algebraically, that ∑5

i=1
(
ŷi − y

)(
yi − y

)
= ∑5

i=1 ŷiyi − N y2. Calculate this value.
f. Using ∑5

i=1
(
xi − x

)2 = 10, and previous results, calculate

r =
[∑5

i=1
(
ŷi − y

)(
yi − y

)]/[√∑5
i=1

(
ŷi − y

)2
√∑5

i=1
(
yi − y

)2
]

What statistic is r? Calculate r2 and compare this value to the values in parts (d) and (b).
4.7 We have data on 2323 randomly selected households consisting of three persons in 2013. Let ENTERT

denote the monthly entertainment expenditure ($) per person per month and let INCOME ($100) be
monthly household income. Consider the regression model

ENTERTi = β1 + β2INCOMEi + ei, i = 1,… , 2323

Assume that assumptions SR1–SR6 hold. The OLS estimated equation is ENTERT
⋀

i = 9.820 +
0.503INCOMEi. The standard error of the slope coefficient estimator is se

(
b2
)
= 0.029, the standard
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error of the intercept estimator is se
(
b1
)
= 2.419, and the estimated covariance between the least

squares estimators b1 and b2 is −0.062. From the summary statistics, we find
∑2323

i=1

(
ENTERTi − ENTERT

)2
= 8691035, ∑2323

i=1

(
INCOMEi − INCOME

)2
= 3876440

ENTERT = 45.93, INCOME = 71.84
a. From the estimated regression, the sum of squared least squares residuals is 7711432. How well

does the regression model fit the data? How much of the household variation in entertainment
expenses have we explained using this regression model? Explain your answer.

b. The Jones household has income of $10,000 per month. Predict their per person household expen-
diture on entertainment.

c. Calculate a 95% prediction interval for the Jones household’s per person expenditure on entertain-
ment. Show your work.

d. Calculate a 95% prediction interval for the Jones household’s total household expenditure on enter-
tainment. Show your work.

4.8 Consider a log-linear regression for the weekly sales (number of cans) of a national brand of
canned tuna (SAL1 = target brand sales) as a function of the ratio of its price to the price of a
competitor, RPRICE3 = 100(price of target brand ÷ price competitive brand #3), ln(SAL1) = γ1 +
γ2RPRICE3 + e. Using N = 52 weekly observations, the OLS estimated equation is

ln(SAL1)
⋀

= 11.481 − 0.031RPRICE3
(se) (0.535) (0.00529)

a. The sample mean of RPRICE3 is 99.66, its median is 100, its minimum value is 70.11, and its
maximum value is 154.24. What do these summary statistics tell us about the prices of the target
brand relative to the prices of its competitor?

b. Interpret the coefficient of RPRICE3. Does its sign make economic sense?
c. Using the “natural” predictor, predict the weekly sales of the target brand if RPRICE3 takes its

sample mean value. What is the predicted sales if RPRICE3 equals 140?
d. The estimated value of the error variance from the regression above is σ̂2 = 0.405 and

∑52
i=1

(
RPRICE3i − RPRICE3

)2
= 14757.57. Construct a 90% prediction interval for the weekly

sales of the target brand if RPRICE3 takes its sample mean value. What is the 90% prediction
interval for sales if RPRICE3 equals 140? Is one interval wider? Explain why this happens.

e. The fitted value of ln(SAL1) is ln(SAL1)
⋀

. The correlation between ln(SAL1) and ln(SAL1)
⋀

is 0.6324,
the correlation between ln(SAL1)

⋀

and SAL1 is 0.5596, and the correlation between exp
[
ln(SAL1)
⋀]

and SAL1 is 0.6561. Calculate the R2 that would normally be shown with the fitted regression output
above. What is its interpretation? Calculate the “generalized-R2.” What is its interpretation?

4.9 Consider the weekly sales (number of cans) of a national brand of canned tuna (SAL1 =
target brand sales) as a function of the ratio of its price to the price of a competitor, RPRICE3 =
100(price of target brand ÷ price competitive brand #3). Using N = 52 weekly observations, and for
this exercise scaling SAL1∕1000 so that we have sales measured as thousands of cans per week, we
obtain the following least squares estimated equations, the first being a linear specification, the second
a log-linear specification, and the third a log-log specification.

SAL1
⋀

= 29.6126 − 0.2297RPRICE3
(se) (4.86) (4.81)

ln(SAL1)
⋀

= 4.5733 − 0.0305RPRICE3
(se) (0.54) (0.0053)

ln(SAL1)
⋀

= 16.6806 − 3.3020 ln(RPRICE3)
(se) (2.413) (0.53)

a. For the linear specification, the sum of squared residuals is 1674.92, the estimated skewness and
kurtosis of the residuals are 1.49 and 5.27, respectively. Calculate the Jarque–Bera statistic and test
the hypothesis that the random errors in this specification are normally distributed, at the 5% level
of significance. Specify the distribution of the test statistic if the null hypothesis of normality is
true and the rejection region.

b. For the log-linear specification, the estimated skewness and kurtosis of the residuals are 0.41 and
2.54, respectively. Calculate the Jarque–Bera statistic and test the hypothesis that the random errors
in this specification are normally distributed, at the 5% level of significance.
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c. For the log-log specification, the estimated skewness and kurtosis of the residuals are 0.32 and 2.97,
respectively. Calculate the Jarque–Bera statistic and test the hypothesis that the random errors in
this specification are normally distributed, at the 5% level of significance.

d. For the log-linear and log-log specifications, define a residual as SAL1 − exp
(

ln(SAL1)
⋀)

. For the
two models, the sum of the squared residuals as defined are 1754.77 for the log-linear model and
1603.14 for the log-log model. Based on these values, and comparing them to the sum of squared
residuals from the linear specification, which model seems to fit the data best?

e. Table 4.2 reports correlations between the regression model variables and predictions from the lin-
ear relationship (YHAT), predictions from the log-linear relationship

(
YHATL = exp

[
ln(SAL1)
⋀])

,
and predictions from the log-log model

(
YHATLL = exp

[
ln(SAL1)
⋀])

.
i. Why is the correlation between SAL1 and RPRICE3 the same as the correlation between YHAT

and SAL1 (except for the sign)?
ii. What is the R2 from the linear relationship model?

iii. Why is the correlation between YHAT and RPRICE3 a perfect—1.0?
iv. What is the generalized-R2 for the log-linear model?
v. What is the generalized-R2 for the log-log model?

f. Given the information provided in parts (a)–(e) which model would you select as having the best
fit to the data?

