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Appendix A
Mathematical Tools
L E A R N I N G O B J E C T I V E S

Based on the material in this appendix, you should be able to

1. Explain the relationship between exponential
functions and natural logarithms.

2. Explain and apply scientific notation.

3. Define a linear relationship, as opposed to a
nonlinear relationship.

4. Compute the elasticity at a point on a function.

5. Explain the concept of a derivative and its
relationship to the slope of a function.

6. Compute the derivatives of simple functions and
provide their interpretations.

7. Describe the relationship between a derivative
and a partial derivative.

8. Explain the concept of an integral.

9. Maximize or minimize functions of one or two
variables.

10. Use integration to find the area under curves.

11. Explain and evaluate second derivatives.

K E Y W O R D S
absolute value
antilogarithm
derivatives
e
elasticity
exponential function
exponents
inequalities
integers
integral
intercept

irrational number
linear relationship
logarithm
marginal effect
maximizing a function
minimizing a function
natural logarithm
nonlinear relationship
partial derivative
percentage change
product rule

quadratic function
quotient rule
rational numbers
real numbers
relative change
scientific notation
second derivative
slope
Taylor series

We assume that you have studied basic math. Hopefully you understand the calculus concepts of
differentiation and integration, though these tools are not required prerequisites for success using
this book. In this appendix we review some essential concepts that you may wish to consult from
time to time.1

............................................................................................................................................
1Summation signs and operations are covered in the Probability Primer that precedes Chapter 2.748
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A.1 Some Basics
A.1.1 Numbers

Integers are the whole numbers, 0, ± 1, ± 2, ± 3, . . . . The positive integers are the counting
numbers. Rational numbers can be written as a/b, where a and b are integers and b ≠ 0. The
real numbers can be represented by points on a line. There are an uncountable number of real
numbers, and they are not all rational. Numbers such as π ≅ 3.1415927 and

√
2 are said to

be irrational since they cannot be expressed as ratios, and have only decimal representations.
Numbers like

√
−2 are not real numbers. The absolute value of a number is denoted by |a|. It is

the positive part of the number: |3| = 3 and |−3| = 3.
Inequalities among numbers obey certain rules. The notation a < b, a is less than b, means

that a is to the left of b on the number line, and that b – a > 0. If a is less than or equal to b, it is
written as a ≤ b. Three basic rules are

If a < b, then a + c < b + c

If a < b, then
{

ac < bc if c > 0
ac > bc if c < 0

If a < b and b < c, then a < c

A.1.2 Exponents
Exponents are defined as follows:

xn = xx · · · x (n terms) if n is a positive integer
x0 = 1 if x ≠ 0. 00 does not have meaning and is “undefined.”

Some common rules for working with exponents, assuming x and y are real, m and n are integers,
and a and b are rational, are as follows:

x−n = 1
xn if x ≠ 0. For example, x−1 = 1

x
x1∕n = n

√
x. For example, x1∕2 =

√
x and x−1∕2 = 1√

x

xm∕n =
(
x1∕n)m. For example, 84∕3 =

(
81∕3)4 = 24 = 16

xaxb = xa+b, xa

xb = xa−b

(
x
y

)a

= xa

ya , (xy)a = xaya

A.1.3 Scientific Notation
Scientific notation is useful for very large or very small numbers. A number in scientific notation
is written as a number between 1 and 10 multiplied by a power of 10. So, for example: 5.1 × 105 =
510, 000, and 0.00000034 = 3.4 × 10−7. Scientific notation makes handling large numbers much
easier, because complex operations can be broken into simpler ones. For example,

510,000 × 0.00000034 =
(
5.1 × 105) × (

3.4 × 10−7)

= (5.1 × 3.4) ×
(
105 × 10−7)

= 17.34 × 10−2

= 0.1734
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and
510,000

0.00000034 = 5.1 × 105

3.4 × 10−7 = 5.1
3.4 ×

105

10−7 = 1.5 × 1012

Computer programs sometimes write 5.1 × 105 = 5.1E5 or 5.1D5 and 3.4 × 10−7 = 3.4E–7 or
3.4D–7.

A.1.4 Logarithms and the Number e
Logarithms are exponents. If x = 10b, then b is the logarithm of x using the base 10. The
irrational number e ≅ 2.718282 is used in mathematics and statistics as the base for logarithms.
If x = eb, then b is the logarithm of x using the base e. Logarithms using the number e as base are
called natural logarithms. All logarithms in this book are natural logarithms. We express the
natural logarithm of x as ln(x),

For any positive number, x > 0,

eln(x) = exp
[
ln(x)

]
= x

and
ln
(
ex) = x

Note that ln(1) = 0, using the laws of exponents. Table A.1 gives the logarithms of some powers
of 10. For example, e2.3025851 = 10 and e4.6051702 = 100.

