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CHAPTER 2

The Simple Linear
Regression Model

L E A R N I N G O B J E C T I V E S

Remark
Learning Objectives and Keywords sections will appear at the beginning of each chapter. We
urge you to think about and possibly write out answers to the questions, and make sure you
recognize and can define the keywords. If you are unsure about the questions or answers,
consult your instructor. When examples are requested in Learning Objectives sections, you
should think of examples not in the book.

Based on the material in this chapter you should be able to

1. Explain the difference between an estimator and
an estimate, and why the least squares
estimators are random variables, and why least
squares estimates are not.

2. Discuss the interpretation of the slope and inter-
cept parameters of the simple regression model,
and sketch the graph of an estimated equation.

3. Explain the theoretical decomposition of an
observable variable y into its systematic and
random components, and show this
decomposition graphically.

4. Discuss and explain each of the assumptions of
the simple linear regression model.

5. Explain how the least squares principle is used
to fit a line through a scatter plot of data. Be able
to define the least squares residual and the least
squares fitted value of the dependent variable
and show them on a graph.

6. Define the elasticity of y with respect to x and
explain its computation in the simple linear
regression model when y and x are not
transformed in any way, and when y and/or x
have been transformed to model a nonlinear
relationship.

7. Explain the meaning of the statement ‘‘If
regression model assumptions SR1–SR5 hold,
then the least squares estimator b2 is
unbiased.’’ In particular, what exactly does
‘‘unbiased’’ mean? Why is b2 biased if an
important variable has been omitted from the
model?

8. Explain the meaning of the phrase ‘‘sampling
variability.’’

9. Explain how the factors σ2,
∑(

xi − x
)2, and N

affect the precision with which we can estimate
the unknown parameter β2.
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2.1 An Economic Model 47

10. State and explain the Gauss–Markov theorem.

11. Use the least squares estimator to estimate
nonlinear relationships and interpret the
results.

12. Explain the difference between an explanatory
variable that is fixed in repeated samples and an
explanatory variable that is random.

13. Explain the term ‘‘random sampling.’’

K E Y W O R D S
assumptions
asymptotic
biased estimator
BLUE
degrees of freedom
dependent variable
deviation from the mean form
econometric model
economic model
elasticity
exogenous variable
Gauss–Markov theorem
heteroskedastic

homoskedastic
independent variable
indicator variable
least squares estimates
least squares estimators
least squares principle
linear estimator
log-linear model
nonlinear relationship
prediction
quadratic model
random error term
random-x

regression model
regression parameters
repeated sampling
sampling precision
sampling properties
scatter diagram
simple linear regression analysis
simple linear regression function
specification error
strictly exogenous
unbiased estimator

Economic theory suggests many relationships between economic variables. In microeconomics,
you considered demand and supply models in which the quantities demanded and supplied of a
good depend on its price. You considered “production functions” and “total product curves” that
explained the amount of a good produced as a function of the amount of an input, such as labor,
that is used. In macroeconomics, you specified “investment functions” to explain that the amount
of aggregate investment in the economy depends on the interest rate and “consumption functions”
that related aggregate consumption to the level of disposable income.

Each of these models involves a relationship between economic variables. In this chapter, we
consider how to use a sample of economic data to quantify such relationships. As economists, we
are interested in questions such as the following: If one variable (e.g., the price of a good) changes
in a certain way, by how much will another variable (the quantity demanded or supplied) change?
Also, given that we know the value of one variable, can we forecast or predict the corresponding
value of another? We will answer these questions by using a regression model. Like all models,
the regression model is based on assumptions. In this chapter, we hope to be very clear about
these assumptions, as they are the conditions under which the analysis in subsequent chapters
is appropriate.

2.1 An Economic Model
In order to develop the ideas of regression models, we are going to use a simple, but important,
economic example. Suppose that we are interested in studying the relationship between household
income and expenditure on food. Consider the “experiment” of randomly selecting households
from a particular population. The population might consist of households within a particular city,
state, province, or country. For the present, suppose that we are interested only in households
with an income of $1000 per week. In this experiment, we randomly select a number of house-
holds from this population and interview them. We ask the question “How much did you spend
per person on food last week?” Weekly food expenditure, which we denote as y, is a random
variable since the value is unknown to us until a household is selected and the question is asked
and answered.
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Remark
In the Probability Primer and Appendices B and C, we distinguished random variables from
their values by using uppercase (Y) letters for random variables and lowercase (y) letters for
their values. We will not make this distinction any longer because it leads to complicated
notation. We will use lowercase letters, like “y,” to denote random variables as well as their
values, and we will make the interpretation clear in the surrounding text.

The continuous random variable y has a probability density function (which we will abbreviate as
pdf ) that describes the probabilities of obtaining various food expenditure values. If you are rusty
or uncertain about probability concepts, see the Probability Primer and Appendix B at the end of
this book for a comprehensive review. The amount spent on food per person will vary from one
household to another for a variety of reasons: some households will be devoted to gourmet food,
some will contain teenagers, some will contain senior citizens, some will be vegetarian, and some
will eat at restaurants more frequently. All of these factors and many others, including random,
impulsive buying, will cause weekly expenditures on food to vary from one household to another,
even if they all have the same income. The pdf f(y) describes how expenditures are “distributed”
over the population and might look like Figure 2.1.

The pdf in Figure 2.1a is actually a conditional pdf since it is “conditional” upon household
income. If x = weekly household income = $1000, then the conditional pdf is f(y|x = $1000).
The conditional mean, or expected value, of y is E(y|x = $1000) = μy|x and is our population’s
mean weekly food expenditure per person.

Remark
The expected value of a random variable is called its “mean” value, which is really a contrac-
tion of population mean, the center of the probability distribution of the random variable.
This is not the same as the sample mean, which is the arithmetic average of numerical values.
Keep the distinction between these two usages of the term “mean” in mind.

The conditional variance of y is var(y|x = $1000) = σ2, which measures the dispersion of house-
hold expenditures y about their mean μy|x. The parameters μy|x and σ2, if they were known,
would give us some valuable information about the population we are considering. If we knew
these parameters, and if we knew that the conditional distribution f (y|x = $1000) was normal,

y

f(y|x = 1000)f(y|x = 1000)

μy|x

(a)

f(y|x) f(y|x = 1000) f(y|x = 2000)

μy|1000 μy|2000 y

(b)

FIGURE 2.1 (a) Probability distribution f (y|x = 1000) of food expenditure y given income
x = $1000. (b) Probability distributions of food expenditure y given incomes
x = $1000 and x = $2000.
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N
(
μy|x, σ2), then we could calculate probabilities that y falls in specific intervals using properties

of the normal distribution. That is, we could compute the proportion of the household population
that spends between $50 and $75 per person on food, given $1000 per week income.

As economists, we are usually interested in studying relationships between variables, in this
case the relationship between y = weekly food expenditure per person and x = weekly household
income. Economic theory tells us that expenditure on economic goods depends on income. Conse-
quently, we call y the “dependent variable” and x the “independent” or “explanatory” variable.
In econometrics, we recognize that real-world expenditures are random variables, and we want
to use data to learn about the relationship.

An econometric analysis of the expenditure relationship can provide answers to some impor-
tant questions, such as: If weekly income goes up by $100, how much will average weekly food
expenditures rise? Or, could weekly food expenditures fall as income rises? How much would we
predict the weekly per person expenditure on food to be for a household with an income of $2000
per week? The answers to such questions provide valuable information for decision makers.

Using … per person food spending information … one can determine the similarities
and disparities in the spending habits of households of differing sizes, races, incomes,
geographic areas, and other socioeconomic and demographic features. This information
is valuable for assessing existing market conditions, product distribution patterns, con-
sumer buying habits, and consumer living conditions. Combined with demographic and
income projections, this information may be used to anticipate consumption trends. The
information may also be used to develop typical market baskets of food for special popu-
lation groups, such as the elderly. These market baskets may, in turn, be used to develop
price indices tailored to the consumption patterns of these population groups. [Blisard,
Noel, Food Spending in American Households, 1997–1998, Electronic Report from the
Economic Research Service, U.S. Department of Agriculture, Statistical Bulletin Number
972, June 2001]

From a business perspective, if we are managers of a supermarket chain (or restaurant, or health
food store, etc.), we must consider long-range plans. If economic forecasters are predicting that
local income will increase over the next few years, then we must decide whether, and how much,
to expand our facilities to serve our customers. Or, if we plan to open franchises in high-income
and low-income neighborhoods, then forecasts of expenditures on food per person, along with
neighborhood demographic information, give an indication of how large the stores in those areas
should be.

In order to investigate the relationship between expenditure and income, we must build an
economic model and then a corresponding econometric model that forms the basis for a quanti-
tative or empirical economic analysis. In our food expenditure example, economic theory suggests
that average weekly per person household expenditure on food, represented mathematically by the
conditional mean E(y|x) = μy|x, depends on household income x. If we consider households with
different levels of income, we expect the average expenditure on food to change. In Figure 2.1b,
we show the pdfs of food expenditure for two different levels of weekly income, $1000 and $2000.
Each conditional pdf f (y|x) shows that expenditures will be distributed about a mean value μy|x,
but the mean expenditure by households with higher income is larger than the mean expenditure
by lower income households.

In order to use data, we must now specify an econometric model that describes how the data
on household income and food expenditure are obtained and that guides the econometric analysis.

2.2 An Econometric Model
Given the economic reasoning in the previous section, and to quantify the relationship between
food expenditure and income, we must progress from the ideas in Figure 2.1, to an econometric
model. First, suppose a three-person household has an unwavering rule that each week they
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spend $80 and then also spend 10 cents of each dollar of income received on food. Let y = weekly
household food expenditure ($) and let x = weekly household income ($). Algebraically their
rule is y = 80 + 0.10x. Knowing this relationship we calculate that in a week in which the
household income is $1000, the household will spend $180 on food. If weekly income increases
by $100 to $1100, then food expenditure increases to $190. These are predictions of food
expenditure given income. Predicting the value of one variable given the value of another, or
others, is one of the primary uses of regression analysis.

A second primary use of regression analysis is to attribute, or relate, changes in one variable
to changes in another variable. To that end, let “Δ” denote “change in” in the usual algebraic
way. A change in income of $100 means that Δx = 100. Because of the spending rule y = 80 +
0.10x the change in food expenditure isΔy = 0.10Δx = 0.10(100) = 10. An increase in income of
$100 leads to, or causes, a $10 increase in food expenditure. Geometrically, the rule is a line with
“y-intercept” 80 and slope Δy∕Δx = 0.10. An economist might say that the household “marginal
propensity to spend on food is 0.10,” which means that from each additional dollar of income
10 cents is spent on food. Alternatively, in a kind of economist shorthand, the “marginal effect of
income on food expenditure is 0.10.” Much of economic and econometric analysis is an attempt
to measure a causal relationship between two economic variables. Claiming causality here, that
is, changing income leads to a change in food expenditure, is quite clear given the household’s
expenditure rule. It is not always so straightforward.

In reality, many other factors may affect household expenditure on food; the ages and sexes
of the household members, their physical size, whether they do physical labor or have desk jobs,
whether there is a party following the big game, whether it is an urban or rural household, whether
household members are vegetarians or into a paleo-diet, as well as other taste and preference
factors (“I really like truffles”) and impulse shopping (“Wow those peaches look good!”). Lots of
factors. Let e = everything else affecting food expenditure other than income. Furthermore, even
if a household has a rule, strict or otherwise, we do not know it. To account for these realities, we
suppose that the household’s food expenditure decision is based on the equation

y = β1 + β2x + e (2.1)

In addition to y and x, equation (2.1) contains two unknown parameters, β1 and β2, instead of
“80” and “0.10,” and an error term e, which represents all those other factors (everything else)
affecting weekly household food expenditure.

Imagine that we can perform an experiment on the household. Let’s increase the household’s
income by $100 per week and hold other things constant. Holding other things constant, or hold-
ing all else (everything else) equal, is the ceteris paribus assumption discussed extensively in
economic principles courses. Let Δx = 100 denote the change in household income. Assuming
everything else affecting household food expenditure, e, is held constant means that Δe = 0. The
effect of the change in income isΔy = β2Δx + Δe = β2Δx = β2 × 100. The change in weekly food
expenditure Δy = β2 × 100 is explained by, or caused by, the change in income. The unknown
parameter β2, the marginal propensity to spend on food from income, tells us the proportion of
the increase in income used for food purchases; it answers the “how much” question “How much
will food expenditure change given a change in income, holding all else constant?”

The experiment in the previous paragraph is not feasible. We can give a household an
extra $100 income, but we cannot hold all else constant. The simple calculation of the marginal
effect of an increase in income on food expenditure Δy = β2 × 100 is not possible. However,
we can shed light on this “how much” question by using regression analysis to estimate β2.
Regression analysis is a statistical method that uses data to explore relationships between
variables. A simple linear regression analysis examines the relationship between a y-variable
and one x-variable. It is said to be “simple” not because it is easy, but because there is only one
x-variable. The y-variable is called the dependent variable, the outcome variable, the explained
variable, the left-hand-side variable, or the regressand. In our example, the dependent variable is
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y = weekly household expenditure on food. The variable x = weekly household income is called
the independent variable, the explanatory variable, the right-hand-side variable, or the regressor.
Equation (2.1) is the simple linear regression model.

All models are abstractions from reality and working with models requires assumptions. The
same is true for the regression model. The first assumption of the simple linear regression model is
that relationship (2.1) holds for the members of the population under consideration. For example,
define the population to be three-person households in a given geographic region, say southern
Australia. The unknowns β1 and β2 are called population parameters. We assert the behavioral
rule y = β1 + β2x + e holds for all households in the population. Each week food expenditure
equals β1, plus a proportion β2 of income, plus other factors, e.

The field of statistics was developed because, in general, populations are large, and it is
impossible (or impossibly costly) to examine every population member. The population of
three-person households in a given geographic region, even if it is only a medium-sized city, is
too large to survey individually. Statistical and econometric methodology examines and analyzes
a sample of data from the population. After analyzing the data, we make statistical inferences.
These are conclusions or judgments about a population based on the data analysis. Great care
must be taken when drawing inferences. The inferences are conclusions about the particular
population from which the data were collected. Data on households from southern Australia
may, or may not, be useful for making inferences, drawing conclusions, about households from
the southern United States. Do Melbourne, Australia, households have the same food spending
patterns as households in New Orleans, Louisiana? That might be an interesting research topic.
If not, then we may not be able to draw valid conclusions about New Orleans household behavior
from the sample of Australian data.

2.2.1 Data Generating Process
The sample of data, and how the data are actually obtained, is crucially important for subsequent
inferences. The exact mechanisms for collecting a sample of data are very discipline specific (e.g.,
agronomy is different from economics) and beyond the scope of this book.1 For the household
food expenditure example, let us assume that we can obtain a sample at a point in time [these are
cross-sectional data] consisting of N data pairs that are randomly selected from the population.
Let

(
yi, xi

)
denote the ith data pair, i = 1,… ,N. The variables yi and xi are random variables,

because their values are not known until they are observed. Randomly selecting households makes
the first observation pair

(
y1, x1

)
statistically independent of all other data pairs, and each obser-

vation pair
(
yi, xi

)
is statistically independent of every other data pair,

(
yj, xj

)
, where i ≠ j. We

further assume that the random variables yi and xi have a joint pdf f
(
yi, xi

)
that describes their

distribution of values. We often do not know the exact nature of the joint distribution (such as
bivariate normal; see Probability Primer, Section P.7.1), but all pairs drawn from the same popu-
lation are assumed to follow the same joint pdf , and, thus, the data pairs are not only statistically
independent but are also identically distributed (abbreviated i.i.d. or iid). Data pairs that are iid
are said to be a random sample.

If our first assumption is true, that the behavioral rule y = β1 + β2x + e holds for all house-
holds in the population, then restating (2.1) for each

(
yi, xi

)
data pair

yi = β1 + β2xi + ei, i = 1,… ,N (2.1)
This is sometimes called the data generating process (DGP) because we assume that the observ-
able data follow this relationship.

............................................................................................................................................
1See, for example, Paul S. Levy and Stanley Lemeshow (2008) Sampling of Populations: Methods and Applications,
4th Edition, Hoboken, NJ: John Wiley and Sons, Inc.
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2.2.2 The Random Error and Strict Exogeneity
The second assumption of the simple regression model (2.1) concerns the “everything else”
term e. The variables

(
yi, xi

)
are random variables because we do not know what values they

take until a particular household is chosen and they are observed. The error term ei is also a
random variable. All the other factors affecting food expenditure except income will be different
for each population household if for no other reason that everyone’s tastes and preferences are
different. Unlike food expenditure and income, the random error term ei is not observable; it
is unobservable. We cannot measure tastes and preferences in any direct way, just as we cannot
directly measure the economic “utility” derived from eating a slice of cake. The second regres-
sion assumption is that the x-variable, income, cannot be used to predict the value of ei, the effect
of the collection of all other factors affecting the food expenditure by the ith household. Given
an income value xi for the ith household, the best (optimal) predictor2 of the random error ei is
the conditional expectation, or conditional mean, E

(
ei|xi

)
. The assumption that xi cannot be used

to predict ei is equivalent to saying E
(
ei|xi

)
= 0. That is, given a household’s income we can-

not do any better than predicting that the random error is zero; the effects of all other factors on
food expenditure average out, in a very specific way, to zero. We will discuss other situations in
which this might or might not be true in Section 2.10. For now, recall from the Probability Primer,
Section P.6.5, that E

(
ei|xi

)
= 0 has two implications. The first is E

(
ei|xi

)
= 0 =⇒ E

(
ei
)
= 0; if

the conditional expected value of the random error is zero, then the unconditional expectation
of the random error is also zero. In the population, the average effect of all the omitted factors
summarized by the random error term is zero.

The second implication is E
(
ei|xi

)
= 0 =⇒ cov

(
ei, xi

)
= 0. If the conditional expected value

of the random error is zero, then ei, the random error for the ith observation, has covariance zero
and correlation zero, with the corresponding observation xi. In our example, the random compo-
nent ei, representing all factors affecting food expenditure except income for the ith household,
is uncorrelated with income for that household. You might wonder how that could possibly be
shown to be true. After all, ei is unobservable. The answer is that it is very hard work. You
must convince yourself and your audience that anything that might have been omitted from the
model is not correlated with xi. The primary tool is economic reasoning: your own intellectual
experiments (i.e., thinking), reading literature on the topic and discussions with colleagues or
classmates. And we really can’t prove that E

(
ei|xi

)
= 0 is true with absolute certainty in most

economic models.
We noted that E

(
ei|xi

)
= 0 has two implications. If either of the implications is not true, then

E
(
ei|xi

)
= 0 is not true, that is,

E
(
ei|xi

) ≠ 0 if (i) E
(
ei
) ≠ 0 or if (ii) cov

(
ei, xi

) ≠ 0

In the first case, if the population average of the random errors ei is not zero, then E
(
ei|xi

) ≠ 0.
In a certain sense, we will be able to work around the case when E

(
ei
) ≠ 0, say if E

(
ei
)
= 3,

as you will see below. The second implication of E
(
ei|xi

)
= 0 is that cov

(
ei, xi

)
= 0; the ran-

dom error for the ith observation has zero covariance and correlation with the ith observation
on the explanatory variable. If cov

(
ei, xi

)
= 0, the explanatory variable x is said to be exoge-

nous, providing our first assumption that the pairs
(
yi, xi

)
are iid holds. When x is exogenous,

regression analysis can be used successfully to estimate β1 and β2. To differentiate the weaker
condition cov

(
ei, xi

)
= 0, simple exogeneity, from the stronger condition E

(
ei|xi

)
= 0, we say

that x is strictly exogenous if E
(
ei|xi

)
= 0. If cov

(
ei, xi

) ≠ 0, then x is said to be endogenous.
When x is endogenous, it is more difficult, sometimes much more difficult, to carry out statistical
inference. A great deal will be said about exogeneity and strict exogeneity in the remainder of
this book.

............................................................................................................................................
2You will learn about optimal prediction in Appendix 4C.
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E X A M P L E 2.1 A Failure of the Exogeneity Assumption

Consider a regression model exploring the relationship
between a working person’s wage and their years of
education, using a random sample of data. The simple
regression model is WAGEi = β1 + β2EDUCi + ei, where
WAGEi is the hourly wage rate of the ith randomly selected
person and EDUCi is their years of education. The pairs(
WAGEi,EDUCi

)
from the random sample are assumed to be

iid. In this model, the random error ei accounts for all those
factors other than EDUCi that affect a person’s wage rate.
What might some of those factors be? Ability, intelligence,

perseverance, and industriousness are all important charac-
teristics of an employee and likely to influence their wage
rate. Are any of these factors which are bundled into ei likely
to be correlated with EDUCi? A few moments reflection
will lead you to say “yes.” It is very plausible that those
with higher education have higher ability, intelligence,
perseverance, and industriousness. Thus, there is a strong
argument that EDUCi is an endogenous regressor in this
regression and that the strict exogeneity assumption fails.

2.2.3 The Regression Function
The importance of the strict exogeneity assumption is the following. If the strict exogeneity
assumption E

(
ei|xi

)
= 0 is true, then the conditional expectation of yi given xi is

E
(
yi|xi

)
= β1 + β2xi + E

(
ei|xi

)
= β1 + β2xi, i = 1,… ,N (2.2)

The conditional expectation E
(
yi|xi

)
= β1 + β2xi in (2.2) is called the regression function, or

population regression function. It says that in the population the average value of the dependent
variable for the ith observation, conditional on xi, is given by β1 + β2xi. It also says that given a
change in x, Δx, the resulting change in E

(
yi|xi

)
is β2Δx holding all else constant, in the sense

that given xi the average of the random errors is zero, and any change in x is not correlated with
any corresponding change in the random error e. In this case, we can say that a change in x leads
to, or causes, a change in the expected (population average) value of y given xi, E

(
yi|xi

)
.

The regression function in (2.2) is shown in Figure 2.2, with y-intercept β1 = E
(
yi|xi = 0

)
and slope

β2 =
ΔE

(
yi|xi

)

Δxi
=

dE
(
yi|xi

)

dxi
(2.3)

where Δ denotes “change in” and dE(y|x)∕dx denotes the “derivative” of E(y|x) with respect to x.
We will not use derivatives to any great extent in this book, and if you are not too familiar with
the concept you can think of “d” as a stylized version of Δ and go on. See Appendix A.3 for a
discussion of derivatives.
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E(y|x) = β1 + β2 x

β1

Δx
ΔE(y|x)

E( y|x)

β2 = Δx dx
ΔE(y|x) dE(y|x)=

FIGURE 2.2 The economic model: a linear relationship between average
per person food expenditure and income.
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E X A M P L E 2.2 Strict Exogeneity in the Household Food Expenditure Model

The strict exogeneity assumption is that the average of
everything else affecting the food expenditure of the ith
household, given the income of the ith household, is zero.
Could this be true? One test of this possibility is the question
“Using the income of the ith household, can we predict the
value of ei, the combined influence of all factors affecting
food expenditure other than income?” If the answer is yes,
then strict exogeneity fails. If not, then E

(
ei|xi

)
= 0 may be a

plausible assumption. And if it is, then equation (2.1) can be
interpreted as a causal model, and β2 can be thought of as the
marginal effect of income on expected (average) household
food expenditure, holding all else constant, as shown in
equation (2.3). If E

(
ei|xi

) ≠ 0 then xi can be used to predict a
nonzero value for ei, which in turn will affect the value of yi.
In this case, β2 will not capture all the effects of an income
change, and the model cannot be interpreted as causal.