T A B L E 4.2 Correlations for Exercise 4.9

RPRICE3 SAL1 YHAT YHATL YHATLL

RPRICE3 1.0000
SAL1 −0.5596 1.0000
YHAT −1.0000 0.5596 1.0000
YHATL −0.9368 0.6561 0.9368 1.0000
YHATLL −0.8936 0.6754 0.8936 0.9927 1.0000

4.10 Using data on 76 countries, we estimate a relationship between the growth rate in prices, INFLAT ,
and the rate of growth in the money supply, MONEY . The least squares estimates of the model are as
follows:

INFLAT = −5.57 + 1.05MONEY R2 = 0.9917
(se) (0.70) (0.11)

The data summary statistics are as follows:

Mean Median Std. Dev. Min Max
INFLAT 25.35 8.65 58.95 −0.6 374.3
MONEY 29.59 16.35 56.17 2.5 356.7

Table 4.3 contains the data and some diagnostics for several observations.
a. Determine observations for which LEVERAGE is large. What is your rule?
b. Determine observations for which EHATSTU (the studentized residual) is large. What is your rule?
c. Determine observations for which DFBETAS is large. What is your rule?
d. Determine observations for which DFFITS is large. What is your rule?
e. Sketch the fitted relationship. On the graph locate the point of the means, and medians, and the

nine data points in Table 4.3. Which observations are remote, relative to the center of the data, the
point of the means and medians?
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T A B L E 4.3 Diagnostics for Selected Observations for Exercise 4.10

ID INFLAT MONEY LEVERAGE EHATSTU DFBETAS DFFITS

1 374.3 356.7 0.4654 1.8151 1.6694 1.6935
2 6.1 11.5 0.0145 −0.0644 0.0024 −0.0078
3 3.6 7.3 0.0153 0.2847 −0.0131 0.0354
4 187.1 207.1 0.1463 −5.6539 −2.2331 −2.3408
5 12.3 25.2 0.0132 −1.5888 0.0144 −0.1840
6 4.0 3.1 0.0161 1.1807 −0.0648 0.1512
7 316.1 296.6 0.3145 2.7161 1.8007 1.8396
8 13.6 17.4 0.0138 0.1819 −0.0046 0.0215
9 16.4 18.5 0.0137 0.4872 −0.0112 0.0574

4.11 Consider the regression model WAGE = β1 + β2EDUC + e where WAGE is hourly wage rate in U.S.
2013 dollars, EDUC is years of education attainment. The model is estimated twice, once using indi-
viduals from an urban area, and again for individuals in a rural area.

Urban WAGE
⋀

= −10.76 + 2.46EDUC, N = 986
(se) (2.27) (0.16)

Rural WAGE
⋀

= −4.88 + 1.80EDUC, N = 214
(se) (3.29) (0.24)

a. For the rural regression, compute a 95% prediction interval for WAGE if EDUC = 16, and the stan-
dard error of the forecast is 9.24. The standard error of the regression is σ̂ = 9.20 for the rural data.

b. For the urban data, the sum of squared deviations of EDUC about its sample mean is 8435.46
and the standard error of the regression is σ̂ = 14.25. The sample mean wage in the urban area is
$24.49. Calculate the 95% prediction interval for WAGE if EDUC = 16. Is the interval wider or
narrower than the prediction interval for the rural data? Do you find this plausible? Explain.

4.12 Consider the share of total household expenditure (TOTEXP) devoted to expenditure on food (FOOD).
Specify the log-linear relationship FOOD∕TOTEXP = β1 + β2ln(TOTEXP).
a. Show that the elasticity of expenditure on food with respect to total expenditure is

ε = dFOOD
dTOTEXP

× TOTEXP
FOOD

=
β1 + β2

[
ln(TOTEXP) + 1

]

β1 + β2 ln(TOTEXP)

[Hint: Solve the log-linear relationship as FOOD =
[
β1 + β2ln(TOTEXP)

]
TOTEXP and differen-

tiate to obtain dFOOD∕dTOTEXP. Then multiply by TOTEXP/FOOD and simplify.]
b. The least squares estimates of the regression model FOOD∕TOTEXP = β1 + β2ln(TOTEXP) + e,

using 925 observations from London, are as follows:

FOOD
⋀

TOTEXP
= 0.953 − 0.129 ln(TOTEXP) R2 = 0.2206, σ̂ = 0.0896

(t) (26.10) (−16.16)

Interpret the estimated coefficient of ln(TOTEXP). What happens to the share of food expenditure
in the budget as total household expenditures increase?

c. Calculate the elasticity in part (a) at the 5th percentile, and the 75th percentile of total expenditure.
Is this a constant elasticity function? The 5th percentile is 500 UK pounds, and the 75th percentile
is 1200 UK pounds.

d. The residuals from the model in (b) have skewness 0.0232 and kurtosis 3.4042. Carry out the
Jarque–Bera test at the 1% level of significance. What are the null and alternative hypotheses for
this test?
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e. In FOOD∕TOTEXP = β1 + β2ln(TOTEXP), take the logarithm of the left-hand side and simplify
the result to obtain ln(FOOD) = α1 + α2ln(TOTEXP). How are the parameters in this model related
to the budget share relation?

f. The least squares estimates of ln(FOOD) = α1 + α2ln(TOTEXP) + e are as follows:

ln(FOOD)
⋀

= 0.732 + 0.608 ln(TOTEXP) R2 = 0.4019 σ̂ = 0.2729
(t) (6.58) (24.91)

Interpret the estimated coefficient of ln(TOTEXP). Calculate the elasticity in this model at the 5th
percentile and the 75th percentile of total expenditure. Is this a constant elasticity function?

g. The residuals from the log-log model in (e) show skewness = −0.887 and kurtosis = 5.023. Carry
out the Jarque–Bera test at the 5% level of significance.

h. In addition to the information in the previous parts, we multiply the fitted value in part (b) by
TOTEXP to obtain a prediction for expenditure on food. The correlation between this value and
actual food expenditure is 0.641. Using the model in part (e) we obtain exp

[
ln(FOOD)
⋀]

. The cor-
relation between this value and actual expenditure on food is 0.640. What if any information is
provided by these correlations? Which model would you select for reporting, if you had to choose
only one? Explain your choice.

4.13 The linear regression model is y = β1 + β2x + e. Let y be the sample mean of the y-values and x the
average of the x-values. Create variables ỹ = y − y and x̃ = x − x. Let ỹ = α x̃ + e.
a. Show, algebraically, that the least squares estimator of α is identical to the least square estimator

of β2. [Hint: See Exercise 2.4.]
b. Show, algebraically, that the least squares residuals from ỹ = α x̃ + e are the same as the least

squares residuals from the original linear model y = β1 + β2x + e.
4.14 Using data on 5766 primary school children, we estimate two models relating their performance on a

math test (MATHSCORE) to their teacher’s years of experience (TCHEXPER).
Linear relationship

MATHSCORE
⋀

= 478.15 + 0.81TCHEXPER R2 = 0.0095 σ̂ = 47.51
(se) (1.19) (0.11)

Linear-log relationship

MATHSCORE
⋀

= 474.25 + 5.63 ln(TCHEXPER) R2 = 0.0081 σ̂ = 47.57
(se) (1.84) (0.84)

a. Using the linear fitted relationship, how many years of additional teaching experience is required
to increase the expected math score by 10 points? Explain your calculation.

b. Does the linear fitted relationship imply that at some point there are diminishing returns to addi-
tional years of teaching experience? Explain.

c. Using the fitted linear-log model, is the graph of MATHSCORE against TCHEXPER increasing at
a constant rate, at an increasing rate, or at a decreasing rate? Explain. How does this compare to
the fitted linear relationship?

d. Using the linear-log fitted relationship, if a teacher has only one year of experience, how many
years of extra teaching experience is required to increase the expected math score by 10 points?
Explain your calculation.

e. 252 of the teachers had no teaching experience. What effect does this have on the estimation of the
two models?

f. These models have such a low R2 that there is no statistically significant relationship between
expected math score and years of teaching experience. True or False? Explain your answer.

