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CHAPTER 3

Interval Estimation
and Hypothesis Testing

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Discuss how ‘‘sampling theory’’ relates to
interval estimation and hypothesis testing.

2. Explain why it is important for statistical
inference that given x the least squares
estimators b1 and b2 are normally distributed
random variables.

3. Explain the ‘‘level of confidence’’ of an interval
estimator, and exactly what it means in a
sampling context, and give an example.

4. Explain the difference between an interval
estimator and an interval estimate. Explain how
to interpret an interval estimate.

5. Explain the terms null hypothesis, alternative
hypothesis, and rejection region, giving an
example and a sketch of the rejection region.

6. Explain the logic of a statistical test, including
why it is important that a test statistic has a

known probability distribution if the null
hypothesis is true.

7. Explain the term p-value and how to use a
p-value to determine the outcome of a
hypothesis test; provide a sketch showing a
p-value.

8. Explain the difference between one-tail and
two-tail tests. Explain, intuitively, how to choose
the rejection region for a one-tail test.

9. Explain Type I error and illustrate it in a sketch.
Define the level of significance of a test.

10. Explain the difference between economic and
statistical significance.

11. Explain how to choose what goes in the null
hypothesis and what goes in the alternative
hypothesis.

K E Y W O R D S
alternative hypothesis
confidence intervals
critical value
degrees of freedom
hypotheses
hypothesis testing
inference
interval estimation

level of significance
linear combination of parameters
linear hypothesis
null hypothesis
one-tail tests
pivotal statistic
point estimates
probability value

p-value
rejection region
test of significance
test statistic
two-tail tests
Type I error
Type II error
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3.1 Interval Estimation 113

In Chapter 2, we used the least squares estimators to develop point estimates for the parameters in
the simple linear regression model. These estimates represent an inference about the regression
function E(y|x) = β1 + β2x describing a relationship between economic variables. Infer means “to
conclude by reasoning from something known or assumed.” This dictionary definition describes
statistical inference as well. We have assumed a relationship between economic variables and
made various assumptions (SR1–SR5) about the regression model. Based on these assumptions,
and given empirical estimates of regression parameters, we want to make inferences about the
population from which the data were obtained.

In this chapter, we introduce additional tools of statistical inference: interval estimation and
hypothesis testing. Interval estimation is a procedure for creating ranges of values, sometimes
called confidence intervals, in which the unknown parameters are likely to be located. Hypothesis
tests are procedures for comparing conjectures that we might have about the regression parameters
to the parameter estimates we have obtained from a sample of data. Hypothesis tests allow us to
say that the data are compatible, or are not compatible, with a particular conjecture or hypothesis.

The procedures for hypothesis testing and interval estimation depend very heavily on assump-
tion SR6 of the simple linear regression model and the resulting conditional normality of the least
squares estimators. If assumption SR6 does not hold, then the sample size must be sufficiently
large so that the distributions of the least squares estimators are approximately normal. In this
case, the procedures we develop in this chapter can be used but are also approximate. In develop-
ing the procedures in this chapter, we will be using the “Student’s” t-distribution. You may want to
refresh your memory about this distribution by reviewing Appendix B.3.7. In addition, it is some-
times helpful to see the concepts we are about to discuss in a simpler setting. In Appendix C, we
examine statistical inference, interval estimation, and hypothesis testing in the context of estimat-
ing the mean of a normal population. You may want to review this material now or read it along
with this chapter as we proceed.

3.1 Interval Estimation
In Chapter 2, in Example 2.4, we estimated that household food expenditure would rise by $10.21
given a $100 increase in weekly income. The estimate b2 = 10.21 is a point estimate of the
unknown population parameter β2 in the regression model. Interval estimation proposes a range
of values in which the true parameter β2 is likely to fall. Providing a range of values gives a sense
of what the parameter value might be, and the precision with which we have estimated it. Such
intervals are often called confidence intervals. We prefer to call them interval estimates because
the term “confidence” is widely misunderstood and misused. As we will see, our confidence is
in the procedure we use to obtain the intervals, not in the intervals themselves. This is consistent
with how we assessed the properties of the least squares estimators in Chapter 2.

3.1.1 The t-Distribution
Let us assume that assumptions SR1–SR6 hold for the simple linear regression model. In this
case, we know that given x the least squares estimators b1 and b2 have normal distributions, as
discussed in Section 2.6. For example, the normal distribution of b2, the least squares estimator
of β2, is

b2|x ∼ N
(
β2,

σ2
∑(

xi − x
)2

)

A standardized normal random variable is obtained from b2 by subtracting its mean and dividing
by its standard deviation:

Z =
b2 − β2√

σ2/∑(
xi − x

)2
∼ N(0, 1) (3.1)
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The standardized random variable Z is normally distributed with mean 0 and variance 1. By
standardizing the conditional normal distribution of b2|!, we find a statistic Z whose N(0, 1)
sampling distribution does not depend on any unknown parameters or on x! Such statistics are
called pivotal, and this means that when making probability statements about Z we do not have
to worry about whether x is fixed or random. Using a table of normal probabilities (Statistical
Table 1) we know that

P(−1.96 ≤ Z ≤ 1.96) = 0.95
Substituting (3.1) into this expression, we obtain

P
⎛
⎜
⎜
⎜⎝
−1.96 ≤ b2 − β2√

σ2/∑(
xi − x

)2
≤ 1.96

⎞
⎟
⎟
⎟⎠
= 0.95

Rearranging gives us

P
(

b2 − 1.96
√
σ2/∑(

xi − x
)2 ≤ β2 ≤ b2 + 1.96

√
σ2/∑(

xi − x
)2
)

= 0.95

This defines an interval that has probability 0.95 of containing the parameter β2. The two end-
points

(
b2 ± 1.96

√
σ2/∑(

xi − x
)2
)

provide an interval estimator. If we construct intervals this
way using all possible samples of size N from a population, then 95% of the intervals will contain
the true parameter β2. This easy derivation of an interval estimator is based on both assumption
SR6 and our knowing the variance of the error term σ2.

Although we do not know the value of σ2, we can estimate it. The least squares residuals are
êi = yi − b1 − b2xi, and our estimator of σ2 is σ̂2 = ∑

ê2
i ∕(N − 2). Replacing σ2 by σ̂2 in (3.1) cre-

ates a random variable we can work with, but this substitution changes the probability distribution
from standard normal to a t-distribution with N − 2 degrees of freedom,

t =
b2 − β2√

σ̂2/∑(
xi − x

)2
=

b2 − β2√
var
⋀(

b2
) =

b2 − β2
se
(
b2
) ∼ t(N−2) (3.2)

The ratio t =
(
b2 − β2

)
∕se

(
b2
)

has a t-distribution with N−2 degrees of freedom, which we
denote as t ∼ t(N−2). By standardizing the conditional normal distribution of b2|! and inserting
the estimator σ̂2, we find a statistic t whose t(N−2) sampling distribution does not depend on any
unknown parameters or on x! It too is a pivotal statistic, and when making probability state-
ments with a t-statistic, we do not have to worry about whether x is fixed or random. A similar
result holds for b1, so in general we can say, if assumptions SR1–SR6 hold in the simple linear
regression model, then

t =
bk − βk

se
(
bk
) ∼ t(N−2) for k = 1, 2 (3.3)

This equation will be the basis for interval estimation and hypothesis testing in the simple linear
regression model. The statistical argument of how we go from (3.1) to (3.2) is in Appendix 3A.

When working with the t-distribution, remember that it is a bell-shaped curve centered at
zero. It looks like the standard normal distribution, except that it is more spread out, with a larger
variance and thicker tails. The shape of the t-distribution is controlled by a single parameter
called the degrees of freedom, often abbreviated as df . We use the notation t(m) to specify a
t-distribution with m degrees of freedom. In Statistical Table 2, there are percentile values of the
t-distribution for various degrees of freedom. For m degrees of freedom, the 95th percentile of
the t-distribution is denoted t(0.95, m). This value has the property that 0.95 of the probability falls
to its left, so P

[
t(m) ≤ t(0.95, m)

]
= 0.95. For example, if the degrees of freedom are m = 20, then,

from Statistical Table 2, t(0.95, 20) = 1.725. Should you encounter a problem requiring percentiles
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FIGURE 3.1 Critical values from a t-distribution.

that we do not give, you can interpolate for an approximate answer or use your computer software
to obtain an exact value.

3.1.2 Obtaining Interval Estimates
From Statistical Table 2, we can find a “critical value” tc from a t-distribution such that
P
(
t ≥ tc

)
= P

(
t ≤ −tc

)
= α∕2, where α is a probability often taken to be α = 0.01 or α = 0.05.

The critical value tc for degrees of freedom m is the percentile value t(1−α/2, m). The values tc
and −tc are depicted in Figure 3.1.

Each shaded “tail” area contains α∕2 of the probability, so that 1 − α of the probability is
contained in the center portion. Consequently, we can make the probability statement

P
(
−tc ≤ t ≤ tc

)
= 1 − α (3.4)

For a 95% confidence interval, the critical values define a central region of the t-distribution
containing probability 1 − α = 0.95. This leaves probability α = 0.05 divided equally between
the two tails, so that α∕2 = 0.025. Then the critical value tc = t(1−0.025, m) = t(0.975, m). In the simple
regression model, the degrees of freedom are m = N − 2, so expression (3.4) becomes

P
[
−t(0.975,N−2) ≤ t ≤ t(0.975,N−2)

]
= 0.95

We find the percentile values t(0.975, N−2) in Statistical Table 2.
Now, let us see how we can put all these bits together to create a procedure for interval

estimation. Substitute t from (3.3) into (3.4) to obtain

P
[
−tc ≤ bk − βk

se
(
bk
) ≤ tc

]
= 1 − α

Rearrange this expression to obtain

P
[
bk − tcse

(
bk
) ≤ βk ≤ bk + tcse

(
bk
)]

= 1 − α (3.5)

The interval endpoints bk − tcse
(
bk
)

and bk + tcse
(
bk
)

are random because they vary from sam-
ple to sample. These endpoints define an interval estimator of βk. The probability statement in
(3.5) says that the interval bk ± tcse

(
bk
)

has probability 1 − α of containing the true but unknown
parameter βk.

When bk and se
(
bk
)

in (3.5) are estimated values (numbers), based on a given sample of
data, then bk ± tcse

(
bk
)

is called a 100(1 − α)% interval estimate of βk. Equivalently, it is called
a 100(1 − α)% confidence interval. Usually, α = 0.01 or α = 0.05, so that we obtain a 99% con-
fidence interval or a 95% confidence interval.

The interpretation of confidence intervals requires a great deal of care. The properties of
the interval estimation procedure are based on the notion of sampling. If we collect all possible
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samples of size N from a population, compute the least squares estimate bk and its standard error
se
(
bk
)

for each sample, and then construct the interval estimate bk ± tcse
(
bk
)

for each sample,
then 100(1 − α)% of all the intervals constructed would contain the true parameter βk. In Appendix
3C, we carry out a Monte Carlo simulation to demonstrate this sampling property.

Any one interval estimate, based on one sample of data, may or may not contain the true
parameter βk, and because βk is unknown, we will never know whether it does or does not. When
“confidence intervals” are discussed, remember that our confidence is in the procedure used to
construct the interval estimate; it is not in any one interval estimate calculated from a sample
of data.

E X A M P L E 3.1 Interval Estimate for Food Expenditure Data

For the food expenditure data, N = 40 and the degrees of
freedom are N − 2 = 38. For a 95% confidence interval, α =
0.05. The critical value tc = t(1−α/2, N−2) = t(0.975, 38) = 2.024 is
the 97.5 percentile from the t-distribution with 38 degrees of
freedom. For β2, the probability statement in (3.5) becomes

P
[
b2 − 2.024se

(
b2
) ≤ β2 ≤ b2 + 2.024se

(
b2
)]

= 0.95
(3.6)

To construct an interval estimate for β2, we use the least
squares estimate b2 = 10.21 and its standard error

se
(
b2
)
=
√

var
⋀(

b2
)
=
√

4.38 = 2.09

Substituting these values into (3.6), we obtain a “95% confi-
dence interval estimate” for β2:

b2 ± tcse
(
b2
)
= 10.21 ± 2.024(2.09) = [5.97, 14.45]

That is, we estimate “with 95% confidence” that from an addi-
tional $100 of weekly income households will spend between
$5.97 and $14.45 on food.

Is β2 actually in the interval [5.97, 14.45]? We do not
know, and we will never know. What we do know is that when
the procedure we used is applied to all possible samples of
data from the same population, then 95% of all the interval
estimates constructed using this procedure will contain the
true parameter. The interval estimation procedure “works”
95% of the time. What we can say about the interval esti-
mate based on our one sample is that, given the reliability
of the procedure, we would be “surprised” if β2 is not in the
interval [5.97, 14.45].

What is the usefulness of an interval estimate of β2?
When reporting regression results, we always give a point
estimate, such as b2 = 10.21. However, the point estimate
alone gives no sense of its reliability. Thus, we might also
report an interval estimate. Interval estimates incorporate
both the point estimate and the standard error of the estimate,
which is a measure of the variability of the least squares
estimator. The interval estimate includes an allowance for
the sample size as well because for lower degrees of freedom
the t-distribution critical value tc is larger. If an interval
estimate is wide (implying a large standard error), it suggests
that there is not much information in the sample about β2.
If an interval estimate is narrow, it suggests that we have
learned more about β2.

What is “wide” and what is “narrow” depend on the
problem at hand. For example, in our model, b2 = 10.21 is
an estimate of how much weekly household food expenditure
will rise given a $100 increase in weekly household income.
A CEO of a supermarket chain can use this estimate to plan
future store capacity requirements, given forecasts of income
growth in an area. However, no decision will be based on this
one number alone. The prudent CEO will carry out a sensi-
tivity analysis by considering values of β2 around 10.21. The
question is “Which values?” One answer is provided by the
interval estimate [5.97, 14.45]. Though β2 may or may not
be in this interval, the CEO knows that the procedure used
to obtain the interval estimate “works” 95% of the time. If
varying β2 within the interval has drastic consequences on
company sales and profits, then the CEO may conclude that
there is insufficient evidence upon which to make a decision
and order a new and larger data sample.

3.1.3 The Sampling Context
In Section 2.4.3, we illustrated the sampling properties of the least squares estimators using
10 data samples. Each sample of size N = 40 includes households with the same incomes as
in Table 2.1 but with food expenditures that vary. These hypothetical data are in the data file
table2_2. In Table 3.1, we present the OLS estimates, the estimates of σ2, and the coefficient
standard errors from each sample. Note the sampling variation illustrated by these estimates. The
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T A B L E 3.1 Least Squares Estimates from 10 Hypothetical Random Samples

Sample b1 se(b1
)

b2 se(b2
)

"̂2

1 93.64 31.73 8.24 1.53 4282.13
2 91.62 31.37 8.90 1.51 4184.79
3 126.76 48.08 6.59 2.32 9828.47
4 55.98 45.89 11.23 2.21 8953.17
5 87.26 42.57 9.14 2.05 7705.72
6 122.55 42.65 6.80 2.06 7735.38
7 91.95 42.14 9.84 2.03 7549.82
8 72.48 34.04 10.50 1.64 4928.44
9 90.34 36.69 8.75 1.77 5724.08

10 128.55 50.14 6.99 2.42 10691.61

T A B L E 3.2 Interval Estimates from 10 Hypothetical Random Samples

Sample b1 − tcse(b1
)

b1 + tcse(b1
)

b2 − tcse(b2
)

b2 + tcse(b2
)

1 29.40 157.89 5.14 11.34
2 28.12 155.13 5.84 11.96
3 29.44 224.09 1.90 11.29
4 −36.91 148.87 6.75 15.71
5 1.08 173.43 4.98 13.29
6 36.21 208.89 2.63 10.96
7 6.65 177.25 5.73 13.95
8 3.56 141.40 7.18 13.82
9 16.07 164.62 5.17 12.33

10 27.04 230.06 2.09 11.88

variation is due to the fact that in each sample household food expenditures are different. The 95%
confidence intervals for the parameters β1 and β2 are given in Table 3.2 for the same samples.

Sampling variability causes the center of each of the interval estimates to change with the
values of the least squares estimates, and it causes the widths of the intervals to change with the
standard errors. If we ask the question “How many of these intervals contain the true parameters,
and which ones are they?” we must answer that we do not know. But since 95% of all interval
estimates constructed this way contain the true parameter values, we would expect perhaps 9 or
10 of these intervals to contain the true but unknown parameters.