Another important consequence of the assumption of strict exogeneity is that it allows us to think
of the econometric model as decomposing the dependent variable into two components: one that
varies systematically as the values of the independent variable change and another that is ran-
dom “noise.” That is, the econometric model yi = β1 + β2xi + ei can be broken into two parts:
E
(
yi|xi

)
= β1 + β2xi and the random error, ei. Thus

yi = β1 + β2xi + ei = E
(
yi|xi

)
+ ei

The values of the dependent variable yi vary systematically due to variation in the conditional
mean E

(
yi|xi

)
= β1 + β2xi, as the value of the explanatory variable changes, and the values of the

dependent variable yi vary randomly due to ei. The conditional pdf s of e and y are identical except
for their location, as shown in Figure 2.3. Two values of food expenditure y1 and y2 for households
with x = $1000 of weekly income are shown in Figure 2.4 relative to their conditional mean. There
will be variation in household expenditures on food from one household to another because of
variations in tastes and preferences, and everything else. Some will spend more than the average
value for households with the same income, and some will spend less. If we knew β1 and β2, then
we could compute the conditional mean expenditure E

(
yi|x = 1000

)
= β1 + β2(1000) and also

the value of the random errors e1 and e2. We never know β1 and β2 so we can never compute e1
and e2. What we are assuming, however, is that at each level of income x the average value of all
that is represented by the random error is zero.

2.2.4 Random Error Variation
We have made the assumption that the conditional expectation of the random error term is
zero, E

(
ei|xi

)
= 0. For the random error term we are interested in both its conditional mean,

E(e∣x = 1000) = 0

f (∙∣x = 1000)
f (e∣x = 1000)

E(y∣x = 1000) =
               β1 + β2(1000)

f (y∣x = 1000)

FIGURE 2.3 Conditional probability densities for e
and y.
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y

f(y∣x = 1000)f(y∣x = 1000)

E(y∣x = 1000) = β1 + β2(1000)

e1

y1 y2

e2

FIGURE 2.4 The random error.

or expected value, and its variance. Ideally, the conditional variance of the random error is
constant.

var
(
ei|xi

)
= σ2 (2.4)

This is the homoskedasticity (also spelled homoscedasticity) assumption. At each xi the
variation of the random error component is the same. Assuming the population relationship
yi = β1 + β2xi + ei the conditional variance of the dependent variable is

var
(
yi|xi

)
= var

(
β1 + β2xi + ei|xi

)
= var

(
ei|xi

)
= σ2

The simplification works because by conditioning on xi we are treating it as if it is known and
therefore not random. Given xi the component β1 + β2xi is not random, so the variance rule (P.14)
applies.

This was an explicit assumption in Figure 2.1(b) where the pdf s f (y|x = 1000) and
f (y|x = 2000) have the same variance, σ2. If strict exogeneity holds, then the regression function
is E

(
yi|xi

)
= β1 + β2xi, as shown in Figure 2.2. The conditional distributions f (y|x = 1000) and

f (y|x = 2000) are placed along the conditional mean function in Figure 2.5. In the household
expenditure example, the idea is that for a particular level of household income x, the values
of household food expenditure will vary randomly about the conditional mean due to the
assumption that at each x the average value of the random error e is zero. Consequently, at each
level of income, household food expenditures are centered on the regression function. The con-
ditional homoskedasticity assumption implies that at each level of income the variation in food

f(y∣x)

Household income

Food expenditure

μy∣1000 μy∣2000

x

y

x =1000 x =
2000

f(y∣x = 1000)

f(y∣x = 2000)

β1 + β2x = E(y∣x)

FIGURE 2.5 The conditional probability density functions for y, food
expenditure, at two levels of income.
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expenditure about its mean is the same. That means that at each and every level of income we are
equally uncertain about how far food expenditures might fall from their mean value, E

(
yi|xi

)
=

β1 + β2xi. Furthermore, this uncertainty does not depend on income or anything else. If this
assumption is violated, and var

(
ei|xi

) ≠ σ2, then the random errors are said to be heteroskedastic.

2.2.5 Variation in x
In a regression analysis, one of the objectives is to estimate β2 = ΔE

(
yi|xi

)
∕Δxi. If we are to hope

that a sample of data can be used to estimate the effects of changes in x, then we must observe
some different values of the explanatory variable x in the sample. Intuitively, if we collect data
only on households with income $1000, we will not be able to measure the effect of changing
income on the average value of food expenditure. Recall from elementary geometry that “it takes
two points to determine a line.” The minimum number of x-values in a sample of data that will
allow us to proceed is two. You will find out in Section 2.4.4 that in fact the more different values
of x, and the more variation they exhibit, the better our regression analysis will be.

2.2.6 Error Normality
In the discussion surrounding Figure 2.1, we explicitly made the assumption that food expen-
ditures, given income, were normally distributed. In Figures 2.3–2.5, we implicitly made the
assumption of conditionally normally distributed errors and dependent variable by drawing clas-
sically bell-shaped curves. It is not at all necessary for the random errors to be conditionally
normal in order for regression analysis to “work.” However, as you will discover in Chapter 3,
when samples are small, it is advantageous for statistical inferences that the random errors, and
dependent variable y, given each x-value, are normally distributed. The normal distribution has a
long and interesting history,3 as a little Internet searching will reveal. One argument for assum-
ing regression errors are normally distributed is that they represent a collection of many different
factors. The Central Limit Theorem, see Appendix C.3.4, says roughly that collections of many
random factors tend toward having a normal distribution. In the context of the food expenditure
model, if we consider that the random errors reflect tastes and preferences, it is entirely plausible
that the random errors at each income level are normally distributed. When the assumption of con-
ditionally normal errors is made, we write ei|xi ∼ N

(
0, σ2) and also then yi|xi ∼ N

(
β1 + β2xi, σ2).

It is a very strong assumption when it is made, and as mentioned it is not strictly speaking neces-
sary, so we call it an optional assumption.

2.2.7 Generalizing the Exogeneity Assumption
So far we have assumed that the data pairs

(
yi, xi

)
have been drawn from a random sample and

are iid. What happens if the sample values of the explanatory variable are correlated? And how
might that happen?

A lack of independence occurs naturally when using financial or macroeconomic time-series
data. Suppose we observe the monthly report on new housing starts, yt, and the current 30-year
fixed mortgage rate, xt, and we postulate the model yt = β1 + β2xt + et. The data

(
yt, xt

)
can be

described as macroeconomic time-series data. In contrast to cross-section data where we have
observations on a number of units (say households or firms or persons or countries) at a given
point in time, with time-series data we have observations over time on a number of variables. It is
customary to use a “t” subscript to denote time-series data and to use T to denote the sample size.
In the data pairs

(
yt, xt

)
, t = 1,… ,T, both yt and xt are random because we do not know the values

............................................................................................................................................
3For example, Stephen M. Stigler (1990) The History of Statistics: The Measurement of Uncertainty, Reprint Edition,
Belknap Press, 73–76.
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until they are observed. Furthermore, each of the data series is likely to be correlated across time.
For example, the monthly fixed mortgage rate is likely to change slowly over time making the
rate at time t correlated with the rate at time t − 1. The assumption that the pairs

(
yt, xt

)
represent

random iid draws from a probability distribution is not realistic. When considering the exogeneity
assumption for this case, we need to be concerned not just with possible correlation between xt
and et, but also with possible correlation between et and every other value of the explanatory
variable, namely, xs, s = 1, 2,… ,T. If xs is correlated with xt, then it is possible that xs (say, the
mortgage rate in one month) may have an impact on yt (say, housing starts in the next month).
Since it is xt, not xs that appears in the equation yt = β1 + β2xt + et, the effect of xs will be included
in et, implying E

(
et|xs

) ≠ 0. We could use xs to help predict the value of et. This possibility is
ruled out when the pairs

(
yt, xt

)
are assumed to be independent. That is, independence of the pairs(

yt, xt
) and the assumption E

(
et|xt

)
= 0 imply E

(
et|xs

)
= 0 for all s = 1, 2,… ,T.

To extend the strict exogeneity assumption to models where the values of x are correlated,
we need to assume E

(
et|xs

)
= 0 for all (t, s) = 1, 2,… ,T. This means that we cannot predict the

random error at time t, et, using any of the values of the explanatory variable. Or, in terms of
our earlier notation, E

(
ei|xj

)
= 0 for all (i, j) = 1, 2,… ,N. To write this assumption in a more

convenient form, we introduce the notation ! =
(
x1, x2,… , xN

)
. That is, we are using x to denote

all sample observations on the explanatory variable. Then, a more general way of writing the
strict exogeneity assumption is E

(
ei|!

)
= 0, i = 1, 2,… ,N. From this assumption, we can also

write E
(
yi|!

)
= β1 + β2xi for i = 1, 2,… ,N. This assumption is discussed further in the con-

text of alternative types of data in Section 2.10 and in Chapter 9. The assumption E
(
ei|!

)
= 0,

i = 1, 2,… ,N, is a weaker assumption than assuming E
(
ei|xi

)
= 0 and that the pairs

(
yi, xi

)
are

independent, and it enables us to derive a number of results for cases where different observations
on x may be correlated as well as for the case where they are independent.

2.2.8 Error Correlation
In addition to possible correlations between a random error for one household

(
ei
)

or one time
period

(
et
)

being correlated with the value of an explanatory variable for another household
(
xj
)

or time period
(
xs
)
, it is possible that there are correlations between the random error terms.

With cross-sectional data, data on households, individuals, or firms collected at one point in
time, there may be a lack of statistical independence between random errors for individuals who
are spatially connected. That is, suppose that we collect observations on two (or more) individuals
who live in the same neighborhood. It is very plausible that there are similarities among people
who live in a particular neighborhood. Neighbors can be expected to have similar incomes if the
homes in a neighborhood are homogenous. Some suburban neighborhoods are popular because
of green space and schools for young children, meaning households may have members similar in
ages and interests. We might add a spatial component s to the error and say that the random errors
ei(s) and ej(s) for the ith and jth households are possibly correlated because of their common
location. Within a larger sample of data, there may be clusters of observations with correlated
errors because of the spatial component.

In a time-series context, your author is writing these pages on the tenth anniversary of Hur-
ricane Katrina, which devastated the U.S. Gulf Coast and the city of New Orleans, Louisiana, in
particular. The impact of that shock did not just happen and then go away. The effect of that huge
random event had an effect on housing and financial markets during August 2005, and also in
September, October, and so on, to this day. Consequently, the random errors in the population re-
lationship yt = β1 + β2xt + et are correlated over time, so that cov

(
et, et+1

) ≠ 0, cov
(
et, et+2

) ≠ 0,
and so on. This is called serial correlation, or autocorrelation, in econometrics.

The starting point in regression analysis is to assume that there is no error correlation. In
time-series models, we start by assuming cov

(
et, es|!

)
= 0 for t ≠ s, and for cross-sectional data

we start by assuming cov
(
ei, ej|!

)
= 0 for i ≠ j. We will cope with failure of these assumptions

in Chapter 9.
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2.2.9 Summarizing the Assumptions
We summarize the starting assumptions of the simple regression model in a very general way.
In our summary we use subscripts i and j but the assumptions are general, and apply equally to
time-series data. If these assumptions hold, then regression analysis can successfully estimate
the unknown population parameters β1 and β2 and we can claim that β2 = ΔE

(
yi|xi

)
∕Δxi =

dE
(
yi|xi

)
∕dxi measures a causal effect. We begin our study of regression analysis and econo-

metrics making these strong assumptions about the DGP. For future reference, the assumptions
are named SR1–SR6, “SR” denoting “simple regression.”

Econometrics is in large part devoted to handling data and models for which these assump-
tions may not hold, leading to modifications of usual methods for estimating β1 and β2, testing
hypotheses, and predicting outcomes. In Chapters 2 and 3, we study the simple regression model
under these, or similar, strong assumptions. In Chapter 4, we introduce modeling issues and diag-
nostic testing. In Chapter 5, we extend our model to multiple regression analysis with more than
one explanatory variable. In Chapter 6, we treat modeling issues concerning the multiple regres-
sion model, and starting in Chapter 8 we address situations in which SR1–SR6 are violated in
one way or another.

Assumptions of the Simple Linear Regression Model

SR1: Econometric Model All data pairs
(
yi, xi

)
collected from a population satisfy the

relationship
yi = β1 + β2xi + ei, i = 1,… ,N

SR2: Strict Exogeneity The conditional expected value of the random error ei is zero. If
! =

(
x1, x2,… , xN

)
, then

E
(
ei|x

)
= 0

If strict exogeneity holds, then the population regression function is
E
(
yi|x

)
= β1 + β2xi, i = 1,… ,N

and
yi = E

(
yi|x

)
+ ei, i = 1,… ,N

SR3: Conditional Homoskedasticity The conditional variance of the random error is
constant.

var
(
ei|x

)
= σ2

SR4: Conditionally Uncorrelated Errors The conditional covariance of random errors ei
and ej is zero.

cov
(
ei, ej|x

)
= 0 for i ≠ j

SR5: Explanatory Variable Must Vary In a sample of data, xi must take at least two dif-
ferent values.
SR6: Error Normality (optional) The conditional distribution of the random errors is
normal.

ei|x ∼ N
(
0, σ2)

The random error e and the dependent variable y are both random variables, and as we have
shown, the properties of one variable can be determined from the properties of the other. There
is, however, one interesting difference between them: y is “observable” and e is “unobservable.”



❦

❦ ❦

❦

2.3 Estimating the Regression Parameters 59

If the regression parameters β1 and β2 were known, then for any values yi and xi we could
calculate ei = yi −

(
β1 + β2xi

)
. This is illustrated in Figure 2.4. Knowing the regression function

E
(
yi|!

)
= β1 + β2xi we could separate yi into its systematic and random parts. However, β1 and

β2 are never known, and it is impossible to calculate ei.
What comprises the error term e? The random error e represents all factors affecting y other

than x, or what we have called everything else. These factors cause individual observations yi
to differ from the conditional mean value E

(
yi|!

)
= β1 + β2xi. In the food expenditure example,

what factors can result in a difference between household expenditure per person yi and its con-
ditional mean E

(
yi|!

)
= β1 + β2xi?

1. We have included income as the only explanatory variable in this model. Any other economic
factors that affect expenditures on food are “collected” in the error term. Naturally, in any
economic model, we want to include all the important and relevant explanatory variables in
the model, so the error term e is a “storage bin” for unobservable and/or unimportant factors
affecting household expenditures on food. As such, it adds noise that masks the relationship
between x and y.

2. The error term e captures any approximation error that arises because the linear functional
form we have assumed may be only an approximation to reality.

3. The error term captures any elements of random behavior that may be present in each indi-
vidual. Knowing all the variables that influence a household’s food expenditure might not
be enough to perfectly predict expenditure. Unpredictable human behavior is also contained
in e.

If we have omitted some important factor, or made any other serious specification error, then
assumption SR2 E

(
ei|!

)
= 0 will be violated, which will have serious consequences.

2.3 Estimating the Regression Parameters
E X A M P L E 2.3 Food Expenditure Model Data

The economic and econometric models we developed in the
previous section are the basis for using a sample of data
to estimate the intercept and slope parameters, β1 and β2.
For illustration we examine typical data on household food
expenditure and weekly income from a random sample of
40 households. Representative observations and summary
statistics are given in Table 2.1. We control for household
size by considering only three-person households. The
values of y are weekly food expenditures for a three-person
household, in dollars. Instead of measuring income in dol-
lars, we measure it in units of $100, because a $1 increase in
income has a numerically small effect on food expenditure.
Consequently, for the first household, the reported income
is $369 per week with weekly food expenditure of $115.22.
For the 40th household, weekly income is $3340 and weekly
food expenditure is $375.73. The complete data set of
observations is in the data file food.

T A B L E 2.1 Food Expenditure and Income Data

Observation
(household)

Food
Expenditure ($)

Weekly
Income ($100)

i yi xi

1 115.22 3.69
2 135.98 4.39

⋮
39 257.95 29.40
40 375.73 33.40

Summary Statistics
Sample mean 283.5735 19.6048
Median 264.4800 20.0300
Maximum 587.6600 33.4000
Minimum 109.7100 3.6900
Std. dev. 112.6752 6.8478
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Remark
In this book, data files are referenced with a descriptive name in italics such as food.
The actual files which are located at the book websites www.wiley.com/college/hill and
www.principlesofeconometrics.com come in various formats and have an extension that
denotes the format, for example, food.dat, food.wf1, food.dta, and so on. The corresponding
data definition file is food.def .

We assume that the expenditure data in Table 2.1 satisfy the assumptions SR1–SR5. That is, we
assume that the regression model yi = β1 + β2xi + ei describes a population relationship and that
the random error has conditional expected value zero. This implies that the conditional expected
value of household food expenditure is a linear function of income. The conditional variance of y,
which is the same as that of the random error e, is assumed constant, implying that we are equally
uncertain about the relationship between y and x for all observations. Given x the values of y for
different households are assumed uncorrelated with each other.

Given this theoretical model for explaining the sample observations on household food
expenditure, the problem now is how to use the sample information in Table 2.1, specific values
of yi and xi, to estimate the unknown regression parameters β1 and β2. These parameters represent
the unknown intercept and slope coefficients for the food expenditure–income relationship. If we
represent the 40 data points as

(
yi, xi

)
, i = 1,… ,N = 40, and plot them, we obtain the scatter

diagram in Figure 2.6.

Remark
It will be our notational convention to use i subscripts for cross-sectional data observations,
with the number of sample observations being N. For time-series data observations, we use
the subscript t and label the total number of observations T . In purely algebraic or generic
situations, we may use one or the other.
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FIGURE 2.6 Data for the food expenditure example.
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Our problem is to estimate the location of the mean expenditure line E
(
yi|!

)
= β1 + β2xi. We

would expect this line to be somewhere in the middle of all the data points since it represents
population mean, or average, behavior. To estimate β1 and β2, we could simply draw a freehand
line through the middle of the data and then measure the slope and intercept with a ruler. The
problem with this method is that different people would draw different lines, and the lack of a
formal criterion makes it difficult to assess the accuracy of the method. Another method is to draw
a line from the expenditure at the smallest income level, observation i = 1, to the expenditure
at the largest income level, i = 40. This approach does provide a formal rule. However, it may
not be a very good rule because it ignores information on the exact position of the remaining
38 observations. It would be better if we could devise a rule that uses all the information from all
the data points.

2.3.1 The Least Squares Principle
To estimate β1 and β2 we want a rule, or formula, that tells us how to make use of the sample
observations. Many rules are possible, but the one that we will use is based on the least squares
principle. This principle asserts that to fit a line to the data values we should make the sum of the
squares of the vertical distances from each point to the line as small as possible. The distances are
squared to prevent large positive distances from being canceled by large negative distances. This
rule is arbitrary, but very effective, and is simply one way to describe a line that runs through the
middle of the data. The intercept and slope of this line, the line that best fits the data using the
least squares principle, are b1 and b2, the least squares estimates of β1 and β2. The fitted line
itself is then

ŷi = b1 + b2xi (2.5)
The vertical distances from each point to the fitted line are the least squares residuals. They are
given by

êi = yi − ŷi = yi − b1 − b2xi (2.6)
These residuals are depicted in Figure 2.7a.

Now suppose we fit another line, any other line, to the data. Denote the new line as
ŷ∗i = b∗1 + b∗2xi

where b∗1 and b∗2 are any other intercept and slope values. The residuals for this line, ê∗i = yi − ŷ∗i ,
are shown in Figure 2.7b. The least squares estimates b1 and b2 have the property that the sum of
their squared residuals is less than the sum of squared residuals for any other line. That is, if

SSE =
N∑

i=1
ê2

i

is the sum of squared least squares residuals from (2.6) and

SSE∗ =
N∑

i=1
ê∗

2

i =
N∑

i=1

(
yi − ŷ∗i

)2

is the sum of squared residuals based on any other estimates, then
SSE < SSE∗

no matter how the other line might be drawn through the data. The least squares principle says
that the estimates b1 and b2 of β1 and β2 are the ones to use, since the line using them as intercept
and slope fits the data best.

The problem is to find b1 and b2 in a convenient way. Given the sample observations on y
and x, we want to find values for the unknown parameters β1 and β2 that minimize the “sum of
squares” function

S
(
β1, β2

)
=

N∑
i=1

(
yi − β1 − β2xi

)2
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FIGURE 2.7 (a) The relationship among y, ê, and the fitted
regression line. (b) The residuals from another
fitted line.

This is a straightforward calculus problem, the details of which are given in Appendix 2A. The
formulas for the least squares estimates of β1 and β2 that give the minimum of the sum of squared
residuals are

The Ordinary Least Squares (OLS) Estimators

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2 (2.7)

b1 = y − b2x (2.8)

where y = ∑
yi∕N and x = ∑

xi∕N are the sample means of the observations on y and x.

We will call the estimators b1 and b2, given in equations (2.7) and (2.8), the ordinary least
squares estimators. “Ordinary least squares” is abbreviated as OLS. These least squares estima-
tors are called “ordinary,” despite the fact that they are extraordinary, because these estimators
are used day in and day out in many fields of research in a routine way, and to distinguish them
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from other methods called generalized least squares, and weighted least squares, and two-stage
least squares, all of which are introduced later in this book.

The formula for b2 reveals why we had to assume [SR5] that in the sample xi must take at least
two different values. If xi = 5, for example, for all observations, then b2 in (2.7) is mathematically
undefined and does not exist since its numerator and denominator are zero!

If we plug the sample values yi and xi into (2.7) and (2.8), then we obtain the least squares
estimates of the intercept and slope parameters β1 and β2. It is interesting, however, and very
important, that the formulas for b1 and b2 are perfectly general and can be used no matter what
the sample values turn out to be. This should ring a bell. When the formulas for b1 and b2 are
taken to be rules that are used whatever the sample data turn out to be, then b1 and b2 are random
variables. When actual sample values are substituted into the formulas, we obtain numbers that
are the observed values of random variables. To distinguish these two cases, we call the rules or
general formulas for b1 and b2 the least squares estimators. We call the numbers obtained when
the formulas are used with a particular sample least squares estimates.

• Least squares estimators are general formulas and are random variables.
• Least squares estimates are numbers that we obtain by applying the general formulas to the

observed data.

The distinction between estimators and estimates is a fundamental concept that is essential to
understand everything in the rest of this book.

E X A M P L E 2.4a Estimates for the Food Expenditure Function

Using the least squares estimators (2.7) and (2.8), we can
obtain the least squares estimates for the intercept and slope
parameters β1 and β2 in the food expenditure example using
the data in Table 2.1. From (2.7), we have

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2 = 18671.2684
1828.7876 = 10.2096

and from (2.8)
b1 = y − b2x = 283.5735 − (10.2096)(19.6048) = 83.4160

A convenient way to report the values for b1 and b2 is to write
out the estimated or fitted regression line, with the estimates
rounded appropriately:

ŷi = 83.42 + 10.21xi

This line is graphed in Figure 2.8. The line’s slope is 10.21,
and its intercept, where it crosses the vertical axis, is 83.42.
The least squares fitted line passes through the middle of the
data in a very precise way, since one of the characteristics of
the fitted line based on the least squares parameter estimates
is that it passes through the point defined by the sample
means,

(
x, y

)
= (19.6048, 283.5735). This follows directly

from rewriting (2.8) as y = b1 + b2x. Thus, the “point of the
means” is a useful reference value in regression analysis.