4.15 Consider a log-reciprocal model that relates the logarithm of the dependent variable to the recipro-
cal of the explanatory variable, ln(y) = β1 + β2(1∕x). [Note: An illustration of this model is given in
Exercise 4.17].
a. For what values of y is this model defined? Are there any values of x that cause problems?
b. Write the model in exponential form as y = exp

[
β1 + β2(1∕x)

]
. Show that the slope of this rela-

tionship is dy∕dx = exp
[
β1 +

(
β2∕x

)]
×
(
−β2∕x2). What sign must β2 have for y and x to have a

positive relationship, assuming that x > 0?
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c. Suppose that x > 0 but it converges toward zero from above. What value does y converge to? What
does y converge to as x approaches infinity?

d. Suppose β1 = 0 and β2 = −4. Evaluate the slope at the x-values 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0.
As x increases, is the slope of the relationship increasing or decreasing, or both?

e. Show that the second derivative of the function is
d2y
dx2 =

(
β2

2
x4 +

2β2
x3

)
exp

[
β1 +

(
β2∕x

)]

Assuming β2 < 0 and x > 0, set the equation to zero, and show that the x-value that makes the
second derivative zero is –β2∕2. Does this result agree with your calculations in part (d)? [Hint:
exp

[
β1 +

(
β2∕x

)]
> 0. You have solved for what is called an inflection point.]

4.7.2 Computer Exercises
4.16 In Section 4.6, we considered the demand for edible chicken, which the U.S. Department of Agriculture

calls “broilers.” The data for this exercise are in the file newbroiler.
a. Using the 52 annual observations, 1950–2001, estimate the reciprocal model Q = α1 +

α2(1∕P) + e. Plot the fitted value of Q = per capita consumption of chicken, in pounds, versus
P = real price of chicken. How well does the estimated relation fit the data?

b. Using the estimated relation in part (a), compute the elasticity of per capita consumption with
respect to real price when the real price is its median, $1.31, and quantity is taken to be the corre-
sponding value on the fitted curve.

[Hint: The derivative (slope) of the reciprocal model y = a + b(1∕x) is dy∕dx = −b
(
1∕x2)].

Compare this estimated elasticity to the estimate found in Section 4.6 where the log-log functional
form was used.

c. Estimate the poultry consumption using the linear-log functional form Q = γ1 + γ2 ln(P) + e.
Plot the fitted values of Q = per capita consumption of chicken, in pounds, versus P = real price
of chicken. How well does the estimated relation fit the data?

d. Using the estimated relation in part (c), compute the elasticity of per capita consumption with
respect to real price when the real price is its median, $1.31. Compare this estimated elasticity to
the estimate from the log-log model and from the reciprocal model in part (b).

e. Estimate the poultry consumption using a log-linear model ln(Q) = ϕ1 + ϕ2P + e. Plot the fit-
ted values of Q = per capita consumption of chicken, in pounds, versus P = real price of chicken.
How well does the estimated relation fit the data?

f. Using the estimated relation in part (e), compute the elasticity of per capita consumption with
respect to real price when the real price is its median, $1.31. Compare this estimated elasticity to
the estimate from the previous models.

g. Evaluate the suitability of the alternative models for fitting the poultry consumption data, including
the log-log model. Which of them would you select as best, and why?

4.17 McCarthy and Ryan (1976) considered a model of television ownership in the United Kingdom and
Ireland using data from 1955 to 1973. Use the data file tvdata for this exercise.
a. For the United Kingdom, plot the rate of television ownership (RATE_UK) against per capita con-

sumer expenditures (SPEND_UK). Which models in Figure 4.5 are candidates to fit the data?
b. Estimate the linear-log model RATE_UK = β1 + β2ln(SPEND_UK) + e. Obtain the fitted values

and plot them against SPEND_UK. How well does this model fit the data?
c. What is the interpretation of the intercept in the linear-log model? Specifically, for the model

in (b), for what value of SPEND_UK is the expected value E(RATE_UK|SPEND_UK) = β1?
d. Estimate the linear-log model RATE_UK = β1 + β2ln(SPEND_UK − 280) + e. Obtain the fitted

values and plot them against SPEND_UK. How well does this model fit the data? How has the
adjustment (−280) changed the fitted relationship? [Note: You might well wonder how the value
280 was determined. It was estimated using a procedure called nonlinear least squares. You will
be introduced to this technique later in this book.]

e. A competing model is the log-reciprocal model, described in Exercise 4.15. Estimate the
log-reciprocal model ln(RATE_UK) = α1 + α2(1∕SPEND_UK) + e. Obtain the fitted values and
plot them against SPEND_UK. How well does this model fit the data?

f. Explain the failure of the model in (e) by referring to Exercise 4.15(c).
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g. Estimate the log-reciprocal model ln(RATE_UK) = α1 + α2(1∕[SPEND_UK − 280]) + e. Obtain
the fitted values and plot them against SPEND_UK. How well does this model fit the data? How
has this modification corrected the problem identified in part (f)?

h. Repeat the above exercises for Ireland, with correcting factor 240 instead of 280.
4.18 Do larger universities have lower cost per student or a higher cost per student? Use the data on 141 pub-

lic universities in the data file pubcoll for 2010 and 2011. A university is many things and here we only
focus on the effect of undergraduate full-time student enrollment (FTESTU) on average total cost per
student (ACA). Consider the regression model ACAit = β1 + β2FTESTUit + eit where the subscripts i
and t denote the university and the time period, respectively. Here, eit is the usual random error term.
a. Estimate the model above using 2010 data only, again using 2011 data only, and again using both

years of data together. What is the estimated effect of increasing enrollment on average cost per
student? Base your answer on both point and 95% interval estimates.

b. There are certainly many other factors affecting average cost per student. Some of them can
be characterized as the university “identity” or “image.” Let us denote these largely unob-
servable individual attributes as ui. If we could add this feature to the model, it would be
ACAit = β1 + β2FTESTUit +

(
θui + eit

)
. We place it in parentheses with eit because it is another

unobservable random error, but it is different because the character or identify of a university
does not change from one year to the next. Do you suppose that our usual exogeneity assumptions
hold in light of this new class of omitted variables? Might some unobservable characteristics of a
university be correlated with student enrollment? Give some examples.

c. With our two years of data, we can take “first differences,” by subtracting the model in 2010 from
the model in 2011, ΔACAi = β2ΔFTESTUi + Δei, where

ΔACAi = ACAi,2011 − ACAi,2010

ΔFTESTUi = FTESTUi,2011 − FTESTUi,2010

Δei = ei,2011 − ei,2010

Explain why the intercept and θui drop from the model. Explain how the exogeneity assumptions
might now hold.

d. Estimate ΔACAi = β2ΔFTESTUi + Δei and also ΔACAi = δ + β2ΔFTESTUi + Δei. What now is
the estimated effect of increasing enrollment on average cost per student? Base your answer on both
point and 95% interval estimates. Does adding an intercept to the model make any fundamental
difference in this case?

e. Estimate the model Δln
(
ACAi

)
= α + γΔln

(
FTESTUi

)
+ Δei where

Δln
(
ACAi

)
= ln

(
ACAi,2011

)
− ln

(
ACAi,2010

)

and
Δln

(
FTESTUi

)
= ln

(
FTESTUi,2011

)
− ln

(
FTESTUi,2010

)

Interpret the estimated coefficient of Δln
(
FTESTUi

)
.