Note the difference between point estimation and interval estimation. We have used the least
squares estimators to obtain point estimates of unknown parameters. The estimated variance
var
⋀(

bk
)
, for k = 1 or 2, and its square root

√
var
⋀(

bk
)
= se

(
bk
)

provide information about the
sampling variability of the least squares estimator from one sample to another. Interval estima-
tors are a convenient way to report regression results because they combine point estimation with
a measure of sampling variability to provide a range of values in which the unknown parame-
ters might fall. When the sampling variability of the least squares estimator is relatively small,
then the interval estimates will be relatively narrow, implying that the least squares estimates are
“reliable.” If the least squares estimators suffer from large sampling variability, then the interval
estimates will be wide, implying that the least squares estimates are “unreliable.”
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3.2 Hypothesis Tests
Many business and economic decision problems require a judgment as to whether or not a param-
eter is a specific value. In the food expenditure example, it may make a good deal of difference
for decision purposes whether β2 is greater than 10, indicating that a $100 increase in income
will increase expenditure on food by more than $10. In addition, based on economic theory, we
believe that β2 should be positive. One check of our data and model is whether this theoretical
proposition is supported by the data.

Hypothesis testing procedures compare a conjecture we have about a population to the infor-
mation contained in a sample of data. Given an economic and statistical model, hypotheses are
formed about economic behavior. These hypotheses are then represented as statements about
model parameters. Hypothesis tests use the information about a parameter that is contained in a
sample of data, its least squares point estimate, and its standard error to draw a conclusion about
the hypothesis.

In each and every hypothesis test, five ingredients must be present:

Components of Hypothesis Tests
1. A null hypothesis H0
2. An alternative hypothesis H1
3. A test statistic
4. A rejection region
5. A conclusion

3.2.1 The Null Hypothesis
The null hypothesis, which is denoted by H0 (H-naught), specifies a value for a regression
parameter, which for generality we denote as βk, for k = 1 or 2. The null hypothesis is stated
as H0∶βk = c, where c is a constant, and is an important value in the context of a specific regres-
sion model. A null hypothesis is the belief we will maintain until we are convinced by the sample
evidence that it is not true, in which case we reject the null hypothesis.

3.2.2 The Alternative Hypothesis
Paired with every null hypothesis is a logical alternative hypothesis H1 that we will accept if
the null hypothesis is rejected. The alternative hypothesis is flexible and depends, to some extent,
on economic theory. For the null hypothesis H0∶βk = c, the three possible alternative hypotheses
are as follows:

• H1∶βk > c. Rejecting the null hypothesis that βk = c leads us to accept the conclusion that
βk > c. Inequality alternative hypotheses are widely used in economics because economic
theory frequently provides information about the signs of relationships between variables.
For example, in the food expenditure example, we might well test the null hypothesis
H0∶β2 = 0 against H1∶β2 > 0 because economic theory strongly suggests that necessities
such as food are normal goods and that food expenditure will rise if income increases.

• H1∶βk < c. Rejecting the null hypothesis that βk = c in this case leads us to accept the
conclusion that βk < c.

• H1∶βk ≠ c. Rejecting the null hypothesis that βk = c in this case leads us to accept the
conclusion that βk takes a value either larger or smaller than c.
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3.2.3 The Test Statistic
The sample information about the null hypothesis is embodied in the sample value of a test statis-
tic. Based on the value of a test statistic, we decide either to reject the null hypothesis or not
to reject it. A test statistic has a special characteristic: its probability distribution is completely
known when the null hypothesis is true, and it has some other distribution if the null hypothesis
is not true.

It all starts with the key result in (3.3), t =
(
bk − βk

)
∕se

(
bk
)
∼ t(N−2). If the null hypothesis

H0∶βk = c is true, then we can substitute c for βk and it follows that

t =
bk − c
se
(
bk
) ∼ t(N−2) (3.7)

If the null hypothesis is not true, then the t-statistic in (3.7) does not have a t-distribution with
N − 2 degrees of freedom. This point is elaborated in Appendix 3B.

3.2.4 The Rejection Region
The rejection region depends on the form of the alternative. It is the range of values of the test
statistic that leads to rejection of the null hypothesis. It is possible to construct a rejection region
only if we have
• A test statistic whose distribution is known when the null hypothesis is true
• An alternative hypothesis
• A level of significance

The rejection region consists of values that are unlikely and that have low probability of occurring
when the null hypothesis is true. The chain of logic is “If a value of the test statistic is obtained
that falls in a region of low probability, then it is unlikely that the test statistic has the assumed
distribution, and thus, it is unlikely that the null hypothesis is true.” If the alternative hypothesis is
true, then values of the test statistic will tend to be unusually large or unusually small. The terms
“large” and “small” are determined by choosing a probability α, called the level of significance
of the test, which provides a meaning for “an unlikely event.” The level of significance of the test
α is usually chosen to be 0.01, 0.05, or 0.10.

Remark
When no other specific choice is made, economists and statisticians often use a significance
level of 0.05. That is, an occurrence “one time in twenty” is regarded as an unusual or
improbable event by chance. This threshold for statistical significance is clung to as the
Holy Grail but in reality is simply a historical precedent based on quotes by Sir Ronald
Fisher who promoted the standard that t-values larger than two be regarded as significant.1
A stronger threshold for significance, such as “one time in a hundred,” or 0.01, might make
more sense. The importance of the topic is quickly evident with a web search. The issues
are discussed in The Cult of Statistical Significance: How the Standard Error Costs Us Jobs,
Justice, and Lives, by Stephen T. Ziliak and Deirdre N. McCloskey, 2008, The University of
Michigan Press.

If we reject the null hypothesis when it is true, then we commit what is called a Type I
error. The level of significance of a test is the probability of committing a Type I error, so
............................................................................................................................................
1Mark Kelly (2013) “Emily Dickinson and monkeys on the stair. Or: What is the significance of the 5% significance
level,” Significance, Vol. 10(5), October, 21–22.
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P(Type I error) = α. Any time we reject a null hypothesis, it is possible that we have made such
an error—there is no avoiding it. The good news is that we can specify the amount of Type I
error we will tolerate by setting the level of significance α. If such an error is costly, then we
make α small. If we do not reject a null hypothesis that is false, then we have committed a Type
II error. In a real-world situation, we cannot control or calculate the probability of this type of
error because it depends on the unknown true parameter βk. For more about Type I and Type II
errors, see Appendix C.6.9.

3.2.5 A Conclusion
When you have completed testing a hypothesis, you should state your conclusion. Do you reject
the null hypothesis, or do you not reject the null hypothesis? As we will argue below, you should
avoid saying that you “accept” the null hypothesis, which can be very misleading. Moreover,
we urge you to make it standard practice to say what the conclusion means in the economic
context of the problem you are working on and the economic significance of the finding. Statistical
procedures are not ends in themselves. They are carried out for a reason and have meaning, which
you should be able to explain.

3.3 Rejection Regions for Specific Alternatives
In this section, we hope to be very clear about the nature of the rejection rules for each of the
three possible alternatives to the null hypothesis H0∶βk = c. As noted in the previous section, to
have a rejection region for a null hypothesis, we need a test statistic, which we have; it is given in
(3.7). Second, we need a specific alternative, βk > c, βk < c, or βk ≠ c. Third, we need to specify
the level of significance of the test. The level of significance of a test, α, is the probability that we
reject the null hypothesis when it is actually true, which is called a Type I error.

3.3.1 One-Tail Tests with Alternative ‘‘Greater Than’’ (>)
When testing the null hypothesis H0∶βk = c, if the alternative hypothesis H1∶βk > c is true, then
the value of the t-statistic (3.7) tends to become larger than usual for the t-distribution. We will
reject the null hypothesis if the test statistic is larger than the critical value for the level of sig-
nificance α. The critical value that leaves probability α in the right tail is the (1 − α)-percentile
t(1−α, N−2), as shown in Figure 3.2. For example, if α = 0.05 and N − 2 = 30, then from Statistical
Table 2, the critical value is the 95th percentile value t(0.95, 30) = 1.697.

t(m)

α

Reject 
H0:βk = c

Do not
reject 

H0:βk = c

0 tc = t(1–α, N–2)

FIGURE 3.2 Rejection region for a one-tail test of H0∶%k = c against
H1∶%k > c.
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The rejection rule is

When testing the null hypothesis H0∶βk = c against the alternative hypothesis H1∶βk > c,
reject the null hypothesis and accept the alternative hypothesis if t ≥ t(1−α, N−2).

The test is called a “one-tail” test because unlikely values of the t-statistic fall only in one tail
of the probability distribution. If the null hypothesis is true, then the test statistic (3.7) has a
t-distribution, and its value would tend to fall in the center of the distribution, to the left of the
critical value, where most of the probability is contained. The level of significance α is chosen so
that if the null hypothesis is true, then the probability that the t-statistic value falls in the extreme
right tail of the distribution is small; an event that is improbable and unlikely to occur by chance.
If we obtain a test statistic value in the rejection region, we take it as evidence against the null
hypothesis, leading us to conclude that the null hypothesis is unlikely to be true. Evidence against
the null hypothesis is evidence in support of the alternative hypothesis. Thus, if we reject the null
hypothesis then we conclude that the alternative is true.

If the null hypothesis H0∶βk = c is true, then the test statistic (3.7) has a t-distribution and
its values fall in the nonrejection region with probability 1 − α. If t < t(1−α, N−2), then there is no
statistically significant evidence against the null hypothesis, and we do not reject it.

3.3.2 One-Tail Tests with Alternative ‘‘Less Than’’ (<)
If the alternative hypothesis H1∶βk < c is true, then the value of the t-statistic (3.7) tends to
become smaller than usual for the t-distribution. We reject the null hypothesis if the test statis-
tic is smaller than the critical value for the level of significance α. The critical value that leaves
probability α in the left tail is the α-percentile t(α, N−2), as shown in Figure 3.3.

When using Statistical Table 2 to locate critical values, recall that the t-distribution is
symmetric about zero, so that the α-percentile t(α, N−2) is the negative of the (1 − α)-percentile
t(1−α, N−2). For example, if α = 0.05 and N − 2 = 20, then from Statistical Table 2, the 95th per-
centile of the t-distribution is t(0.95, 20) = 1.725 and the 5th percentile value is t(0.05, 20) = −1.725.

The rejection rule is:

When testing the null hypothesis H0∶βk = c against the alternative hypothesis H1∶βk < c,
reject the null hypothesis and accept the alternative hypothesis if t ≤ t(α, N−2).

The nonrejection region consists of t-statistic values greater than t(α, N−2). When the null hypoth-
esis is true, the probability of obtaining such a t-value is 1 − α, which is chosen to be large. Thus
if t > t(α, N−2) then do not reject H0∶βk = c.

t(m)

Reject H0:βk = c

Do not reject 
H0:βk = c

0tc = t(α, N–2)

α

FIGURE 3.3 The rejection region for a one-tail test of H0∶%k = c against
H1∶%k < c.



❦

❦ ❦

❦

122 CHAPTER 3 Interval Estimation and Hypothesis Testing

Remembering where the rejection region is located may be facilitated by the following trick:

Memory Trick
The rejection region for a one-tail test is in the direction of the arrow in the alternative. If
the alternative is >, then reject in the right tail. If the alternative is <, reject in the left tail.

3.3.3 Two-Tail Tests with Alternative ‘‘Not Equal To’’ (≠)
When testing the null hypothesis H0∶βk = c, if the alternative hypothesis H1∶βk ≠ c is true,
then the value of the t-statistic (3.7) tends to become either larger or smaller than usual for the
t-distribution. To have a test with the level of significance α, we define the critical values so that the
probability of the t-statistic falling in either tail is α∕2. The left-tail critical value is the percentile
t(α/2, N−2) and the right-tail critical value is the percentile t(1−α/2, N−2). We reject the null hypothesis
that H0∶βk = c in favor of the alternative that H1∶βk ≠ c if the test statistic t ≤ t(α/2, N−2) or
t ≥ t(1−α/2, N−2), as shown in Figure 3.4. For example, if α = 0.05 and N − 2 = 30, then α∕2 =
0.025 and the left-tail critical value is the 2.5-percentile value t(0.025, 30) = −2.042; the right-tail
critical value is the 97.5-percentile t(0.975, 30) = 2.042. The right-tail critical value is found in
Statistical Table 2, and the left-tail critical value is found using the symmetry of the t-distribution.

Since the rejection region is composed of portions of the t-distribution in the left and right
tails, this test is called a two-tail test. When the null hypothesis is true, the probability of obtaining
a value of the test statistic that falls in either tail area is “small.” The sum of the tail probabilities
is α. Sample values of the test statistic that are in the tail areas are incompatible with the null
hypothesis and are evidence against the null hypothesis being true. On the other hand, if the null
hypothesis H0∶βk = c is true, then the probability of obtaining a value of the test statistic t in
the central nonrejection region is high. Sample values of the test statistic in the central nonrejec-
tion area are compatible with the null hypothesis and are not taken as evidence against the null
hypothesis being true. Thus, the rejection rule is

When testing the null hypothesis H0∶βk = c against the alternative hypothesis H1∶βk ≠ c,
reject the null hypothesis and accept the alternative hypothesis if t ≤ t(α/2, N−2) or if
t ≥ t(1−α/2, N−2).

We do not reject the null hypothesis if t(α/2, N−2)< t < t(1−α/2, N−2).

Reject H0:βk = c
Accept H1:βk ≠ c

Reject H0:βk = c
Accept H1:βk ≠ c

α/2 α/2

tc = t(1–α/2, N–2)

Do not reject
H0:βk = c

f(t)

t

t(m)

–tc = t(α/2, N–2)

FIGURE 3.4 Rejection region for a test of H0∶%k = c against H1∶%k ≠ c.
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3.4 Examples of Hypothesis Tests
We illustrate the mechanics of hypothesis testing using the food expenditure model. We give
examples of right-tail, left-tail, and two-tail tests. In each case, we will follow a prescribed set of
steps, closely following the list of required components for all hypothesis tests listed at the begin-
ning of Section 3.2. A standard procedure for all hypothesis-testing problems and situations is

Step-by-Step Procedure for Testing Hypotheses
1. Determine the null and alternative hypotheses.
2. Specify the test statistic and its distribution if the null hypothesis is true.
3. Select α and determine the rejection region.
4. Calculate the sample value of the test statistic.
5. State your conclusion.

E X A M P L E 3.2 Right-Tail Test of Significance

Usually, our first concern is whether there is a relationship
between the variables, as we have specified in our model.
If β2 = 0, then there is no linear relationship between food
expenditure and income. Economic theory suggests that food
is a normal good and that as income increases food expendi-
ture will also increase and thus that β2 > 0. The least squares
estimate of β2 is b2 = 10.21, which is certainly greater than
zero. However, simply observing that the estimate has the
correct sign does not constitute scientific proof. We want to
determine whether there is convincing, or significant, statisti-
cal evidence that would lead us to conclude that β2 > 0. When
testing the null hypothesis that a parameter is zero, we are ask-
ing if the estimate b2 is significantly different from zero, and
the test is called a test of significance.

A statistical test procedure cannot prove the truth of
a null hypothesis. When we fail to reject a null hypothesis,
all the hypothesis test can establish is that the information
in a sample of data is compatible with the null hypothesis.
Conversely, a statistical test can lead us to reject the null
hypothesis, with only a small probability α of rejecting the
null hypothesis when it is actually true. Thus, rejecting a null
hypothesis is a stronger conclusion than failing to reject it.
For this reason, the null hypothesis is usually stated in such a
way that if our theory is correct, then we will reject the null
hypothesis. In our example, economic theory implies that
there should be a positive relationship between income and
food expenditure. We would like to establish that there is
statistical evidence to support this theory using a hypothesis
test. With this goal, we set up the null hypothesis that there
is no relation between the variables, H0∶β2 = 0. In the
alternative hypothesis, we put the conjecture that we would

like to establish, H1∶β2 > 0. If we then reject the null hypoth-
esis, we can make a direct statement, concluding that β2 is
positive, with only a small (α) probability that we are in error.

The steps of this hypothesis test are as follows:

1. The null hypothesis is H0∶β2 = 0. The alternative hypoth-
esis is H1∶β2 > 0.

2. The test statistic is (3.7). In this case, c = 0, so t =
b2∕se

(
b2
)
∼ t(N−2) if the null hypothesis is true.