Interpreting the Estimates

Once obtained, the least squares estimates are interpreted
in the context of the economic model under consideration.

The value b2 = 10.21 is an estimate of β2. Recall that x,
weekly household income, is measured in $100 units. The
regression slope β2 is the amount by which expected weekly
expenditure on food per household increases when house-
hold weekly income increases by $100. Thus, we estimate
that if weekly household income goes up by $100, expected
weekly expenditure on food will increase by approximately
$10.21, holding all else constant. A supermarket executive
with information on likely changes in the income and the
number of households in an area could estimate that it will
sell $10.21 more per typical household per week for every
$100 increase in income. This is a very valuable piece of
information for long-run planning.

Strictly speaking, the intercept estimate b1 = 83.42 is
an estimate of the expected weekly food expenditure for a
household with zero income. In most economic models we
must be very careful when interpreting the estimated inter-
cept. The problem is that we often do not have any data points
near x = 0, something that is true for the food expenditure
data shown in Figure 2.8. If we have no observations in the
region where income is zero, then our estimated relationship
may not be a good approximation to reality in that region.
So, although our estimated model suggests that a household
with zero income is expected to spend $83.42 per week on
food, it might be risky to take this estimate literally. This is
an issue that you should consider in each economic model
that you estimate.
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FIGURE 2.8 The fitted regression.

Elasticities Income elasticity is a useful way to characterize the responsiveness of consumer
expenditure to changes in income. See Appendix A.2.2 for a discussion of elasticity calculations
in a linear relationship. The elasticity of a variable y with respect to another variable x is

ε = percentage change in y
percentage change in x

= 100(Δy∕y)
100(Δx∕x) =

Δy
Δx

•
x
y

In the linear economic model given by (2.1), we have shown that

β2 = ΔE(y|x)
Δx

so the elasticity of mean expenditure with respect to income is

ε = ΔE(y|x)
Δx

•
x

E(y|x) = β2•
x

E(y|x) (2.9)

E X A M P L E 2.4b Using the Estimates

To estimate this elasticity we replace β2 by b2 = 10.21. We
must also replace “x” and “E(y|x)” by something, since in
a linear model the elasticity is different on each point on the
regression line. Most commonly, the elasticity is calculated at
the “point of the means”

(
x, y

)
= (19.60, 283.57) because it is

a representative point on the regression line. If we calculate
the income elasticity at the point of the means, we obtain

ε̂ = b2
x
y

= 10.21 × 19.60
283.57 = 0.71
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This estimated income elasticity takes its usual interpretation.
We estimate that a 1% increase in weekly household income
will lead to a 0.71% increase in expected weekly household
expenditure on food, when x and y take their sample mean
values,

(
x, y

)
= (19.60, 283.57). Since the estimated income

elasticity is less than one, we would classify food as a “ne-
cessity” rather than a “luxury,” which is consistent with what
we would expect for an average household.

Prediction
The estimated equation can also be used for prediction or
forecasting purposes. Suppose that we wanted to predict aver-
age weekly food expenditure for a household with a weekly
income of $2000. This prediction is carried out by substitut-
ing x = 20 into our estimated equation to obtain

ŷi = 83.42 + 10.21xi = 83.42 + 10.21(20) = 287.61
We predict that a household with a weekly income of $2000
will on average spend $287.61 per week on food.

Computer Output

Many different software packages can compute least squares
estimates. Every software package’s regression output looks

Dependent Variable: FOOD_EXP
Method: Least Squares
Sample: 1 40
Included observations: 40

Coefficient Std. Error t-Statistic Prob.
C 83.41600 43.41016 1.921578 0.0622
INCOME 10.20964 2.093264 4.877381 0.0000
R-squared 0.385002 Mean dependent var 283.5735
Adjusted R-squared 0.368818 S.D. dependent var 112.6752
S.E. of regression 89.51700 Akaike info criterion 11.87544
Sum squared resid 304505.2 Schwarz criterion 11.95988
Log likelihood −235.5088 Hannan-Quinn criter 11.90597
F-statistic 23.78884 Durbin-Watson stat 1.893880
Prob(F-statistic) 0.000019

FIGURE 2.9 EViews regression output.

different and uses different terminology to describe the out-
put. Despite these differences, the various outputs provide the
same basic information, which you should be able to locate
and interpret. The matter is complicated somewhat by the fact
that the packages also report various numbers whose meaning
you may not know. For example, using the food expenditure
data, the output from the software package EViews is shown
in Figure 2.9.

In the EViews output, the parameter estimates are in
the “Coefficient” column, with names “C,” for constant term
(the estimate b1) and INCOME (the estimate b2). Software
programs typically name the estimates with the name of the
variable as assigned in the computer program (we named
our variable INCOME) and an abbreviation for “constant.”
The estimates that we report in the text are rounded to
two significant digits. The other numbers that you can
recognize at this time are SSE = ∑

ê2
i = 304505.2, which

is called “Sum squared resid,” and the sample mean of y,
y = ∑

yi∕N = 283.5735, which is called “Mean depen-
dent var.”

We leave discussion of the rest of the output until later.

2.3.2 Other Economic Models
We have used the household expenditure on food versus income relationship as an example to
introduce the ideas of simple regression. The simple regression model can be applied to estimate
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the parameters of many relationships in economics, business, and the social sciences. The appli-
cations of regression analysis are fascinating and useful. For example,

• If the hourly wage rate of electricians rises by 5%, how much will new house prices increase?
• If the cigarette tax increases by $1, how much additional revenue will be generated in the

state of Louisiana?
• If the central banking authority raises interest rates by one-half a percentage point, how much

will consumer borrowing fall within six months? How much will it fall within one year? What
will happen to the unemployment rate in the months following the increase?

• If we increase funding on preschool education programs in 2018, what will be the effect on
high school graduation rates in 2033? What will be the effect on the crime rate by juveniles
in 2028 and subsequent years?

The range of applications spans economics and finance, as well as most disciplines in the social
and physical sciences. Any time you ask how much a change in one variable will affect another
variable, regression analysis is a potential tool.

Similarly, any time you wish to predict the value of one variable given the value of another
then least squares regression is a tool to consider.

2.4 Assessing the Least Squares Estimators
Using the food expenditure data, we have estimated the parameters of the regression model
yi = β1 + β2xi + ei using the least squares formulas in (2.7) and (2.8). We obtained the least
squares estimates b1 = 83.42 and b2 = 10.21. It is natural, but, as we shall argue, misguided,
to ask the question “How good are these estimates?” This question is not answerable. We will
never know the true values of the population parameters β1 or β2, so we cannot say how close
b1 = 83.42 and b2 = 10.21 are to the true values. The least squares estimates are numbers that
may or may not be close to the true parameter values, and we will never know.

Rather than asking about the quality of the estimates we will take a step back and examine
the quality of the least squares estimation procedure. The motivation for this approach is this: if
we were to collect another sample of data, by choosing another set of 40 households to survey, we
would have obtained different estimates b1 and b2, even if we had carefully selected households
with the same incomes as in the initial sample. This sampling variation is unavoidable. Different
samples will yield different estimates because household food expenditures, yi, i = 1,… , 40, are
random variables. Their values are not known until the sample is collected. Consequently, when
viewed as an estimation procedure, b1 and b2 are also random variables, because their values
depend on the random variable y. In this context, we call b1 and b2 the least squares estimators.

We can investigate the properties of the estimators b1 and b2, which are called their sampling
properties, and deal with the following important questions:

1. If the least squares estimators b1 and b2 are random variables, then what are their expected
values, variances, covariances, and probability distributions?

2. The least squares principle is only one way of using the data to obtain estimates of β1 and β2.
How do the least squares estimators compare with other procedures that might be used, and
how can we compare alternative estimators? For example, is there another estimator that has
a higher probability of producing an estimate that is close to β2?

We examine these questions in two steps to make things easier. In the first step, we investigate the
properties of the least squares estimators conditional on the values of the explanatory variable in
the sample. That is, conditional on x. Making the analysis conditional on x is equivalent to saying
that, when we consider all possible samples, the household income values in the sample stay the
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same from one sample to the next; only the random errors and food expenditure values change.
This assumption is clearly not realistic but it simplifies the analysis. By conditioning on x, we are
holding it constant, or fixed, meaning that we can treat the x-values as “not random.”

In the second step, considered in Section 2.10, we return to the random sampling assumption
and recognize that

(
yi, xi

)
data pairs are random, and randomly selecting households from a pop-

ulation leads to food expenditures and incomes that are random. However, even in this case and
treating x as random, we will discover that most of our conclusions that treated x as nonrandom
remain the same.

In either case, whether we make the analysis conditional on x or make the analysis gen-
eral by treating x as random, the answers to the questions above depend critically on whether
the assumptions SR1–SR5 are satisfied. In later chapters, we will discuss how to check whether the
assumptions we make hold in a specific application, and what we might do if one or more assump-
tions are shown not to hold.

Remark
We will summarize the properties of the least squares estimators in the next several sections.
“Proofs” of important results appear in the appendices to this chapter. In many ways, it is
good to see these concepts in the context of a simpler problem before tackling them in the
regression model. Appendix C covers the topics in this chapter, and the next, in the familiar
and algebraically easier problem of estimating the mean of a population.

2.4.1 The Estimator b2
Formulas (2.7) and (2.8) are used to compute the least squares estimates b1 and b2. However,
they are not well suited for examining theoretical properties of the estimators. In this section, we
rewrite the formula for b2 to facilitate its analysis. In (2.7), b2 is given by

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2

This is called the deviation from the mean form of the estimator because the data have their
sample means subtracted. Using assumption SR1 and a bit of algebra (Appendix 2C), we can
write b2 as a linear estimator,

b2 =
N∑

i=1
wiyi (2.10)

where
wi =

xi − x
∑(

xi − x
)2 (2.11)

The term wi depends only on x. Because we are conditioning our analysis on x, the term wi is
treated as if it is a constant. We remind you that conditioning on x is equivalent to treating x as
given, as in a controlled, repeatable experiment.

Any estimator that is a weighted average of yi’s, as in (2.10), is called a linear estimator.
This is an important classification that we will speak more of later. Then, with yet more algebra
(Appendix 2D), we can express b2 in a theoretically convenient way,

b2 = β2 +
∑

wiei (2.12)

where ei is the random error in the linear regression model yi = β1 + β2xi + ei. This formula is
not useful for computations, because it depends on β2, which we do not know, and on the ei’s,
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which are unobservable. However, for understanding the sampling properties of the least squares
estimator, (2.12) is very useful.

2.4.2 The Expected Values of b1 and b2
The OLS estimator b2 is a random variable since its value is unknown until a sample is collected.
What we will show is that if our model assumptions hold, then E

(
b2|!

)
= β2; that is, given x the

expected value of b2 is equal to the true parameter β2. When the expected value of any estimator of
a parameter equals the true parameter value, then that estimator is unbiased. Since E

(
b2|!

)
= β2,

the least squares estimator b2 given x is an unbiased estimator of β2. In Section 2.10, we will show
that the least squares estimator b2 is unconditionally unbiased also, E

(
b2
)
= β2. The intuitive

meaning of unbiasedness comes from the sampling interpretation of mathematical expectation.
Recognize that one sample of size N is just one of many samples that we could have been selected.
If the formula for b2 is used to estimate β2 in each of those possible samples, then, if our assump-
tions are valid, the average value of the estimates b2 obtained from all possible samples will
be β2.

We will show that this result is true so that we can illustrate the part played by the assump-
tions of the linear regression model. In (2.12), what parts are random? The parameter β2 is not
random. It is a population parameter we are trying to estimate. Conditional on x we can treat xi
as if it is not random. Then, conditional on x, wi is not random either, as it depends only on the
values of xi. The only random factors in (2.12) are the random error terms ei. We can find the con-
ditional expected value of b2 using the fact that the expected value of a sum is the sum of the
expected values:

E
(
b2|x

)
= E

(
β2 +

∑
wiei|x

)
= E

(
β2 + w1e1 + w2e2 + · · · + wNeN|x

)

= E
(
β2
)
+ E

(
w1e1|x

)
+ E

(
w2e2|x

)
+ · · · + E

(
wNeN|x

)

= β2 +
∑

E
(
wiei|x

)

= β2 +
∑

wiE
(
ei|x

)
= β2

(2.13)

The rules of expected values are fully discussed in the Probability Primer, Section P.5, and
Appendix B.1.1. In the last line of (2.13), we use two assumptions. First, E

(
wiei|!

)
= wiE

(
ei|!

)
because conditional on x the terms wi are not random, and constants can be factored out of ex-
pected values. Second, we have relied on the assumption that E

(
ei|!

)
= 0. Actually, if

E
(
ei|!

)
= c, where c is any constant value, such as 3, then E

(
b2|!

)
= β2. Given x, the OLS

estimator b2 is an unbiased estimator of the regression parameter β2. On the other hand, if
E
(
ei|!

) ≠ 0 and it depends on x in some way, then b2 is a biased estimator of β2. One leading
case in which the assumption E

(
ei|!

)
= 0 fails is due to omitted variables. Recall that ei

contains everything else affecting yi other than xi. If we have omitted anything that is important
and that is correlated with x then we would expect that E

(
ei|!

) ≠ 0 and E
(
b2|!

) ≠ β2. In
Chapter 6 we discuss this omitted variables bias. Here we have shown that conditional on x,
and under SR1–SR5, the least squares estimator is linear and unbiased. In Section 2.10, we show
that E

(
b2
)
= β2 without conditioning on x.

The unbiasedness of the estimator b2 is an important sampling property. On average, over
all possible samples from the population, the least squares estimator is “correct,” on average, and
this is one desirable property of an estimator. This statistical property by itself does not mean that
b2 is a good estimator of β2, but it is part of the story. The unbiasedness property is related to what
happens in all possible samples of data from the same population. The fact that b2 is unbiased
does not imply anything about what might happen in just one sample. An individual estimate
(a number) b2 may be near to, or far from, β2. Since β2 is never known we will never know, given
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one sample, whether our estimate is “close” to β2 or not. Thus, the estimate b2 = 10.21 may be
close to β2 or not.

The least squares estimator b1 of β1 is also an unbiased estimator, and E
(
b1|!

)
= β1 if the

model assumptions hold.

2.4.3 Sampling Variation
To illustrate how the concept of unbiased estimation relates to sampling variation, we present
in Table 2.2 least squares estimates of the food expenditure model from 10 hypothetical random
samples (data file table2_2) of size N = 40 from the same population with the same incomes as
the households given in Table 2.1. Note the variability of the least squares parameter estimates
from sample to sample. This sampling variation is due to the fact that we obtain 40 different
households in each sample, and their weekly food expenditure varies randomly.

The property of unbiasedness is about the average values of b1 and b2 if used in all possi-
ble samples of the same size drawn from the same population. The average value of b1 in these
10 samples is b1 = 96.11. The average value of b2 is b2 = 8.70. If we took the averages of esti-
mates from more samples, these averages would approach the true parameter values β1 and β2.
Unbiasedness does not say that an estimate from any one sample is close to the true parameter
value, and thus we cannot say that an estimate is unbiased. We can say that the least squares
estimation procedure (or the least squares estimator) is unbiased.

2.4.4 The Variances and Covariance of b1 and b2
Table 2.2 shows that the least squares estimates of β1 and β2 vary from sample to sample. Under-
standing this variability is a key to assessing the reliability and sampling precision of an estimator.
We now obtain the variances and covariance of the estimators b1 and b2. Before presenting the
expressions for the variances and covariance, let us consider why they are important to know. The
variance of the random variable b2 is the average of the squared distances between the possible
values of the random variable and its mean, which we now know is E

(
b2|!

)
= β2. The conditional

variance of b2 is defined as

var
(
b2|x

)
= E

{[
b2 − E

(
b2|x

)]2|||x
}

T A B L E 2.2 Estimates from 10 Hypothetical Samples

Sample b1 b2
1 93.64 8.24
2 91.62 8.90
3 126.76 6.59
4 55.98 11.23
5 87.26 9.14
6 122.55 6.80
7 91.95 9.84
8 72.48 10.50
9 90.34 8.75

10 128.55 6.99
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β2

f1(b2∣x)

f2(b2∣x)

FIGURE 2.10 Two possible probability density
functions for b2.

It measures the spread of the probability distribution of b2. In Figure 2.10 are graphs of two
possible probability distributions of b2, f1

(
b2|!

)
and f2

(
b2|!

)
, that have the same mean value but

different variances.
The pdf f2

(
b2|!

)
has a smaller variance than f1

(
b2|!

)
. Given a choice, we are interested in

estimator precision and would prefer that b2 have the pdf f2
(
b2|!

)
, rather than f1

(
b2|!

)
. With the

distribution f2
(
b2|!

)
, the probability is more concentrated around the true parameter value β2 giv-

ing, relative to f1
(
b2|!

)
, a higher probability of getting an estimate that is close to β2. Remember,

getting an estimate close to β2 is a primary objective of regression analysis.
The variance of an estimator measures the precision of the estimator in the sense that it tells

us how much the estimates can vary from sample to sample. Consequently, we often refer to
the sampling variance or sampling precision of an estimator. The smaller the variance of an
estimator is, the greater the sampling precision of that estimator. One estimator is more precise
than another estimator if its sampling variance is less than that of the other estimator.

We will now present and discuss the conditional variances and covariance of b1 and b2.
Appendix 2E contains the derivation of the variance of the least squares estimator b2. If the
regression model assumptions SR1–SR5 are correct (assumption SR6 is not required), then the
variances and covariance of b1 and b2 are

var
(
b1|x

)
= σ2

[ ∑
x2

i

N
∑(

xi − x
)2

]
(2.14)

var
(
b2|x

)
= σ2

∑(
xi − x

)2 (2.15)

cov
(
b1, b2|x

)
= σ2

[
−x

∑(
xi − x

)2

]
(2.16)

At the beginning of this section we said that for unbiased estimators, smaller variances are bet-
ter than larger variances. Let us consider the factors that affect the variances and covariance
in (2.14)–(2.16).

1. The variance of the random error term, σ2, appears in each of the expressions. It reflects the
dispersion of the values y about their expected value E(y|x). The greater the variance σ2, the
greater is that dispersion, and the greater is the uncertainty about where the values of y fall
relative to their conditional mean E(y|x). When σ2 is larger, the information we have about β1
and β2 is less precise. In Figure 2.5, the variance is reflected in the spread of the probability
distributions f (y|x). The larger the variance term σ2, the greater is the uncertainty in the
statistical model, and the larger the variances and covariance of the least squares estimators.
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y

x

(a) (b)

xi xix

yi = b1 + b2 xi

y

yiyi

FIGURE 2.11 The influence of variation in the explanatory variable x on precision of
estimation: (a) low x variation, low precision: (b) high x variation, high
precision.

2. The sum of squares of the values of x about their sample mean, ∑(
xi − x

)2, appears in each
of the variances and in the covariance. This expression measures how spread out about their
mean are the sample values of the independent or explanatory variable x. The more they are
spread out, the larger the sum of squares. The less they are spread out, the smaller the sum of
squares. You may recognize this sum of squares as the numerator of the sample variance of
the x-values. See Appendix C.4. The larger the sum of squares, ∑(

xi − x
)2, the smaller the

conditional variances of the least squares estimators and the more precisely we can estimate
the unknown parameters. The intuition behind this is demonstrated in Figure 2.11. Panel (b)
is a data scatter in which the values of x are widely spread out along the x-axis. In panel (a),
the data are “bunched.” Which data scatter would you prefer given the task of fitting a line
by hand? Pretty clearly, the data in panel (b) do a better job of determining where the least
squares line must fall, because they are more spread out along the x-axis.

3. The larger the sample size N, the smaller the variances and covariance of the least squares
estimators; it is better to have more sample data than less. The sample size N appears in
each of the variances and covariance because each of the sums consists of N terms. Also,
N appears explicitly in var

(
b1|!

)
. The sum of squares term ∑(

xi − x
)2 gets larger as N

increases because each of the terms in the sum is positive or zero (being zero if x happens
to equal its sample mean value for an observation). Consequently, as N gets larger, both
var

(
b2|!

)
and cov

(
b1, b2|!

)
get smaller, since the sum of squares appears in their denomina-

tor. The sums in the numerator and denominator of var
(
b1|!

)
both get larger as N gets larger

and offset one another, leaving the N in the denominator as the dominant term, ensuring that
var

(
b1|!

)
also gets smaller as N gets larger.

4. The term∑
x2

i appears in var
(
b1|!

)
. The larger this term is, the larger the variance of the least

squares estimator b1. Why is this so? Recall that the intercept parameter β1 is the expected
value of y given that x = 0. The farther our data are from x = 0, the more difficult it is to
interpret β1, as in the food expenditure example, and the more difficult it is to accurately
estimate β1. The term ∑

x2
i measures the squared distance of the data from the origin, x = 0.

If the values of x are near zero, then ∑
x2

i will be small, and this will reduce var
(
b1|!

)
. But

if the values of x are large in magnitude, either positive or negative, the term ∑
x2

i will be
large and var

(
b1
)

will be larger, other things being equal.
5. The sample mean of the x-values appears in cov

(
b1, b2|!

)
. The absolute magnitude of the

covariance increases with an increase in magnitude of the sample mean x, and the covariance
has a sign opposite to that of x. The reasoning here can be seen from Figure 2.11. In panel (b)
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the least squares fitted line must pass through the point of the means. Given a fitted line
through the data, imagine the effect of increasing the estimated slope b2. Since the line must
pass through the point of the means, the effect must be to lower the point where the line hits
the vertical axis, implying a reduced intercept estimate b1. Thus, when the sample mean is
positive, as shown in Figure 2.11, there is a negative covariance between the least squares
estimators of the slope and intercept.

2.5 The Gauss–Markov Theorem
What can we say about the least squares estimators b1 and b2 so far?

• The estimators are perfectly general. Formulas (2.7) and (2.8) can be used to estimate the
unknown parameters β1 and β2 in the simple linear regression model, no matter what the
data turn out to be. Consequently, viewed in this way, the least squares estimators b1 and b2
are random variables.

• The least squares estimators are linear estimators, as defined in (2.10). Both b1 and b2 can
be written as weighted averages of the yi values.

• If assumptions SR1–SR5 hold, then the least squares estimators are conditionally unbiased.
This means that E

(
b1|!

)
= β1 and E

(
b2|!

)
= β2.

• Given x we have expressions for the variances of b1 and b2 and their covariance. Furthermore,
we have argued that for any unbiased estimator, having a smaller variance is better, as this
implies we have a higher chance of obtaining an estimate close to the true parameter value.

Now we will state and discuss the famous Gauss–Markov theorem, which is proven in
Appendix 2F.