[Hint: See equation (A.3) in Appendix A.]
4.19 The data file wa_wheat contains wheat yield for several shires in Western Australia from 1950 to 1997.

a. If the variable YIELD is “average wheat yield” in tonnes per hectare what is the interpretation of
RYIELD = 1∕YIELD?

b. For Northampton and Mullewa shires, plot RYIELD = 1∕YIELD against YEAR = 1949 + TIME.
Do you notice any anomalies in the plots? What years are most unusual? Using your favorite search
engine discover what conditions may have affected wheat production in these shires during these
years.

c. For Northampton and Mullewa shires, estimate the reciprocal model RYIELD = α1 + α2TIME + e.
Interpret the estimated coefficient. What does the sign tell us?

d. For the estimations in part (c), test the hypothesis that the coefficient of TIME is greater than or
equal to zero against the alternative that it is negative, at the 5% level of significance.

e. For each of the estimations in part (c), calculate studentized residuals, and values for the diagnostics
LEVERAGE, DFBETAS, and DFFITS. Identify the years in which these are “large” and include
your threshold for what is large.

f. Discarding correct data is hardly ever a good idea, and we recommend that you not do it. Later
in this book, you will discover other methods for addressing such problems—such as adding
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additional explanatory variables—but for now experiment. For each shire, identify the most
unusual observation. What grounds did you use for choosing?

g. Drop the most unusual observation for each shire and reestimate the model. How much do the
results change? How do these changes relate to the diagnostics in part (e)?

4.20 In the log-linear model ln(y) = β1 + β2x + e, the corrected predictor ŷc = exp
(
b1 + b2x

)
× exp

(
σ̂2/2

)

is argued to have a lower mean squared error than the “normal” predictor ŷn = exp
(
b1 + b2x

)
. The

correction factor exp
(
σ̂2/2

)
depends on the regression errors having a normal distribution.

a. In exponential form, the log-linear model is y = exp
(
β1 + β2x

)
exp(e). Assuming that the explana-

tory variable x and the random error e are statistically independent, find E(y).
b. Use the data file cps5_small for this exercise. [The data file cps5 contains more observations and

variables.] Estimate the model ln(WAGE) = β1 + β2EDUC + e using the first 1000 observations.
Based on this regression, calculate the correction factor c = exp

(
σ̂2/2

)
. What is this value?

c. Obtain the 1000 least squares residuals ê from the regression in (b). Calculate the correction factor
d = ∑1000

i=1 exp
(
êi
)/

1000. What is this value?
d. Using the estimates from part (b), obtain the predictions for observations 1001–1200, using

ŷn = exp
(
b1 + b2x

)
, ŷc = cŷn, and ŷd = dŷn. Calculate the mean (average) squared fore-

cast errors MSEn =
∑1200

i=1001
(
ŷni − yi

)2/200, MSEc =
∑1200

i=1001
(
ŷci − yi

)2/200, and MSEd =∑1200
i=1001

(
ŷdi − yi

)2/200. Based on this criterion, which predictor is best?
4.21 The data file malawi_small contains survey data from Malawi during 2007–2008 on total household

expenditures in the prior month (in Malawian Kwacha) as well as expenditures on categories of goods
such as food, clothes, and fuel.
a. Locate Malawi and its neighboring countries on a map. Find the exchange rate between US $1 and

the Malawian Kwacha. What is the population size of Malawi? Which industry drives the Malawi
economy?

b. Define the proportion of expenditure on food as PFOOD = FOOD∕TOTEXP. Estimate the
linear-log regression model PFOOD = β1 + β2ln(TOTEXP) + e and report the estimation results.
What happens to the share of total expenditure devoted to food as total expenditure rises. Construct
a 95% interval estimate for β2. Have we estimated this coefficient relatively precisely or not? Does
the model fit the data well? Is there a problem?

c. The elasticity of expenditure on food with respect to total expenditure is

ε = dFOOD
dTOTEXP

× TOTEXP
FOOD

=
β1 + β2

[
ln(TOTEXP) + 1

]

β1 + β2 ln(TOTEXP)

This result is derived in Exercise 4.12. Calculate the elasticity at the 5th percentile and the 75th per-
centile of total expenditure. Is this a constant elasticity function? If your software permits, calculate
a standard error for the elasticity.

d. Calculate the least squares residuals from the model in (b). Construct a histogram of these residuals
and plot them against ln(TOTEXP). Are any patterns evident? Find the sample skewness and kur-
tosis of the least squares residuals. Carry out the Jarque–Bera test at the 1% level of significance.
What are the null and alternative hypotheses for this test?

e. Take the logarithm of the left-hand side of FOOD∕TOTEXP = β1 + β2ln(TOTEXP) and simplify
the result, and add an error term, to obtain ln(FOOD) = α1 + α2 ln(TOTEXP) + v. Estimate this
model. Interpret the estimated coefficient of ln(TOTEXP). What is the estimated elasticity of expen-
diture on food with respect to total expenditure?

f. Calculate the residuals from the model in (e). Construct a histogram of these residuals and plot
them against ln(TOTEXP). Are any patterns evident? Find the sample skewness and kurtosis of the
least squares residuals. Carry out the Jarque–Bera test at the 1% level of significance.

g. Estimate the linear-log model FOOD = γ1 + γ2ln(TOTEXP) + u. Discuss the estimation results.
Calculate the elasticity of food expenditure with respect to total expenditure when food expenditure
is at its 50th percentile and at its 75th percentile. Is this a constant elasticity function, or is elasticity
increasing or decreasing?

h. Calculate the residuals from the model in (g). Construct a histogram of these residuals and plot
them against ln(TOTEXP). Are any patterns evident? Find the sample skewness and kurtosis of the
least squares residuals. Carry out the Jarque–Bera test at the 1% level of significance.



❦

❦ ❦

❦

188 CHAPTER 4 Prediction, Goodness-of-Fit, and Modeling Issues

i. Calculate predicted values of expenditure on food from each model. Multiply the fitted value from
the model in part (b) to obtain a prediction for expenditure on food. Using the model in part (e)
obtain exp

[
ln(FOOD)
⋀]

. For the model in part (g), obtain fitted values. Find the correlations between
the actual value of FOOD and the three sets of predictions. What, if any, information is provided
by these correlations? Which model would you select for reporting, if you had to choose only one?
Explain your choice.