Note that logarithms have a compressed scale compared to the original numbers. Since log-
arithms are exponents, they follow similar rules:

ln(xy) = ln(x) + ln(y)
ln(x∕y) = ln(x) − ln(y)
ln
(
xa) = aln(x)

For example, if x = 1000 and y = 10, 000, then

ln(1000 × 10,000) = ln(1000) + ln(10,000)
= 6.9077553 + 9.2103404
= 16.118096

What is the advantage of this? The value of xy is a multiplication problem, which by using loga-
rithms we can turn into an addition problem. We need a way to go backward, from the logarithm
of a number to the number itself. By definition,

x = eln(x) = exp
[
ln(x)

]

T A B L E A.1 Some Natural Logarithms

x ln(x)
1 0

10 2.3025851
100 4.6051702

1,000 6.9077553
10,000 9.2103404

100,000 11.512925
1,000,000 13.815511
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When there is an exponential function with a complicated exponent, the notation exp is often
used, so that e( • ) = exp( • ). The exponential function is the antilogarithm, because we can recover
the value of x using it. Then,

1000 × 10000 = exp(16.118096) = 10,000,000

You will not be doing many calculations like these, but the knowledge of logarithms and expo-
nents is quite critical in economics and econometrics.

A.1.5 Decimals and Percentages
Suppose the value of a variable y changes from the value y = y0 to y = y1. The difference between
these values is often denoted by Δy = y1 − y0, where the notation Δy is read “change in y,” or
“delta-y.” The relative change in y is defined to be

relative change in y =
y1 − y0

y0
= Δy

y0
(A.1)

For example, if y0 = 3 and y1 = 3.02, then the relative change in y is
y1 − y0

y0
= 3.02 − 3

3 = 0.0067

Often the relative change in y is written as Δy∕y, omitting the subscript.
A relative change is a decimal. The corresponding percentage change in y is 100 times the

relative change.
percentage change in y = 100y1 − y0

y0
= %Δy (A.2)

If y0 = 3 and y1 = 3.02, then the percentage change in y is

%Δy = 100y1 − y0
y0

= 1003.02 − 3
3 = 0.67%

A.1.6 Logarithms and Percentages
A feature of logarithms that helps greatly in their economic interpretation is that they can be
approximated very simply. Let y1 be a positive value of y, and let y0 be a value of y that is “close”
to y1. A useful approximation rule is

100
[
ln
(
y1
)
− ln

(
y0
)]
≅ %Δy = percentage change in y (A.3)

That is, 100 times the difference in the logarithms is the approximate percentage difference
between y0 and y1, if y0 and y1 are close.

Derivation of the Approximation The result in (A.3) follows from the mathematical
tool called a Taylor series approximation, which is developed in Example A.3 in Section A.3.1.
Using this approximation, the value of ln(y1) can be written as

ln
(
y1
)
≅ ln

(
y0
)
+ 1

y0

(
y1 − y0

)
(A.4)

For example, let y1 = 1 + x and let y0 = 1. Then, as long as x is small,

ln(1 + x) ≅ x
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Subtracting ln
(
y0
)

from both sides of (A.4), we obtain

ln
(
y1
)
− ln

(
y0
)
= Δln(y) ≅ 1

y0

(
y1 − y0

)
= relative change in y

The symbol Δln(y) represents the “difference” between two logarithms. Using (A.2),

100Δln(y) = 100
[
ln
(
y1
)
− ln

(
y0
)]

≅ 100 ×
(
y1 − y0

)

y0
= %Δy

= percentage change in y

A.2 Linear Relationships
In economics, and in econometrics, we study linear and nonlinear relationships between
variables. In this section, we review basic characteristics of linear relationships. Let y and x
be variables. The standard form for a linear relationship is

y = mx + b (A.5)

In Figure A.1, the slope is m and the y-intercept is b. The symbol Δ represents “a change in,” so
Δx is read as a “change in x.” The slope of the line is

m =
y2 − y1
x2 − x1

= Δy
Δx

For the straight-line relationship in Figure A.1, the slope m is the ratio of the change in vertical
distance (rise) to the change in horizontal distance (run) as a point moves along the line in either
direction. The slope of a straight line is constant; the rate at which y changes as x changes is
constant over the length of the straight line.

The slope m is very meaningful to economists as it is the marginal effect of a change in x
on y. To see this, solve the slope definition m = Δy∕Δx for Δy, obtaining

Δy = mΔx (A.6)

If x changes by one unit, Δx = 1, then the corresponding change in y is Δy = m. The marginal
effect, m, is always the same for a linear relationship like (A.5), because the slope is constant.