3. Let us select α = 0.05. The critical value for the right-tail
rejection region is the 95th percentile of the t-distribution
with N – 2 = 38 degrees of freedom, t(0.95, 38) = 1.686.
Thus, we will reject the null hypothesis if the calculated
value of t ≥ 1.686. If t < 1.686, we will not reject the null
hypothesis.

4. Using the food expenditure data, we found that
b2 = 10.21 with standard error se

(
b2
)
= 2.09. The value

of the test statistic is

t =
b2

se
(
b2
) = 10.21

2.09 = 4.88

5. Since t = 4.88 > 1.686, we reject the null hypothesis
that β2 = 0 and accept the alternative that β2 > 0. That
is, we reject the hypothesis that there is no relationship
between income and food expenditure and conclude that
there is a statistically significant positive relationship
between household income and food expenditure.

The last part of the conclusion is important. When you report
your results to an audience, you will want to describe the
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outcome of the test in the context of the problem you are
investigating, not just in terms of Greek letters and symbols.

What if we had not been able to reject the null
hypothesis in this example? Would we have concluded that

economic theory is wrong and that there is no relationship
between income and food expenditure? No. Remember that
failing to reject a null hypothesis does not mean that the null
hypothesis is true.

E X A M P L E 3.3 Right-Tail Test of an Economic Hypothesis

Suppose that the economic profitability of a new supermarket
depends on households spending more than $5.50 out of each
additional $100 weekly income on food and that construction
will not proceed unless there is strong evidence to this effect.
In this case, the conjecture we want to establish, the one
that will go in the alternative hypothesis, is that β2 > 5.5. If
β2 ≤ 5.5, then the supermarket will be unprofitable and the
owners would not want to build it. The least squares estimate
of β2 is b2 = 10.21, which is greater than 5.5. What we want
to determine is whether there is convincing statistical evi-
dence that would lead us to conclude, based on the available
data, that β2 > 5.5. This judgment is based on not only the
estimate b2 but also its precision as measured by se

(
b2
)
.

What will the null hypothesis be? We have been
stating null hypotheses as equalities, such as β2 = 5.5. This
null hypothesis is too limited because it is theoretically
possible that β2 < 5.5. It turns out that the hypothesis testing
procedure for testing the null hypothesis that H0∶β2 ≤ 5.5
against the alternative hypothesis H1∶β2 > 5.5 is exactly
the same as testing H0∶β2 = 5.5 against the alternative
hypothesis H1∶β2 > 5.5. The test statistic and rejection
region are exactly the same. For a right-tail test, you can
form the null hypothesis in either of these ways depending
on the problem at hand.

The steps of this hypothesis test are as follows:

1. The null hypothesis is H0∶β2 ≤ 5.5. The alternative
hypothesis is H1∶β2 > 5.5.

2. The test statistic t =
(
b2 – 5.5

)
∕se

(
b2
)
∼ t(N−2) if the null

hypothesis is true.
3. Let us select α = 0.01. The critical value for the right-tail

rejection region is the 99th percentile of the t-distribution
with N − 2 = 38 degrees of freedom, t(0.99, 38) = 2.429.
We will reject the null hypothesis if the calculated value
of t ≥ 2.429. If t < 2.429, we will not reject the null
hypothesis.

4. Using the food expenditure data, b2 = 10.21 with stan-
dard error se

(
b2
)
= 2.09. The value of the test statistic

is
t =

b2 − 5.5
se
(
b2
) = 10.21 − 5.5

2.09 = 2.25

5. Since t = 2.25 < 2.429, we do not reject the null hypoth-
esis that β2 ≤ 5.5. We are not able to conclude that the
new supermarket will be profitable and will not begin
construction.

In this example, we have posed a situation where the choice
of the level of significance α becomes of great importance.
A construction project worth millions of dollars depends on
having convincing evidence that households will spend more
than $5.50 out of each additional $100 income on food.
Although the “usual” choice is α = 0.05, we have chosen a
conservative value of α = 0.01 because we seek a test that
has a low chance of rejecting the null hypothesis when it
is actually true. Recall that the level of significance of a
test defines what we mean by an unlikely value of the test
statistic. In this example, if the null hypothesis is true, then
building the supermarket will be unprofitable. We want the
probability of building an unprofitable market to be very
small, and therefore, we want the probability of rejecting
the null hypothesis when it is true to be very small. In
each real-world situation, the choice of α must be made on
an assessment of risk and the consequences of making an
incorrect decision.

A CEO unwilling to make a decision based on the avail-
able evidence may well order a new and larger sample of
data to be analyzed. Recall that as the sample size increases,
the least squares estimator becomes more precise (as mea-
sured by estimator variance), and consequently, hypothesis
tests become more powerful tools for statistical inference.
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E X A M P L E 3.4 Left-Tail Test of an Economic Hypothesis

For completeness, we will illustrate a test with the rejection
region in the left tail. Consider the null hypothesis that
β2 ≥ 15 and the alternative hypothesis β2 < 15. Recall our
memory trick for determining the location of the rejection
region for a t-test. The rejection region is in the direction of
the arrow < in the alternative hypothesis. This fact tells us
that the rejection region is in the left tail of the t-distribution.
The steps of this hypothesis test are as follows:

1. The null hypothesis is H0∶β2 ≥ 15. The alternative
hypothesis is H1∶β2 < 15.

2. The test statistic t =
(
b2 − 15

)
∕se

(
b2
)
∼ t(N−2) if the null

hypothesis is true.
3. Let us select α = 0.05. The critical value for the left-tail

rejection region is the 5th percentile of the t-distribution

with N – 2 = 38 degrees of freedom, t(0.05, 38) = −1.686.
We will reject the null hypothesis if the calculated value
of t ≤ −1.686. If t > −1.686, we will not reject the null
hypothesis. A left-tail rejection region is illustrated in
Figure 3.3.

4. Using the food expenditure data, b2 = 10.21 with stan-
dard error se

(
b2
)
= 2.09. The value of the test statistic

is
t =

b2 − 15
se
(
b2
) = 10.21 − 15

2.09 = −2.29

5. Since t = −2.29 < −1.686, we reject the null hypothesis
that β2 ≥ 15 and accept the alternative that β2 < 15. We
conclude that households spend less than $15 from each
additional $100 income on food.

E X A M P L E 3.5 Two-Tail Test of an Economic Hypothesis

A consultant voices the opinion that based on other simi-
lar neighborhoods the households near the proposed market
will spend an additional $7.50 per additional $100 income. In
terms of our economic model, we can state this conjecture as
the null hypothesis β2 = 7.5. If we want to test whether this
is true or not, then the alternative is that β2 ≠ 7.5. This alter-
native makes no claim about whether β2 is greater than 7.5 or
less than 7.5, simply that it is not 7.5. In such cases, we use a
two-tail test, as follows:

1. The null hypothesis is H0∶β2 = 7.5. The alternative
hypothesis is H1∶β2 ≠ 7.5.

2. The test statistic t =
(
b2 – 7.5

)
∕se

(
b2
)
∼ t(N−2) if the null

hypothesis is true.
3. Let us select α = 0.05. The critical values for this two-tail

test are the 2.5-percentile t(0.025, 38) = −2.024 and the
97.5-percentile t(0.975, 38) = 2.024. Thus, we will reject
the null hypothesis if the calculated value of t ≥ 2.024
or if t ≤ −2.024. If −2.024 < t < 2.024, then we will not
reject the null hypothesis.

4. For the food expenditure data, b2 = 10.21 with standard
error se

(
b2
)
= 2.09. The value of the test statistic is

t =
b2 − 7.5
se
(
b2
) = 10.21 − 7.5

2.09 = 1.29

5. Since –2.204 < t = 1.29 < 2.204, we do not reject the
null hypothesis that β2 = 7.5. The sample data are
consistent with the conjecture households will spend an
additional $7.50 per additional $100 income on food.

We must avoid reading into this conclusion more than it
means. We do not conclude from this test that β2 = 7.5,
only that the data are not incompatible with this parameter
value. The data are also compatible with the null hypothe-
ses H0∶β2 = 8.5 (t = 0.82), H0∶β2 = 6.5 (t = 1.77), and
H0∶β2 = 12.5 (t = −1.09). A hypothesis test cannot be used
to prove that a null hypothesis is true.

There is a trick relating two-tail tests and confidence
intervals that is sometimes useful. Let q be a value within
a 100(1 − α)% confidence interval, so that if tc = t(1−α/2, N−2),
then

bk − tcse
(
bk
) ≤ q ≤ bk + tcse

(
bk
)

If we test the null hypothesis H0∶βk = q against H1∶βk≠ q, when q is inside the confidence interval, then we will
not reject the null hypothesis at the level of significance α.
If q is outside the confidence interval, then the two-tail test
will reject the null hypothesis. We do not advocate using
confidence intervals to test hypotheses, they serve a different
purpose, but if you are given a confidence interval, this trick
is handy.
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E X A M P L E 3.6 Two-Tail Test of Significance

While we are confident that a relationship exists between food
expenditure and income, models are often proposed that are
more speculative, and the purpose of hypothesis testing is to
ascertain whether a relationship between variables exists or
not. In this case, the null hypothesis is β2 = 0; that is, no linear
relationship exists between x and y. The alternative is β2 ≠ 0,
which would mean that a relationship exists but that there
may be either a positive or negative association between the
variables. This is the most common form of a test of signifi-
cance. The test steps are as follows:

1. The null hypothesis is H0∶β2 = 0. The alternative hypoth-
esis is H1∶β2 ≠ 0.

2. The test statistic t = b2∕se
(
b2
)
∼ t(N−2) if the null hypoth-

esis is true.
3. Let us select α = 0.05. The critical values for this

two-tail test are the 2.5-percentile t(0.025, 38) = −2.024
and the 97.5-percentile t(0.975, 38) = 2.024. We will reject
the null hypothesis if the calculated value of t ≥ 2.024 or
if t ≤ −2.024. If −2.024 < t < 2.024, we will not reject
the null hypothesis.

4. Using the food expenditure data, b2 = 10.21 with stan-
dard error se

(
b2
)
= 2.09. The value of the test statistic is

t = b2∕se
(
b2
)
= 10.21∕2.09 = 4.88.

5. Since t = 4.88 > 2.024, we reject the null hypothesis that
β2 = 0 and conclude that there is a statistically significant
relationship between income and food expenditure.

Two points should be made about this result. First, the value
of the t-statistic we computed in this two-tail test is the same
as the value computed in the one-tail test of significance in
Example 3.2. The difference between the two tests is the

rejection region and the critical values. Second, the two-tail
test of significance is something that should be done each
time a regression model is estimated, and consequently,
computer software automatically calculates the t-values
for null hypotheses that the regression parameters are zero.
Refer back to Figure 2.9. Consider the portion that reports
the estimates:

Standard
Variable Coefficient Error t-Statistic Prob.
C 83.41600 43.41016 1.921578 0.0622
INCOME 10.20964 2.093264 4.877381 0.0000

Note that there is a column-labeled t-statistic. This is the
t-statistic value for the null hypothesis that the corresponding
parameter is zero. It is calculated as t = bk∕se

(
bk
)
. Dividing

the least squares estimates (Coefficient) by their standard
errors (Std. error) gives the t-statistic values (t-statistic)
for testing the hypothesis that the parameter is zero. The
t-statistic value for the variable INCOME is 4.877381, which
is relevant for testing the null hypothesis H0∶β2 = 0. We
have rounded this value to 4.88 in our discussions.

The t-value for testing the hypothesis that the intercept
is zero equals 1.92. The α = 0.05 critical values for these
two-tail tests are t(0.025, 38) = −2.024 and t(0.975, 38) = 2.024
whether we are testing a hypothesis about the slope or inter-
cept, so we fail to reject the null hypothesis that H0∶β1 = 0
given the alternative H1∶β1 ≠ 0.

The final column, labeled “Prob.,” is the subject of the
following section.

Remark
“Statistically significant” does not necessarily imply “economically significant.” For
example, suppose that the CEO of a supermarket chain plans a certain course of action
if β2 ≠ 0. Furthermore, suppose that a large sample is collected from which we obtain
the estimate b2 = 0.0001 with se

(
b2
)
= 0.00001, yielding the t-statistic t = 10.0. We

would reject the null hypothesis that β2 = 0 and accept the alternative that β2 ≠ 0. Here,
b2 = 0.0001 is statistically different from zero. However, 0.0001 may not be “economically”
different from zero, and the CEO may decide not to proceed with the plans. The message
here is that one must think carefully about the importance of a statistical analysis before
reporting or using the results.

3.5 The p-Value
When reporting the outcome of statistical hypothesis tests, it has become standard practice to
report the p-value (an abbreviation for probability value) of the test. If we have the p-value of a
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test, p, we can determine the outcome of the test by comparing the p-value to the chosen level of
significance, α, without looking up or calculating the critical values. The rule is

p-Value Rule
Reject the null hypothesis when the p-value is less than, or equal to, the level of significance
α. That is, if p ≤ α, then reject H0. If p > α, then do not reject H0.

If you have chosen the level of significance to be α = 0.01, 0.05, 0.10, or any other value, you
can compare it to the p-value of a test and then reject, or not reject, without checking the critical
value. In written works, reporting the p-value of a test allows the reader to apply his or her own
judgment about the appropriate level of significance.

How the p-value is computed depends on the alternative. If t is the calculated value of the
t-statistic, then

• if H1∶βk > c, p = probability to the right of t
• if H1∶βk < c, p = probability to the left of t
• if H1∶βk ≠ c, p = sum of probabilities to the right of |t| and to the left of −|t|

Memory Trick
The direction of the alternative indicates the tail(s) of the distribution in which the p-value
falls.

E X A M P L E 3.3 (continued) p-Value for a Right-Tail Test

In Example 3.3, we tested the null hypothesis H0∶β2 ≤ 5.5
against the one-sided alternative H1∶β2 > 5.5. The calculated
value of the t-statistic was

t =
b2 − 5.5
se
(
b2
) = 10.21 − 5.5

2.09 = 2.25

In this case, since the alternative is “greater than” (>), the
p-value of this test is the probability that a t-random variable
with N – 2 = 38 degrees of freedom is greater than 2.25, or
p = P

[
t(38) ≥ 2.25

]
= 0.0152.

This probability value cannot be found in the usual
t-table of critical values, but it is easily found using the
computer. Statistical software packages, and spreadsheets
such as Excel, have simple commands to evaluate the cumu-
lative distribution function (cdf ) (see Appendix B.1) for
a variety of probability distributions. If FX(x) is the cdf for a
random variable X, then for any value x = c, the cumulative
probability is P[X ≤ c] = FX(c). Given such a function for
the t-distribution, we compute the desired p-value as

p = P
[
t(38) ≥ 2.25

]
= 1 − P

[
t(38) ≤ 2.25

]
= 1 − 0.9848

= 0.0152

Following the p-value rule, we conclude that at α = 0.01 we
do not reject the null hypothesis. If we had chosen α = 0.05,
we would reject the null hypothesis in favor of the alternative.

The logic of the p-value rule is shown in Figure 3.5. The
probability of obtaining a t-value greater than 2.25 is 0.0152,
p = P

[
t(38) ≥ 2.25

]
= 0.0152. The 99th percentile t(0.99, 38),

which is the critical value for a right-tail test with the level
of significance of α = 0.01 must fall to the right of 2.25.
This means that t = 2.25 does not fall in the rejection region
if α = 0.01 and we will not reject the null hypothesis at this
level of significance. This is consistent with the p-value rule:
When the p-value (0.0152) is greater than the chosen level
of significance (0.01), we do not reject the null hypothesis.

On the other hand, the 95th percentile t(0.95, 38), which
is the critical value for a right-tail test with α = 0.05, must
be to the left of 2.25. This means that t = 2.25 falls in the
rejection region, and we reject the null hypothesis at the level
of significance α = 0.05. This is consistent with the p-value
rule: When the p-value (0.0152) is less than or equal to the
chosen level of significance (0.05), we will reject the null
hypothesis.
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p = 0.0152

t = 2.25

t(38)

t(0.95, 38) = 1.686 t(0.99, 38) = 2.429

–3 –2 –1

FIGURE 3.5 The p-value for a right-tail test.