4.22 The data file malawi_small contains survey data from Malawi during 2007–2008 on total household
expenditures in the prior month (in Malawian Kwacha) as well as expenditures on categories of goods
such as food, clothes, and fuel.
a. Define the proportion of expenditure on food consumed away from home as PFOODAWAY =

FOODAWAY∕TOTEXP. Construct a histogram for PFOODAWAY and its summary statistics. What
percentage of the sample has a zero value for PFOODAWAY . What does that imply about their
expenditures last month?

b. Create the variable FOODAWAY = PFOODAWAY × TOTEXP. Construct a histogram for FOOD-
AWAY and another histogram for FOODAWAY if FOODAWAY > 0. Compare the summary statis-
tics for TOTEXP for households with FOODAWAY > 0 to those with FOODAWAY = 0. What
differences do you observe?

c. Estimate the linear regression model FOODAWAY = β1 + β2TOTEXP + e twice, once for the full
sample, and once using only households for whom FOODAWAY > 0. What differences in slope esti-
mates do you observe? How would you explain these differences to an audience of noneconomists?

d. Calculate the fitted values from each of the estimated models in part (c) and plot the fitted values,
and FOODAWAY values, versus TOTEXP. Think about how the least squares estimation procedure
works to fit a line to data. Explain the relative difference in the two estimations based on this
intuition.

4.23 The data file malawi_small contains survey data from Malawi during 2007–2008 on total household
expenditures in the prior month (in Malawian Kwacha) as well as expenditures on categories of goods
such as food, clothes, and fuel. Consider the following models.

i. Budget share: PTELEPHONE = β1 + β2ln(TOTEXP) + e
ii. Expenditure: ln(PTELEPHONE × TOTEXP) = α1 + α2ln(TOTEXP) + e

iii. Budget share: PCLOTHES = β1 + β2ln(TOTEXP) + e
iv. Expenditure: ln(PCLOTHES × TOTEXP) = α1 + α2ln(TOTEXP) + e
v. Budget share: PFUEL = β1 + β2ln(TOTEXP) + e

vi. Expenditure: ln(PFUEL × TOTEXP) = α1 + α2ln(TOTEXP) + e
a. Estimate each of the models (i) to (vi). Interpret the estimated coefficients of ln(TOTEXP). Is each

item a necessity, or a luxury?
b. For each commodity equation (ii), (iv), and (vi), calculate the expenditure elasticity with respect

to total expenditure at the 25th and 75th percentiles of TOTEXP.
c. For the budget share equations, (i), (iii), and (v), find the elasticities that are given by

ε =
β1 + β2

[
ln(TOTEXP) + 1

]

β1 + β2 ln(TOTEXP) (see Exercise 4.12). Are the changes in elasticities between the two

percentiles, noticeable? [A standard log-log expenditure model can be obtained using the data,
by creating a dependent variable that is the logarithm of the budget share times total expenditure.
That is, for example, ln(TELEPHONE) = ln(PTELEPHONE × TOTEXP).]

4.24 Reconsider the presidential voting data (fair5) introduced in Exercises 2.23 and 3.24.
a. Using all the data from 1916 to 2012, estimate the regression model VOTE = β1 + β2GROWTH + e.

Based on these estimates, what is the predicted value of VOTE in favor of the Democrats in 2012?
At the time of the election, a Democrat, Barack Obama, was the incumbent. What is the least
squares residual for the 2012 election observation?

b. Estimate the regression in (a) using only data up to 2008. Predict the value of VOTE in 2012 using
the actual value of GROWTH for 2012, which was 1.03%. What is the prediction error in this
forecast? Is it larger or smaller than the error computed in part (a).

c. Using the regression results from (b), construct a 95% prediction interval for the 2012 value of
VOTE using the actual value of GROWTH = 1.03%.

d. Using the estimation results in (b), what value of GROWTH would have led to a prediction that the
nonincumbent party [Republicans] would have won 50.1% of the vote in 2012?
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e. Use the estimates from part (a), and predict the percentage vote in favor of the Democratic candi-
date in 2016. At the time of the election, a Democrat, Barack Obama, was the incumbent. Choose
several values for GROWTH that represent both pessimistic and optimistic values for 2016. Cite
the source of your chosen values for GROWTH.

4.25 The file collegetown contains data on 500 houses sold in Baton Rouge, LA during 2009–2013. Variable
descriptions are in the file collegetown.def .
a. Estimate the log-linear model ln(PRICE) = β1 + β2SQFT + e. Interpret the estimated model

parameters. Calculate the slope and elasticity at the sample means, if necessary.
b. Estimate the log-log model ln(PRICE) = α1 + α2ln(SQFT) + e. Interpret the estimated parameters.

Calculate the slope and elasticity at the sample means, if necessary.
c. Compare the R2 value from the linear model PRICE = δ1 + δ2SQFT + e to the “generalized” R2

measure for the models in (b) and (c).
d. Construct histograms of the least squares residuals from each of the models in (a)–(c) and obtain

the Jarque–Bera statistics. Based on your observations, do you consider the distributions of the
residuals to be compatible with an assumption of normality?

e. For each of the models in (a)–(c), plot the least squares residuals against SQFT . Do you observe
any patterns?

f. For each model in (a)–(c), predict the value of a house with 2700 square feet.
g. For each model in (a)–(c), construct a 95% prediction interval for the value of a house with 2700

square feet.
h. Based on your work in this problem, discuss the choice of functional form. Which functional form

would you use? Explain.
4.26 The file collegetown contains data on 500 houses sold in Baton Rouge, LA during 2009–2013. Variable

descriptions are in the file collegetown.def.
a. Estimate the log-linear model ln(PRICE) = β1 + β2SQFT + e for houses close to Louisiana State

University [CLOSE = 1] and again for houses that are not close to Louisiana State University. How
similar are the two sets of regression estimates. For each find the “corrected” predictor for a house
with 2700 square feet of living area. What do you find?

b. Using the sample of homes that are not close to LSU [CLOSE = 0], find any observations on
house sales that you would classify as unusual, based on the studentized residuals, LEVERAGE,
DFBETAS, and DFFITS. Can you identify any house characteristics that might explain why they
are unusual?

c. Estimate the log-linear model ln(PRICE) = β1 + β2SQFT + e for houses for which AGE < 7 and
again for houses with AGE > 9. Note that AGE is not the actual age of the house, but a category.
Examine the file collegetown.def for the specifics. How similar are the two sets of regression esti-
mates. For each find the “corrected” predictor of a house with 2700 square feet of living area. What
do you find?

d. Using the sample of homes with AGE > 9, find any observations on house sales that you would
classify as unusual, based on the studentized residuals, LEVERAGE, DFBETAS, and DFFITS. Can
you identify any house characteristics that might explain why they are unusual?