Gauss–Markov Theorem:
Given x and under the assumptions SR1–SR5 of the linear regression model, the estimators
b1 and b2 have the smallest variance of all linear and unbiased estimators of β1 and β2. They
are the best linear unbiased estimators (BLUE) of β1 and β2.

Let us clarify what the Gauss–Markov theorem does, and does not, say.

1. The estimators b1 and b2 are “best” when compared to similar estimators, those that are
linear and unbiased. The theorem does not say that b1 and b2 are the best of all possible
estimators.

2. The estimators b1 and b2 are best within their class because they have the minimum variance.
When comparing two linear and unbiased estimators, we always want to use the one with
the smaller variance, since that estimation rule gives us the higher probability of obtaining
an estimate that is close to the true parameter value.

3. In order for the Gauss–Markov theorem to hold, assumptions SR1–SR5 must be true. If any
of these assumptions are not true, then b1 and b2 are not the best linear unbiased estimators
of β1 and β2.

4. The Gauss–Markov theorem does not depend on the assumption of normality (assumption
SR6).

5. In the simple linear regression model, if we want to use a linear and unbiased estimator, then
we have to do no more searching. The estimators b1 and b2 are the ones to use. This explains
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why we are studying these estimators (we would not have you study bad estimation rules,
would we?) and why they are so widely used in research, not only in economics but in all
social and physical sciences as well.

6. The Gauss–Markov theorem applies to the least squares estimators. It does not apply to the
least squares estimates from a single sample.

The results we have presented so far treat x as given. In Section 2.10 we show that the Gauss–
Markov theorem also holds in general, and it does not depend on a specific x.

2.6 The Probability Distributions of the Least
Squares Estimators
The properties of the least squares estimators that we have developed so far do not depend in any
way on the normality assumption SR6. If we also make this assumption, that the random errors
ei are normally distributed, with mean zero and variance σ2, then the conditional probability
distributions of the least squares estimators are also normal. This conclusion is obtained in two
steps. First, given x and based on assumption SR1, if ei is normal then so is yi. Second, the least
squares estimators are linear estimators of the form b2 = ∑

wiyi. Given x this weighted sum of
normal random variables is also normally distributed. Consequently, if we make the normality
assumption (assumption SR6 about the error term), and treat x as given, then the least squares
estimators are normally distributed:

b1|x ∼ N
(
β1,

σ2∑ x2
i

N
∑(

xi − x
)2

)
(2.17)

b2|x ∼ N
(
β2,

σ2
∑(

xi − x
)2

)
(2.18)

As you will see in Chapter 3, the normality of the least squares estimators is of great importance
in many aspects of statistical inference.

What if the errors are not normally distributed? Can we say anything about the probability
distribution of the least squares estimators? The answer is, sometimes, yes.

A Central Limit Theorem:
If assumptions SR1–SR5 hold, and if the sample size N is sufficiently large, then the least
squares estimators have a distribution that approximates the normal distributions shown in
(2.17) and (2.18).

The million-dollar question is “How large is sufficiently large?” The answer is that there is no
specific number. The reason for this vague and unsatisfying answer is that “how large” depends
on many factors, such as what the distributions of the random errors look like (are they smooth?
symmetric? skewed?) and what the xi values are like. In the simple regression model, some would
say that N = 30 is sufficiently large. Others would say that N = 50 would be a more reasonable
number. The bottom line is, however, that these are rules of thumb and that the meaning of “suffi-
ciently large” will change from problem to problem. Nevertheless, for better or worse, this large
sample, or asymptotic, result is frequently invoked in regression analysis. This important result
is an application of a central limit theorem, like the one discussed in Appendix C.3.4. If you are
not familiar with this important theorem, you may want to review it now.
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2.7 Estimating the Variance of the Error Term
The variance of the random error term, σ2, is the one unknown parameter of the simple linear
regression model that remains to be estimated.

The conditional variance of the random error ei is

var
(
ei|x

)
= σ2 = E

{[
ei − E

(
ei|x

)]2|||x
}
= E

(
e2

i |x
)

if the assumption E
(
ei|x

)
= 0 is correct. Since the “expectation” is an average value, we might

consider estimating σ2 as the average of the squared errors

σ̂2 =
∑

e2
i

N
This formula is unfortunately of no use since the random errors ei are unobservable! However,
although the random errors themselves are unknown, we do have an analog to them—namely, the
least squares residuals. Recall that the random errors are

ei = yi − β1 − β2xi

From (2.6) the least squares residuals are obtained by replacing the unknown parameters by their
least squares estimates:

êi = yi − ŷi = yi − b1 − b2xi

It seems reasonable to replace the random errors ei by their analogs, the least squares residuals,
so that

σ̂2 =
∑

ê2
i

N
This estimator, though quite satisfactory in large samples, is a biased estimator of σ2. But there
is a simple modification that produces an unbiased estimator:

σ̂2 =
∑

ê2
i

N − 2 (2.19)

The 2 that is subtracted in the denominator is the number of regression parameters
(
β1, β2

)
in the

model, and this subtraction makes the estimator σ̂2 unbiased, so that E
(
σ̂2|x

)
= σ2.

2.7.1 Estimating the Variances and Covariance of the Least
Squares Estimators

Having an unbiased estimator of the error variance means we can estimate the conditional vari-
ances of the least squares estimators b1 and b2 and the covariance between them. Replace the
unknown error variance σ2 in (2.14)–(2.16) by σ̂2 to obtain

var
⋀(

b1|x
)
= σ̂2

[ ∑
x2

i

N
∑(

xi − x
)2

]
(2.20)

var
⋀(

b2|x
)
= σ̂2

∑(
xi − x

)2 (2.21)

cov
⋀(

b1, b2|x
)
= σ̂2

[
−x

∑(
xi − x

)2

]
(2.22)
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The square roots of the estimated variances are the “standard errors” of b1 and b2. These quantities
are used in hypothesis testing and confidence intervals. They are denoted as se

(
b1
)

and se
(
b2
)

se
(
b1
)
=
√

var
⋀(

b1|x
)

(2.23)

se
(
b2
)
=
√

var
⋀(

b2|x
)

(2.24)

E X A M P L E 2.5 Calculations for the Food Expenditure Data

Let us make some calculations using the food expenditure
data. The least squares estimates of the parameters in the
food expenditure model are shown in Figure 2.9. First, we
will compute the least squares residuals from (2.6) and use
them to calculate the estimate of the error variance in (2.19).
In Table 2.3 are the least squares residuals for the first five
households in Table 2.1.

T A B L E 2.3 Least Squares Residuals

x y ŷ ê = y − ŷ
3.69 115.22 121.09 −5.87
4.39 135.98 128.24 7.74
4.75 119.34 131.91 −12.57
6.03 114.96 144.98 −30.02

12.47 187.05 210.73 −23.68

Recall that we have estimated that for the food expenditure
data the fitted least squares regression line is ŷ = 83.42 +
10.21x. For each observation, we compute the least squares
residual êi = yi − ŷi. Using the residuals for all N = 40 obser-
vations, we estimate the error variance to be

σ̂2 =
∑

ê2
i

N − 2 = 304505.2
38 = 8013.29

The numerator, 304505.2, is the sum of squared least squares
residuals, reported as “Sum squared resid” in Figure 2.9. The
denominator is the number of sample observations, N = 40,
minus the number of estimated regression parameters, 2;
the quantity N − 2 = 38 is often called the degrees of
freedom for reasons that will be explained in Chapter 3. In
Figure 2.9, the value σ̂2 is not reported. Instead, EViews
software reports σ̂ =

√
σ̂2 =

√
8013.29 = 89.517, labeled

“S.E. of regression,” which stands for “standard error of the
regression.”

It is typical for software not to report the estimated
variances and covariance unless requested. However, all

software packages automatically report the standard errors.
For example, in the EViews output shown in Figure 2.9
the column labeled “Std. Error” contains se

(
b1
)
= 43.410

and se
(
b2
)
= 2.093. The entry called “S.D. depen-

dent var” is the sample standard deviation of y, that is,[∑(
yi − y

)2∕(N − 1)
]1∕2

= 112.6752.
The full set of estimated variances and covariances for

a regression is usually obtained by a simple computer com-
mand, or option, depending on the software being used. They
are arrayed in a rectangular array, or matrix, with variances
on the diagonal and covariances in the “off-diagonal”
positions.

[
var
⋀(

b1|x
)

cov
⋀(

b1, b2|x
)

cov
⋀(

b1, b2|x
)

var
⋀(

b2|x
)

]

For the food expenditure data, the estimated covariance
matrix of the least squares estimators is

C INCOME

C 1884.442 −85.90316
INCOME −85.90316 4.381752

where C stands for the “constant term,” which is the esti-
mated intercept parameter in the regression, or b1; similarly,
the software reports the variable name INCOME for the col-
umn relating to the estimated slope b2. Thus

var
⋀(

b1|x
)
= 1884.442, var

⋀(
b2|x

)
= 4.381752,

cov
⋀(

b1, b2|x
)
= −85.90316

The standard errors are

se
(
b1
)
=
√

var
⋀(

b1|x
)
=
√

1884.442 = 43.410

se
(
b2
)
=
√

var
⋀(

b2|x
)
=
√

4.381752 = 2.093

These values will be used extensively in Chapter 3.
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β2 b2

f (b2∣x)

var(b2∣x)

FIGURE 2.12 The conditional probability density
function of the least squares estimator b2.

2.7.2 Interpreting the Standard Errors
The standard errors of b1 and b2 are measures of the sampling variability of the least squares
estimates b1 and b2 in repeated samples. As illustrated in Table 2.2, when we collect different
samples of data, the parameter estimates change from sample to sample. The estimators b1 and
b2 are general formulas that are used whatever the sample data turn out to be. That is, the estima-
tors are random variables. As such, they have probability distributions, means, and variances. In
particular, if assumption SR6 holds, and the random error terms ei are normally distributed, then
b2|x ∼ N

(
β2, var

(
b2|x

)
= σ2/∑(

xi − x
)2). This pdf f

(
b2|!

)
is shown in Figure 2.12.

The estimator variance, var
(
b2|!

)
, or, its square root σb2

=
√

var
(
b2|x

)
, which we might

call the true standard deviation of b2, measures the sampling variation of the estimates b2 and
determines the width of the pdf in Figure 2.12. The bigger σb2

is the more variation in the least
squares estimates b2 we see from sample to sample. If σb2

is large, then the estimates might
change a great deal from sample to sample. The parameter σb2

would be a valuable number to
know, because if it were large relative to the parameter β2 we would know that the least squares
estimator is not precise, and the estimate that we obtain may be far from the true value β2 that
we are trying to estimate. On the other hand, if σb2

is small relative to the parameter β2, we know
that the least squares estimate will fall near β2 with high probability. Recall that for the normal
distribution, 99.9% of values fall within the range of three standard deviations from the mean, so
that 99.9% of the least squares estimates will fall in the range β2 − 3σb2

to β2 + 3σb2
.

To put this in another context, in Table 2.2 we report estimates from 10 samples of data. We
noted in Section 2.4.3 that the average values of those estimates are b1 = 96.11 and b2 = 8.70.
The question we address with the standard error is “How much variation about their means do the
estimates exhibit from sample to sample?” For those 10 samples, the sample standard deviations
are std. dev.

(
b1
)
= 23.61 and std. dev.

(
b2
)
= 1.58. What we would really like is the values of

the standard deviations for a very large number of samples. Then we would know how much
variation the least squares estimates exhibit from sample to sample. Unfortunately, we do not
have a large number of samples, and because we do not know the true value of the variance of
the error term σ2 we cannot know the true value of σb2

.
Then what do we do? We estimate σ2, and then estimate σb2

using

se
(
b2
)
=
√

var
⋀(

b2|x
)
=

√√√√ σ̂2

Σ
(
xi − x

)2

The standard error of b2 is thus an estimate of what the standard deviation of many estimates b2
would be in a very large number of samples and is an indicator of the width of the pdf of b2 shown
in Figure 2.12. Using our one sample of data, food, the standard error of b2 is 2.093, as shown in
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the computer output in Figure 2.9. This value is reasonably close to std. dev.
(
b2
)
= 1.58 from the

10 samples in Table 2.2. To put this to a further test, in Appendix 2H, we perform a simulation
experiment, called a Monte Carlo experiment, in which we create many artificial samples to
demonstrate the properties of the least squares estimator and how well se

(
b2
)

reflects the true
sampling variation in the estimates.

2.8 Estimating Nonlinear Relationships
The world is not linear. Economic variables are not always related by straight-line relationships; in
fact, many economic relationships are represented by curved lines and are said to display curvilin-
ear forms. Fortunately, the simple linear regression model y = β1 + β2x + e is much more flexible
than it looks at first glance, because the variables y and x can be transformations, involving loga-
rithms, squares, cubes, or reciprocals, of the basic economic variables, or they can be indicator
variables that take only the values zero and one. Including these possibilities means the simple
linear regression model can be used to account for nonlinear relationships between variables.4

Nonlinear relationships can sometimes be anticipated. Consider a model from real estate
economics in which the price (PRICE) of a house is related to the house size measured in square
feet (SQFT). As a starting point, we might consider the linear relationship

PRICE = β1 + β2SQFT + e (2.25)
In this model, β2 measures the increase in expected price given an additional square foot of living
area. In the linear specification, the expected price per additional square foot is constant. However,
it may be reasonable to assume that larger and more expensive homes have a higher value for an
additional square foot of living area than smaller, less expensive homes. How can we build this
idea into our model? We will illustrate the use of two approaches: first, a quadratic equation in
which the explanatory variable is SQFT2; and second, a log-linear equation in which the depen-
dent variable is ln(PRICE). In each case, we will find that the slope of the relationship between
PRICE and SQFT is not constant, but changes from point to point.

2.8.1 Quadratic Functions
The quadratic function y = a + bx2 is a parabola.5 The y-intercept is a. The shape of the curve
is determined by b; if b > 0, then the curve is U-shaped; and if b < 0, then the curve has an
inverted-U shape. The slope of the function is given by the derivative6 dy/dx = 2bx, which changes
as x changes. The elasticity or the percentage change in y given a 1% change in x is ε = slope ×
x∕y = 2bx2∕y. If a and b are greater than zero, the curve resembles Figure 2.13.

2.8.2 Using a Quadratic Model
A quadratic model for house prices includes the squared value of SQFT , giving

PRICE = α1 + α2SQFT2 + e (2.26)
This is a simple regression model, y = α1 + α2x + e, with y = PRICE and x = SQFT 2. Here, we
switch from using β to denote the parameters to using α, because the parameters of (2.26) are
not comparable to the parameters of (2.25). In (2.25) β2 is a slope, but α2 is not a slope. Because

............................................................................................................................................
4The term linear in “linear regression” means that the parameters are not transformed in any way. In a linear regression
model, the parameters must not be raised to powers or transformed, so expressions like β1β2 or ββ1

2 are not permitted.
5This is a special case of the more general quadratic function y = a + bx + cx2.
6See Appendix A.3.1, Derivative Rules 1–5.
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y
0
x

FIGURE 2.13 A quadratic function, y = a + bx2.

SQFT > 0, the house price model will resemble the right side of the curve in Figure 2.13. Using ^
to denote estimated values, the least squares estimates α̂1 and α̂2, of α1 and α2, are calculated using
the estimators in (2.7) and (2.8), just as earlier. The fitted equation is PRICE

⋀

= α̂1 + α̂2SQFT2. It
has slope

d
(

PRICE
⋀)

dSQFT
= 2α̂2SQFT (2.27)

If α̂2 > 0, then larger houses will have larger slope, and a larger estimated price per additional
square foot.

E X A M P L E 2.6 Baton Rouge House Data

The data file br contains data on 1080 houses sold in Baton
Rouge, Louisiana, during mid-2005. Using these data,
the estimated quadratic equation is PRICE

⋀

= 55776.56 +

0.0154SQFT2. The data scatter and fitted quadratic relation-
ship are shown in Figure 2.14.
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FIGURE 2.14 A fitted quadratic relationship.
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The estimated slope is slope
⋀

= 2(0.0154) SQFT (esti-
mated price per additional square foot), which for a 2000-
square-foot house is $61.69, for a 4000-square-foot house is
$123.37, and for a 6000-square-foot house is $185.05. The
elasticity of house price with respect to house size is the
percentage increase in estimated price given a 1% increase
in house size. Like the slope, the elasticity changes at each
point. In our example

ε̂ = slope
⋀

× SQFT
PRICE

=
(
2α̂2SQFT

)
× SQFT

PRICE

To compute an estimate, we must select values for
SQFT and PRICE on the fitted relationship. That is,
we choose a value for SQFT and choose for price the
corresponding fitted value PRICE

⋀

. For houses of 2000,
4000, and 6000 square feet, the estimated elasticities are
1.05 [using PRICE

⋀

= $117,461.77], 1.63 [using PRICE
⋀

=
$302,517.39], and 1.82 [using PRICE

⋀

= $610,943.42],
respectively. For a 2000-square-foot house, we estimate that
a 1% increase in house size will increase price by 1.05%.

2.8.3 A Log-Linear Function
The log-linear equation ln(y) = a + bx has a logarithmic term on the left-hand side of the equation
and an untransformed (linear) variable on the right-hand side. Both its slope and elasticity change
at each point and are the same sign as b. Using the antilogarithm, we see that exp[ln(y)] = y =
exp(a + bx), so that the log-linear function is an exponential function. The function requires y > 0.
The slope7 at any point is dy/dx = exp(a + bx) × b = by, which for b > 0 means that the marginal
effect increases for larger values of y. An economist might say that this function is increasing at
an increasing rate, as shown in Figure 2.15.

The elasticity, the percentage change in y given a 1% increase in x, at a point on this curve is
ε = slope × x∕y = bx.

Using the slope expression, we can solve for a semi-elasticity, which tells us the percentage
change in y given a one-unit increase in x. Divide both sides of the slope dy/dx by y, then multiply
by 100 to obtain

η = 100(dy∕y)
dx

= 100b (2.28)

In this expression, the numerator 100(dy/y) is the percentage change in y; dx represents the change
in x. If dx = 1, then a one-unit change in x leads to a 100b percentage change in y. This interpre-
tation can sometimes be quite handy.

0
y

0
x

FIGURE 2.15 A log-linear function.

............................................................................................................................................
7See Appendix A.3.1, Derivative Rule 7.
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2.8.4 Using a Log-Linear Model
The use of logarithms is very common in economic modeling. The log-linear model uses the
logarithm of a variable as the dependent variable, and an independent, explanatory variable, that
is not transformed, such as8

ln(PRICE) = γ1 + γ2SQFT + e (2.29)
What effects does this have? First, the logarithmic transformation can regularize data that is
skewed with a long tail to the right. In Figure 2.16(a), we show the histogram of PRICE and in
Figure 2.16(b) the histogram of ln(PRICE). The median house price in this sample is $130,000,
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FIGURE 2.16 (a) Histogram of PRICE. (b) Histogram of ln(PRICE).

............................................................................................................................................
8Once again we use different symbols for the parameters of this model, γ1 and γ2, as a reminder that these parameters
are not directly comparable to β’s in (2.25) or α’s in (2.26).
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and 95% of house prices are below $315,000, but there are 24 houses out of the 1080 with
prices above $500,000, and an extreme value of $1,580,000. The extremely skewed distribution
of PRICE becomes more symmetric, if not bell-shaped, after taking the logarithm. Many eco-
nomic variables, including prices, incomes, and wages, have skewed distributions, and the use of
logarithms in models for such variables is common.

Second, using a log-linear model allows us to fit regression curves like that shown in
Figure 2.15.

E X A M P L E 2.7 Baton Rouge House Data, Log-Linear Model

Using the Baton Rouge data, the fitted log-linear model is

ln(PRICE)
⋀

= 10.8386 + 0.0004113 SQFT

To obtain predicted price, take the antilogarithm,9 which is
the exponential function

PRICE
⋀

= exp
[
ln(PRICE)
⋀]

= exp(10.8386
+ 0.0004113 SQFT )

The fitted value of PRICE is shown in Figure 2.17.
The slope of the log-linear model is

d
(

PRICE
⋀)

dSQFT
= γ̂2PRICE
⋀

= 0.0004113 PRICE
⋀

For a house with a predicted PRICE of $100,000, the
estimated increase in PRICE for an additional square foot

of house area is $41.13, and for a house with a predicted
PRICE of $500,000, the estimated increase in PRICE for
an additional square foot of house area is $205.63. The
estimated elasticity is ε̂ = γ̂2 SQFT = 0.0004113 SQFT. For
a house with 2000 square feet, the estimated elasticity is
0.823: a 1% increase in house size is estimated to increase
selling price by 0.823%. For a house with 4000 square feet,
the estimated elasticity is 1.645: a 1% increase in house
size is estimated to increase selling price by 1.645%. Using
the “semi-elasticity” defined in equation (2.28), we can
say that, for a one-square-foot increase in size, we estimate
a price increase of 0.04%. Or, perhaps more usefully, we
estimate that a 100-square-foot increase will increase price
by approximately 4%.
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FIGURE 2.17 The fitted log-linear model.

............................................................................................................................................
9In Chapter 4 we present an improved predictor for this model.
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2.8.5 Choosing a Functional Form
For the Baton Rouge house price data, should we use the quadratic functional form or the
log-linear functional form? This is not an easy question. Economic theory tells us that house
price should be related to the size of the house, and perhaps that larger, more expensive homes
have a higher price per additional square foot of living area. But economic theory does not
tell us what the exact algebraic form of the relationship should be. We should do our best to
choose a functional form that is consistent with economic theory, that fits the data well, and
that is such that the assumptions of the regression model are satisfied. In real-world problems,
it is sometimes difficult to achieve all these goals. Furthermore, we will never truly know the
correct functional relationship, no matter how many years we study econometrics. The truth is
out there, but we will never know it. In applications of econometrics, we must simply do the best
we can to choose a satisfactory functional form. At this point, we mention one dimension of the
problem used for evaluating models with the same dependent variable. By comparing the sum
of squared residuals (SSE) of alternative models, or, equivalently, σ̂2 or σ̂, we can choose the
model that is a better fit to the data. Smaller values of these quantities mean a smaller sum of
squared residuals and a better model fit. This comparison is not valid for comparing models with
dependent variables y and ln(y), or when other aspects of the models are different. We study the
choice among functions like these further in Chapter 4.

2.9 Regression with Indicator Variables
An indicator variable is a binary variable that takes the values zero or one; it is used to repre-
sent a nonquantitative characteristic, such as gender, race, or location. For example, in the data
file utown.dot we have a sample of 1,000 observations on house prices (PRICE, in thousands
of dollars) in two neighborhoods. One neighborhood is near a major university and called Uni-
versity Town. Another similar neighborhood, called Golden Oaks, is a few miles away from the
university. The indicator variable of interest is

UTOWN =
{

1 house is in University Town
0 house is in Golden Oaks

The histograms of the prices in these two neighborhoods, shown in Figure 2.18, are revealing.
The mean of the distribution of house prices in University Town appears to be larger than the
mean of the distribution of house prices from Golden Oaks. The sample mean of the 519 house
prices in University Town is 277.2416 thousand dollars, whereas the sample mean of the 481
Golden Oaks houses is 215.7325 thousand dollars.