E X A M P L E 3.4 (continued) p-Value for a Left-Tail Test

In Example 3.4, we carried out a test with the rejection
region in the left tail of the t-distribution. The null hypoth-
esis was H0∶β2 ≥ 15, and the alternative hypothesis was
H1∶β2 < 15. The calculated value of the t-statistic was
t = –2.29. To compute the p-value for this left-tail test, we
calculate the probability of obtaining a t-statistic to the
left of −2.29. Using your computer software, you will find
this value to be P

[
t(38) ≤ −2.29

]
= 0.0139. Following the

p-value rule, we conclude that at α = 0.01, we do not reject
the null hypothesis. If we choose α = 0.05, we will reject the

null hypothesis in favor of the alternative. See Figure 3.6 to
see this graphically. Locate the 1st and 5th percentiles. These
will be the critical values for left-tail tests with α = 0.01 and
α = 0.05 levels of significance. When the p-value (0.0139)
is greater than the level of significance (α = 0.01), then
the t-value −2.29 is not in the test rejection region. When
the p-value (0.0139) is less than or equal to the level of
significance (α = 0.05), then the t-value −2.29 is in the test
rejection region.

p = 0.0139

t = –2.29

t(38)

–3 –2 –1 0 1 2 3 t

t(0.05, 38) = –1.686t(0.01, 38) = –2.429

FIGURE 3.6 The p-value for a left-tail test.
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E X A M P L E 3.5 (continued) p-Value for a Two-Tail Test

For a two-tail test, the rejection region is in the two tails of the
t-distribution, and the p-value is similarly calculated in the
two tails of the distribution. In Example 3.5, we tested the null
hypothesis that β2 = 7.5 against the alternative hypothesis
β2 ≠ 7.5. The calculated value of the t-statistic was t = 1.29.
For this two-tail test, the p-value is the combined probability
to the right of 1.29 and to the left of −1.29:

p = P
[
t(38) ≥ 1.29

]
+ P

[
t(38) ≤ −1.29

]
= 0.2033

This calculation is depicted in Figure 3.7. Once the p-value
is obtained, its use is unchanged. If we choose α = 0.05,
α = 0.10, or even α = 0.20, we will fail to reject the null
hypothesis because p > α.

At the beginning of this section, we stated the following
rule for computing p-values for two-tail tests: if H1∶βk ≠ c,
p = sum of probabilities to the right of |t| and to the left of
−|t|. The reason for the use of absolute values in this rule
is that it will apply equally well if the value of the t-statistic
turns out to be positive or negative.

–3 –2 –1 0 1 2 3 t

p 2 =
0.10165 

p 2 =
0.10165 

p = 0.2033 

t = 1.29

t(38)

t = –1.29

t(0.975, 38) = 2.024 t(0.025, 38) = –2.024 

FIGURE 3.7 The p-value for a two-tail test of significance.

E X A M P L E 3.6 (continued) p-Value for a Two-Tail Test of Significance

All statistical software computes the p-value for the two-tail
test of significance for each coefficient when a regression
analysis is performed. In Example 3.6, we discussed testing
the null hypothesis H0∶β2 = 0 against the alternative hypoth-
esis H1∶β2 ≠ 0. For the calculated value of the t-statistic
t = 4.88, the p-value is

p = P
[
t(38) ≥ 4.88

]
+ P

[
t(38) ≤ −4.88

]
= 0.0000

Your software will automatically compute and report this
p-value for a two-tail test of significance. Refer back to
Figure 2.9 and consider just the portion reporting the
estimates:

Standard
Variable Coefficient Error t-Statistic Prob.
C 83.41600 43.41016 1.921578 0.0622
INCOME 10.20964 2.093264 4.877381 0.0000

Next to each t-statistic value is the two-tail p-value, which is
labeled “Prob.” by the EViews software. Other software pack-
ages will use similar names. When inspecting computer out-
put, we can immediately decide if an estimate is statistically
significant (statistically different from zero using a two-tail
test) by comparing the p-value to whatever level of signif-
icance we care to use. The estimated intercept has p-value
0.0622, so it is not statistically different from zero at the level
of significance α = 0.05, but it is statistically significant if
α = 0.10.

The estimated coefficient for income has a p-value that is
zero to four places. Thus, p ≤ α = 0.01 or even α = 0.0001,
and thus, we reject the null hypothesis that income has no
effect on food expenditure at these levels of significance. The
p-value for this two-tail test of significance is not actually
zero. If more places are used, then p = 0.00001946. Regres-
sion software usually does not print out more than four places
because in practice levels of significance less than α = 0.001
are rare.

3.6 Linear Combinations of Parameters
So far, we have discussed statistical inference (point estimation, interval estimation, and hypoth-
esis testing) for a single parameter, β1 or β2. More generally, we may wish to estimate and test
hypotheses about a linear combination of parameters λ = c1β1 + c2β2, where c1 and c2 are con-
stants that we specify. One example is if we wish to estimate the expected value of a dependent
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variable E(y|x) when x takes some specific value, such as x = x0. In this case, c1 = 1 and c2 = x0,
so that, λ = c1β1 + c2β2 = β1 + x0β2 = E

(
y|x = x0

)
.

Under assumptions SR1–SR5, the least squares estimators b1 and b2 are the best linear
unbiased estimators of β1 and β2. It is also true that λ̂ = c1b1 + c2b2 is the best linear unbiased
estimator of λ = c1β1 + c2β2. The estimator λ̂ is unbiased because

E
(
λ̂|x

)
= E

(
c1b1 + c2b2|x

)
= c1E

(
b1|x

)
+ c2E

(
b2|x

)
= c1β1 + c2β2 = λ

Then, using the law of iterated expectations, E
(
λ̂
)
= Ex

[
E
(
λ̂|x

)]
= Ex[λ] = λ. To find the vari-

ance of λ̂, recall from the Probability Primer, Section P.5.6, that if X and Y are random variables,
and if a and b are constants, then the variance var(aX + bY ) is given in equation (P.20) as

var(aX + bY) = a2var(X) + b2var(Y) + 2ab cov(X,Y)
In the estimator

(
c1b1 + c2b2

)
, both b1 and b2 are random variables, as we do not know what their

values will be until a sample is drawn and estimates calculated. Applying (P.20), we have

var
(
λ̂|x

)
= var

(
c1b1 + c2b2|x

)
= c2

1var
(
b1|x

)
+ c2

2var
(
b2|x

)
+ 2c1c2cov

(
b1, b2|x

)
(3.8)

The variances and covariances of the least squares estimators are given in (2.14)–(2.16). We
estimate var

(
λ̂|x

)
= var

(
c1b1 + c2b2|x

)
by replacing the unknown variances and covariances

with their estimated variances and covariances in (2.20)–(2.22). Then

var
⋀

(
λ̂|x

)
= var
⋀(

c1b1 + c2b2|x
)
= c2

1var
⋀(

b1|x
)
+ c2

2var
⋀(

b2|x
)
+ 2c1c2cov

⋀(
b1, b2|x

)
(3.9)

The standard error of λ̂ = c1b1 + c2b2 is the square root of the estimated variance,

se
(
λ̂
)
= se

(
c1b1 + c2b2

)
=
√

var
⋀(

c1b1 + c2b2|x
)

(3.10)

If in addition SR6 holds, or if the sample is large, the least squares estimators b1 and b2 have
normal distributions. It is also true that linear combinations of normally distributed variables are
normally distributed, so that

λ̂|x = c1b1 + c2b2 ∼ N
[
λ, var

(
λ̂|x

)]

where var
(
λ̂|x

)
is given in (3.8). You may be thinking of how long such calculations will take

using a calculator, but don’t worry. Most computer software will do the calculations for you. Now
it’s time for an example.

E X A M P L E 3.7 Estimating Expected Food Expenditure

An executive might ask of the research staff, “Give me an
estimate of average weekly food expenditure by households
with $2,000 weekly income.” Interpreting the executive’s
word “average” to mean “expected value,” for the food
expenditure model this means estimating

E(FOOD_EXP|INCOME) = β1 + β2INCOME

Recall that we measured income in $100 units in this
example, so a weekly income of $2,000 corresponds to
INCOME = 20. The executive is requesting an estimate of

E(FOOD_EXP|INCOME = 20) = β1 + β220
which is a linear combination of the parameters.

Using the 40 observations in the data file food, in
Section 2.3.2, we obtained the fitted regression,

FOOD_EXP
⋀

= 83.4160 + 10.2096INCOME

The point estimate of average weekly food expenditure for a
household with $2,000 income is

E(FOOD_EXP|INCOME = 20)
⋀

= b1 + b220
= 83.4160 + 10.2096(20) = 287.6089

We estimate that the expected food expenditure by a house-
hold with $2,000 income is $287.61 per week.



❦

❦ ❦

❦

3.6 Linear Combinations of Parameters 131

E X A M P L E 3.8 An Interval Estimate of Expected Food Expenditure

If assumption SR6 holds, and given x, the estimator λ̂ has a
normal distribution. We can form a standard normal random
variable as

Z = λ̂ − λ√
var

(
λ̂|x

) ∼ N(0, 1)

Replacing the true variance in the denominator with the esti-
mated variance, we form a pivotal t-statistic

t = λ̂ − λ√
var
⋀(

λ̂
) = λ̂ − λ

se
(
λ̂
) =

(
c1b1 + c2b2

)
−
(
c1β1 + c2β2

)

se
(
c1b1 + c2b2

)

∼ t(N−2) (3.11)
If tc is the 1 – α∕2 percentile value from the t(N−2) distribu-
tion, then P

(
−tc ≤ t ≤ tc

)
= 1 − α. Substitute (3.11) for t and

rearrange to obtain

P
[(

c1b1 + c2b2
)
− tcse

(
c1b1 + c2b2

) ≤ c1β1 + c2β2

≤(
c1b1 + c2b2

)
+ tcse

(
c1b1 + c2b2

) ]
= 1 − α

Thus, a 100(1 − α)% interval estimate for c1β1 + c2β2 is
(
c1b1 + c2b2

)
± tcse

(
c1b1 + c2b2

)

In Example 2.5, we obtained the estimated covariance
matrix

[
var
⋀(

b1
)

cov
⋀(

b1, b2
)

cov
⋀(

b1, b2
)

var
⋀(

b2
)

]
=

C INCOME
C 1884.442 −85.9032
INCOME −85.9032 4.3818

To obtain the standard error for b1 + b220, we first calculate
the estimated variance

var
⋀(

b1 + 20b2
)
= var
⋀(

b1
)
+
(
202 × var

⋀(
b2
))

+
(
2 × 20 × cov

⋀(
b1, b2

))

= 1884.442 +
(
202 × 4.3818

)

+ (2 × 20 ×(−85.9032))
= 201.0169

Given var
⋀(

b1 + 20b2
)
= 201.0169, the corresponding stan-

dard error is2

se
(
b1 + 20b2

)
=
√

var
⋀(

b1 + 20b2
)
=
√

201.0169

= 14.1780

A 95% interval estimate of E(FOOD_EXP|INCOME =
20) = β1 + β2(20) is

(
b1 + b220

)
± t(0.975,38)se

(
b1 + b220

)
or

[287.6089 − 2.024(14.1780) , 287.6089 + 2.024(14.1780)]
=[258.91, 316.31]

We estimate with 95% confidence that the expected food
expenditure by a household with $2,000 income is between
$258.91 and $316.31.

3.6.1 Testing a Linear Combination of Parameters
So far, we have tested hypotheses involving only one regression parameter at a time. That is, our
hypotheses have been of the form H0∶βk = c. A more general linear hypothesis involves both
parameters and may be stated as

H0∶c1β1 + c2β2 = c0 (3.12a)

where c0, c1, and c2 are specified constants, with c0 being the hypothesized value. Despite the
fact that the null hypothesis involves both coefficients, it still represents a single hypothesis to be
tested using a t-statistic. Sometimes, it is written equivalently in implicit form as

H0∶
(
c1β1 + c2β2

)
− c0 = 0 (3.12b)

............................................................................................................................................
2The value 201.0169 was obtained using computer software. If you do the calculation by hand using the provided
numbers, you obtain 201.034. Do not be alarmed if you obtain small differences like this occasionally, as it most likely
is the difference between a computer-generated solution and a hand calculation.
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The alternative hypothesis for the null hypothesis in (3.12a) might be

i. H1∶c1β1 + c2β2 ≠ c0 leading to a two-tail t-test
ii. H1∶c1β1 + c2β2 > c0 leading to a right-tail t-test [Null may be “≤”]

iii. H1∶c1β1 + c2β2 < c0 leading to a left-tail t-test [Null may be “≥”]

If the implicit form is used, the alternative hypothesis is adjusted as well.
The test of the hypothesis (3.12) uses the pivotal t-statistic

t =
(
c1b1 + c2b2

)
− c0

se
(
c1b1 + c2b2

) ∼ t(N−2) if the null hypothesis is true (3.13)

The rejection regions for the one- and two-tail alternatives (i)–(iii) are the same as those described
in Section 3.3, and conclusions are interpreted the same way as well.

The form of the t-statistic is very similar to the original specification in (3.7). In the
numerator,

(
c1b1 + c2b2

)
is the best linear unbiased estimator of

(
c1β1 + c2β2

)
, and if the errors

are normally distributed, or if we have a large sample, this estimator is normally distributed
as well.

E X A M P L E 3.9 Testing Expected Food Expenditure

The food expenditure model introduced in Section 2.1 and
used as an illustration throughout provides an excellent
example of how the linear hypothesis in (3.12) might
be used in practice. For most medium and larger cities,
there are forecasts of income growth for the coming year.
A supermarket or food retail store of any type will consider
this before a new facility is built. Their question is, if income
in a locale is projected to grow at a certain rate, how much
of that will be spent on food items? An executive might say,
based on years of experience, “I expect that a household
with $2,000 weekly income will spend, on average, more
than $250 a week on food.” How can we use econometrics
to test this conjecture?

The regression function for the food expenditure
model is

E(FOOD_EXP|INCOME) = β1 + β2INCOME

The executive’s conjecture is that

E(FOOD_EXP|INCOME = 20) = β1 + β220 > 250

To test the validity of this statement, we use it as the alterna-
tive hypothesis

H1∶β1 + β220 > 250, or H1∶β1 + β220 − 250 > 0

The corresponding null hypothesis is the logical alternative
to the executive’s statement

H0∶β1 + β220 ≤ 250, or H0∶β1 + β220 − 250 ≤ 0

Notice that the null and alternative hypotheses are in the same
form as the general linear hypothesis with c1 = 1, c2 = 20,
and c0 = 250.

The rejection region for a right-tail test is illustrated
in Figure 3.2. For a right-tail test at the α = 0.05 level of
significance, the t-critical value is the 95th percentile of the
t(38) distribution, which is t(0.95, 38) = 1.686. If the calculated
t-statistic value is greater than 1.686, we will reject the null
hypothesis and accept the alternative hypothesis, which in
this case is the executive’s conjecture.

Computing the t-statistic value

t =
(
b1 + 20b2

)
− 250

se
(
b1 + 20b2

)

= (83.4160 + 20 × 10.2096) − 250
14.1780

= 287.6089 − 250
14.1780 = 37.6089

14.1780 = 2.65

Since t = 2.65 > tc = 1.686, we reject the null hypothesis
that a household with weekly income of $2,000 will spend
$250 per week or less on food and conclude that the
executive’s conjecture that such households spend more than
$250 is correct, with the probability of Type I error 0.05.

In Example 3.8, we estimated that a household with
$2,000 weekly income will spend $287.6089, which is
greater than the executive’s speculated value of $250. How-
ever, simply observing that the estimated value is greater
than $250 is not a statistical test. It might be numerically
greater, but is it significantly greater? The t-test takes
into account the precision with which we have estimated
this expenditure level and also controls the probability of
Type I error.
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3.7 Exercises

3.7.1 Problems
3.1 There were 64 countries in 1992 that competed in the Olympics and won at least one medal. Let

MEDALS be the total number of medals won, and let GDPB be GDP (billions of 1995 dollars).
A linear regression model explaining the number of medals won is MEDALS = β1 + β2GDPB + e.
The estimated relationship is

MEDALS
⋀

= b1 + b2GDPB = 7.61733 + 0.01309GDPB
(se) (2.38994) (0.00215) (XR3.1)

a. We wish to test the hypothesis that there is no relationship between the number of medals won and
GDP against the alternative there is a positive relationship. State the null and alternative hypotheses
in terms of the model parameters.

b. What is the test statistic for part (a) and what is its distribution if the null hypothesis is true?
c. What happens to the distribution of the test statistic for part (a) if the alternative hypothesis is

true? Is the distribution shifted to the left or right, relative to the usual t-distribution? [Hint:
What is the expected value of b2 if the null hypothesis is true, and what is it if the alternative is
true?]

d. For a test at the 1% level of significance, for what values of the t-statistic will we reject the null
hypothesis in part (a)? For what values will we fail to reject the null hypothesis?

e. Carry out the t-test for the null hypothesis in part (a) at the 1% level of significance. What is your
economic conclusion? What does 1% level of significance mean in this example?