4.27 Does the return to education differ by race and gender? For this exercise use the file cps5. [This is a
large file with 9799 observations. If your software is a student version, you can use the smaller file
cps5_small if your instructor permits]. In this exercise, you will extract subsamples of observations
consisting of (i) white males, (ii) white females, (iii) black males, and (iv) black females.
a. For each sample partition, obtain the summary statistics of WAGE.
b. A variable’s coefficient of variation (CV) is 100 times the ratio of its sample standard deviation

to its sample mean. For a variable y, it is

CV = 100 ×
sy

y
It is a measure of variation that takes into account the size of the variable. What is the coefficient
of variation for WAGE within each sample partition?

c. For each sample partition, estimate the log-linear model
ln(WAGE) = β1 + β2EDUC + e

What is the approximate percentage return to another year of education for each group?
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d. Create 95% interval estimates for the coefficient β2 in each partition. Identify partitions for which
the 95% interval estimates of the rate of return to education do not overlap. What does this imply
about the population relations between wages and education for these groups? Are they similar or
different? For the nonoverlapping pairs, test the null hypothesis that the parameter β2 in one sample
partition (the larger one, for simplicity) equals the estimated value in the other partition, using the
5% level of significance.

e. Create 95% interval estimates for the intercept coefficient in each partition. Identify partitions for
which the 95% interval estimates for the intercepts do not overlap. What does this imply about the
population relations between wages and education for these groups? Are they similar or different?
For the nonoverlapping pairs, test the null hypothesis that the parameter β1 in one sample partition
(the larger one, for simplicity) equals the estimated value in the other partition, using the 5% level
of significance.

f. Does the model fit the data equally well for each sample partition?
4.28 The file wa-wheat.dat contains observations on wheat yield in Western Australian shires. There are 48

annual observations for the years 1950–1997. For the Northampton shire, consider the following four
equations:

YIELDt = β0 + β1TIME + et

YIELDt = α0 + α1 ln(TIME) + et

YIELDt = γ0 + γ1TIME2 + et

ln
(
YIELDt

)
= ϕ0 + ϕ1TIME + et

a. Estimate each of the four equations. Taking into consideration (i) plots of the fitted equations, (ii)
plots of the residuals, (iii) error normality tests, and (iii) values for R2, which equation do you think
is preferable? Explain.

b. Interpret the coefficient of the time-related variable in your chosen specification.
c. Using your chosen specification, identify any unusual observations, based on the studentized resid-

uals, LEVERAGE, DFBETAS, and DFFITS.
d. Using your chosen specification, use the observations up to 1996 to estimate the model. Construct

a 95% prediction interval for YIELD in 1997. Does your interval contain the true value?
4.29 Consider a model for household expenditure as a function of household income using the 2013 data

from the Consumer Expenditure Survey, cex5_small. The data file cex5 contains more observations.
Our attention is restricted to three-person households, consisting of a husband, a wife, plus one other.
In this exercise, we examine expenditures on a staple item, food. In this extended example, you are
asked to compare the linear, log-log, and linear-log specifications.
a. Calculate summary statistics for the variables: FOOD and INCOME. Report for each the sample

mean, median, minimum, maximum, and standard deviation. Construct histograms for both vari-
ables. Locate the variable mean and median on each histogram. Are the histograms symmetrical
and “bell-shaped” curves? Is the sample mean larger than the median, or vice versa? Carry out the
Jarque–Bera test for the normality of each variable.

b. Estimate the linear relationship FOOD = β1 + β2INCOME + e. Create a scatter plot FOOD versus
INCOME and include the fitted least squares line. Construct a 95% interval estimate for β2. Have
we estimated the effect of changing income on average FOOD relatively precisely, or not?

c. Obtain the least squares residuals from the regression in (b) and plot them against INCOME. Do
you observe any patterns? Construct a residual histogram and carry out the Jarque–Bera test for
normality. Is it more important for the variables FOOD and INCOME to be normally distributed,
or that the random error e be normally distributed? Explain your reasoning.

d. Calculate both a point estimate and a 95% interval estimate of the elasticity of food expenditure
with respect to income at INCOME = 19, 65, and 160, and the corresponding points on the fitted
line, which you may treat as not random. Are the estimated elasticities similar or dissimilar? Do
the interval estimates overlap or not? As INCOME increases should the income elasticity for food
increase or decrease, based on Economics principles?

e. For expenditures on food, estimate the log-log relationship ln(FOOD) = γ1 + γ2ln(INCOME) + e.
Create a scatter plot for ln(FOOD) versus ln(INCOME) and include the fitted least squares line.
Compare this to the plot in (b). Is the relationship more or less well-defined for the log-log model



❦

❦ ❦

❦

4.7 Exercises 191

relative to the linear specification? Calculate the generalized R2 for the log-log model and compare
it to the R2 from the linear model. Which of the models seems to fit the data better?

f. Construct a point and 95% interval estimate of the elasticity for the log-log model. Is the elasticity of
food expenditure from the log-log model similar to that in part (d), or dissimilar? Provide statistical
evidence for your claim.

g. Obtain the least squares residuals from the log-log model and plot them against ln(INCOME). Do
you observe any patterns? Construct a residual histogram and carry out the Jarque–Bera test for
normality. What do you conclude about the normality of the regression errors in this model?

h. For expenditures on food, estimate the linear-log relationship FOOD = α1 + α2ln(INCOME) + e.
Create a scatter plot for FOOD versus ln(INCOME) and include the fitted least squares line. Com-
pare this to the plots in (b) and (e). Is this relationship more well-defined compared to the others?
Compare the R2 values. Which of the models seems to fit the data better?

i. Construct a point and 95% interval estimate of the elasticity for the linear-log model at INCOME =
19, 65, and 160, and the corresponding points on the fitted line, which you may treat as not random.
Is the elasticity of food expenditure similar to those from the other models, or dissimilar? Provide
statistical evidence for your claim.

j. Obtain the least squares residuals from the linear-log model and plot them against ln(INCOME).
Do you observe any patterns? Construct a residual histogram and carry out the Jarque–Bera test
for normality. What do you conclude about the normality of the regression errors in this model?

k. Based on this exercise, do you prefer the linear relationship model, or the log-log model or the
linear-log model? Explain your reasoning.