If we include UTOWN in a regression model as an explanatory variable, what do we have?
The simple regression model is

PRICE = β1 + β2UTOWN + e

If the regression assumptions SR1–SR5 hold, then the least squares estimators in (2.7) and (2.8)
can be used to estimate the unknown parameters β1 and β2.

When an indicator variable is used in a regression, it is important to write out the regression
function for the different values of the indicator variable.

E(PRICE|UTOWN) = β1 + β2UTOWN =
{
β1 + β2 if UTOWN = 1
β1 if UTOWN = 0

In this case, we find that the “regression function” reduces to a model that implies that the pop-
ulation mean house prices in the two subdivisions are different. The parameter β2 is not a slope
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FIGURE 2.18 Distributions of house prices.

in this model. Here β2 is the difference between the population means for house prices in the
two neighborhoods. The expected price in University Town is β1 + β2, and the expected price in
Golden Oaks is β1. In our model, there are no factors other than location affecting price, and the
indicator variable splits the observations into two populations.

The estimated regression is

PRICE
⋀

= b1 + b2UTOWN = 215.7325 + 61.5091UTOWN

=
{

277.2416 if UTOWN = 1
215.7325 if UTOWN = 0

We see that the estimated price for the houses in University Town is $277,241.60, which is also
the sample mean of the house prices in University Town. The estimated price for houses outside
University Town is $215,732.50, which is the sample mean of house prices in Golden Oaks.

In the regression model approach, we estimate the regression intercept β1, which is the
expected price for houses in Golden Oaks, where UTOWN = 0, and the parameter β2, which
is the difference between the population means for house prices in the two neighborhoods. The
least squares estimators b1 and b2 in this indicator variable regression can be shown to be

b1 = PRICEGolden Oaks

b2 = PRICEUniversity Town − PRICEGolden Oaks

where PRICEGolden Oaks is the sample mean (average) price of houses in Golden Oaks and
PRICEUniversity Town is the sample mean price of houses from University Town.

In the simple regression model, an indicator variable on the right-hand side gives us a way
to estimate the differences between population means. This is a common problem in statistics,
and the direct approach using samples means is discussed in Appendix C.7.2. Indicator variables
are used in regression analysis very frequently in many creative ways. See Chapter 7 for a full
discussion.
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2.10 The Independent Variable10

Earlier in this chapter we specified a number of assumptions for the simple regression model and
then used these assumptions to derive some properties of the least squares estimators of the coef-
ficients in the model. In the household food expenditure example, we assumed a DGP where pairs(
yi, xi

)
are randomly drawn from some population. We then went on to make a strict exogeneity

assumption E
(
ei|!

)
= 0 to accommodate other types of DGPs. Using this and other assumptions,

we derived properties of the least squares estimator conditional on the sample values x. In this
section, we say more about different possible DGPs, explore their implications for the assumptions
of the simple regression model, and investigate how the properties of the least squares estimator
change, if at all, when we no longer condition on x.

Our regression model y = β1 + β2x + e has five components, three of which are unobserv-
able: β1, β2, and e. The two observable components are y the random outcome, or dependent
variable, and x the explanatory, independent variable. Is this explanatory variable random or not
and why does it matter? We address these questions in this section.

How do we obtain values for the observable pair of variables (y, x)? In an experimental DGP,
a scientist under carefully controlled conditions specifies the values of x, performs an experiment,
and observes the outcomes y. For example, an agronomist might vary the number of pounds of
pesticide spread per acre of cropland and observe the resulting yield. In this case, the independent
variable, pounds of pesticide, is in fact an independent factor and not random. It is fixed. It is not
affected by random influences and the treatment can be replicated time and time again. Laboratory
and other controlled experiments can claim that the values of the independent variable are fixed.
In the world of economics and business, there are few examples of laboratory and controlled
experiments.11 One exception is retail sales. Merchants display the prices of goods and services
and observe consumer purchases. The merchant controls the prices, store displays, advertising
and the shopping environment. In this case, we can argue that x, the price of a product in a retail
store, is fixed and not random; it is given. When x is fixed and not random, the idea of repeated
experimental trials makes intuitive sense. The sampling properties of the least squares estimators
are a summary of how the estimators perform under a series of controlled experiments with fixed
values for the independent variables. We have shown that the least squares estimator is the best
linear unbiased estimator, given x, and we have variance equations (2.14) and (2.15) that describe
how much variation the estimates exhibit from sample to sample.

In the next three sections, we treat cases in which x-values are random. Each of these cases
represents a different type of DGP. We start with the strongest assumption about random-x and
then look at weaker cases.

2.10.1 Random and Independent x
Suppose our agronomist takes another strategy, using a random number between 0 and 100 to
determine the amount of pesticide applied to a given acre of land. In this case, x is random, as its
value is unknown until it is randomly selected. Why might a scientist use this approach? Well,
no one could imply that such an experiment was rigged to produce a particular outcome. It is
a “fair” experiment because the scientist keeps “hands off” the controls. What are the sampling
properties of the least squares estimator in this setting? Is the least squares estimator the best,
linear unbiased estimator in this case?

............................................................................................................................................
10This section contains a more advanced discussion of the assumptions of the simple regression model.
11Economists understand the benefits of controlled experiments. The field of experimental economics has grown
tremendously in the past 20 years. Also, there have been some social experiments. One example is Tennessee’s Project
STAR that examined the consequences on school children of having small classes rather than larger ones. This example
is explored further in Chapter 7.5.
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In order to answer these questions, we make explicit that x is statistically independent of the
error term e. The assumptions for the independent random-x model (IRX) are as follows:

Assumptions of the Independent Random-x Linear Regression Model

IRX1: The observable variables y and x are related by yi = β1 + β2xi + ei, i = 1,… ,N,
where β1 and β2 are unknown population parameters and ei is a random error term.
IRX2: The random error has mean zero, E

(
ei
)
= 0.

IRX3: The random error has constant variance, var
(
ei
)
= σ2.

IRX4: The random errors ei and ej for any two observations are uncorrelated, cov
(
ei, ej

)
= 0.

IRX5: The random errors e1, e2,… , eN are statistically independent of x1,… , xN, and xi
takes at least two different values.
IRX6: ei ∼ N

(
0, σ2).

Compare the assumptions IRX2, IRX3, and IRX4 with the initial assumptions about the simple
regression model, SR2, SR3, and SR4. You will note that conditioning on x has disappeared.
The reason is because when x-values and random errors e are statistically independent E

(
ei|xj

)
=

E
(
ei
)
= 0, var

(
ei|xj

)
= var

(
ei
)
= σ2 and cov

(
ei, ej|!

)
= cov

(
ei, ej

)
= 0. Refer back to the Prob-

ability Primer Sections P.6.1 and P.6.2 for a discussion of why conditioning has no effect on the
expected value and variance of statistically independent random variables. Also, it is extremely
important to recognize that “i” and “j” simply represent different data observations that may be
cross-sectional data or time-series data. What we say applies to both types of data.

The least squares estimators b1 and b2 are the best linear unbiased estimators of β1 and β2
if assumptions IRX1–IRX5 hold. These results are derived in Appendix 2G.2. The one appar-
ent change is that an “expected value” appears in the formulas for the estimator variances. For
example,

var
(
b2
)
= σ2E

[
1

∑(
xi − x

)2

]

We must take the expected value of the term involving x. In practice, this actually changes nothing,
because we estimate the variance in the usual way.

var
⋀(

b2
)
= σ̂2

∑(
xi − x

)2

The estimator of the error variance remains σ̂2 = ∑
ê2

i ∕(N − 2) and all the usual interpretations
remain the same. Thus, the computational aspects of least squares regression do not change. What
has changed is our understanding of the DGP. Furthermore, if IRX6 holds then, conditional on x,
the least squares estimators have normal distributions.12

As we will see in Chapter 3, procedures for inference, namely interval estimators and hypoth-
esis tests, will work in this independent random-x model the same way as in a fixed-x model. And,
thanks to the central limit theorem, cited in Section 2.6, it will still be true that in large samples
the least squares estimator has an approximate normal distribution whether x is fixed or random.
This will be explored further in Chapter 5.

............................................................................................................................................
12If we do not condition on x, no longer treating it as fixed and given, the exact distribution of the least squares estimator
is not normal and is in fact unknown. Equation (2.12) shows that b2 is a complicated combination of x’s and random
errors, e. Even if we know the distributions of x and e the product of random variables wi and ei has an unknown
distribution.
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2.10.2 Random and Strictly Exogenous x
Statistical independence between xi and ej, for all values of i and j (which may denote time-series
or cross-sectional observations) is a very strong assumption and most likely only suitable in exper-
imental situations. A weaker assumption is that the explanatory variable x is strictly exogenous.
The phrases “strictly exogenous” and “strict exogeneity” refer to a particular technical, statistical
assumption. You have no doubt heard the term exogenous before in your principles of economics
classes. For example, in a supply and demand model, we know that the equilibrium price and
quantity in a competitive market are jointly determined by the forces of supply and demand.
Price and quantity are endogenous variables that are determined within the equilibrium system.
However, we know that consumer income affects the demand equation. If income increases, the
demand for a normal good increases. Income is not determined within the equilibrium system
that determines equilibrium price and quantity; it is determined outside this market and is said to
be exogenous. The exogenous variable income affects market demand, but market demand does
not affect consumer income. In regression analysis models, the independent, explanatory variable
x is also termed an exogenous variable because its variation affects the outcome variable y, but
there is no reverse causality; changes in y have no effect on x.

Because interrelationships among economic variables and forces can be complex, we
wish to be very precise about exogenous explanatory variables. The independent variable x is
strictly exogenous if E

(
ei|xj

)
= 0 for all values of i and j, or equivalently, E

(
ei|x1, x2,… , xN

)
=

E
(
ei|!

)
= 0. This is exactly assumption SR2. If i = 3, for example, then E

(
e3|x1

)
= 0, and

E
(
e3|x3

)
= 0, and E

(
e3|x7

)
= 0. The conditional expectation of the ith error term ei is zero

given any and all xj. If it will help you remember them, relabel SR1–SR6 as SEX1–SEX6, where
SEX stands for “strictly exogenous-x.” Let the phrase “simple regression is sexy” remind you
that Strictly Exogenous-X is the baseline regression assumption.

What are the properties of the least squares estimator under the assumption of strict exogene-
ity? They are the same as in the case of statistical independence between all xj and ei. The least
squares estimators are the best linear unbiased estimators of the regression parameters. These
results are proved in Appendix 2G.3. This is a nice finding because while still strong, strict exo-
geneity is less strong than assuming x and e are statistically independent. Furthermore, if the
errors are normally distributed, then the least squares estimator b2|x has a normal distribution.

The Implications of Strict Exogeneity Strict exogeneity implies quite a bit. If x is
strictly exogenous, then the least squares estimator works the way we want it to and no fancier or
more difficult estimators are required. Life is simple. If, on the other hand, strict exogeneity does
not hold, then econometric analysis becomes more complicated, which, unfortunately, is often
the case. How can we tell if the technical, statistical assumption called “strict exogeneity” holds?
The only sure way is to perform a controlled experiment in which x is fixed in repeated samples or
chosen randomly as described in Section 2.10.1. For most economic analyses, such experiments
are impossible or too expensive.

Are there perhaps some statistical tests that can be used to check for strict exogeneity? The
answer is yes, but using statistics it is much easier to determine if something is probably false
rather than to argue that it is true. The common practice is to check that the implications of
strict exogeneity are true. If these implications don’t seem to be true, either based on economic
logic or statistical tests, then we will conclude that strict exogeneity does not hold and deal with
the consequences, making life more difficult. The two direct implications of strict exogeneity,
E
(
ei|x1, x2,… , xN

)
= E

(
ei|!

)
= 0, derived in Appendix 2G.1, are as follows:

Implication 1: E
(
ei
)
= 0. The “average” of all factors omitted from the regression model is

zero.
Implication 2: cov

(
xi, ej

)
= 0. There is no correlation between the omitted factors associated

with observation j and the value of the explanatory variable for observation i.
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If x satisfies the strict exogeneity condition, then E
(
ei
)
= 0 and cov

(
xi, ej

)
= 0. If either of these

implications is not true, then x is not strictly exogenous.
Can we check Implication 1: E

(
ei
)
= 0? Is the average of all omitted factors equal to zero?

In practice, this usually reduces to the question “Have I omitted anything important from the
model?” If you have it is likely to be because you didn’t know it was important (weak economic
theory) or because, while you know it is an important factor (such as an individual’s average
lifetime income or an individual’s perseverance in the face of adversity), it cannot be easily or
well measured. In any event, omitted variables damage the least squares estimator only when
Implication 2 is violated. Consequently, Implication 2 draws the most attention.

Can we check Implication 2: cov
(
xi, ej

)
= 0? Yes, we can, and we show some statistical

tests in Chapter 10. However, logical arguments, and thought experiments, should always come
before any statistical tests. In some cases, we can anticipate the failure of strict exogeneity, as the
following examples in models using time-series data illustrate. In these cases, we usually index
the observations using the subscript t, so that xt is the value of the explanatory variable at time t
and es is the value of the random error in time period s. In this context, strict exogeneity would
be expressed as E

(
es|xt

)
= 0 for all s and t. The zero covariance implication of strict exogeneity

is cov
(
xt, es

)
= 0.

Example 1. Suppose that xt represents a policy variable, perhaps public spending on roads
and bridges in month or quarter t. If the area is “shocked” by a hurricane, tornado, or other
natural disaster at time s, then some time later (t > s) we may very well expect public spend-
ing on roads and bridges to increase, not only for one time period but perhaps for many. Then,
cov

(
xt = s+1, es

) ≠ 0, cov
(
xt = s+2, es

) ≠ 0, and so on. Strict exogeneity fails in this case because
the shock to the error term, the natural disaster, is correlated with a subsequent change in the
explanatory variable, public spending, implying E

(
es|xt

) ≠ 0.
Example 2. Suppose the quarterly sales by a firm are related to its advertising expenditures.

We might write SALESt = β1 + β2ADVERTt + et. However, advertising expenditures at time t
may depend on sales revenues in the same quarter during the previous year, at time t − 4. That is,
ADVERTt = f

(
SALESt−4

)
. Because SALESt−4 = β1 + β2ADVERTt−4 + et−4, it follows that there

will be a correlation, and covariance, between ADVERTt and et−4. Therefore, the strict exogeneity
condition fails, and E

(
et−4|ADVERTt

) ≠ 0. Note the similarities between this example and the
first. The effect of a past error es is carried forward to affect a future value of the explanatory
variable, xt, t > s.

Example 3. Let Ut represent the unemployment rate in quarter t, and we suppose that it is
affected by the governmental expenditures, Gt. The regression might be specified as Ut = β1 +
β2Gt + et. However, we might imagine that the unemployment rate in this quarter is affected by
government spending in previous quarters, such as Gt−1. Because Gt−1 is not included in the model
specification, it makes up a portion of the error term, et = f

(
Gt−1

)
. Furthermore, we expect that

there is a strong positive correlation and covariance between government spending this quarter
and in previous quarters, so that cov

(
Gt,Gt−1

)
> 0. This means that we can anticipate a cor-

relation between the error term in time t and previous levels of government spending, so that
cov

(
et,Gt−1

) ≠ 0. Therefore, cov
(
et|Gt

) ≠ 0 and the strict exogeneity assumption fails.
The implications of a failure of the strict exogeniety assumption for least squares esti-

mation, and the introduction of weaker assumptions to accommodate situations like those in
Examples 1–3, are considered in Chapters 5, 9, and 10.

2.10.3 Random Sampling
The food expenditure example we have carried through this chapter is another case in which the
DGP leads to an x that is random. We randomly sampled a population and selected 40 house-
holds. These are cross-sectional data observations. For each household, we recorded their food
expenditure

(
yi
)

and income
(
xi
)
. Because both of these variables’ values are unknown to us

until they are observed, both the outcome variable y and the explanatory variable x are random.
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The same questions are relevant. What are the sampling properties of the least squares estimator
in this case? Is the least squares estimator the best, linear unbiased estimator?

Such survey data is collected by random sampling from a population. Survey methodology
is an important area of statistics. Public opinion surveys, market research surveys, government
surveys, and censuses are all examples of collecting survey data. Several important ones are car-
ried out by the U.S. Bureau of Labor Statistics (BLS).13 The idea is to collect data pairs

(
yi, xi

)
in such a way that the ith pair [the “Smith” household] is statistically independent of the jth pair
[the “Jones” household]. This ensures that xj is statistically independent of ei if i ≠ j. Then, the
strict exogeneity assumption reduces to concern about a possible relationship between xi and ei.
If the conditional expectation E

(
ei|xi

)
= 0, then x is strictly exogenous, and the implications are

E
(
ei
)
= 0 and cov

(
xi, ei

)
= 0. Note also that if we assume that the data pairs are independent,

then we no longer need make the separate assumption that the errors are uncorrelated.
What are the properties of the least squares estimator under these assumptions? They are

the same as in the cases of statistical independence between all xj and ei (Section 2.10.1) and
strict exogeneity in the general sense (Section 2.10.2). The least squares estimators are the best
linear unbiased estimators of the regression parameters and conditional on x they have a normal
distribution if SR6 (or IRX6) holds.

One final idea associated with random sampling is that the data pairs,
(
yi, xi

)
, i = 1,… ,N,

have the same joint pdf , f (y,x). In this case, the data pairs are independent and identically dis-
tributed, iid. In statistics, the phrase random sample implies that the data are iid. This is a
reasonable assumption if all the data pairs are collected from the same population.

When discussing examples of the implications of strict exogeneity, we showed how the strict
exogeneity assumption can be violated when using time-series data if there is correlation between
es and a future or past value xt (t ≠ s). For an example of how strict exogeneity fails with random
sampling of cross-sectional data, we need an example of where ei is correlated with a value xi
corresponding to the same ith observation.

Assumptions of the Simple Linear Regression Model Under Random Sampling

RS1: The observable variables y and x are related by yi = β1 + β2xi + ei, i = 1,… ,N, where
β1 and β2 are unknown population parameters and ei is a random error term.
RS2: The data pairs

(
yi, xi

)
are statistically independent of all other data pairs and have the

same joint distribution f
(
yi, xi

)
. They are independent and identically distributed.

RS3: E
(
ei|xi

)
= 0 for i = 1,… ,N; x is strictly exogenous.

RS4: The random error has constant conditional variance, var
(
ei|xi

)
= σ2.

RS5: xi takes at least two different values.
RS6: ei ∼ N

(
0, σ2).

Example 4. Suppose that xi is a measure of the quantity of inputs used in a production process by
a randomly chosen firm in an equation designed to explain a firm’s production costs. The error
term ei may contain unmeasured features associated with the ability of the firm’s managers. It
is possible that more able managers are able to use fewer inputs in the production process, so
we might expect cov

(
xi, ei

)
< 0. In this case, strict exogeneity fails. The ith firm’s input usage is

correlated with unmeasured characteristics of firm managers contained in the ith error, ei. A firm’s
input usage is not strictly exogenous, and in econometric terms, it is said to be endogenous.
Explanatory variables are endogenous if they are correlated with the error term.

............................................................................................................................................
13http://www.bls.gov/nls/home.htm
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2.11 Exercises

2.11.1 Problems
2.1 Consider the following five observations. You are to do all the parts of this exercise using only a

calculator.

x y x − x
(
x − x

)2 y − y
(
x − x

)(
y − y

)

3 4
2 2
1 3

–1 1
0 0

∑
xi =

∑
yi =

∑(
xi − x

)
= ∑(

xi − x
)2 = ∑(

yi − y
)
= ∑(

xi − x
)(

yi − y
)
=

a. Complete the entries in the table. Put the sums in the last row. What are the sample means x and y?
b. Calculate b1 and b2 using (2.7) and (2.8) and state their interpretation.
c. Compute ∑5

i=1 x2
i ,
∑5

i=1 xiyi. Using these numerical values, show that ∑(
xi − x

)2 = ∑
x2

i − Nx2

and∑(
xi − x

)(
yi − y

)
= ∑

xiyi − Nxy.
d. Use the least squares estimates from part (b) to compute the fitted values of y, and complete the

remainder of the table below. Put the sums in the last row.
Calculate the sample variance of y, s2

y =
∑N

i=1
(
yi − y

)2∕(N − 1), the sample variance of x,
s2

x =
∑N

i=1
(
xi − x

)2∕(N − 1), the sample covariance between x and y, sxy =
∑N

i=1
(
yi − y

)(
xi − x

)
∕

(N − 1), the sample correlation between x and y, rxy = sxy∕
(
sxsy

)
and the coefficient of variation

of x, CVx = 100
(
sx∕ x

)
. What is the median, 50th percentile, of x?

xi yi ŷi êi ê2
i xiêi

3 4
2 2
1 3

–1 1
0 0

∑
xi =

∑
yi =

∑
ŷi =

∑
êi =

∑
ê2

i = ∑
xiêi =

e. On graph paper, plot the data points and sketch the fitted regression line ŷi = b1 + b2xi.
f. On the sketch in part (e), locate the point of the means

(
x, y

)
. Does your fitted line pass through

that point? If not, go back to the drawing board, literally.
g. Show that for these numerical values y = b1 + b2x.
h. Show that for these numerical values ŷ = y, where ŷ = ∑

ŷi∕N.
i. Compute σ̂2.
j. Compute var

⋀(
b2|x

)
and se

(
b2
)
.

2.2 A household has weekly income of $2000. The mean weekly expenditure for households with this
income is E(y|x = $2000) = μy|x=$2000 = $220, and expenditures exhibit variance var(y|x = $2,000) =
σ2

y|x=$2,000 = $121.
a. Assuming that weekly food expenditures are normally distributed, find the probability that a house-

hold with this income spends between $200 and $215 on food in a week. Include a sketch with your
solution.
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b. Find the probability that a household with this income spends more than $250 on food in a week.
Include a sketch with your solution.

c. Find the probability in part (a) if the variance of weekly expenditures is var(y|x = $2,000) =
σ2

y|x=$2,000 = 144.
d. Find the probability in part (b) if the variance of weekly expenditures is var(y|x = $2,000) =

σ2
y|x=$2,000 = 144.

2.3 Graph the following observations of x and y on graph paper.

T A B L E 2.4 Exercise 2.3 Data

x 1 2 3 4 5 6
y 6 4 11 9 13 17

a. Using a ruler, draw a line that fits through the data. Measure the slope and intercept of the line you
have drawn.

b. Use formulas (2.7) and (2.8) to compute, using only a hand calculator, the least squares estimates
of the slope and the intercept. Plot this line on your graph.

c. Obtain the sample means y = ∑
yi∕N and x = ∑

xi∕N. Obtain the predicted value of y for x = x
and plot it on your graph. What do you observe about this predicted value?

d. Using the least squares estimates from (b), compute the least squares residuals êi.
e. Find their sum, ∑ êi, and their sum of squared values, ∑ ê2

i .
f. Calculate ∑

xiêi.
2.4 We have defined the simple linear regression model to be y = β1 + β2x + e. Suppose, however, that we

knew, for a fact, that β1 = 0.
a. What does the linear regression model look like, algebraically, if β1 = 0?
b. What does the linear regression model look like, graphically, if β1 = 0?
c. If β1 = 0, the least squares “sum of squares” function becomes S

(
β2
)
= ∑N

i=1
(
yi − β2xi

)2. Using
the data in Table 2.4 from Exercise 2.3, plot the value of the sum of squares function for enough
values of β2 for you to locate the approximate minimum. What is the significance of the value of
β2 that minimizes S

(
β2
)
? [Hint: Your computations will be simplified if you algebraically expand

S
(
β2
)
= ∑N

i=1
(
yi − β2xi

)2 by squaring the term in parentheses and carrying through the summa-
tion operator.]

d. Using calculus, show that the formula for the least squares estimate of β2 in this model is b2 =∑
xiyi∕

∑
x2

i . Use this result to compute b2 and compare this value with the value you obtained
geometrically.

e. Using the estimate obtained with the formula in (d), plot the fitted (estimated) regression function.
On the graph locate the point

(
x, y

)
. What do you observe?

f. Using the estimate obtained with the formula in (d), obtain the least squares residuals,
êi = yi − b2xi. Find their sum.

g. Calculate ∑
xiêi.