3.2 There were 64 countries in 1992 that competed in the Olympics and won at least one medal. Let
MEDALS be the total number of medals won, and let GDPB be GDP (billions of 1995 dollars). A
linear regression model explaining the number of medals won is MEDALS = β1 + β2GDPB + e. The
estimated relationship is given in equation (XR3.1) in Exercise 3.1.
a. We wish to test the null hypothesis that a one-billion dollar increase in GDP leads to an increase

in average, or expected, number of medals won by 0.015, against the alternative that it does not.
State the null and alternative hypotheses in terms of the model parameters.

b. What is the test statistic for part (a) and what is its distribution if the null hypothesis is true?
c. What happens to the distribution of the test statistic in part (a) if the alternative hypothesis is true?

Is the distribution shifted to the left or right, relative to the usual t-distribution, or is the direction
of the shift uncertain? [Hint: What is the expected value of b2 if the null hypothesis is true, and
what is it if the alternative is true?]

d. For a test at the 10% level of significance, for what values of the t-statistic, will we reject the null
hypothesis in part (a)? For what values, will we fail to reject the null hypothesis?

e. Carry out the t-test for the null hypothesis in part (a). What is your economic conclusion?
f. If we carry out the test in part (a) at the 5% level of significance, what do we conclude? At the 1%

level of significance, what do we conclude?
g. Carry out the same test at the 5% level of significance, but changing the null hypothesis value of

interest to 0.016, then 0.017. What is the calculated t-statistic value in each case? Which hypotheses
do you reject, and which do you fail to reject?

3.3 There were 64 countries in 1992 that competed in the Olympics and won at least one medal. Let
MEDALS be the total number of medals won, and let GDPB be GDP (billions of 1995 dollars). A
linear regression model explaining the number of medals won is MEDALS = β1 + β2GDPB + e. The
estimated relationship is given in equation (XR3.1) in Exercise 3.1.

The estimated covariance between the slope and intercept estimators is −0.00181 and the esti-
mated error variance is σ̂2 = 320.336. The sample mean of GDPB is GDPB = 390.89 and the sample
variance of GDPB is s2

GDPB = 1099615.
a. Estimate the expected number of medals won by a country with GDPB = 25.
b. Calculate the standard error of the estimate in (a) using for the variance var

⋀(
b1
)
+(25)2var

⋀(
b2
)
+

(2)(25) cov
⋀(

b1, b2
)
.
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c. Calculate the standard error of the estimate in (a) using for the variance σ̂2
{
(1∕N) +

[(
25 − GDPB

)2/(
(N − 1) s2

GDPB
)]}

.
d. Construct a 95% interval estimate for the expected number of medals won by a country with

GDPB = 25.
e. Construct a 95% interval estimate for the expected number of medals won by a country with

GDPB = 300. Compare and contrast this interval estimate to that in part (d). Explain the differences
you observe.

3.4 Assume that assumptions SR1–SR6 hold for the simple linear regression model, yi = β1 + β2xi + ei,
i = 1,… ,N. Generally, as the sample size N becomes larger, confidence intervals become narrower.
a. Is a narrower confidence interval for a parameter, such as β2, desirable? Explain why or why not.
b. Give two specific reasons why, as the sample size gets larger, a confidence interval for β2 tends to

become narrower. The reasons should relate to the properties of the least squares estimator and/or
interval estimation procedures.

3.5 If we have a large sample of data, then using critical values from the standard normal distribution for
constructing a p-value is justified. But how large is “large”?
a. For a t-distribution with 30 degrees of freedom, the right-tail p-value for a t-statistic of 1.66 is

0.05366666. What is the approximate p-value using the cumulative distribution function of the
standard normal distribution, Φ(z), in Statistical Table 1? Using a right-tail test with α = 0.05,
would you make the correct decision about the null hypothesis using the approximate p-value?
Would the exact p-value be larger or smaller for a t-distribution with 90 degrees of freedom?

b. For a t-distribution with 200 degrees of freedom, the right-tail p-value for a t-statistic of 1.97
is 0.0251093. What is the approximate p-value using the standard normal distribution? Using a
two-tail test with α = 0.05, would you make the correct decision about the null hypothesis using
the approximate p-value? Would the exact p-value be larger or smaller for a t-distribution with
90 degrees of freedom?

c. For a t-distribution with 1000 degrees of freedom, the right-tail p-value for a t-statistic of 2.58
is 0.00501087. What is the approximate p-value using the standard normal distribution? Using a
two-tail test with α = 0.05, would you make the correct decision about the null hypothesis using
the approximate p-value? Would the exact p-value be larger or smaller for a t-distribution with
2000 degrees of freedom?

3.6 We have data on 2323 randomly selected households consisting of three persons in 2013. Let
ENTERT denote the monthly entertainment expenditure ($) per person per month and let INCOME
($100) be monthly household income. Consider the simple linear regression model ENTERTi =
β1 + β2INCOMEi + ei, i = 1,… , 2323. Assume that assumptions SR1–SR6 hold. The least squares
estimated equation is ENTERT

⋀

i = 9.820 + 0.503INCOMEi. The standard error of the slope coefficient
estimator is se

(
b2
)
= 0.029, the standard error of the intercept estimator is se

(
b1
)
= 2.419, and the

estimated covariance between the least squares estimators b1 and b2 is −0.062.
a. Construct a 90% confidence interval estimate for β2 and interpret it for a group of CEOs from the

entertainment industry.
b. The CEO of AMC Entertainment Mr. Lopez asks you to estimate the average monthly entertain-

ment expenditure per person for a household with monthly income (for the three-person household)
of $7500. What is your estimate?

c. AMC Entertainment’s staff economist asks you for the estimated variance of the estimator
b1 + 75b2. What is your estimate?

d. AMC Entertainment is planning to build a luxury theater in a neighborhood with average monthly
income, for three-person households, of $7500. Their staff of economists has determined that in
order for the theater to be profitable the average household will have to spend more than $45 per
person per month on entertainment. Mr. Lopez asks you to provide conclusive statistical evidence,
beyond reasonable doubt, that the proposed theater will be profitable. Carefully set up the null and
alternative hypotheses, give the test statistic, and test rejection region using α = 0.01. Using the
information from the previous parts of the question, carry out the test and provide your result to
the AMC Entertainment CEO.

e. The income elasticity of entertainment expenditures at the point of the means is ε =
β2

(
INCOME

/
ENTERT

)
. The sample means of these variables are ENTERT = 45.93 and
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INCOME = 71.84. Test the null hypothesis that the elasticity is 0.85 against the alternative that it
is not 0.85, using the α = 0.05 level of significance.

f. Using Statistical Table 1, compute the approximate two-tail p-value for the t-statistic in part (e).
Using the p-value rule, do you reject the null hypothesis ε = β2

(
INCOME

/
ENTERT

)
= 0.85,

versus the alternative ε ≠ 0.85, at the 10% level of significance? Explain.
3.7 We have 2008 data on INCOME = income per capita (in thousands of dollars) and BACHELOR =

percentage of the population with a bachelor’s degree or more for the 50 U.S. States plus the District
of Columbia, a total of N = 51 observations. The results from a simple linear regression of INCOME
on BACHELOR are

INCOME
⋀

= (a) + 1.029BACHELOR
se (2.672) (c)
t (4.31) (10.75)

a. Using the information provided calculate the estimated intercept. Show your work.
b. Sketch the estimated relationship. Is it increasing or decreasing? Is it a positive or inverse relation-

ship? Is it increasing or decreasing at a constant rate or is it increasing or decreasing at an increasing
rate?

c. Using the information provided calculate the standard error of the slope coefficient. Show
your work.

d. What is the value of the t-statistic for the null hypothesis that the intercept parameter equals 10?
e. The p-value for a two-tail test that the intercept parameter equals 10, from part (d), is 0.572. Show

the p-value in a sketch. On the sketch, show the rejection region if α = 0.05.
f. Construct a 99% interval estimate of the slope. Interpret the interval estimate.
g. Test the null hypothesis that the slope coefficient is one against the alternative that it is not one at

the 5% level of significance. State the economic result of the test, in the context of this problem.
3.8 Using 2011 data on 141 U.S. public research universities, we examine the relationship between cost per

student and full-time university enrollment. Let ACA = real academic cost per student (thousands of
dollars), and let FTESTU = full-time student enrollment (thousands of students). The least squares fit-
ted relation is ACA

⋀

= 14.656 + 0.266FTESTU.
a. For the regression, the 95% interval estimate for the intercept is [10.602, 18.710]. Calculate the

standard error of the estimated intercept.
b. From the regression output, the standard error for the slope coefficient is 0.081. Test the null hypoth-

esis that the true slope, β2, is 0.25 (or less) against the alternative that the true slope is greater than
0.25 using the 10% level of significance. Show all steps of this hypothesis test, including the null
and alternative hypotheses, and state your conclusion.

c. On the regression output, the automatically provided p-value for the estimated slope is 0.001. What
is the meaning of this value? Use a sketch to illustrate your answer.

d. A member of the board of supervisors states that ACA should fall if we admit more students. Using
the estimated equation and the information in parts (a)–(c), test the null hypothesis that the slope
parameter β2 is zero, or positive, against the alternative hypothesis that it is negative. Use the
5% level of significance. Show all steps of this hypothesis test, including the null and alterna-
tive hypotheses, and state your conclusion. Is there any statistical support for the board member’s
conjecture?

e. In 2011, Louisiana State University (LSU) had a full-time student enrollment of 27,950. Based on
the estimated equation, the least squares estimate of E(ACA|FTESTU = 27, 950) is 22.079, with
standard error 0.964. The actual value of ACA for LSU that year was 21.403. Would you say that
this value is surprising or not surprising? Explain.

3.9 Using data from 2013 on 64 black females, the estimated linear regression between WAGE (earnings
per hour, in $) and years of education, EDUC is WAGE

⋀

= −8.45 + 1.99EDUC.
a. The standard error of the estimated slope coefficient is 0.52. Construct and interpret a 95% inter-

val estimate for the effect of an additional year of education on a black female’s expected hourly
wage rate.

b. The standard error of the estimated intercept is 7.39. Test the null hypothesis that the intercept
β1 = 0 against the alternative that the true intercept is not zero, using the α = 0.10 level of signifi-
cance. In your answer, show (i) the formal null and alternative hypotheses, (ii) the test statistic and
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its distribution under the null hypothesis, (iii) the rejection region (in a figure), (iv) the calculated
value of the test statistic, and (v) state your conclusion, with its economic interpretation.

c. Estimate the expected wage for a black female with 16 years of education, E(WAGE|EDUC = 16).
d. The estimated covariance between the intercept and slope is −3.75. Construct a 95% interval esti-

mate for the expected wage for a black female with 16 years of education.
e. It is conjectured that a black female with 16 years of education will have an expected wage of more

than $23 per hour. Use this as the “alternative hypothesis” in a test of the conjecture at the 10%
level of significance. Does the evidence support the conjecture or not?

3.10 Using data from 2013 on 64 black females, the estimated log-linear regression between WAGE (earn-
ings per hour, in $) and years of education, EDUC is ln(WAGE)

⋀

= 1.58 + 0.09EDUC. The reported
t-statistic for the slope coefficient is 3.95.
a. Test at the 5% level of significance, the null hypothesis that the return to an additional year of

education is less than or equal to 8% against the alternative that the rate of return to education
is more than 8%. In your answer, show (i) the formal null and alternative hypotheses, (ii) the
test statistic and its distribution under the null hypothesis, (iii) the rejection region (in a figure),
(iv) the calculated value of the test statistic, and (v) state your conclusion, with its economic
interpretation.

b. Testing the null hypothesis that the return to education is 8%, against the alternative that it is not
8%, we obtain the p-value 0.684. What is the p-value for the test in part (a)? In a sketch, show for
the test in part (a) the p-value and the 5% critical value from the t-distribution.

c. Construct a 90% interval estimate for the return to an additional year of education and state its
interpretation.

3.11 The theory of labor supply indicates that more labor services will be offered at higher wages. Suppose
that HRSWK is the usual number of hours worked per week by a randomly selected person and WAGE is
their hourly wage. Our regression model is specified as HRSWK = β1 + β2WAGE + e. Using a sample
of 9799 individuals from 2013, we obtain the estimated regression HRSWK

⋀

= 41.58 + 0.011WAGE.
The estimated variances and covariance of the least squares estimators are as follows:

INTERCEPT WAGE
INTERCEPT 0.02324 −0.00067
WAGE −0.00067 0.00003

a. Test the null hypothesis that the relationship has slope that is less than, or equal to, zero at the 5%
level of significance. State the null and alternative hypotheses in terms of the model parameters.
Using the results, do we confirm or refute the theory of labor supply?

b. Use Statistical Table 1 of normal probabilities to calculate an approximate p-value for the test in
(a). Draw a sketch representing the p-value.

c. Under assumptions SR1–SR6 of the simple regression model, the expected number of hours worked
per week is E(HRSWK|WAGE) = β1 + β2WAGE. Construct a 95% interval estimate for the expected
number of hours worked per week for a person earning $20/h.

d. In the sample, there are 203 individuals with hourly wage $20. The average number of hours worked
for these people is 41.68. Is this result compatible with the interval estimate in (c)? Explain your
reasoning.

e. Test the null hypothesis that the expected hours worked for a person earning $20 per hour is 41.68,
against the alternative that it is not, at the 1% level of significance.

3.12 Consider a log-linear regression for the weekly sales (number of cans) of a national brand of
canned tuna (SAL1 = target brand sales) as a function of the ratio of its price to the price of a
competitor, RPRICE3 = 100(price of target brand ÷ price competitive brand #3), ln(SAL1) = γ1 +
γ2RPRICE3 + e. Using N = 52 weekly observations the least squares estimated equation is

ln(SAL1) = 11.481 − 0.031RPRICE3
(se) (0.535) (0.00529)

a. The variable RPRICE3 is the price of the target brand as a percentage of the price of competitive
brand #3 or more simply “the relative price.” The sample mean of RPRICE3 is 99.66, its median
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is 100, its minimum value is 70.11, and its maximum value is 154.24. What do these summary
statistics tell us about the prices of the target brand relative to the prices of its competitor?

b. Interpret the coefficient of RPRICE3. Does its sign make economic sense?
c. Construct and interpret a 95% interval estimate for the effect on the weekly sales, SAL1, of a 1%

increase in the price of the target brand as a percentage of the price of competitive brand #3, which
is relative price RPRICE3.

d. Carry out a test of the null hypothesis H0∶γ2 ≥ −0.02 against the alternative H1∶γ2 < −0.02 using
the α = 0.01 level of significance. Include in your answer (i) the test statistic and its distribution
if the null hypothesis is true, (ii) a sketch of the rejection region, (iii) show the location of the test
statistic value, (iv) state your conclusion, and (v) show on the sketch the region that would represent
the p-value.

e. “Hypothesis tests and interval estimators for the regression model are valid as long as the regression
error terms are normally distributed.” Is this true or false? Explain.

3.13 Consider the following estimated area response model for sugar cane (area of sugar cane planted in
thousands of hectares in a region of Bangladesh), as a function of relative price (100 times the price of
sugar cane divided by the price of jute, which is an alternative crop to sugar cane, planted by Bangladesh
farmers), AREA

⋀

t = −0.24 + 0.50RPRICEt using 34 annual observations.
a. The sample average of RPRICE is 114.03, with a minimum of 74.9 and a maximum of 182.2.

RPRICE is the price of sugar cane taken as a percentage of the price of jute. What do these sample
statistics tell us about the relative price of sugar cane?

b. Interpret the intercept and slope of the estimated relation.
c. The t-statistic is −0.01 for the hypothesis that the intercept parameter is zero. What do you con-

clude? Is this an economically surprising result? Explain.
d. The sample mean area planted is 56.83 thousand hectares, and the sample mean for relative price

is 114.03. Taking these values as given, test at the 5% level of significance the hypothesis that the
elasticity of area response to price at the means is 1.0. The estimated variance of the coefficient of
RPRICE is 0.020346.

e. The model is re-estimated in log-linear form, obtaining ln
(
AREAt

)⋀

= 3.21 + 0.0068RPRICEt.
Interpret the coefficient of RPRICE. The standard error of the slope estimate is 0.00229. What
does that tell us about the estimated relationship?

f. Using the model in (e), test the null hypothesis that a 1% increase in the price of sugar cane relative
to the price of jute increases the area planted in sugar cane by 1%. Use the 5% level of significance
and a two-tail test. Include (i) the test statistic and its distribution if the null hypothesis is true,
(ii) a sketch of the rejection region, (iii) show the location of the test statistic value, (iv) state your
conclusion, and (v) show on the sketch, the region that would represent the p-value.