4.30 Consider a model for household expenditure as a function of household income using the 2013 data
from the Consumer Expenditure Survey, cex5_small. The data file cex5 contains more observations.
Our attention is restricted to three person households, consisting of a husband, a wife, plus one other.
In this exercise, we examine expenditures on alcoholic beverages.
a. Obtain summary statistics for ALCBEV . How many households spend nothing on alcoholic bev-

erages? Calculate the summary statistics restricting the sample to those households with positive
expenditure on alcoholic beverages.

b. Plot ALCBEV against INCOME and include the fitted least squares regression line. Obtain the least
squares estimates of the model ALCBEV = β1 + β2INCOME + e. Obtain the least squares residuals
and plot these versus INCOME. Does this plot appear random, as in Figure 4.7(a)? If the dependent
variable in this regression model is zero (ALCBEV = 0), what is the least squares residual? For
observations with ALCBEV = 0, is the least squares residual related to the explanatory variable
INCOME? How?

c. Suppose that some households in this sample may never purchase alcohol, regardless of their
income. If this is true, do you think that a linear regression including all the observations, even
the observations for which ALCBEV = 0, gives a reliable estimate of the effect of income on aver-
age alcohol expenditure? If there is estimation bias, is the bias positive (the slope overestimated)
or negative (slope underestimated)? Explain your reasoning.

d. For households with ALCBEV > 0, construct histograms for ALCBEV and ln(ALCBEV). How do
they compare?

e. Create a scatter plot of ln(ALCBEV) against ln(INCOME) and include a fitted regression line. Inter-
pret the coefficient of ln(INCOME) in the estimated log-log regression. How many observations
are included in this estimation?

f. Calculate the least squares residuals from the log-log model. Create a histogram of these residuals
and also plot them against ln(INCOME). Does this plot appear random, as in Figure 4.7(a)?

g. If we consider only the population of individuals who have positive expenditures for alcohol, do
you prefer the linear relationship model, or the log-log model?

h. Expenditures on apparel have some similar features to expenditures on alcoholic beverages. You
might reconsider the above exercises for APPAR. Think about part (c) above. Of those with no
apparel expenditure last month, do you think there is a substantial portion who never purchase
apparel regardless of income, or is it more likely that they sometimes purchase apparel but simply
did not do so last month?



❦

❦ ❦

❦

192 CHAPTER 4 Prediction, Goodness-of-Fit, and Modeling Issues

Appendix 4A Development of a Prediction Interval
The forecast error is " = y0 − ŷ0 =

(
β1 + β2x0 + e0

)
−
(
b1 + b2x0

)
. To obtain its variance, let us

first obtain the variance of ŷ0 = b1 + b2x0. The variances and covariance of the least squares esti-
mators are given in Section 2.4.4. Using them, and obtaining a common denominator, we obtain

var
(
ŷ0|x

)
= var

[(
b1 + b2x0

)|x
]
= var

(
b1|x

)
+ x2

0var
(
b2|x

)
+ 2x0cov

(
b1, b2|x

)

= σ2

N
∑(

xi − x
)2

[∑
x2

i + Nx2
0 − 2N xx0

]

The term in brackets can be simplified. First, factor N from the second and third terms to obtain∑
x2

i + Nx2
0 − 2N xx0 = ∑

x2
i + N

(
x2

0 − 2xx0
)
. Complete the square within the parentheses by

adding x2, and subtracting Nx2 to keep the equality. Then the term in brackets is
∑

x2
i − Nx2 + N

(
x2

0 − 2xx0 + x2
)
= ∑(

xi − x
)2 + N

(
x0 − x

)2

Finally

var
(
ŷ0|x

)
= σ2

[
1
N

+
(
x0 − x

)2

∑(
xi − x

)2

]

Taking into account that x0 and the unknown parameters β1 and β2 are not random, you should be
able to show that var(" |x) = var

(
ŷ0|x

)
+ var

(
e0
)
= var

(
ŷ0|x

)
+ σ2. A little factoring gives the

result in (4.4). We can construct a standard normal random variable as
"√

var(" |x)
∼ N(0, 1)

If the forecast error variance in (4.4) is estimated by replacing σ2 by its estimator σ̂2,

var
⋀

(" |x) = σ̂2
[

1 + 1
N

+
(
x0 − x

)2

∑(
xi − x

)2

]

then
"√

var
⋀

(" |x)
=

y0 − ŷ0
se(" ) ∼ t(N−2) (4A.1)

where the square root of the estimated variance is the standard error of the forecast given in (4.5).
The t-ratio in (4A.1) is a pivotal statistic. It has a distribution that does not depend on x or any
unknown parameters.

Using these results, we can construct an interval prediction procedure for y0 just as
we constructed confidence intervals for the parameters βk. If tc is a critical value from the
t(N−2)-distribution such that P

(
t ≥ tc

)
= α∕2, then

P
(
−tc ≤ t ≤ tc

)
= 1 − α (4A.2)

Substitute the t-random variable from (4A.1) into (4A.2) to obtain

P
[
−tc ≤ y0 − ŷ0

se(" ) ≤ tc
]
= 1 − α

Simplify this expression to obtain
P
[
ŷ0 − tcse(" ) ≤ y0 ≤ ŷ0 + tcse(" )

]
= 1 − α

A 100(1 − α)% confidence interval, or prediction interval, for y0 is given by (4.6). This prediction
interval is valid if x is fixed or random, as long as assumptions SR1–SR6 hold.
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Appendix 4B The Sum of Squares Decomposition
To obtain the sum of squares decomposition in (4.11), we square both sides of (4.10)

(
yi − y

)2 =
[(

ŷi − y
)
+ êi

]2
=
(
ŷi − y

)2 + ê2
i + 2

(
ŷi − y

)
êi

Then sum ∑(
yi − y

)2 = ∑(
ŷi − y

)2 +∑
ê2

i + 2∑(
ŷi − y

)
êi

Expanding the last term, we obtain
∑(

ŷi − y
)
êi =

∑
ŷiêi − y

∑
êi =

∑(
b1 + b2xi

)
êi − y

∑
êi

= b1
∑

êi + b2
∑

xiêi − y
∑

êi

Consider first the term ∑
êi

∑
êi =

∑(
yi − b1 − b2xi

)
= ∑

yi − Nb1 − b2
∑

xi = 0
This last expression is zero because of the first normal equation (2A.3). The first normal equation
is valid only if the model contains an intercept. The sum of the least squares residuals is always
zero if the model contains an intercept. It follows, then, that the sample mean of the least squares
residuals is also zero (since it is the sum of the residuals divided by the sample size) if the model
contains an intercept. That is, ê = ∑

êi∕N = 0.
The next term ∑

xiêi = 0, because
∑

xiêi =
∑

xi
(
yi − b1 − b2xi

)
= ∑

xiyi − b1
∑

xi − b2
∑

x2
i = 0

This result follows from the second normal equation (2A.4). This result always holds for the least
squares estimator and does not depend on the model having an intercept. See Appendix 2A for
discussion of the normal equations. Substituting ∑

êi = 0 and ∑
xiêi = 0 back into the original

equation, we obtain ∑(
ŷi − y

)
êi = 0.

Thus, if the model contains an intercept, it is guaranteed that SST = SSR + SSE. If, however,
the model does not contain an intercept, then ∑

êi ≠ 0 and SST ≠ SSR + SSE.

Appendix 4C Mean Squared Error: Estimation
and Prediction
In Chapter 2, we discussed the properties of the least squares estimator. Under assumptions
SR1–SR5, the least squares estimator is the Best Linear Unbiased Estimator (BLUE). There are
no estimators that are both linear and unbiased that are better than the least squares estimator.
However, this rules out many alternative estimators that statisticians and econometricians have
developed over the years, which might be useful in certain contexts. Mean squared error (MSE)
is an alternative metric for the quality of an estimator that doesn’t depend on linearity or unbi-
asedness, and hence is more general.