2.5 A small business hires a consultant to predict the value of weekly sales of their product if their weekly
advertising is increased to $2000 per week. The consultant takes a record of how much the firm spent
on advertising per week and the corresponding weekly sales over the past six months. The consultant
writes, “Over the past six months the average weekly expenditure on advertising has been $1500 and
average weekly sales have been $10,000. Based on the results of a simple linear regression, I predict
sales will be $12,000 if $2000 per week is spent on advertising.”
a. What is the estimated simple regression used by the consultant to make this prediction?
b. Sketch a graph of the estimated regression line. Locate the average weekly values on the graph.

2.6 A soda vendor at Louisiana State University football games observes that the warmer the temperature
at game time the greater the number of sodas that are sold. Based on 32 home games covering five
years, the vendor estimates the relationship between soda sales and temperature to be ŷ = −240 + 20x,
where y = the number of sodas she sells and x = temperature in degrees Fahrenheit.
a. Interpret the estimated slope and intercept. Do the estimates make sense? Why or why not?
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b. On a day when the temperature at game time is forecast to be 80∘F, predict how many sodas the
vendor will sell.

c. Below what temperature are the predicted sales zero?
d. Sketch a graph of the estimated regression line.

2.7 We have 2008 data on y = income per capita (in thousands of dollars) and x = percentage of the popu-
lation with a bachelor’s degree or more for the 50 U.S. states plus the District of Columbia, a total of
N = 51 observations. We have results from a simple linear regression of y on x.
a. The estimated error variance is σ̂2 = 14.24134. What is the sum of squared least squares residuals?
b. The estimated variance of b2 is 0.009165. What is the standard error of b2? What is the value of∑(

xi − x
)2?

c. The estimated slope is b2 = 1.02896. Interpret this result.
d. Using x = 27.35686 and y = 39.66886, calculate the estimate of the intercept.
e. Given the results in (b) and (d), what is ∑ x2

i ?
f. For the state of Georgia, the value of y = 34.893 and x = 27.5. Compute the least squares residual,

using the information in parts (c) and (d).
2.8 Professor I.M. Mean likes to use averages. When fitting a regression model yi = β1 + β2xi + ei

using the N = 6 observations in Table 2.4 from Exercise 2.3,
(
yi, xi

)
, Professor Mean calculates

the sample means (averages) of
(
yi, xi

)
for the first three and second three observations in the

data
(

y1 = ∑3
i=1 yi

/
3, x1 = ∑3

i=1 xi
/

3
)

and
(

y2 =
∑6

i=4 yi
/

3, x2 =
∑6

i=4 xi
/

3
)

. Then Dr. Mean’s
estimator of the slope is β̂2,mean =

(
y2 − y1

)/(
x2 − x1

)
and the Dr. Mean intercept estimator is

β̂1,mean = y − β̂2,meanx, where
(
y, x

)
are the sample means using all the data. You may use a spreadsheet

or other software to carry out tedious calculations.
a. Calculate β̂1,mean and β̂2,mean. Plot the data, and the fitted line ŷi,mean = β̂1,mean + β̂2,meanxi.
b. Calculate the residuals êi,mean = yi − ŷi,mean = yi −

(
β̂1,mean + β̂2,meanxi

)
. Find ∑6

i=1 êi,mean, and
∑6

i=1 xiêi,mean.
c. Compare the results in (b) to the corresponding values based on the least squares regression esti-

mates. See Exercise 2.3.
d. Compute ∑6

i=1 ê2
i,mean. Is this value larger or smaller than the sum of squared least squares residuals

in Exercise 2.3(d)?
2.9 Professor I.M. Mean likes to use averages. When fitting a regression model yi = β1 + β2xi + ei

using the N = 6 observations in Table 2.4 from Exercise 2.3,
(
yi, xi

)
, Professor Mean calculates

the sample means (averages) of
(
yi, xi

)
for the first three and second three observations in the

data
(

y1 = ∑3
i=1 yi

/
3, x1 = ∑3

i=1 xi
/

3
)

and
(

y2 =
∑6

i=4 yi
/

3, x2 =
∑6

i=4 xi
/

3
)

. Then Dr. Mean’s
estimator of the slope is β̂2,mean =

(
y2 − y1

)/(
x2 − x1

)
.

a. Assuming assumptions SR1–SR6 hold, show that, conditional on ! =
(
x1,… , x6

)
, Dr. Mean’s esti-

mator is unbiased, E
(
β̂2,mean|x

)
= β2.

b. Assuming assumptions SR1–SR6 hold, show that E
(
β̂2,mean

)
= β2.

c. Assuming assumptions SR1–SR6 hold, find the theoretical expression for var
(
β̂2,mean|x

)
. Is this

variance larger or smaller than the variance of the least squares estimator var
(
b2|!

)
? Explain.

2.10 Consider fitting a regression model yi = β1 + β2xi + ei using the N = 6 observations in Table 2.4 from
Exercise 2.3,

(
yi, xi

)
. Suppose that based on a theoretical argument we know that β2 = 0.

a. What does the regression model look like, algebraically, if β2 = 0?
b. What does the regression model look like, graphically, if β2 = 0?
c. If β2 = 0 the sum of squares function becomes S

(
β1
)
= ∑N

i=1
(
yi − β1

)2. Using the data in Table 2.4,
plot the sum of squares function for enough values of β1 so that you can locate the approximate
minimum. What is this value? [Hint: Your calculations will be easier if you square the term in
parentheses and carry through the summation operator.]

d. Using calculus, show that the formula for the least squares estimate of β1 in this model is β̂1 =(∑N
i=1 yi

)
∕N.

e. Using the data in Table 2.4 and the result in part (d), compute an estimate of β1. How does this
value compare to the value you found in part (c)?
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f. Using the data in Table 2.4, calculate the sum of squared residuals S
(
β̂1

)
= ∑N

i=1

(
yi − β̂1

)2
. Is

this sum of squared residuals larger or smaller than the sum of squared residuals S
(
b1, b2

)
=∑N

i=1
(
yi − b1 − b2xi

)2 using the least squares estimates? [See Exercise 2.3 (d).]
2.11 Let y = expenditure ($) on food away from home per household member per month in the past quarter

and x = monthly household income (in hundreds of dollars) during the past year.
a. Using 2013 data from three-person households (N = 2334), we obtain least squares estimates

ŷ = 13.77 + 0.52x. Interpret the estimated slope and intercept from this relation.
b. Predict the expenditures on food away from home for a household with $2000 a month income.
c. Calculate the elasticity of expenditure on food away from home with respect to income when house-

hold income is $2000 per month. [Hint: Elasticity must be calculated for a point on the fitted
regression.]

d. We estimate the log-linear model to be ln(y)
⋀

= 3.14 + 0.007x. What is the estimated elasticity of
expenditure on food away from home with respect to income, if household income is $2000 per
month?

e. For the log-linear model in part (d), calculate ŷ = exp(3.14 + 0.007x) when x = 20 and when
x = 30. Evaluate the slope of the relation between y and x, dy∕dx, for each of these ŷ values. Based
on these calculations for the log-linear model, is expenditure on food away from home increasing
with respect to income at an increasing or decreasing rate?

f. When estimating the log-linear model in part (d), the number of observations used in the regression
falls to N = 2005. How many households in the sample reported no expenditures on food away from
home in the past quarter?

2.12 Let y = expenditure ($) on food away from home per household member per month in the past quarter
and x = 1 if the household includes a member with an advanced degree, a Master’s, or
Ph.D./Professional degree, and x = 0 otherwise.
a. Using 2013 data from three-person households (N = 2334), we obtain least squares estimates

ŷ = 44.96 + 30.41x. Interpret the coefficient of x and the intercept from this relation.
b. What is the per person sample mean of food expenditures away from home for a household includ-

ing someone with an advanced degree?
c. What is the per person sample mean of food expenditures away from home for a household that

does not include someone with an advanced degree?
2.13 Using 2011 data on 141 U.S. public research universities, we examine the relationship between aca-

demic cost per student, ACA (real total academic cost per student in thousands of dollars) and full-time
enrollment FTESTU (in thousands of students).
a. The least squares fitted relation is ACA

⋀

= 14.656 + 0.266FTESTU. What is the economic interpre-
tation of the estimated parameters? Why isn’t the intercept zero?

b. In 2011 Louisiana State University (LSU) had a full-time student enrollment of 27,950. Using the
fitted related in part (a), compute the predicted value of ACA.

c. The actual value of ACA for LSU that year was 21.403. Calculate the least squares residual for
LSU? Does the model overpredict or underpredict ACA for LSU?

d. The sample mean (average) full-time enrollment in U.S. public research universities in 2011 was
22,845.77. What was the sample mean of academic cost per student?

2.14 Consider the regression model WAGE = β1 + β2EDUC + e, where WAGE is hourly wage rate in U.S.
2013 dollars and EDUC is years of education, or schooling. The regression model is estimated twice
using the least squares estimator, once using individuals from an urban area, and again for individuals
in a rural area.

Urban WAGE
⋀

= −10.76 + 2.46 EDUC, N = 986
(se) (2.27) (0.16)

Rural WAGE
⋀

= −4.88 + 1.80 EDUC, N = 214
(se) (3.29) (0.24)

a. Using the estimated rural regression, compute the elasticity of wages with respect to education at
the “point of the means.” The sample mean of WAGE is $19.74.



❦

❦ ❦

❦

2.11 Exercises 93

b. The sample mean of EDUC in the urban area is 13.68 years. Using the estimated urban regression,
compute the standard error of the elasticity of wages with respect to education at the “point of the
means.” Assume that the mean values are “givens” and not random.

c. What is the predicted wage for an individual with 12 years of education in each area? With 16 years
of education?

2.15 Professor E.Z. Stuff has decided that the least squares estimator is too much trouble. Noting that two
points determine a line, Dr. Stuff chooses two points from a sample of size N and draws a line between
them, calling the slope of this line the EZ estimator of β2 in the simple regression model. Algebraically,
if the two points are

(
x1, y1

)
and

(
x2, y2

)
, the EZ estimation rule is

bEZ =
y2 − y1
x2 − x1

Assuming that all the assumptions of the simple regression model hold:
a. Show that bEZ is a “linear” estimator.
b. Show that bEZ is an unbiased estimator.
c. Find the conditional variance of bEZ.
d. Find the conditional probability distribution of bEZ.
e. Convince Professor Stuff that the EZ estimator is not as good as the least squares estimator. No

proof is required here.

2.11.2 Computer Exercises
2.16 The capital asset pricing model (CAPM) is an important model in the field of finance. It explains

variations in the rate of return on a security as a function of the rate of return on a portfolio consisting
of all publicly traded stocks, which is called the market portfolio. Generally, the rate of return on any
investment is measured relative to its opportunity cost, which is the return on a risk-free asset. The
resulting difference is called the risk premium, since it is the reward or punishment for making a risky
investment. The CAPM says that the risk premium on security j is proportional to the risk premium
on the market portfolio. That is,

rj − r" = βj
(
rm − r"

)

where rj and rf are the returns to security j and the risk-free rate, respectively, rm is the return on
the market portfolio, and βj is the jth security’s “beta” value. A stock’s beta is important to investors
since it reveals the stock’s volatility. It measures the sensitivity of security j’s return to variation in the
whole stock market. As such, values of beta less than one indicate that the stock is “defensive” since its
variation is less than the market’s. A beta greater than one indicates an “aggressive stock.” Investors
usually want an estimate of a stock’s beta before purchasing it. The CAPM model shown above is the
“economic model” in this case. The “econometric model” is obtained by including an intercept in the
model (even though theory says it should be zero) and an error term

rj − r" = αj + βj
(
rm − r"

)
+ ej

a. Explain why the econometric model above is a simple regression model like those discussed in this
chapter.

b. In the data file capm5 are data on the monthly returns of six firms (GE, IBM, Ford, Microsoft,
Disney, and Exxon-Mobil), the rate of return on the market portfolio (MKT), and the rate of return
on the risk-free asset (RISKFREE). The 180 observations cover January 1998 to December 2012.
Estimate the CAPM model for each firm, and comment on their estimated beta values. Which firm
appears most aggressive? Which firm appears most defensive?

c. Finance theory says that the intercept parameter αj should be zero. Does this seem correct given
your estimates? For the Microsoft stock, plot the fitted regression line along with the data scatter.

d. Estimate the model for each firm under the assumption that αj = 0. Do the estimates of the beta
values change much?

2.17 The data file collegetown contains observations on 500 single-family houses sold in Baton Rouge,
Louisiana, during 2009–2013. The data include sale price (in thousands of dollars), PRICE, and total
interior area of the house in hundreds of square feet, SQFT .
a. Plot house price against house size in a scatter diagram.
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b. Estimate the linear regression model PRICE = β1 + β2SQFT + e. Interpret the estimates. Draw a
sketch of the fitted line.

c. Estimate the quadratic regression model PRICE = α1 + α2SQFT 2 + e. Compute the marginal
effect of an additional 100 square feet of living area in a home with 2000 square feet of living
space.

d. Graph the fitted curve for the model in part (c). On the graph, sketch the line that is tangent to the
curve for a 2000-square-foot house.

e. For the model in part (c), compute the elasticity of PRICE with respect to SQFT for a home with
2000 square feet of living space.

f. For the regressions in (b) and (c), compute the least squares residuals and plot them against SQFT .
Do any of our assumptions appear violated?

g. One basis for choosing between these two specifications is how well the data are fit by the model.
Compare the sum of squared residuals (SSE) from the models in (b) and (c). Which model has a
lower SSE? How does having a lower SSE indicate a “better-fitting” model?

2.18 The data file collegetown contains observations on 500 single-family houses sold in Baton Rouge,
Louisiana, during 2009–2013. The data include sale price (in thousands of dollars), PRICE, and total
interior area of the house in hundreds of square feet, SQFT .
a. Create histograms for PRICE and ln(PRICE). Are the distributions skewed or symmetrical?
b. Estimate the log-linear regression model ln(PRICE) = γ1 + γ2SQFT + e. Interpret the OLS esti-

mates, γ̂1 and γ̂2. Graph the fitted PRICE, PRICE
⋀

= exp
(
γ̂1 + γ̂2SQFT

)
, against SQFT , and sketch

the tangent line to the curve for a house with 2000 square feet of living area. What is the slope of
the tangent line?

c. Compute the least squares residuals from the model in (b) and plot them against SQFT . Do any of
our assumptions appear violated?

d. Calculate summary statistics for PRICE and SQFT for homes close to Louisiana State University
(CLOSE = 1) and for homes not close to the university (CLOSE = 0). What differences and/or
similarities do you observe?

e. Estimate the log-linear regression model ln(PRICE) = γ1 + γ2SQFT + e for homes close to
Louisiana State University (CLOSE = 1) and for homes not close to the university (CLOSE = 0).
Interpret the estimated coefficient of SQFT in each sample’s regression.

f. Are the regression results in part (b) valid if the differences you observe in part (e) are substantial?
Think in particular about whether SR1 is satisfied.

2.19 The data file stockton5_small contains observations on 1200 houses sold in Stockton, California, during
1996–1998. [Note: the data file stockton5 includes 2610 observations.] Scale the variable SPRICE to
units of $1000, by dividing it by 1000.
a. Plot house selling price SPRICE against house living area for all houses in the sample.
b. Estimate the regression model SPRICE = β1 + β2LIVAREA + e for all the houses in the sample.

Interpret the estimates. Draw a sketch of the fitted line.
c. Estimate the quadratic model SPRICE = α1 + α2LIVAREA2 + e for all the houses in the sample.

What is the marginal effect of an additional 100 square feet of living area for a home with 1500
square feet of living area.

d. In the same graph, plot the fitted lines from the linear and quadratic models. Which seems to fit the
data better? Compare the sum of squared residuals (SSE) for the two models. Which is smaller?

e. If the quadratic model is in fact “true,” what can we say about the results and interpretations we
obtain for the linear relationship in part (b)?

2.20 The data file stockton5_small contains observations on 1200 houses sold in Stockton, California, during
1996–1998. [Note: The data file stockton5 includes 2610 observations.]. Scale the variable SPRICE to
units of $1000, by dividing it by 1000.
a. Estimate the regression model SPRICE = β1 + β2LIVAREA + e using only houses that are on large

lots. Repeat the estimation for houses that are not on large lots. Finally, estimate the regression
using data on both large and small lots. Interpret the estimates. How do the estimates compare?

b. Estimate the regression model SPRICE = α1 + α2LIVAREA2 + e using only houses that are on large
lots. Repeat the estimation for houses that are not on large lots. Interpret the estimates. How do the
estimates compare?

c. Estimate a linear regression SPRICE = η1 + η2LGELOT + e with dependent variable SPRICE and
independent variable the indicator LGELOT , which identifies houses on larger lots. Interpret these
results.
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d. If the estimates in part (a) and/or part (b) differ substantially for the large lot and small lot sub-
samples, will assumption SR1 be satisfied in the model that pools all the observations together? If
not, why not? Do the results in (c) offer any information about the potential validity of SR1?

2.21 The data file stockton5_small contains observations on 1200 houses sold in Stockton, California, during
1996–1998. [Note: the data file stockton5 includes 2610 observations.] Scale the variable SPRICE to
units of $1000, by dividing it by 1000.
a. Estimate the linear model SPRICE = δ1 + δ2AGE + e. Interpret the estimated coefficients. Predict

the selling price of a house that is 30 years old.
b. Using the results in part (a), plot house selling price against AGE and show the fitted regression

line. Based on the plot, does the model fit the data well? Explain.
c. Estimate the log-linear model ln(SPRICE) = θ1 + θ2AGE + e. Interpret the estimated slope coeffi-

cient.
d. Using the results in part (c), compute SPRICE

⋀

= exp
(
θ̂1 + θ̂2AGE

)
, where θ̂1 and θ̂2 are the OLS

estimates. Plot SPRICE
⋀

against AGE (connecting the dots) and SPRICE vs. AGE in the same graph.
e. Predict the selling price of a house that is 30 years old using SPRICE

⋀

= exp
(
θ̂1 + θ̂2AGE

)
.

f. Based on the plots and visual fit of the estimated regression lines, which of the two models in (a)
or (c) would you prefer? Explain. For each model calculate ∑1200

i=1

(
SPRICE − SPRICE
⋀)2

. Is this at
all useful in making a comparison between the models? If so, how?

2.22 A longitudinal experiment was conducted in Tennessee beginning in 1985 and ending in 1989. A single
cohort of students was followed from kindergarten through third grade. In the experiment children
were randomly assigned within schools into three types of classes: small classes with 13–17 students,
regular-sized classes with 22–25 students, and regular-sized classes with a full-time teacher aide to
assist the teacher. Student scores on achievement tests were recorded as well as some information
about the students, teachers, and schools. Data for the kindergarten classes are contained in the data
file star5_small. [Note: The data file star5 contains more observations and variables.]
a. Using children who are in either a regular-sized class or a small class, estimate the regression

model explaining students’ combined aptitude scores as a function of class size, TOTALSCOREi =
β1 + β2SMALLi + ei. Interpret the estimates. Based on this regression result, what do you conclude
about the effect of class size on learning?

b. Repeat part (a) using dependent variables READSCORE and MATHSCORE. Do you observe any
differences?

c. Using children who are in either a regular-sized class or a regular-sized class with a teacher aide,
estimate the regression model explaining students’ combined aptitude scores as a function of the
presence of a teacher aide, TOTALSCORE = γ1 + γ2AIDE + e. Interpret the estimates. Based on
this regression result, what do you conclude about the effect on learning of adding a teacher aide
to the classroom?

d. Repeat part (c) using dependent variables READSCORE and MATHSCORE. Do you observe any
differences?

2.23 Professor Ray C. Fair has for a number of years built and updated models that explain and predict the
U.S. presidential elections. Visit his website at https://fairmodel.econ.yale.edu/vote2016/index2.htm.
See in particular his paper entitled “Presidential and Congressional Vote-Share Equations: November
2010 Update.” The basic premise of the model is that the Democratic Party’s share of the two-party
[Democratic and Republican] popular vote is affected by a number of factors relating to the econ-
omy, and variables relating to the politics, such as how long the incumbent party has been in power,
and whether the President is running for reelection. Fair’s data, 26 observations for the election years
from 1916 to 2016, are in the data file fair5. The dependent variable is VOTE = percentage share of
the popular vote won by the Democratic Party. Consider the effect of economic growth on VOTE. If
Democrats are the incumbent party (INCUMB = 1) then economic growth, the growth rate in real per
capita GDP in the first three quarters of the election year (annual rate), should enhance their chances
of winning. On the other hand, if the Republicans are the incumbent party (INCUMB = −1), growth
will diminish the Democrats’ chances of winning. Consequently, we define the explanatory variable
GROWTH = INCUMB × growth rate.
a. Using the data for 1916–2012, plot a scatter diagram of VOTE against GROWTH. Does there appear

to be a positive association?
b. Estimate the regression VOTE = β1 + β2GROWTH + e by least squares using the data from 1916

to 2012. Report and discuss the estimation result. Plot the fitted line on the scatter diagram from (a).
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c. Using the model estimated in (b), predict the 2016 value of VOTE based on the actual 2016 value
for GROWTH. How does the predicted vote for 2016 compare to the actual result?

d. Economy wide inflation may spell doom for the incumbent party in an election. The variable
INFLAT = INCUMB × inflation rate, where the inflation rate is the growth in prices over the first
15 quarters of an administration. Using the data from 1916 to 2012, plot VOTE against INFLAT .

e. Using the data from 1916 to 2012, report and discuss the estimation results for the model VOTE =
α1 + α2INFLAT + e.

f. Using the model estimated in (e), predict the 2016 value of VOTE based on the actual 2012 value
for INFLAT . How does the predicted vote for 2016 compare to the actual result?

2.24 Using data on the “Ashcan School”14 we have an opportunity to study the market for art. What factors
determine the value of a work of art? Use the data in ashcan_small. [Note: The file ashcan contains
more variables.] For this exercise, use data only on works that sold (SOLD = 1).
a. Using data on works that sold, construct a histogram for RHAMMER and compute summary statis-

tics. What are the mean and median prices for the artwork sold? What are the 25th and 75th
percentiles?

b. Using data on works that sold, construct a histogram for ln(RHAMMER). Describe the shape of
this histogram as compared to that in part (a).

c. Plot ln(RHAMMER) against the age of the painting at the time of its sale, YEARS_OLD =
DATE_AUCTN − CREATION. Include in the plot the least squares fitted line. What patterns do
you observe?

d. Use data on works that sold, estimate the regression ln(RHAMMER) = β1 + β2YEAR_SOLD + e.
Interpret the estimated coefficient of YEARS_OLD.

e. DREC is an indicator variable equaling 1 if the work was sold during a recession. Using data on
works that sold, estimate the regression ln(RHAMMER) = α1 + α2DREC + e. Interpret the esti-
mated coefficient of DREC.