3.14 What is the meaning of statistical significance and how valuable is this concept? A t-statistic is
t =(b − c)∕se(b), where b is an estimate of a parameter β, c is the hypothesized value, and se(b) is
the standard error. If the sample size N is large, then the statistic is approximately a standard normal
distribution if the null hypothesis β = c is true.
a. With a 5% level of significance, we assert that an event happening with less than a one in 20

chance is “statistically significant,” while an event happening with more than a one in 20 chance is
not statistically significant. True or False?

b. Would you say something happening one time in 10 by chance (10%) is very improbable or not
very improbable? Would you say something happening one time in 100 by chance (1%) is very
improbable or not?

c. If we adopt a rule that in large samples, a t-value greater than 2.0 (in absolute value) indicates
statistical significance, and we use Statistical Table 1 of standard normal cumulative probabilities,
what is the implied significance level? If we adopt a rule that in large samples, a t-value greater
than 3.0 (in absolute value) indicates statistical significance, what is the implied significance level?

d. Suppose that we clinically test two diet pills, one called “Reliable” and another called “More.”
Using the Reliable pill, the estimated weight loss is 5 lbs with a standard error of 0.5 lbs. With
the More pill, the estimated weight loss is 20 lbs with standard error 10 lbs. When testing whether
the true weight loss is zero (the null, or none, hypothesis), what are the t-statistic values? What
is the ratio of the t-values?

e. If the drugs Reliable and More were equivalent in safety, cost and every other comparison, and if
your goal was weight loss, which drug would you take? Why?
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3.15 In a capital murder trial, with a potential penalty of life in prison, would you as judge tell the jury to
make sure that we accidently convict an innocent person only one time in a hundred, or use some other
threshold? What would it be?
a. What is the economic cost of a Type I error in this example? List some of the factors that would

have to be considered in such a calculation.
b. What is the economic cost of a Type II error in this example? List some of the factors that would

have to be considered in such a calculation.
3.16 A big question in the United States, a question of “cause and effect,” is whether mandatory health care

will really make Americans healthier. What is the role of hypothesis testing in such an investigation?
a. Formulate null and alternative hypotheses based on the question.
b. What is a Type I error in the context of this question? What factors would you consider if you were

assigned the task of calculating the economic cost of a Type I error in this example?
c. What is a Type II error in the context of this question? What factors would you consider if you

were assigned the task of calculating the economic cost of a Type II error in this example?
d. If we observe that individuals who have health insurance are in fact healthier, does this prove that

we should have mandatory health care?
e. There is a saying, “Correlation does not imply causation.” How might this saying relate to part (d)?
f. Post hoc ergo propter hoc (Latin: “after this, therefore because of this”) is a logical fallacy discussed

widely in Principles of Economics textbooks. An example might be “A rooster crows and then the
sun appears, thus the crowing rooster causes the sun to rise.” How might this fallacy relate to the
observation in part (d)?

3.17 Consider the regression model WAGE = β1 + β2EDUC + e. Where WAGE is hourly wage rate in US
2013 dollars. EDUC is years of schooling. The model is estimated twice, once using individuals from
an urban area, and again for individuals in a rural area.

Urban WAGE
⋀

= −10.76 + 2.46EDUC, N = 986
(se) (2.27) (0.16)

Rural WAGE
⋀

= −4.88 + 1.80EDUC, N = 214
(se) (3.29) (0.24)

a. Using the urban regression, test the null hypothesis that the regression slope equals 1.80 against
the alternative that it is greater than 1.80. Use the α = 0.05 level of significance. Show all steps,
including a graph of the critical region and state your conclusion.

b. Using the rural regression, compute a 95% interval estimate for expected WAGE if EDUC = 16.
The required standard error is 0.833. Show how it is calculated using the fact that the estimated
covariance between the intercept and slope coefficients is −0.761.

c. Using the urban regression, compute a 95% interval estimate for expected WAGE if EDUC = 16.
The estimated covariance between the intercept and slope coefficients is −0.345. Is the interval
estimate for the urban regression wider or narrower than that for the rural regression in (b). Do you
find this plausible? Explain.

d. Using the rural regression, test the hypothesis that the intercept parameter β1 equals four, or more,
against the alternative that it is less than four, at the 1% level of significance.

3.18 A life insurance company examines the relationship between the amount of life insurance held by
a household and household income. Let INCOME be household income (thousands of dollars) and
INSURANCE the amount of life insurance held (thousands of dollars). Using a random sample of
N = 20 households, the least squares estimated relationship is

INSURANCE
⋀

= 6.855 + 3.880INCOME
(se) (7.383) (0.112)

a. Draw a sketch of the fitted relationship identifying the estimated slope and intercept. The sample
mean of INCOME = 59.3. What is the sample mean of the amount of insurance held? Locate the
point of the means in your sketch.

b. How much do we estimate that the average amount of insurance held changes with each additional
$1000 of household income? Provide both a point estimate and a 95% interval estimate. Explain
the interval estimate to a group of stockholders in the insurance company.
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c. Construct a 99% interval estimate of the expected amount of insurance held by a household with
$100,000 income. The estimated covariance between the intercept and slope coefficient is −0.746.

d. One member of the management board claims that for every $1000 increase in income the average
amount of life insurance held will increase by $5000. Let the algebraic model be INSURANCE =
β1 + β2INCOME + e. Test the hypothesis that the statement is true against the alternative that it is
not true. State the conjecture in terms of a null and alternative hypothesis about the model param-
eters. Use the 5% level of significance. Do the data support the claim or not? Clearly, indicate the
test statistic used and the rejection region.

e. Test the hypothesis that as income increases the amount of life insurance held increases by the same
amount. That is, test the null hypothesis that the slope is one. Use as the alternative that the slope is
larger than one. State the null and alternative hypotheses in terms of the model parameters. Carry
out the test at the 1% level of significance. Clearly indicate the test statistic used, and the rejection
region. What is your conclusion?

3.7.2 Computer Exercises
3.19 The owners of a motel discovered that a defective product was used during construction. It took

7 months to correct the defects during which approximately 14 rooms in the 100-unit motel were
taken out of service for 1 month at a time. The data are in the file motel.
a. Plot MOTEL_PCT and COMP_PCT versus TIME on the same graph. What can you say about

the occupancy rates over time? Do they tend to move together? Which seems to have the higher
occupancy rates? Estimate the regression model MOTEL_PCT = β1 + β2COMP_PCT + e. Con-
struct a 95% interval estimate for the parameter β2. Have we estimated the association between
MOTEL_PCT and COMP_PCT relatively precisely, or not? Explain your reasoning.

b. Construct a 90% interval estimate of the expected occupancy rate of the motel in question,
MOTEL_PCT , given that COMP_PCT = 70.

c. In the linear regression model MOTEL_PCT = β1 + β2COMP_PCT + e, test the null hypothesis
H0∶β2 ≤ 0 against the alternative hypothesis H0∶β2 > 0 at the α = 0.01 level of significance. Dis-
cuss your conclusion. Clearly define the test statistic used and the rejection region.

d. In the linear regression model MOTEL_PCT = β1 + β2COMP_PCT + e, test the null hypothesis
H0∶β2 = 1 against the alternative hypothesis H0∶β2 ≠ 1 at the α = 0.01 level of significance. If the
null hypothesis were true, what would that imply about the motel’s occupancy rate versus their
competitor’s occupancy rate? Discuss your conclusion. Clearly define the test statistic used and
the rejection region.

e. Calculate the least squares residuals from the regression of MOTEL_PCT on COMP_PCT and
plot them against TIME. Are there any unusual features to the plot? What is the predominant sign
of the residuals during time periods 17–23 (July, 2004 to January, 2005)?

3.20 The owners of a motel discovered that a defective product was used during construction. It took
seven months to correct the defects during which approximately 14 rooms in the 100-unit motel were
taken out of service for one month at a time. The data are in the file motel.
a. Calculate the sample average occupancy rate for the motel during the time when there were no

repairs being made. What is the sample average occupancy rate for the motel during the time when
there were repairs being made? How big a difference is there?

b. Consider the linear regression MOTEL_PCT = δ1 + δ2REPAIR + e, where REPAIR is an indica-
tor variable taking the value 1 during the repair period and 0 otherwise. What are the estimated
coefficients? How do these estimated coefficients relate to the calculations in part (a)?

c. Construct a 95% interval estimate for the parameter δ2 and give its interpretation. Have we estimated
the effect of the repairs on motel occupancy relatively precisely, or not? Explain.

d. The motel wishes to claim economic damages because the faulty materials led to repairs which cost
them customers. To do so, their economic consultant tests the null hypothesis H0∶δ2 ≥ 0 against the
alternative hypothesis H1∶δ2 < 0. Explain the logic behind stating the null and alternative hypothe-
ses in this way. Carry out the test at the α = 0.05 level of significance. Discuss your conclusions.
Clearly state the test statistic, the rejection region, and the p-value.

e. To further the motel’s claim, the consulting economist estimates a regression model
(MOTEL_PCT − COMP_PCT ) = γ1 + γ2REPAIR + e, so that the dependent variable is the
difference in the occupancy rates. Construct and discuss the economic meaning of the 95% interval
estimate of γ2.
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f. Test the null hypothesis that γ2 = 0 against the alternative that γ2 < 0 at the α = 0.01 level of
significance. Discuss the meaning of the test outcome. Clearly state the test statistic, the rejection
region, and the p-value.

3.21 The capital asset pricing model (CAPM) is described in Exercise 2.16. Use all available observations
in the data file capm5 for this exercise.
a. Construct 95% interval estimates of Exxon-Mobil’s and Microsoft’s “beta.” Assume that you are a

stockbroker. Explain these results to an investor who has come to you for advice.
b. Test at the 5% level of significance the hypothesis that Ford’s “beta” value is one against the alter-

native that it is not equal to one. What is the economic interpretation of a beta equal to one? Repeat
the test and state your conclusions for General Electric’s stock and Exxon-Mobil’s stock. Clearly
state the test statistic used and the rejection region for each test, and compute the p-value.

c. Test at the 5% level of significance the null hypothesis that Exxon-Mobil’s “beta” value is greater
than or equal to one against the alternative that it is less than one. Clearly state the test statistic used
and the rejection region for each test, and compute the p-value. What is the economic interpretation
of a beta less than one?

d. Test at the 5% level of significance the null hypothesis that Microsoft’s “beta” value is less than
or equal to one against the alternative that it is greater than one. Clearly state the test statistic used
and the rejection region for each test, and compute the p-value. What is the economic interpretation
of a beta more than one?

e. Test at the 5% significance level, the null hypothesis that the intercept term in the CAPM model
for Ford’s stock is zero, against the alternative that it is not. What do you conclude? Repeat the test
and state your conclusions for General Electric’s stock and Exxon-Mobil’s stock. Clearly state the
test statistic used and the rejection region for each test, and compute the p-value.

3.22 The data file collegetown contains data on 500 single-family houses sold in Baton Rouge, Louisiana,
during 2009–2013. The data include sale price (in $1000 units), PRICE, and total interior area in
hundreds of square feet, SQFT .
a. Using the linear regression PRICE = β1 + β2SQFT + e, estimate the elasticity of expected house

PRICE with respect to SQFT , evaluated at the sample means. Construct a 95% interval estimate
for the elasticity, treating the sample means as if they are given (not random) numbers. What is the
interpretation of the interval?

b. Test the null hypothesis that the elasticity, calculated in part (a), is one against the alternative that
the elasticity is not one. Use the 1% level of significance. Clearly state the test statistic used, the
rejection region, and the test p-value. What do you conclude?

c. Using the linear regression model PRICE = β1 + β2SQFT + e, test the hypothesis that the marginal
effect on expected house price of increasing house size by 100 square feet is less than or equal to
$13000 against the alternative that the marginal effect will be greater than $13000. Use the 5%
level of significance. Clearly state the test statistic used, the rejection region, and the test p-value.
What do you conclude?

d. Using the linear regression PRICE = β1 + β2SQFT + e, estimate the expected price,
E(PRICE|SQFT ) = β1 + β2SOFT, for a house of 2000 square feet. Construct a 95% interval
estimate of the expected price. Describe your interval estimate to a general audience.

e. Locate houses in the sample with 2000 square feet of living area. Calculate the sample mean (aver-
age) of their selling prices. Is the sample average of the selling price for houses with SQFT = 20
compatible with the result in part (d)? Explain.

3.23 The data file collegetown contains data on 500 single-family houses sold in Baton Rouge, Louisiana,
during 2009–2013. The data include sale price in $1000 units, PRICE, and total interior area in hun-
dreds of square feet, SQFT .
a. Using the quadratic regression model, PRICE = α1 + α2SOFT2 + e, test the hypothesis that the

marginal effect on expected house price of increasing the size of a 2000 square foot house by
100 square feet is less than or equal to $13000 against the alternative that the marginal effect will
be greater than $13000. Use the 5% level of significance. Clearly state the test statistic used, the
rejection region, and the test p-value. What do you conclude?

b. Using the quadratic regression model in part (a), test the hypothesis that the marginal effect on
expected house price of increasing the size of a 4000 square foot house by 100 square feet is less
than or equal to $13000 against the alternative that the marginal effect will be greater than $13000.
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Use the 5% level of significance. Clearly state the test statistic used, the rejection region, and the
test p-value. What do you conclude?

c. Using the quadratic regression model in part (a), estimate the expected price E(PRICE|SQFT ) =
α1 + α2SQFT 2 for a house of 2000 square feet. Construct a 95% interval estimate of the expected
price. Describe your interval estimate to a general audience.

d. Locate houses in the sample with 2000 square feet of living area. Calculate the sample mean (aver-
age) of their selling prices. Is the sample average of the selling price for houses with SQFT = 20
compatible with the result in part (c)? Explain.

3.24 We introduced Professor Ray C. Fair’s model for explaining and predicting U.S. presidential elections
in Exercise 2.23. Fair’s data, 26 observations for the election years from 1916 to 2016, are in the data file
fair5. The dependent variable is VOTE = percentage share of the popular vote won by the Democratic
party. Define GROWTH = INCUMB × growth rate, where growth rate is the annual rate of change
in real per capita GDP in the first three quarters of the election year. If Democrats are the incumbent
party, then INCUMB = 1; if the Republicans are the incumbent party then INCUMB = −1.
a. Estimate the linear regression, VOTE = β1 + β2GROWTH + e, using data from 1916 to 2016. Con-

struct a 95% interval estimate of the effect of economic growth on expected VOTE. How would you
describe your finding to a general audience?

b. The expected VOTE in favor of the Democratic candidate is E(VOTE|GROWTH) =
β1 + β2GROWTH. Estimate E(VOTE|GROWTH = 4) and construct a 95% interval estimate
and a 99% interval estimate. Assume a Democratic incumbent is a candidate for a second
presidential term. Is achieving a 4% growth rate enough to ensure a victory? Explain.

c. Test the hypothesis that when INCUMB = 1 economic growth has either a zero or negative effect
on expected VOTE against the alternative that economic growth has a positive effect on expected
VOTE. Use the 1% level of significance. Clearly state the test statistic used, the rejection region,
and the test p-value. What do you conclude?

d. Define INFLAT = INCUMB × inflation rate, where the inflation rate is the growth in prices over
the first 15 quarters of an administration. Using the data from 1916 to 2016, and the model VOTE =
α1 + α2INFLAT + e, test the hypothesis that inflation has no effect against the alternative that it does
have an effect. Use the 1% level of significance. State the test statistic used, the rejection region,
and the test p-value and state your conclusion.