In the linear regression model y = β1 + β2x + e, suppose that we are keenly interested in
obtaining an estimate of β2 that is as close as possible to the true value. The mean squared error
of an estimator β̂2 is

MSE
(
β̂2
)
= E

[(
β̂2 − β2

)2]
(4C.1)

The term
(
β̂2 − β2

)2
is the squared estimation error, that is, the squared difference or distance

between the estimator β̂2 and the parameter β2 of interest. Because the estimator β̂2 exhibits sam-
pling variation, it is a random variable, and the squared term

(
β̂2 − β2

)2
is also random. If we
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think of “expected value” as “the average in all possible samples,” then the mean squared error
E
[(
β̂2 − β2

)2]
is the average, or mean, squared error using β̂2 as an estimator of β2. It measures

how close the estimator β̂2 is on average to the true parameter β2. We would like an estimator that
is as close as possible to the true parameter and one that has a small mean squared error.

An interesting feature of an estimator’s mean squared error is that it takes into account
both the estimator’s bias and its sampling variance. To see this we play a simple trick on
equation (4C.1); we will add and subtract E

(
β̂2
)

inside the parentheses and then square the
result. That is,

MSE
(
β̂2
)
= E

[(
β̂2 − β2

)2]
= E

⎧
⎪
⎨
⎪⎩

⎛
⎜
⎜⎝

β̂2 − E
(
β̂2
)
+ E

(
β̂2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

− β2⎞⎟
⎟⎠

2⎫
⎪
⎬
⎪⎭

= E
{([

β̂2 − E
(
β̂2
)]

+
[
E
(
β̂2
)
− β2

])2}

= E
{[
β̂2 − E

(
β̂2
)]2}

+ E
{[

E
(
β̂2
)
− β2

]2}

+ 2E
{[
β̂2 − E

(
β̂2
)][

E
(
β̂2
)
− β2

]}

= var
(
β̂2
)
+
[
bias

(
β̂2
)]2

(4C.2)

To go from the third to the fourth lines, we first recognize that E
{[
β̂2 − E

(
β̂2
)]2}

= var
(
β̂2
)

.

Secondly, in the term E
{[

E
(
β̂2
)
− β2

]2}
, the outside expectation is not needed because E

(
β̂2
)

is not random and β2 is not random. The difference between an estimator’s expected value and the
true parameter is called the estimator bias, so E

(
β̂2
)
− β2 = bias

(
β̂2
)

. The term
[
bias

(
β̂2
)]2

is
the squared estimator bias. The final term in the third line of (4C.2) is zero. To see this note again
that

[
E
(
β̂2
)
− β2

]
is not random, so that it can be factored out of the expectation

2E
{[
β̂2 − E

(
β̂2
)][

E
(
β̂2
)
− β2

]}
= 2

[
E
(
β̂2
)
− β2

]{
E
[
β̂2 − E

(
β̂2
)]}

= 2
[
E
(
β̂2
)
− β2

][
E
(
β̂2
)
− E

(
β̂2
)]

= 2
[
E
(
β̂2
)
− β2

]
0 = 0

We have shown that an estimator’s mean squared error is the sum of its variance and squared bias,

MSE
(
β̂2
)
= var

(
β̂2
)
+
[
bias

(
β̂2
)]2

(4C.3)

This relationship is also true if we use conditional expectations. The conditional MSE is

MSE
(
β̂2|x

)
= var

(
β̂2|x

)
+
[
bias

(
β̂2|x

)]2
(4C.4)

with bias
(
β̂2|x

)
= E

(
β̂2|x

)
− β2. Because the least squares estimator is unbiased under

SR1–SR5, its mean squared error is

MSE
(
b2|x

)
= var

(
b2|x

)
+
[
bias

(
b2|x

)]2
= var

(
b2|x

)
+[0]2 = var

(
b2|x

)
(4C.5)
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The mean squared error concept can also be applied to more than one parameter at once. For
example, the mean squared error of β̂1 and β̂2 as estimators of β1 and β2 is

MSE
(
β̂1, β̂2|x

)
= E

{[(
β̂1 − β1

)2
+
(
β̂2 − β2

)2]|||||
x
}

= var
(
β̂1|x

)
+
[
bias

(
β̂1|x

)]2
+ var

(
β̂2|x

)
+
[
bias

(
β̂2|x

)]2

In the simple linear regression model, there are no estimators β̂1 and β̂2 of β1 and β2 that have
mean squared error MSE

(
β̂1, β̂2|x

)
smaller than the mean squared error for the least squares

estimator, MSE
(
b1, b2|!

)
, for any and all parameter values. This statement turns out not to be

true in the multiple regression model.
We can apply the mean squared error concept to prediction situations too. Suppose that we

are predicting an outcome y0 using a predictor ŷ0(x), which is a function of the sample x. The
conditional mean squared error of the predictor is E

[(
y0 − ŷ0(x)

)2|||x
]
. We employ the same trick

as in (4C.2), adding and subtracting E
(
y0|x

)
, the conditional expected value of y0,

E
[(

y0 − ŷ0(x)
)2|||x

]
= E

[(
y0 − E

(
y0|x

)
+ E

(
y0|x

)
− ŷ0(x)

)2|||x
]

= E
[(

y0 − E
(
y0|x

))2|||x
]
+ E

[(
E
(
y0|x

)
− ŷ0(x)

)2|||x
]

+ 2E
{([

y0 − E
(
y0|x

)][
E
(
y0|x

)
− ŷ0(x)

]) |||x
}

= var
(
y0|x

)
+
{[

E
(
y0|x

)
− ŷ0(x)

]2|||x
}

(4C.6)

The third line in (4C.6) is zero because conditional on x the term E
(
y0|x

)
− ŷ0(x) is not random,

and it can be factored out of the expectation

2E
{([

y0 − E
(
y0|x

)][
E
(
y0|x

)
− ŷ0(x)

])|||x
}

= 2
(

E
(
y0|x

)
− ŷ0(x)

)
E
{([

y0 − E
(
y0|x

)])|||x
}

= 2
(

E
(
y0|x

)
− ŷ0(x)

)[
E
(
y0|x

)
− E

(
y0|x

)]

= 2
(

E
(
y0|x

)
− ŷ0(x)

)
× 0 = 0

The conditional mean squared error of our predictor is then

E
[(

y0 − ŷ0(x)
)2|||x

]
= var

(
y0|x

)
+
[(

E
(
y0|x

)
− ŷ0(x)

)2|||x
]

(4C.7)

Using the law of iterated expectations

E
[(

y0 − ŷ0(x)
)]2

= Ex
[
var

(
y0|x

)]
+ Ex

{[
E
(
y0|x

)
− ŷ0(x)

]2}
(4C.8)

If we are choosing a predictor, then the one that minimizes the mean squared error is
ŷ0(x) = E

(
y0|x

)
. This makes the final term in (4C.8) zero. The conditional mean of y0 is the

minimum mean squared error predictor of y0.
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