2.25 Consumer expenditure data from 2013 are contained in the file cex5_small. [Note: cex5 is a larger
version with more observations and variables.] Data are on three-person households consisting of a
husband and wife, plus one other member, with incomes between $1000 per month to $20,000 per
month. FOODAWAY is past quarter’s food away from home expenditure per month per person, in
dollars, and INCOME is household monthly income during past year, in $100 units.
a. Construct a histogram of FOODAWAY and its summary statistics. What are the mean and median

values? What are the 25th and 75th percentiles?
b. What are the mean and median values of FOODAWAY for households including a member with an

advanced degree? With a college degree member? With no advanced or college degree member?
c. Construct a histogram of ln(FOODAWAY) and its summary statistics. Explain why FOODAWAY

and ln(FOODAWAY) have different numbers of observations.
d. Estimate the linear regression ln(FOODAWAY) = β1 + β2INCOME + e. Interpret the estimated

slope.
e. Plot ln(FOODAWAY) against INCOME, and include the fitted line from part (d).
f. Calculate the least squares residuals from the estimation in part (d). Plot them vs. INCOME. Do

you find any unusual patterns, or do they seem completely random?
2.26 Consumer expenditure data from 2013 are contained in the file cex5_small. [Note: cex5 is a larger

version with more observations and variables.] Data are on three-person households consisting of a
husband and wife, plus one other member, with incomes between $1000 per month to $20,000 per
month. FOODAWAY is past quarter’s food away from home expenditure per month per person, in
dollars, and INCOME is household monthly income during past year, in $100 units.
a. Estimate the linear regression FOODAWAY = β1 + β2INCOME + e. Interpret the estimated slope.
b. Calculate the least squares residuals from the estimation in part (b). Plot them vs. INCOME. Do

you find any unusual patterns, or do they seem completely random?
c. Estimate the linear regression FOODAWAY = α1 + α2ADVANCED + e. Interpret the estimated

coefficient of ADVANCED.
d. What are the sample means of FOODAWAY for households including a member with an advanced

degree? With no advanced degree member? How do these values relate to the regression in part (c)?
............................................................................................................................................................
14Robert B. Ekelund, Jr., John D. Jackson, and Robert D. Tollison “Are Art Auction Estimates Biased” published in
Southern Economic Journal, 80(2), 2013, 454–465; also http://en.wikipedia.org/wiki/Ashcan_School
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2.27 The owners of a motel discovered that a defective product was used in its construction. It took seven
months to correct the defects during which 14 rooms in the 100-unit motel were taken out of service
for one month at a time. For this exercise use the data file motel.
a. Graph y = MOTEL_PCT, percentage motel occupancy, against x = 100RELPRICE, which is the

percentage of the competitor’s price per room charged by the motel in question. Describe the
relationship between the variables based on the graph. Is there a positive association, an inverse
association, or no association?

b. Consider the linear regression MOTEL_PCTt = β1 + β2100RELPRICEt + et. What sign do you
predict for the slope coefficient? Why? Does the sign of the estimated slope agree with your expec-
tation?

c. Calculate the least squares residuals from the regression in (b). Plot the residuals against TIME =
1,… , 25 (month 1 = March 2003,… ,month 25 = March 2005). On the graph indicate residuals
when TIME = 17, 18,… , 23. These are the months of repair. Does the model overpredict or under-
predict the motel’s occupancy rates for those months?

d. Estimate the linear regression MOTEL_PCTt = α1 + α2REPAIRt + et, where REPAIRt = 1 for
months when repairs were occurring and REPAIRt = 0 otherwise. What was the motel’s mean
occupancy rate when there were no repairs being made? What was the motel’s mean occupancy
rate when repairs were being made?

2.28 How much does education affect wage rates? The data file cps5_small contains 1200 observations on
hourly wage rates, education, and other variables from the 2013 Current Population Survey (CPS).
[Note: cps5 is a larger version.]
a. Obtain the summary statistics and histograms for the variables WAGE and EDUC. Discuss the data

characteristics.
b. Estimate the linear regression WAGE = β1 + β2EDUC + e and discuss the results.
c. Calculate the least squares residuals and plot them against EDUC. Are any patterns evident? If

assumptions SR1–SR5 hold, should any patterns be evident in the least squares residuals?
d. Estimate separate regressions for males, females, blacks, and whites. Compare the results.
e. Estimate the quadratic regression WAGE = α1 + α2EDUC 2 + e and discuss the results. Estimate

the marginal effect of another year of education on wage for a person with 12 years of education
and for a person with 16 years of education. Compare these values to the estimated marginal effect
of education from the linear regression in part (b).

f. Plot the fitted linear model from part (b) and the fitted values from the quadratic model from
part (e) in the same graph with the data on WAGE and EDUC. Which model appears to fit the data
better?

2.29 How much does education affect wage rates? The data file cps5_small contains 1200 observations on
hourly wage rates, education, and other variables from the 2013 Current Population Survey (CPS).
[Note: cps5 is a larger version with more observations and variables.]
a. Create the variable LWAGE = ln(WAGE). Construct a histogram and calculate detailed summary

statistics. Does the histogram appear bell shaped and normally distributed? A normal distribution
is symmetrical with no skewness, skewness = 0. The tails of the normal distribution have a cer-
tain “thickness.” A measure of the tail thickness is kurtosis, discussed in Appendix C.4.2. For a
normal distribution, the kurtosis = 3, discussed in Appendix C.7.4. How close are the measures of
skewness and kurtosis for LWAGE to 0 and 3, respectively?

b. Obtain the OLS estimates from the log-linear regression model ln(WAGE) = β1 + β2EDUC + e
and interpret the estimated value of β2.

c. Obtain the predicted wage, WAGE
⋀

= exp
(
b1 + b2EDUC

)
, for a person with 12 years of education

and for a person with 16 years of education.
d. What is the marginal effect of additional education for a person with 12 years of education and

for a person with 16 years of education? [Hint: This is the slope of the fitted model at those two
points.]

e. Plot the fitted values WAGE
⋀

= exp
(
b1 + b2EDUC

)
versus EDUC in a graph. Also include in the

graph the fitted linear relationship. Based on the graph, which model seems to fit the data better,
the linear or log-linear model?

f. Using the fitted values from the log-linear model, compute ∑(
WAGE −WAGE

⋀)2
. Compare this

value to the sum of squared residuals from the estimated linear relationship. Using this as a basis
of comparison, which model fits the data better?
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2.30 In this exercise, we consider the amounts that are borrowed for single family home purchases in Las
Vegas, Nevada, during 2010. Use the data file vegas5_small for this exercise.
a. Compute summary statistics for AMOUNT , FICO, RATE, and TERM30. What is the sample aver-

age amount borrowed? What FICO score corresponds to the 90th percentile? What is the median
interest rate paid, and what percent of the mortgages were for 30-year terms?

b. Construct histograms for AMOUNT , ln(AMOUNT), FICO, and RATE. Are the empirical distribu-
tions symmetrical? Do they have one peak (unimodal) or two peaks (bimodal)?

c. Estimate regressions for dependent variables AMOUNT and ln(AMOUNT) against the independent
variable FICO. For each regression, interpret the coefficient of FICO.

d. Estimate regressions for dependent variables AMOUNT and ln(AMOUNT) against the independent
variable RATE. For each regression, interpret the coefficient of RATE.

e. Estimate a regression with dependent variable AMOUNT and explanatory variable TERM30.
Obtain the summary statistics for AMOUNT for transactions with 30-year loans and for those
transactions when the term was not 30 years. Explain the regression results in terms of the
summary statistics you have calculated.

Appendix 2A Derivation of the Least Squares
Estimates
Given the sample observations on y and x, we want to find values for the unknown parameters β1
and β2 that minimize the “sum of squares” function

S
(
β1, β2

)
= ∑N

i=1
(
yi − β1 − β2xi

)2 (2A.1)
Since the points

(
yi, xi

)
have been observed, the sum of squares function S depends only on the

unknown parameters β1 and β2. This function, which is a quadratic in terms of the unknown
parameters β1 and β2, is a “bowl-shaped surface” like the one depicted in Figure 2A.1.

Our task is to find, out of all the possible values β1 and β2, the point
(
b1, b2

)
at which the sum

of squares function S is a minimum. This minimization problem is a common one in calculus, and
the minimizing point is at the “bottom of the bowl.”

Those of you familiar with calculus and “partial differentiation” can verify that the partial
derivatives of S with respect to β1 and β2 are

∂S
∂β1

= 2Nβ1 − 2∑ yi + 2
(∑

xi
)
β2

∂S
∂β2

= 2
(∑

x2
i
)
β2 − 2∑ xiyi + 2

(∑
xi
)
β1 (2A.2)

FIGURE 2A.1 The sum of squares function and the
minimizing values b1 and b2.
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These derivatives are equations of the slope of the bowl-like surface in the directions of the axes.
Intuitively, the “bottom of the bowl” occurs where the slope of the bowl, in the direction of each
axis, ∂S∕∂β1 and ∂S∕∂β2, is zero.

Algebraically, to obtain the point
(
b1, b2

)
, we set (2A.2) to zero and replace β1 and β2 by b1

and b2, respectively, to obtain

2
[∑

yi − Nb1 −
(∑

xi
)
b2
]
= 0

2
[∑

xiyi −
(∑

xi
)
b1 −

(∑
x2

i
)
b2
]
= 0

Simplifying these gives equations usually known as the normal equations:
Nb1 +

(∑
xi
)
b2 = ∑

yi (2A.3)
(∑

xi
)
b1 +

(∑
x2

i
)
b2 = ∑

xiyi (2A.4)

These two equations have two unknowns b1 and b2. We can find the least squares estimates by
solving these two linear equations for b1 and b2. To solve for b2, multiply (2A.3) by ∑

xi, mul-
tiply (2A.4) by N, then subtract the first equation from the second, and then isolate b2 on the
left-hand side.

b2 =
N
∑

xiyi −
∑

xi
∑

yi

N
∑

x2
i −

(∑
xi
)2 (2A.5)

This formula for b2 is in terms of data sums, cross-products, and squares. The deviation from the
mean form of the estimator is derived in Appendix 2B.

To solve for b1, given b2, divide both sides of (2A.3) by N and rearrange.

Appendix 2B Deviation from the Mean Form of b2
The first step in the conversion of the formula for b2 into (2.7) is to use some tricks involving
summation signs. The first useful fact is that

∑(
xi − x

)2 = ∑
x2

i − 2x
∑

xi + Nx2 = ∑
x2

i − 2x
(

N 1
N
∑

xi

)
+ Nx2

= ∑
x2

i − 2Nx2 + Nx2 = ∑
x2

i − Nx2
(2B.1)

Should you ever have to calculate ∑(
xi − x

)2, using the shortcut formula ∑(
xi − x

)2 =∑
x2

i − Nx2 is usually much easier. Then
∑(

xi − x
)2 = ∑

x2
i − Nx2 = ∑

x2
i − x

∑
xi =

∑
x2

i −
(∑

xi
)2

N (2B.2)

To obtain this result, we have used the fact that x = ∑
xi∕N, so ∑

xi = Nx.
The second useful fact is similar to the first, and it is

∑(
xi − x

)(
yi − y

)
= ∑

xiyi − Nxy = ∑
xiyi −

∑
xi
∑

yi
N (2B.3)

This result is proven in a similar manner.
If the numerator and denominator of b2 in (2A.5) are divided by N, then using (2B.1)–(2B.3),

we can rewrite b2 in deviation from the mean form as

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2

This formula for b2 is one that you should remember, as we will use it time and time again in the
next few chapters.
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Appendix 2C b2 Is a Linear Estimator
In order to derive (2.10), we make a further simplification using another property of sums. The
sum of any variable about its average is zero; that is,

∑(
xi − x

)
= 0

Then, the formula for b2 becomes

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2 =
∑(

xi − x
)

yi − y
∑(

xi − x
)

∑(
xi − x

)2

=
∑(

xi − x
)

yi
∑(

xi − x
)2 = ∑

[ (
xi − x

)
∑(

xi − x
)2

]
yi =

∑
wiyi

where wi is given in (2.11).

Appendix 2D Derivation of Theoretical
Expression for b2
To obtain (2.12) replace yi in (2.10) by yi = β1 + β2xi + ei and simplify:

b2 =
∑

wiyi =
∑

wi
(
β1 + β2xi + ei

)

= β1
∑

wi + β2
∑

wixi +
∑

wiei

= β2 +
∑

wiei

We used two more summation tricks to simplify this. First, ∑wi = 0; this eliminates the term
β1
∑

wi. Secondly, ∑wixi = 1, so β2
∑

wixi = β2, and (2.10) simplifies to (2.12).
The term ∑

wi = 0 because

∑
wi =

∑
[ (

xi − x
)

∑(
xi − x

)2

]
= 1∑(

xi − x
)2

∑(
xi − x

)
= 0

where in the last step we used the fact that ∑(
xi − x

)
= 0.

To show that ∑wixi = 1 we again use ∑(
xi − x

)
= 0. Another expression for ∑(

xi − x
)2 is

∑(
xi − x

)2 =∑(
xi − x

)(
xi − x

)

=∑(
xi − x

)
xi − x

∑(
xi − x

)

=∑(
xi − x

)
xi

Consequently,
∑

wixi =
∑(

xi − x
)

xi∑(
xi − x

)2 =
∑(

xi − x
)

xi∑(
xi − x

)
xi

= 1

Appendix 2E Deriving the Conditional Variance of b2
The starting point is equation (2.12), b2 = β2 +

∑
wiei. The least squares estimator is a random

variable whose conditional variance is defined to be
var

(
b2|x

)
= E

{[
b2 − E

(
b2|x

)]2|||x
}
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Substituting in (2.12) and using the conditional unbiasedness of the least squares estimator,
E
(
b2|!

)
= β2, we have

var
(
b2|x

)
= E

{[
β2 +

∑
wiei − β2

]2|||x
}

= E
{[∑

wiei
]2|||x

}

= E
{[

∑
w2

i e2
i +

∑∑
i≠j

wiwjeiej

]||||||
x
}

[
square of bracketed term

]

= E
{[∑

w2
i e2

i
]||| x

}
+ E

{[
∑∑

i≠j
wiwjeiej

]||||||
x
}

= ∑
w2

i E
(
e2

i |x
)
+∑∑

i≠j
wiwjE

(
eiej|x

) [
because wi not random given x]

= σ2∑w2
i

= σ2
∑(

xi − x
)2

The next to last line is obtained by using two assumptions: First,

σ2 = var
(
ei|x

)
= E

{[
ei − E

(
ei|x

)]2|||x
}
= E

[(
ei − 0

)2|||x
]
= E

(
e2

i |x
)

Second, cov
(
ei, ej|x

)
= E

{[
ei − E

(
ei|x

)][
ej − E

(
ej|x

)]|||x
}
= E

(
eiej|x

)
= 0. Then, the very last

step uses the fact that

∑
w2

i = ∑
⎡
⎢
⎢
⎢⎣

(
xi − x

)2

{∑(
xi − x

)2}2

⎤
⎥
⎥
⎥⎦
=

∑(
xi − x

)2

{∑(
xi − x

)2}2 = 1
∑(

xi − x
)2

Alternatively, we can employ the rule for finding the variance of a sum. If X and Y are random
variables, and a and b are constants, then

var(aX + bY) = a2 var(X) + b2 var(Y) + 2abcov(X,Y)

Appendix B.4 reviews all the basic properties of random variables. In the second line below we
use this rule extended to more than two random variables. Then,

var
(
b2|x

)
= var

[(
β2 +

∑
wiei

)||x
] [

since β2 is a constant
]

= ∑
w2

i var
(
ei|x

)
+∑∑

i≠j
wiwjcov

(
ei, ej|x

) [
generalizing the variance rule

]

= ∑
w2

i var
(
ei|x

) [
using cov

(
ei, ej|x

)
= 0

]

= σ2∑w2
i

[
using var

(
ei|x

)
= σ2]

= σ2
∑(

xi − x
)2

Carefully note that the derivation of the variance expression for b2 depends on assumptions SR3
and SR4. If the cov

(
ei, ej|!

) ≠ 0, then we cannot drop out all those terms in the double summation.
If var

(
ei|!

) ≠ σ2 for all observations, then σ2 cannot be factored out of the summation. If either
of these assumptions fails to hold, then the conditional variance var

(
b2|!

)
is something else, and

is not given by (2.15). The same is true for the conditional variance of b1 and the conditional
covariance between b1 and b2.
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Appendix 2F Proof of the Gauss–Markov Theorem
We will prove the Gauss–Markov theorem for the least squares estimator b2 of β2. Our goal is to
show that in the class of linear and unbiased estimators the estimator b2 has the smallest variance.
Let b∗2 = ∑

kiyi (where ki are constants) be any other linear estimator of β2. To make comparison
to the least squares estimator b2 easier, suppose that ki = wi + ci, where ci is another constant and
wi is given in (2.11). While this is tricky, it is legal, since for any ki that someone might choose
we can find ci. Into this new estimator, substitute yi and simplify, using the properties of wi in
Appendix 2D.

b∗2 = ∑
kiyi =

∑(
wi + ci

)
yi =

∑(
wi + ci

)(
β1 + β2xi + ei

)

= ∑(
wi + ci

)
β1 +

∑(
wi + ci

)
β2xi +

∑(
wi + ci

)
ei

= β1
∑

wi + β1
∑

ci + β2
∑

wixi + β2
∑

cixi +
∑(

wi + ci
)
ei

= β1
∑

ci + β2 + β2
∑

cixi +
∑(

wi + ci
)
ei

(2F.1)

since ∑
wi = 0 and ∑

wixi = 1.
Take the mathematical expectation of the last line in (2F.1), using the properties of expecta-

tion and the assumption that E
(
ei|!

)
= 0:

E
(
b∗2|x

)
= β1

∑
ci + β2 + β2

∑
cixi +

∑(
wi + ci

)
E
(
ei|x

)

= β1
∑

ci + β2 + β2
∑

cixi

(2F.2)

In order for the linear estimator b∗2 = ∑
kiyi to be unbiased, it must be true that

∑
ci = 0 and ∑

cixi = 0 (2F.3)

These conditions must hold in order for b∗2 = ∑
kiyi to be in the class of linear and unbi-

ased estimators. So we will assume that conditions (2F.3) hold and use them to simplify
expression (2F.1):

b∗2 = ∑
kiyi = β2 +

∑(
wi + ci

)
ei (2F.4)

We can now find the variance of the linear unbiased estimator b∗2 following the steps in
Appendix 2E and using the additional fact that

∑
ciwi =

∑
[

ci
(
xi − x

)
∑(

xi − x
)2

]
= 1

∑(
xi − x

)2
∑

cixi −
x

∑(
xi − x

)2
∑

ci = 0

Use the properties of variance to obtain

var
(
b∗2|x

)
= var

{[
β2 +

∑(
wi + ci

)
ei
] |x

}
= ∑(

wi + ci
)2var

(
ei|x

)

= σ2∑(
wi + ci

)2 = σ2∑w2
i + σ

2∑ c2
i

= var
(
b2|x

)
+ σ2∑ c2

i

≥ var
(
b2|x

)

The last line follows since ∑
c2

i ≥ 0 and establishes that for the family of linear and unbiased
estimators b∗2, each of the alternative estimators has variance that is greater than or equal to that
of the least squares estimator b2. The only time that var

(
b∗2
)
= var

(
b2
)

is when all the ci = 0,
in which case b∗2 = b2. Thus, there is no other linear and unbiased estimator of β2 that is better
than b2, which proves the Gauss–Markov theorem.
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Appendix 2G Proofs of Results Introduced
in Section 2.10

2G.1 The Implications of Strict Exogeneity
First, if x is strictly exogenous, then the unconditional expected value of the error term ei is zero.
To show this, we use the law of iterated expectations

E
(
ei
)
= Exj

[
E
(
ei|xj

)]
= Exj

(0) = 0

Second, the covariance between X and Y can be calculated as cov(X, Y) = EX
[(

X − μx
)

E(Y|X)],
as discussed in Probability Primer Section P.6.5. Using this result, we obtain

cov
(
xj, ei

)
= Exj

{[
xj − E

(
xj
)]

E
(
ei|xj

)}
= Exj

{[
xj − E

(
xj
)]

0
}
= 0

If x is strictly exogenous, then the covariance between xj and ei is zero for all values of i and j.
Recall that zero covariance means “no linear association” but not statistical independence. Thus,
strict exogeneity rules out any covariance, any linear association, between any xj and any ei.
The covariance between xj and ei can be rewritten as a simpler expectation using the facts that
E
(
ei
)
= 0 and E

(
xj
)

is not random

cov
(
xj, ei

)
= E

{[
xj − E

(
xj
)][

ei − E
(
ei
)]}

= E
{[

xj − E
(
xj
)]

ei

}
= E

(
xjei

)
− E

[
E
(
xj
)

ei

]

= E
(
xjei

)
− E

(
xj
)

E
(
ei
)
= E

(
xjei

)

Strict exogeneity implies E
(
xjei

)
= 0 for all xj and ei.

Using the covariance decomposition we can show yet more. Let g
(
xj
)

be a function of xj.
Then

cov
[
g
(
xj
)
, ei

]
= Exj

{[
g
(
xj
)
− E

(
g
(
xj
))]

E
(
ei|xj

)}
= Exj

{[
g
(
xj
)
− E

(
g
(
xj
))]

0
}
= 0

= E
[
g
(
xj
)
ei

]

If x is strictly exogenous, then the covariance between a function of xj
[
like x2

j or ln
(
xj
)]

and
ei is zero for all values of i and j. Thus, strict exogeneity rules out any covariance, any linear
association, between a function of xj and any ei.