3.25 Using data on the “Ashcan School,” we have an opportunity to study the market for art. What factors
determine the value of a work of art? Use the data in the file ashcan_small. [Note: the file ashcan
contains more variables.]
a. Define YEARS_OLD = DATE_AUCTN − CREATION, which is the age of the painting at the time

of its sale. Use data on works that sold (SOLD = 1) to estimate the regression ln(RHAMMER) =
β1 + β2YEARS_OLD + e. Construct a 95% interval estimate for the percentage change in real ham-
mer price given that a work of art is another year old at the time of sale. [Hint: Review the discussion
of equation (2.28).] Explain the result to a potential art buyer.

b. Test the null hypothesis that each additional year of age increases the “hammer price” by 2%,
against the two-sided alternative. Use the 5% level of significance.

c. The variable DREC is an indicator variable taking the value one if a sale occurred during a reces-
sion and is zero otherwise. Use data on works that sold (SOLD = 1) to estimate the regression
model ln(RHAMMER) = α1 + α2DREC + e. Construct a 95% interval estimate of the percentage
reduction in hammer price when selling in a recession. Explain your finding to a client who is
considering selling during a recessionary period.

d. Test the conjecture that selling a work of art during a recession reduces the hammer price by 2%
or less, against the alternative that the reduction in hammer price is greater than 2%. Use the 5%
level of significance. Clearly state the test statistic used, the rejection region, and the test p-value.
What is your conclusion?

3.26 How much does experience affect wage rates? The data file cps5_small contains 1200 observations on
hourly wage rates, experience, and other variables from the March 2013 Current Population Survey
(CPS). [Note: The data file cps5 contains more observations and variables.]
a. Estimate the linear regression WAGE = β1 + β2EXPER + e and discuss the results.
b. Test the statistical significance of the estimated relationship at the 5% level. Use a one-tail test.

What is your alternative hypothesis? What do you conclude?
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c. Estimate the linear regression WAGE = β1 + β2EXPER + e for individuals living in a metropolitan
area, where METRO = 1. Is there a statistically significant positive relationship between expected
wages and experience at the 1% level? How much of an effect is there?

d. Estimate the linear regression WAGE = β1 + β2EXPER + e for individuals not living in a
metropolitan area, where METRO = 0. Is there a statistically significant positive relationship
between expected wages and experience at the 1% level? Can we safely say that experience has no
effect on wages for individuals living in nonmetropolitan areas? Explain.

3.27 Is the relationship between experience and wages constant over one’s lifetime? We will investigate this
question using a quadratic model. The data file cps5_small contains 1200 observations on hourly wage
rates, experience, and other variables from the March 2013 Current Population Survey (CPS). [Note:
the data file cps5 contains more observations and variables.]
a. Create the variable EXPER30 = EXPER − 30. Describe this variable. When is it positive, negative

or zero?
b. Estimate by least squares the quadratic model WAGE = γ1 + γ2(EXPER30)2 + e. Test the null

hypothesis that γ2 = 0 against the alternative γ2 ≠ 0 at the 1% level of significance. Is there a
statistically significant quadratic relationship between expected WAGE and EXPER30?

c. Create a plot of the fitted value WAGE
⋀

= γ̂1 + γ̂2(EXPER30)2, on the y-axis, versus EXPER30,
on the x-axis. Up to the value EXPER30 = 0 is the slope of the plot constant, or is it increasing,
or decreasing? Up to the value EXPER30 = 0 is the function increasing at an increasing rate or
increasing at a decreasing rate?

d. If y = a + bx2 then dy∕dx = 2bx. Using this result, calculate the estimated slope of the fitted
function WAGE

⋀

= γ̂1 + γ̂2(EXPER30)2, when EXPER = 0, when EXPER = 10, and when
EXPER = 20.

e. Calculate the t-statistic for the null hypothesis that the slope of the function is zero, H0∶2γ2
EXPER30 = 0, when EXPER = 0, when EXPER = 10, and when EXPER = 20.

3.28 The owners of a motel discovered that a defective product was used during construction. It took 7
months to correct the defects during which approximately 14 rooms in the 100-unit motel were taken
out of service for 1 month at a time. The data are in the file motel.
a. Create a new variable, RELPRICE2 = 100RELPRICE, which equals the percentage of the com-

petitor’s price charged by the motel in question. Plot RELPRICE2 against TIME. Compute the
summary statistics for this variable. What are the sample mean and median? What are the min-
imum and maximum values? Does the motel in question charge more than its competitors for a
room, or less, or about the same? Explain.

b. Consider a linear regression with y = MOTEL_PCT and x = RELPRICE2. Interpret the estimated
slope coefficient. Construct a 95% interval estimate for the slope. Have we estimated the slope of
the relationship very well? Explain your answer.

c. Construct a 90% interval estimate of the expected motel occupancy rate if the motel’s price is 80%
of its competitor’s price. Do you consider the interval relatively narrow or relatively wide? Explain
your reasoning.

d. Test the null hypothesis that there is no relationship between the variables against the alternative
that there is an inverse relationship between them, at the α = 0.05 level of significance. Discuss
your conclusion. Be sure to include in your answer the test statistic used, the rejection region, and
the p-value.

e. Test the hypothesis that for each percent higher for the relative price that the motel in question
charges, it loses 1% of its occupancy rate. Formulate the null and alternative hypotheses in terms
of the model parameters, carry out the relevant test at the 5% level of significance, and state your
conclusion. Be sure to state the test statistic used, the rejection region, and the p-value.

3.29 We introduced Tennessee’s Project STAR (Student/Teacher Achievement Ratio) in Exercise 2.22. The
data file is star5_small. [The data file star5 contains more observations and more variables.] Three
types of classes were considered: small classes [SMALL = 1], regular-sized classes with a teacher aide
[AIDE = 1], and regular-sized classes [REGULAR = 1].
a. Compute the sample mean and standard deviation for student math scores, MATHSCORE, in small

classes. Compute the sample mean and standard deviation for student math scores, MATHSCORE,
in regular classes, with no teacher aide. Which type of class had the higher average score? What is
the difference in sample average scores for small classes versus regular-sized classes? Which type
of class had the higher score standard deviation?
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b. Consider students only in small classes or regular-sized classes without a teacher aide. Estimate
the regression model MATHSCORE = β1 + β2SMALL + e. How do the estimates of the regression
parameters relate to the sample average scores calculated in part (a)?

c. Using the model from part (b), construct a 95% interval estimate of the expected MATHSCORE
for a student in a regular-sized class and a student in a small class. Are the intervals fairly narrow
or not? Do the intervals overlap?

d. Test the null hypothesis that the expected mathscore is no different in the two types of classes
versus the alternative that expected MATHSCORE is higher for students in small classes using the
5% level of significance. State these hypotheses in terms of the model parameters, clearly state the
test statistic you use, and the test rejection region. Calculate the p-value for the test. What is your
conclusion?

e. Test the null hypothesis that the expected MATHSCORE is 15 points higher for students in small
classes versus the alternative that it is not 15 points higher using the 10% level of significance. State
these hypotheses in terms of the model parameters, clearly state the test statistic you use, and the
test rejection region. Calculate the p-value for the test. What is your conclusion?

3.30 We introduced Tennessee’s Project STAR (Student/Teacher Achievement Ratio) in Exercise 2.22. The
data file is star5_small. [The data file star5 contains more observations and more variables.] Three
types of classes were considered: small classes [SMALL = 1], regular-sized classes with a teacher aide
[AIDE = 1], and regular-sized classes [REGULAR = 1].
a. Compute the sample mean and standard deviation for student math scores, MATHSCORE, in reg-

ular classes with no teacher aide. Compute the sample mean and standard deviation for student
math scores, MATHSCORE, in regular classes with a teacher aide. Which type of class had the
higher average score? What is the difference in sample average scores for regular-sized classes ver-
sus regular sized classes with a teacher aide? Which type of class had the higher score standard
deviation?

b. Consider students only in regular sized classes without a teacher aide and regular sized classes
with a teacher aide. Estimate the regression model MATHSCORE = β1 + β2AIDE + e. How
do the estimates of the regression parameters relate to the sample average scores calculated in
part (a)?

c. Using the model from part (b), construct a 95% interval estimate of the expected MATHSCORE
for a student in a regular-sized class without a teacher aide and a regular-sized class with a teacher
aide. Are the intervals fairly narrow or not? Do the intervals overlap?

d. Test the null hypothesis that the expected MATHSCORE is no different in the two types of classes
versus the alternative that expected MATHSCORE is higher for students in regular-sized classes
with a teacher aide, using the 5% level of significance. State these hypotheses in terms of the model
parameters, clearly state the test statistic you use, and the test rejection region. Calculate the p-value
for the test. What is your conclusion?

e. Test the null hypothesis that the expected MATHSCORE is three points, or more, higher for students
in regular-sized classes with a teacher aide versus the alternative that the difference is less than three
points, using the 10% level of significance. State these hypotheses in terms of the model parameters,
clearly state the test statistic you use and the test rejection region. Calculate the p-value for the test.
What is your conclusion?

3.31 Data on weekly sales of a major brand of canned tuna by a supermarket chain in a large midwest-
ern U.S. city during a mid-1990s calendar year are contained in the data file tuna. There are 52
observations for each of the variables. The variable SAL1 = unit sales of brand no. 1 canned tuna, and
APR1 = price per can of brand no. 1 tuna (in dollars).
a. Calculate the summary statistics for SAL1 and APR1. What are the sample means, minimum and

maximum values, and their standard deviations. Plot each of these variables versus WEEK. How
much variation in sales and price is there from week to week?

b. Plot the variable SAL1 (y-axis) against APR1 (x-axis). Is there a positive or inverse relationship? Is
that what you expected, or not? Why?

c. Create the variable PRICE1 = 100APR1. Estimate the linear regression SAL1 = β1 +
β2PRICE1 + e. What is the point estimate for the effect of a one cent increase in the price
of brand no. 1 on the sales of brand no. 1? What is a 95% interval estimate for the effect of a one
cent increase in the price of brand no. 1 on the sales of brand no. 1?

d. Construct a 90% interval estimate for the expected number of cans sold in a week when the price
per can is 70 cents.



❦

❦ ❦

❦

144 CHAPTER 3 Interval Estimation and Hypothesis Testing

e. Construct a 95% interval estimate of the elasticity of sales of brand no. 1 with respect to the price of
brand no. 1 “at the means.” Treat the sample means as constants and not random variables. Do you
find the sales are fairly elastic, or fairly inelastic, with respect to price? Does this make economic
sense? Why?

f. Test the hypothesis that elasticity of sales of brand no. 1 with respect to the price of brand no. 1
from part (e) is minus three against the alternative that the elasticity is not minus three. Use the
10% level of significance. Clearly, state the null and alternative hypotheses in terms of the model
parameters, give the rejection region, and the p-value for the test. What is your conclusion?

3.32 What is the relationship between crime and punishment? We use data from 90 North Carolina counties
to examine the question. County crime rates and other characteristics are observed over the period
1981–1987. The data are in the file crime. Use the 1985 data for this exercise.
a. Calculate the summary statistics for CRMRTE (crimes committed per person) and PRBARR (the

probability of arrest = the ratio of arrests to offenses), including the maximums and minimums.
Does there appear to be much variation from county to county in these variables?

b. Plot CRMRTE versus PRBARR. Do you observe a relationship between these variables?
c. Estimate the linear regression model CRMRTE = β1 + β2PRBARR + e. If we increase the proba-

bility of arrest by 10% what will be the effect on the crime rate? What is a 95% interval estimate
of this quantity?

d. Test the null hypothesis that there is no relationship between the county crime rate and the probabil-
ity of arrest versus the alternative that there is an inverse relationship. State the null and alternative
hypotheses in terms of the model parameters. Clearly, state the test statistic and its distribution if
the null hypothesis is true and the test rejection region. Use the 1% level of significance. What is
your conclusion?

Appendix 3A Derivation of the t-Distribution
Interval estimation and hypothesis testing procedures in this chapter involve the t-distribution.
Here we develop the key result.

The first result that is needed is the normal distribution of the least squares estimator. Con-
sider, for example, the normal distribution of b2 the least squares estimator of β2, which we
denote as

b2|x ∼ N
(
β2,

σ2
∑(

xi − x
)2

)

A standardized normal random variable is obtained from b2 by subtracting its mean and dividing
by its standard deviation:

Z =
b2 − β2√
var

(
b2|x

) ∼ N(0, 1) (3A.1)

That is, the standardized random variable Z is normally distributed with mean 0 and variance 1.
Despite the fact that the distribution of the least squares estimator b2 depends on x, the stan-
dardization leaves us with a pivotal statistic whose distribution depends on neither unknown
parameters nor x.

The second piece of the puzzle involves a chi-square random variable. If assumption SR6
holds, then the random error term ei has a conditional normal distribution, ei|! ∼ N

(
0, σ2). Stan-

dardize the random variable by dividing by its standard deviation so that ei∕σ ∼ N(0, 1). The
square of a standard normal random variable is a chi-square random variable (see Appendix B.5.2)
with one degree of freedom, so

(
ei∕σ

)2 ∼ χ2
(1). If all the random errors are independent, then

∑(ei
σ

)2
=
(e1
σ

)2
+
(e2
σ

)2
+ · · · +

(eN
σ

)2
∼ χ2

(N) (3A.2)
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Since the true random errors are unobservable, we replace them by their sample counterparts, the
least squares residuals êi = yi − b1 − b2xi, to obtain

V =
∑

ê2
i

σ2 = (N − 2) σ̂2

σ2 (3A.3)

The random variable V in (3A.3) does not have a χ2
(N) distribution because the least squares resid-

uals are not independent random variables. All N residuals êi = yi − b1 − b2xi depend on the least
squares estimators b1 and b2. It can be shown that only N − 2 of the least squares residuals are inde-
pendent in the simple linear regression model. Consequently, the random variable in (3A.3) has
a chi-square distribution with N − 2 degrees of freedom. That is, when multiplied by the constant
(N − 2)∕σ2, the random variable σ̂2 has a chi-square distribution with N − 2 degrees of freedom,

V = (N − 2) σ̂2

σ2 ∼ χ2
(N−2) (3A.4)

The random variable V has a distribution that depends only on the degrees of freedom, N − 2.
Like Z in (3A.1), V is a pivotal statistic. We have not established the fact that the chi-square
random variable V is statistically independent of the least squares estimators b1 and b2, but it is.
The proof is beyond the scope of this book. Consequently, V and the standard normal random
variable Z in (3A.1) are independent.

From the two random variables V and Z, we can form a t-random variable. A t-random
variable is formed by dividing a standard normal random variable, Z ∼ N(0, 1), by the square root
of an independent chi-square random variable, V ∼ χ2

(m), that has been divided by its degrees of
freedom, m. That is,

t = Z√
V∕m

∼ t(m) (3A.5)

The t-distribution’s shape is completely determined by the degrees of freedom parameter, m, and
the distribution is symbolized by t(m). See Appendix B.5.3. Using Z and V from (3A.1) and (3A.4),
respectively, we have

t = Z√
V∕(N − 2)

=

(
b2 − β2

)/√
σ2/∑(

xi − x
)2

√
(N − 2) σ̂2∕σ2

N − 2

=
b2 − β2√√√√ σ̂2

∑(
xi − x

)2

=
b2 − β2√
var
⋀(

b2
) =

b2 − β2
se
(
b2
) ∼ t(N−2) (3A.6)

The second line is the key result that we state in (3.2), with its generalization in (3.3).

Appendix 3B Distribution of the t-Statistic under H1
To better understand how t-tests work, let us examine the t-statistic in (3.7) when the null hypoth-
esis is not true. We can do that by writing it out in some additional detail. What happens to Z
in (3A.1) if we test a hypothesis H0∶β2 = c that might not be true? Instead of subtracting β2, we
subtract c, to obtain

b2 − c√
var

(
b2
) =

b2 − β2 + β2 − c√
var

(
b2
) =

b2 − β2√
var

(
b2
) +

β2 − c√
var

(
b2
) = Z + δ ∼ N(δ, 1)
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The statistic we obtain is the standard normal Z plus another factor, δ =
(
β2 − c

)/√
var

(
b2
)
,

that is zero only if the null hypothesis is true. A noncentral t-random variable is formed from
the ratio

t|x = Z + δ√
V∕m

∼ t(m,δ) (3B.1)

This is a more general t-statistic, with m degrees of freedom and noncentrality parameter δ,
denoted t(m, δ). It has a distribution that is not centered at zero unless δ = 0. The non-central
t-distribution is introduced in Appendix B.7.3. It is the factor δ that leads the t-test to reject a
false null hypothesis with probability greater than α, which is the probability of a Type I error.
Because δ depends on the sample data, we have indicated that the non-central t-distribution is
conditional on x. If the null hypothesis is true then δ = 0 and the t-statistic does not depend on
any unknown parameters or x; it is a pivotal statistic.

Suppose that we have a sample of size N = 40 so that the degrees of freedom are N – 2 = 38
and we test a hypothesis concerning β2 such that β2 – c = 1. Using a right-tail test, the proba-
bility of rejecting the null hypothesis is P(t > 1.686), where t(0.95, 38) = 1.686 is from Statistical
Table 2, the percentiles of the usual t-distribution. If δ = 0, this rejection probability is 0.05. With
β2 – c = 1, we must compute the right-tail probability using the non-central t-distribution with
noncentrality parameter

δ =
β2 − c√
var

(
b2
) =

β2 − c√
σ2/∑(

xi − x
)2

=

√∑(
xi − x

)2(β2 − c
)

σ (3B.2)

For a numerical example, we use values arising from the simulation experiment used
in Appendix 2H. The sample of x-values consists of xi = 10, i = 1,… , 20 and xi = 20,
i = 21,… , 40. The sample mean is x = 15 so that ∑(

xi − x
)2 = 40 × 52 = 1000. Also,

σ2 = 2500. The noncentrality parameter is

δ =

√∑(
xi − x

)2(β2 − c
)

σ =

√
1000

(
β2 − c

)
√

2500
= 0.63246

(
β2 − c

)

Thus, the probability of rejecting the null hypothesis H0∶β2 = 9 versus H1∶β2 > 9 when the true
value of β2 = 10 is

P
(
t(38, 0.63246) > 1.686

)
= 1 − P

(
t(38, 0.63246) ≤ 1.686

)
= 0.15301

The probability calculation uses the cumulative distribution function for the non-central
t-distribution, which is available in econometric software and at some websites. Similarly, the
probability of rejecting the null hypothesis H0∶β2 = 8 versus H1∶β2 > 8 when the true value of
β2 = 10 is

P
(
t(38, 1.26491) > 1.686

)
= 1 − P

(
t(38, 1.26491) ≤ 1.686

)
= 0.34367

Why does the probability of rejection increase? The effect of the noncentrality parameter is to
shift the t-distribution rightward, as shown in Appendix B.7.3. For example, the probability of
rejecting the null hypothesis H0∶β2 = 9 versus H1∶β2 > 9 is shown in Figure 3B.1.

The solid curve is the usual central t-distribution with 38 degrees of freedom. The area under
the curve to the right of 1.686 is 0.05. The dashed curve is the non-central t-distribution with
δ = 0.63246. The area under the curve to the right of 1.686 is larger, approximately 0.153.

The probability of rejecting a false null hypothesis is called a test’s power. In an ideal world,
we would reject false null hypotheses always, and if we had an infinite amount of data we could.
The keys to a t-test’s power are the three ingredients making the noncentrality parameter larger.
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FIGURE 3B.1 Probability of rejecting H0∶%2 = 9.

A larger noncentrality parameter shifts the t-distribution further rightward and increases the prob-
ability of rejection. Thus, the probability of rejecting a false null hypothesis increases when

1. The magnitude of the hypothesis error β2 − c increases.
2. The smaller the true error variance, σ2, that measures the overall model uncertainty.
3. The larger the total variation in the explanatory variable, which might be the result of a larger

sample size.

In a real situation, the actual power of a test is unknown because we do not know β2 or σ2, and the
power calculation depends on being given the x-values. Nevertheless, it is good to know the factors
that will increase the probability of rejecting a false null hypothesis. In the following section, we
carry out a Monte Carlo simulation experiment to illustrate the power calculations above.

Recall that a Type II error is failing to reject a hypothesis that is false. Consequently, the
probability of a Type II error is the complement of the test’s power. For example, the probability
of a Type II error when testing H0∶β2 = 9 versus H1∶β2 > 9 when the true value of β2 = 10 is

P
(
t(38, 0.63246) ≤ 1.686

)
= 1 − 0.15301 = 0.84699

For testing H0∶β2 = 8 versus H1∶β2 > 8, when the true value is β2 = 10, the probability of a
Type II error is P

(
t(38, 1.26491) ≤ 1.686

)
= 1 – 0.34367 = 0.65633. As test power increases, the

probability of a Type II error falls, and vice versa.

Appendix 3C Monte Carlo Simulation
In Appendix 2H, we introduced a Monte Carlo simulation to illustrate the repeated sampling
properties of the least squares estimators. In this appendix, we use the same framework to illustrate
the repeated sampling performances of interval estimators and hypothesis tests.

Recall that the data generation process for the simple linear regression model is given by
yi = E

(
yi|xi

)
+ ei = β1 + β2xi + ei, i = 1,… ,N
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The Monte Carlo parameter values are β1 = 100 and β2 = 10. The value of xi is 10 for the first 20
observations and 20 for the remaining 20 observations, so that the regression functions are

E
(
yi|xi = 10

)
= 100 + 10xi = 100 + 10 × 10 = 200, i = 1,… , 20

E
(
yi|xi = 20

)
= 100 + 10xi = 100 + 10 × 20 = 300, i = 21,… , 40

The random errors are independently and normally distributed with mean 0 and variance
var

(
ei|xi

)
= σ2 = 2,500, or ei|x ∼ N(0, 2500).

When studying the performance of hypothesis tests and interval estimators, it is necessary
to use enough Monte Carlo samples so that the percentages involved are estimated precisely
enough to be useful. For tests with probability of Type I error α = 0.05, we should observe true
null hypotheses being rejected 5% of the time. For 95% interval estimators, we should observe
that 95% of the interval estimates contain the true parameter values. We use M = 10,000 Monte
Carlo samples so that the experimental error is very small. See Appendix 3C.3 for an explanation.

3C.1 Sampling Properties of Interval Estimators
In Appendix 2H.4, we created one sample of data that is in the data file mcl_ fixed_x. The least
squares estimates using these data values are

ŷ = 127.2055 + 8.7325x
(23.3262) (1.4753)

A 95% interval estimate of the slope is b2 ± t(0.975, 38)se
(
b2
)
= [5.7460, 11.7191]. We see that for

this sample, the 95% interval estimate contains the true slope parameter value β2 = 10.
We repeat the process of estimation and interval estimation 10,000 times. In these repeated

samples, 95.03% of the interval estimates contain the true parameter. Table 3C.1 contains results
for the Monte Carlo samples 321–330 for illustration purposes. The estimates are B2, the standard
error is SE, the lower bound of the 95% interval estimate is LB, and the upper bound is UB.
The variable COVER = 1 if the interval estimate contains the true parameter value. Two of the
intervals do not contain the true parameter value β2 = 10. The 10 sample results we are reporting
were chosen to illustrate that interval estimates do not cover the true parameter in all cases.

The lesson is, that in many samples from the data generation process, and if assumptions
SR1–SR6 hold, the procedure for constructing 95% interval estimates “works” 95% of the time.

T A B L E 3C.1 Results of 10000 Monte Carlo Simulations

SAMPLE B2 SE TSTAT REJECT LB UB COVER
321 7.9600 1.8263 −1.1170 0 4.2628 11.6573 1
322 11.3093 1.6709 0.7836 0 7.9267 14.6918 1
323 9.8364 1.4167 −0.1155 0 6.9683 12.7044 1
324 11.4692 1.3909 1.0563 0 8.6535 14.2849 1
325 9.3579 1.5127 −0.4245 0 6.2956 12.4202 1
326 9.6332 1.5574 −0.2355 0 6.4804 12.7861 1
327 9.0747 1.2934 −0.7154 0 6.4563 11.6932 1
328 7.0373 1.3220 −2.2411 0 4.3611 9.7136 0
329 13.1959 1.7545 1.8215 1 9.6441 16.7478 1
330 14.4851 2.1312 2.1046 1 10.1708 18.7994 0
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3C.2 Sampling Properties of Hypothesis Tests
The null hypothesis H0∶β2 = 10 is true. If we use the one-tail alternative H1∶β2 > 10 and level of
significance α = 0.05, the null hypothesis is rejected if the test statistic t =

(
b2 − 10

)
∕se

(
b2
)
>

1.68595, which is the 95th percentile of the t-distribution with 38 degrees of freedom.3 For the
sample mc1_ fixed_x, the calculated value of the t-statistic is −0.86, so we fail to reject the null
hypothesis, which in this case is the correct decision.

We repeat the process of estimation and hypothesis testing 10,000 times. In these samples,
4.98% of the tests reject the null hypothesis that the parameter value is 10. In Table 3C.1, the
t-statistic value is TSTAT and REJECT = 1 if the null hypothesis is rejected. We see that samples
329 and 330 incorrectly reject the null hypothesis.

The lesson is that in many samples from the data generation process, and if assumptions
SR1–SR6 hold, the procedure for testing a true null hypothesis at significance level α = 0.05
rejects the true null hypothesis 5% of the time. Or, stated positively, the test procedure does not
reject the true null hypothesis 95% of the time.

To investigate the power of the t-test, the probability that it rejects a false hypothesis, we
tested H0∶β2 = 9 versus H1∶β2 > 9 and H0∶β2 = 8 versus H1∶β2 > 8. The theoretical rejection
rates we calculated in Appendix 3B are 0.15301 in the first case and 0.34367 in the second. In
10,000 Monte Carlo samples, the first hypothesis was rejected in 1515 samples for a rejection rate
of 0.1515. The second hypothesis was rejected in 3500 of the samples, a rejection rate of 0.35.
The Monte Carlo values are very close to the true rejection rates.

3C.3 Choosing the Number of Monte Carlo Samples
A 95% confidence interval estimator should contain the true parameter value 95% of the time in
many samples. The M samples in a Monte Carlo experiment are independent experimental trials in
which the probability of a “success,” an interval containing the true parameter value, is P = 0.95.
The number of successes follows a binomial distribution. The proportion of successes P̂ in M
trials is a random variable with expectation P and variance P(1 − P)∕M. If the number of Monte
Carlo samples M is large, a 95% interval estimate of the proportion of Monte Carlo successes is
P ± 1.96

√
P(1 − P) ∕M. If M = 10,000, this interval is [0.9457, 0.9543]. We chose M = 10,000

so that this interval would be narrow, giving us confidence that if the true probability of success
is 0.95 we will obtain a Monte Carlo average close to 0.95 with a “high” degree of confidence.
Our result that 95.03% of our interval estimates contain the true parameter β2 is “within” the
margin of error for such Monte Carlo experiments. On the other hand, if we had used M = 1000
Monte Carlo samples, the interval estimate of the proportion of Monte Carlo successes would
be, [0.9365, 0.9635]. With this wider interval, the proportion of Monte Carlo successes could
be quite different from 0.95, casting a shadow of doubt on whether our method was working as
advertised or not.

Similarly, for a test with probability of rejection α = 0.05, the 95% interval estimate of the
proportion of Monte Carlo samples leading to rejection is α ± 1.96

√
α(1 − α) ∕M. If M = 10,000,

this interval is [0.0457, 0.0543]. That our Monte Carlo experiments rejected the null hypothesis
4.98% of the time is within this margin of error. If we had chosen M = 1000, then the proportion
of Monte Carlo rejections is estimated to be in the interval [0.0365, 0.0635], which again leaves
just a little too much wiggle room for comfort.

The point is that if fewer Monte Carlo samples are chosen the “noise” in the Monte Carlo
experiment can lead to a percent of successes or rejections that has too wide a margin of error for

............................................................................................................................................
3We use a t-critical value with more decimals, instead of the table value 1.686, to ensure accuracy in the Monte Carlo
experiment.



❦

❦ ❦

❦

150 CHAPTER 3 Interval Estimation and Hypothesis Testing

us to tell whether the statistical procedure, interval estimation, or hypothesis testing is “working”
properly or not.4

3C.4 Random-x Monte Carlo Results
We used the “fixed-x” framework in Monte Carlo results reported in Sections 3C.1 and 3C.2.
In each Monte Carlo sample, the x-values were xi = 10 for the first 20 observations and xi = 20
for the next 20 observations. Now we modify the experiment to the random-x case, as in
Appendix 2H.7. The data-generating equation remains yi = 100 + 10xi + ei with the
random errors having a normal distribution with mean zero and standard deviation 50,
ei ∼ N

(
0, 502 = 2500

)
. We randomly choose x-values from a normal distribution with mean

μx = 15 and standard deviation σx = 1.6, so x ∼ N
(
15, 1.62 = 2.56

)
.

One sample of data is in the data file mc1_random_x. Using these values, we obtain the least
squares estimates

ŷ = 116.7410 + 9.7628x
(84.7107) (5.5248)

A 95% interval estimate of the slope is b2 ± t(0.975, 38)se
(
b2
)
= [−1.4216, 20.9472]. For this sam-

ple, the 95% interval estimate contains the true slope parameter value β2 = 10.
We generate 10,000 Monte Carlo samples using this design and compute the least squares

estimates and 95% interval estimates. In these samples, with x varying from sample to sample,
the 95% interval estimates for β2 contain the true value in 94.87% of the samples. Table 3C.2
contains results for the Monte Carlo samples 321–330 for illustration purposes. The estimates
are B2, the standard error SE, the lower bound of the 95% interval estimate is LB, and the upper
bound is UB. The variable COVER = 1 if the interval contains the true parameter value. In the
selected samples, one interval estimate, 323, does not contain the true parameter value.

In the Monte Carlo experiment, we test the null hypothesis H0∶β2 = 10 against the alter-
native H1∶β2 > 10 using the t-statistic t =

(
b2 − 10

)
∕se

(
b2
)
. We reject the null hypothesis if

t ≥ 1.685954, which is the 95th percentile of the t(38) distribution. In Table 3C.2, the t-statistic
values are TSTAT and REJECT = 1 if the test rejects the null hypothesis. In 5.36% of the 10,000
Monte Carlo samples, we reject the null hypothesis, which is within the margin of error discussed
in Section 3C.2. In Table 3C.2, for sample 323, the true null hypothesis was rejected.

T A B L E 3C.2 Results of 10,000 Monte Carlo Simulations with Random-x

SAMPLE B2 SE TSTAT REJECT LB UB COVER
321 9.6500 5.1341 −0.0682 0 −0.7434 20.0434 1
322 7.4651 4.3912 −0.5773 0 −1.4244 16.3547 1
323 22.9198 5.6616 2.2820 1 11.4584 34.3811 0
324 8.6675 4.8234 −0.2763 0 −1.0970 18.4320 1
325 18.7736 5.2936 1.6574 0 8.0573 29.4899 1
326 16.4197 3.8797 1.6547 0 8.5657 24.2738 1
327 3.7841 5.1541 −1.2060 0 −6.6500 14.2181 1
328 3.6013 4.9619 −1.2896 0 −6.4436 13.6462 1
329 10.5061 5.6849 0.0890 0 −1.0024 22.0145 1
330 9.6342 4.8478 −0.0755 0 −0.1796 19.4481 1

............................................................................................................................................
4Other details concerning Monte Carlo simulations can be found in Microeconometrics: Methods and Applications,
by A. Colin Cameron and Pravin K. Trivedi (Cambridge University Press, 2005). The material is advanced.
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We conclude from these simulations that in the random-x cases there is no evidence that
inferences do not perform as expected, with 95% of intervals covering the true parameter value
and 5% of tests rejecting a true null hypothesis.

To investigate the power of the t-test, the probability that it rejects a false hypothesis,
we tested H0∶β2 = 9 versus H1∶β2 > 9 and H0∶β2 = 8 versus H1∶β2 > 8. In 10,000 Monte
Carlo samples, the first hypothesis was rejected in 7.8% of the time and the second hypothesis
was rejected 11.15% of the time. These rejection rates are far less than in the fixed-x results
studied in Appendix 3B and less than the empirical rejection rates in the simulation results in
Appendix 3C.2. We noted that the ability of the t-test to reject a false hypothesis was related to
the magnitude of the noncentrality parameter in (3A.8), δ =

√∑(
xi − x

)2(β2 − c
)
∕σ. In these

experiments, the factors
(
β2 − c

)
= 1 and 2 and σ = 50 are the same as in the fixed-x example.

What must have changed? The only remaining factor is the variation in the x-values, ∑(
xi − x

)2.
In the earlier example,∑(

xi − x
)2 = 1000 and the x-values were fixed in repeated samples. In this

experiment, the x-values were not fixed but random, and for each sample of x-values, the amount
of variation changes. We specified the variance of x to be 2.56, and in 10,000 Monte Carlo
experiments, the average of the sample variance s2

x = 2.544254 and the average of the variation
in x about its mean, ∑(

xi − x
)2, was 99.22591, or about one-tenth the variation in the fixed-x

case. It is perfectly clear why the power of the test in the random-x case was lower, it is because
on average ∑(

xi − x
)2 was smaller.
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