2G.2 The Random and Independent x Case
In Section 2.10.1 we considered the case in which x-values are random but statistically indepen-
dent of the random error e. In this appendix, we show the algebra behind our conclusions. Consider
b2 the least squares estimator of the slope parameter β2. b2 is a linear estimator and as shown
in (2.10) b2 = ∑N

i=1 wiyi, where wi =
(
xi − x

)/∑N
i=1

(
xi − x

)2. Notice that wi = g
(
x1,… , xN

)
is a

function of all the random xi values and it is random. For notational ease, let x represent x1,… , xN
so wi = g

(
x1,… , xN

)
= g(!). Because IRX5 makes clear that xi is random and is statistically

independent of the random error ei for all values of i and j, then wi = g(!) is statistically indepen-
dent of each random error ei. Substituting yi = β1 + β2xi + ei, we obtain b2 = β2 +

∑
wiei and,

using the fact E
(
wiei

)
= E

(
wi
)
E
(
ei
)

because of independence, we have

E
(
b2
)
= β2 +

∑
E
(
wiei

)
= β2 +

∑
E
(
wi
)
E
(
ei
)
= β2 +

∑
E
(
wi
)

0 = β2

In the case in which x is random but statistically independent of the error terms, the least squares
estimator is unconditionally unbiased.
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The derivation of the variance of the least squares estimator changes in a similar way:

var
(
b2
)
= E

[(
b2 − β2

)2] = E
[(
β2 +

∑
wiei − β2

)2] = E
[(∑

wiei
)2]

= E
(
∑

w2
i e2

i +
∑∑

i≠j
wiwjeiej

)

= ∑
E
(
w2

i
)
E
(
e2

i
)
+∑∑

i≠j
E
(
wiwj

)
E
(
eiej

)

= σ2∑E
(
w2

i
)
= σ2E

(∑
w2

i
)
= σ2E

[
1

∑(
xi − x

)2

]

In the third line we used the statistical independence of wi and each random error ei twice. In the
fourth line we used the fact that the expected value of a sum is the sum of the expected values,
and finally that ∑w2

i is known, as shown in Appendix 2E.
The usual estimator of the error variance is σ̂2 = ∑

ê2
i ∕(N − 2) and conditional on x this

estimator is unbiased, E
(
σ̂2|x

)
= σ2. The proof is messy and not shown. This is a conditional

expectation saying given x1,… , xN the estimator σ̂2 is unbiased. Now we use the law of iterated
expectations from the Probability Primer Section P.6.3:

E
(
σ̂2
)
= Ex

[
E
(
σ̂2|x

)]
= Ex

[
σ2] = σ2

where Ex( ) means the expected value treating x as random. Because the conditional expectation
E
(
σ̂2|x

)
= σ2 is a constant that does not depend on x, its expectation treating x as random is also a

constant, σ2. So, in the case in which x is random and independent of the error, σ̂2 is conditionally
and unconditionally unbiased.

The variance of the least squares estimator is

var
(
b2
)
= σ2Ex

[
1

∑(
xi − x

)2

]

The usual variance estimator from (2.21) is

var
⋀(

b2|x
)
= σ̂2 1

∑(
xi − x

)2

It is an unbiased estimator of var
(
b2
)

conditional on x. Using the law of iterated expectations, we
have

Ex
{

E
[
var
⋀(

b2|x
)]}

= Ex

{
σ2 1

∑(
xi − x

)2

||||||
x
}

= σ2Ex

[
1

∑(
xi − x

)2

]
= var

(
b2
)

Thus, the usual estimator of var
(
b2
)

is unbiased.
What about the Gauss–Markov theorem? It says, for fixed x, or given x, var

(
b2|!

)
, is less

than the variance var
(
b∗2|x

)
of any other linear and unbiased estimator b∗2. That is,

var
(
b2|x

)
< var

(
b∗2|x

)

Using the variance decomposition var
(
b2
)
= varx

[
E
(
b2|!

)]
+ Ex

[
var

(
b2|!

)]
= Ex

[
var

(
b2|!

)]
because varx

[
E
(
b2|!

)]
= varx

(
β2
)
= 0. Similarly, var

(
b∗2
)
= Ex

[
var

(
b∗2|x

)]
. Then

var
(
b2
)
= Ex

[
var

(
b2|x

)]
< var

(
b∗2
)
= Ex

[
var

(
b∗2|x

)]

The logic of the argument is that if var
(
b2|!

)
is less than the variance of any other estimator

var
(
b∗2|x

)
for any given x, it must also be true for all x, and will remain true if we average over

all possible x, by taking the expected value treating x as random, Ex( ).
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Finally, what about normality? If IRX6 holds, ei ∼ N
(
0, σ2), then what is the probability

distribution of the least squares estimator? We have used the fact that b2 = β2 +
∑

wiei. If wi is
constant, then we can assert that the least squares estimator has a normal distribution because
linear combinations of normal random variables are normal. However, in the random-x case,
even though x is independent of e, the distributions of wiei are not normal. The function wi =
g
(
x1,… , xN

)
has an unknown probability distribution and its product with the normally dis-

tributed ei results in an unknown distribution. What we can say is that b2|x is normal, since
conditioning on x1,… , xN means that they are treated as given, or fixed.

2G.3 The Random and Strictly Exogenous x Case
In Section 2.10.2 we examine the consequences of an assumption that is weaker than the statisti-
cal independence of x and e. There we assert that even with the weaker assumption called “strict
exogeneity” the properties of the least squares estimator are unchanged, and here we give the
proof. The least squares estimator of the slope parameter, b2, is a linear estimator and as shown
in (2.10) b2 = ∑N

i=1 wiyi, where wi =
(
xi − x

)/∑N
i=1

(
xi − x

)2. Notice that wi = g
(
x1,… , xN

)
is a

function of all the random xi values and it is random. Substituting yi = β1 + β2xi + ei, we obtain
b2 = β2 +

∑
wiei. The strict exogeneity assumption says E

(
ei|xj

)
= 0 for all values of i and j, or

equivalently, E
(
ei|!

)
= 0. Using the law of iterated expectations, we show that b2 is a condition-

ally unbiased estimator. First, find the conditional expectation of b2 given x,
E
(
b2|x

)
= β2 +

∑
E
(
wiei|x

)
= β2 +

∑
wiE

(
ei|x

)
= β2 +

∑
wi0 = β2

Conditional on x, which is equivalent to assuming x is given, the function wi = g
(
x1,… , xN

)
is treated like a constant and is factored out in the third equality. Applying the law of iterated
expectations, we find

E
(
b2
)
= Ex

[
E
(
b2|x

)]
= Ex

(
β2
)
= β2

The notation Ex( ) means take the expected value treating x as random. In this case, that is not
difficult because β2 is a constant, nonrandom parameter. The least squares estimator is unbiased,
both conditional on x and unconditionally, under strict exogeneity.

The derivation of the variance of the least squares estimator changes in a similar way. First
find the variance of b2 given x.

var
(
b2|x

)
= E

[(
b2 − E

(
b2|x

))2|||x
]
= E

[(
β2 +

∑
wiei − β2

)2|||x
]
= E

[(∑
wiei

)2|||x
]

= E
[(

∑
w2

i e2
i +

∑∑
i≠j

wiwjeiej

)||||||
x
]
= ∑

w2
i E

(
e2

i |x
)
+∑∑

i≠j
wiwjE

(
eiej|x

)

= σ2∑w2
i = σ2

∑(
xi − x

)2

The variance of b2 given x is exactly the same as when x was assumed random and statistically
independent of the random errors. Now find the variance of b2 using the variance decomposition
from the Probability Primer equation (P.29). For two random variables X and Y ,

var(Y) = varX[E(Y|X)] + EX[var(Y|X)]
Letting Y = b2 and X = !, we have

var
(
b2
)
= varx

[
E
(
b2|x

)]
+ Ex

[
var

(
b2|x

)]
= varx

(
β2
)
+ Ex

[
σ2

∑(
xi − x

)2

]
= σ2Ex

[
1

∑(
xi − x

)2

]

since varx
(
β2
)
= 0. This is exactly the same result as in the case in which xj and ei are statistically

independent.
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2G.4 Random Sampling
In the case of random sampling, data pairs

(
yi, xi

)
are iid, and the strict exogeneity assumption

reduces to E
(
ei|xi

)
= 0. The results in the previous section hold in exactly the same way because

it is still true that E
(
ei|!

)
= 0.

Appendix 2H Monte Carlo Simulation
The statistical properties of the least squares estimators are well known if the assumptions in
Section 2.1 hold. In fact, we know that the least squares estimators are the best linear unbiased
estimators of the regression parameters under these assumptions. And if the random errors are nor-
mal, then we know that, given x, the estimators themselves have normal distributions in repeated
experimental trials. The meaning of “repeated trials” is difficult to grasp. Monte Carlo sim-
ulation experiments use random number generators to replicate the random way that data are
obtained. In Monte Carlo simulations, we specify a data generation process and create samples
of artificial data. Then, we “try out” estimation methods on the data we have created. We cre-
ate many samples of size N and examine the repeated sampling properties of the estimators.
In this way, we can study how statistical procedures behave under ideal, as well as not so ideal,
conditions. This is important because economic, business, and social science data are not always
(indeed, not usually) as nice as the assumptions we make.

The DGP for the simple linear regression model is given by
yi = E

(
yi|xi

)
+ ei = β1 + β2xi + ei, i = 1,… ,N

Each value of the dependent variable yi is obtained, or generated, by adding a random error ei
to the regression function E

(
yi|xi

)
. To simulate values of yi, we create values for the systematic

portion of the regression relationship E
(
yi|xi

)
and add to it the random error ei. This is analogous

to a physical experiment in which variable factors are set at fixed levels and the experiment run.
The outcome is different in each experimental trial because of random uncontrolled errors.

2H.1 The Regression Function
The regression function E

(
yi|xi

)
= β1 + β2xi is the systematic portion of the regression relation-

ship. To create these values we must select the following:

1. A sample size N. From the discussion in Section 2.4.4, we know that the larger the sample
size is, the greater is the precision of estimation of the least squares estimators b1 and b2.
Following the numerical examples in the book, we choose N = 40. This is not a large sam-
ple, but assuming SR1–SR5 are true, the least squares estimators’ properties hold for any
sample of size N > 2 in the simple regression model. In more complex situations, varying
the sample size to see how estimators perform is an important ingredient of the simulation.

2. We must choose xi values. For simplicity, we initially assume values of the explanatory vari-
able that are fixed in repeated experimental trials. Following the depiction in Figure 2.1,15

we set the values x1, x2,… , x20 = 10 and x21, x22,… , x40 = 20, using the chapter assumption
that x is measured in hundreds. Does it matter how we choose the xi values? Yes, it does.
The variances and covariances of the least squares estimators depend on the variation in xi,∑(

xi − x
)2, how far the values are from 0, as measured by ∑

x2
i , and on the sample mean x.

Thus, if the values xi change, the precision of estimation of the least squares estimators
will change.

............................................................................................................................................
15This design is used in Briand, G. & Hill, R. C. (2013). Teaching Basic Econometric Concepts using Monte Carlo
Simulations in Excel, International Review of Economics Education, 12(1), 60–79.
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3. We must choose β1 and β2. Interestingly, for the least squares estimator under assumptions
SR1–SR5, the actual magnitudes of these parameters do not matter a great deal. The esti-
mator variances and covariances do not depend on them. The difference between the least
squares estimator and the true parameter value, E

(
b2
)
− β2 given in (2.13), does not depend

on the magnitude of β2, only on the xi values and the random errors ei. To roughly parallel
the regression results we obtained in Figure 2.10, we set β1 = 100 and β2 = 10.

Given the values above we can create N = 40 values E
(
yi|xi

)
= β1 + β2xi. These values are

E
(
yi|xi = 10

)
= 100 + 10xi = 100 + 10 × 10 = 200, i = 1,… , 20

E
(
yi|xi = 20

)
= 100 + 10xi = 100 + 10 × 20 = 300, i = 21,… , 40

2H.2 The Random Error
To be consistent with assumptions SR2–SR4, the random errors should have mean zero,
constant variance var

(
ei|xi

)
= σ2 and be uncorrelated with one another, so that cov

(
ei, ej|!

)
= 0.

Researchers in the field of numerical analysis have studied how to simulate random numbers
from a variety of probability distributions, such as the normal distribution. Of course, the
computer-generated numbers cannot be truly random, because they are generated by a computer
code. The random numbers created by computer software are “pseudorandom,” in that they
behave like random numbers. The numbers created will begin to recycle after about 219937 values
are drawn, using the so-called Mersenne Twister algorithm. Each software vendor uses its own
version of a random number generator. Consequently, you should not expect to obtain exactly
the same numbers that we have, and your replication will produce slightly different results,
even though the major conclusions will be the same. See Appendix B.4 for a discussion of how
random numbers are created.

Following assumption SR6, we assume the random error terms have a normal distribution
with mean zero and a homoskedastic variance var

(
ei|xi

)
= σ2. The variance σ2 affects the pre-

cision of estimation through the variances and covariances of the least squares estimators in
(2.14)–(2.16). The bigger the value of σ2, the bigger the variances and covariances of the least
squares estimators, and the more spread out the probability distribution of the estimators, as shown
in Figure 2.11. We choose var

(
ei|xi

)
= σ2 = 2500, which also means that var

(
yi|xi

)
= σ2 = 2500.

2H.3 Theoretically True Values
Using the values above, we plot the theoretically true pdfs for yi in Figure 2H.1. The solid curve
on the left is N

(
200, 2500 = 502). The first 20 simulated observations will follow this pdf . The

dashed curve on the right is N
(
300, 2500 = 502), which is the pdf for the second 20 observations.

f (y |x = 10) f (y|x = 20)

σ = 50

0 100 200 300 400 500

FIGURE 2H.1 The true pdfs of the data.
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4 6 8 10
E (b2|x) = β2 = 10

f (b2)

12 14 16

var (b2|x) = 2.50 = 1.5811

FIGURE 2H.2 The true pdf of the estimator b2.

Given the parameter σ2 = 2500 and the xi values, we can compute the true conditional variances
of the estimators:

var
(
b1|x

)
= σ2

[ ∑
x2

i

N
∑(

xi − x
)2

]
= 2500

[ 10000
40 × 1000

]
= 625

var
(
b2|x

)
= σ2

∑(
xi − x

)2 = 2500
1000 = 2.50

cov
(
b1, b2|x

)
= σ2

[
−x

∑(
xi − x

)2

]
= 2500

[ −15
1000

]
= −37.50

The true standard deviation of b2 is
√

var
(
b2|x

)
=
√

2.50 = 1.5811. The true pdf of b2|x is
N
(
β2 = 10, var

(
b2|!

)
= 2.5

)
. Using the cumulative probabilities for the standard normal distri-

bution in Statistical Table 1, we find that 98% of values from a normal distribution fall within
2.33 standard deviations of the mean. Applying this rule to the estimates b2, we have

β2 ± 2.33 ×
√

var
(
b2|x

)
= 10 ± 2.33 × 1.5811 = [6.316, 13.684]

We expect almost all values of b2 (98% of them) to fall in the range 6.32–13.68. The plot of the
true pdf of the estimator b2 is shown in Figure 2H.2.

2H.4 Creating a Sample of Data
Most software will automatically create random values, zi, from the standard normal distribution,
N(0, 1). To obtain a random value from a N

(
0, σ2) distribution, we multiply zi by the standard

deviation σ. That is, ei = σ × zi. Given values zi from the standard normal distribution, we obtain
the N = 40 sample values from the chosen DGP as

yi = E
(
yi|xi = 10

)
+ ei = 200 + 50 × zi i = 1,… , 20

yi = E
(
yi|xi = 20

)
+ ei = 300 + 50 × zi i = 21,… , 40

One sample of data is in the data file mc1_fixed_x. Using these values, we obtain the least squares
estimates. It is convenient to display the coefficient estimates and standard errors together, with
the standard error reported below the coefficients:

ŷ = 127.2055 + 8.7325x
(se) (23.3262) (1.4753)

The estimate σ̂ = 46.6525. The estimated variances and covariance of b1 and b2 are var
⋀(

b1
)
=

544.1133, var
⋀(

b2
)
= 2.1765, and cov

⋀(
b1, b2

)
= −32.6468.
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For this one sample, the parameter estimates are reasonably near their true values. However,
what happens in one sample does not prove anything. The repeated sampling properties of the
least squares estimators are about what happens in many samples of data, from the same DGP.

2H.5 Monte Carlo Objectives
What do we hope to achieve with a Monte Carlo experiment? After the Monte Carlo experiment,
we will have many least squares estimates. If we obtain M = 10, 000 samples, we will have 10,000
estimates b1,1,… , b1,M , 10, 000 estimates b2,1,… , b2,M , and 10,000 estimates σ̂2

1,… , σ̂2
M .

• We would like to verify that under SR1–SR5 the least squares estimators are unbiased.
The estimator b2 is unbiased if E

(
b2
)
= β2. Since an expected value is an average in many

repeated experimental trials, we should observe that the average value of all the slope esti-
mates, b2 = ∑M

m=1 b2m∕M, is close to β2 = 10.
• We would like to verify that under SR1–SR5 the least squares estimators have sampling

variances given by (2.14) and (2.16). The estimator variances measure the sampling variation
in the estimates. The sampling variation of the estimates in the Monte Carlo simulation can
be measured by their sample variance. For example, the sample variance of the estimates
b2,1,… , b2,M is s2

b2
= ∑M

m=1

(
b2,m − b2

)2
∕(M − 1). This value should be close to var

(
b2
)
=

2.50, and the standard deviation sb2
should be close to the true standard deviation of the

regression estimates 1.5811.
• We would like to verify that the estimator of the error variance (2.19) is an unbiased estimator

of σ2 = 2500, or that σ̂2 = ∑M
m=1 σ̂

2
m∕M is close to the true value.

• Because we have assumed the random errors are normal, SR6, we expect the least squares
estimates to have a normal distribution.

2H.6 Monte Carlo Results
The numerical results of the Monte Carlo experiment are shown in Table 2H.1. The averages (or
“Sample Means”) of the 10,000 Monte Carlo estimates are close to their true values.

For example, the average of the slope estimates is b2 = ∑M
m=1 b2,m∕M = 10.0130 compared to

the true value β2 = 10. The sample variance of the estimates s2
b2
= ∑M

m=1

(
b2,m − b2

)2
∕(M − 1) =

2.4691 compared to the true value var
(
b2
)
= 2.50. The standard deviation of the estimates is

sb2
= 1.5713 compared to the true standard deviation

√
var

(
b2
)
=
√

2.50 = 1.5811. The the-
oretical 1st and 99th percentiles of b2 are [6.316, 13.684], which is reflected by the estimates
[6.3268, 13.6576].

As for the normality of the estimates, we see from the histogram in Figure 2H.3 that the
actual values follow the superimposed normal distribution very closely.16

T A B L E 2H.1 Summary of 10,000 Monte Carlo Samples

Mean Variance Std. Dev. Minimum Maximum 1st Pct. 99th Pct.
b1 (100) 99.7463 613.4323 24.7676 12.1000 185.5361 42.2239 156.5996
b2 (10) 10.0130 2.4691 1.5713 4.5881 16.5293 6.3268 13.6576
σ̂2 (2500) 2490.67 329964.7 574.4256 976.447 5078.383 1366.225 4035.681

............................................................................................................................................
16A normal distribution is symmetrical with no skewness, and for the estimates b2 the skewness is −0.0027. A normal
distribution has kurtosis of three, and for the estimates b2 the kurtosis is 3.02. The Jarque–Bera test statistic that
combines skewness and kurtosis measures is 0.1848 yielding a p-value of 0.91, meaning that we fail to reject the
normality. See Appendix C.7.4 for a discussion of the Jarque–Bera test.
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FIGURE 2H.3 The sampling distribution of b2 in 10,000 Monte Carlo samples
when x is fixed in repeated trials.

If you are replicating these results, some suggested exercises are as follows:

1. Test if mean of b2 is equal to β2 using the test described in Appendix C.6.1.
2. Calculate the percentage of estimates falling in a given interval, such as between 8 and 9,

and compare it to the probability based on the normal distribution.

2H.7 Random-x Monte Carlo Results
We used the “fixed-x” framework in the simulation results above. In each Monte Carlo sample,
the x-values were xi = 10 for the first 20 observations and xi = 20 for the next 20 observations.
Now we modify the experiment to the random-x case. The data generating equation remains yi =
100 + 10xi + ei with the random errors having a normal distribution with mean zero and standard
deviation 50, ei ∼ N

(
0, 502 = 2500

)
. We randomly choose x-values from a normal distribution

with mean μx = 15 and standard deviation σx = 1.6, so x ∼ N
(
15, 1.62 = 2.56

)
. We chose σx =

1.6 so that 99.73% of the random-x values fall between 10.2 and 19.8, which is similar in spirit
to the fixed-x simulation in the previous section.

One sample of data is in the file mc1_random_x. Using these values, we obtain the least
squares estimates and standard errors

ŷ = 116.7410 + 9.7628x
(se) (84.7107) (5.5248)

and the estimate σ̂ = 51.3349. The estimates are close to the true values.
The numerical results of the Monte Carlo experiment are shown in Table 2H.2. The averages (or
“Sample Means”) of the 10,000 Monte Carlo estimates are close to their true values.

For example, the average of the slope estimates is b2 = ∑M
m=1 b2,m∕M = 10.0313 compared

to the true value β2 = 10. In the random-x case, the true variance of the least squares estimator is

var
(
b2
)
= σ2E

[
1

∑N
i=1

(
xi − x

)2

]
= σ2

(N − 3) σ2
x
= 2500
(37)(2.56) = 26.3936

Calculating the variance we use a special property resulting from the normality of x. When x
is normally distributed N

(
μx, σ2

x
)

the unbiased estimator of σ2
x is s2

x = ∑N
i=1

(
xi − x

)2∕(N − 1).
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T A B L E 2H.2 Summary of 10,000 Random-x Monte Carlo Samples

Mean Var. Std. Dev. Min. Max. 1st Pct. 99th Pct.
b1 (100) 99.4344 6091.4412 78.0477 −196.8826 405.8328 −83.1178 283.8266
b2 (10) 10.0313 26.8503 5.1817 −10.4358 29.3168 −2.2196 22.3479
var
⋀(

b2
)
(26.3936) 26.5223 78.9348 8.8845 7.8710 91.1388 11.8325 54.0177

σ̂2 (2500) 2498.4332 332622.6 576.7344 809.474 5028.047 1366.957 4056.279
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FIGURE 2H.4 The sampling distribution of b2 in 10,000 Monte Carlo samples
when x is random in repeated trials.

In Appendix C.7.1 we use the fact that (N − 1) s2
x∕σ

2
x ∼ χ

2
(N−1). This implies that V =

∑N
i=1

(
xi − x

)2 ∼ σ2
xχ

2
(N−1). Using the properties of the inverse chi-square distribution E(1∕V) =

E
[
1
/∑N

i=1
(
xi − x

)2] = 1
/[
(N − 3) σ2

x
]
.17 Note that the Monte Carlo mean of the estimated

var
(
b2
)

is 26.5223, confirming that var
⋀(

b2
)
= 2500∕[37(2.56)] = 26.3936 is an unbiased

estimator even in the random-x case.
Recall, however, that in the random-x case the distribution of the least squares estimator b2

is not normal. The histogram of the 10,000 Monte Carlo estimates is shown in Figure 2H.4. It is
symmetrical but there are too many central values, and the peak is too high. Statistically we can
reject that this distribution is normal.18

If you are replicating these results, some suggested exercises are as follows:

1. Test if mean of b2 is equal to β2 using the test described in Appendix C.6.1.
2. Calculate the percentage of estimates falling in a given interval, such as between 8 and 9,

and compare it with the probability based on the normal distribution.

............................................................................................................................................
17See Appendix B.3.6 and Appendix C.7.1 for the theory behind this result.
18A normal distribution is symmetrical with no skewness, and for the estimates b2 the skewness is −0.001. A normal
distribution has kurtosis of three, and for the estimates b2 the kurtosis is 3.14. The Jarque–Bera test statistic that
combines skewness and kurtosis measures is 8.32 yielding a p-value of 0.016, meaning that we reject the hypothesis of
normality at the 5% level of significance. See Appendix C.7.4 for a discussion of the Jarque–Bera test.
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