The intercept parameter indicates where the linear relationship crosses the vertical
axis—that is, it is the value of y when x is zero,

y = mx + b = m × 0 + b = b

b = y-intercept
Slope = m = Δy/Δx

 Δy

y

x

Δx
(x2, y1)

(x2, y2)

y = mx + b

(x1, y1)

FIGURE A.1 A linear relationship.
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A.2.1 Slopes and Derivatives
Derivatives have an important role in econometrics. In a relationship between two variables,
y = f (x), the first derivative measures the slope. The slope of the line y = f (x) = mx + b
is denoted as dy∕dx. The notation dy∕dx is a “stylized” version of Δy∕Δx, and for the linear
relationship (A.5) the first derivative is

dy∕dx = m (A.7)
In general, the first derivative measures the change in the function value y given an infinitesimal
change in x. For the linear function the first derivative is the constant m = Δy∕Δx. The “infinites-
imal” does not matter in this case, because the rate of change of y with respect to changes in x is
a constant.

A.2.2 Elasticity
A favorite tool of the economist is elasticity. It is the percentage change in one variable associated
with a 1% change in another variable for movements along a specific curve. That is, if we move
from one point on a curve to another point on the curve, what are the relative percentage changes?
For example, in Figure A.1, what is the percentage change in y relative to the percentage change
in x as we move from the point

(
x1, y1

)
to

(
x2, y2

)
? For a linear relationship, the elasticity of y

with respect to a change in x is

εyx =
%Δy
%Δx

= 100(Δy∕y)
100(Δx∕x) =

Δy∕y
Δx∕x

= Δy
Δx

× x
y
= slope × x

y
(A.8)

The elasticity is the product of the slope of the relationship and the ratio of an x value to a y value.
In a linear relationship, such as Figure A.1, while the slope is constant, m = Δy∕Δx, the elasticity
changes at every (x, y) point on the line.

Consider, for example, the linear function y = 1x + 1. At the point x = 2 and y = 3, which is
on the line, the elasticity is εyx = m(x∕y) = 1 × (2∕3) = 0.67. That is, at the point (x = 2, y = 3)
a 1% change in x is associated with a 0.67% change in y. Specifically, at x = 2 a 1% (1% = 0.01 in
decimal form) change isΔx = 0.01 × 2 = 0.02. If x increases to x = 2.02, the value of y increases
to 3.02. The relative change in y isΔy∕y = 0.02∕3 = 0.0067. This, however, is not the percentage
change in y, but rather the decimal equivalent. To obtain the percentage change in y, which we
denote %Δy, we multiply the relative change Δy∕y by 100. The percentage change in y is

%Δy = 100 × (Δy∕y) = 100 × 0.02∕3 = 100 × 0.0067 = 0.67%

A.3 Nonlinear Relationships
While linear relationships are intuitive and easy to work with, many real-world economic rela-
tionships are nonlinear, as illustrated in Figure A.2.

The slope of this curve is not constant. The slope measures the marginal effect of x on y, and
for a nonlinear relationship like that in Figure A.2, the slope is different at every point on the
curve. The changing slope tells us that the relationship is not linear. Since the slope is different at
every point, we can only talk about the effect of small changes in x on y. In (A.6) we replace Δ,
the symbol for “a change in,” with d, which we will take to mean an “infinitesimal change in.” In
the linear case when we made this replacement, the slope was given by dy∕dx = m, where m was
a constant. See equation (A.7).

However, with nonlinear functions such as that in Figure A.2, the slope (derivative) is not
constant, but changes as x changes, and must be determined at each point. Strictly speaking, the
slope of a curve is the slope of the tangent to the curve at a specific point. To work out the slope
at different points on a nonlinear curve, we need some rules for obtaining the derivative dy∕dx.
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y 

x

y = f(x)

Slope of the curve at
point A is the slope of
the tangent line 

A

FIGURE A.2 A nonlinear relationship.

A.3.1 Rules for Derivatives
Some rules for finding derivatives are the following:

Derivative Rule 1. The derivative of a constant c is zero, that is, if y = f (x) = c, then
dy
dx

= 0

Derivative Rule 2. If y = xn, then
dy
dx

= nxn−1

Derivative Rule 3. If y = cu and u = f (x), then
dy
dx

= cdu
dx

Constants can be factored out of functions before taking the derivative.

Derivative Rule 4. If y = cxn, using Rules 2 and 3,
dy
dx

= cnxn−1

Derivative Rule 5. If y = u + v, where u = f (x) and v = g(x) are functions of x, then
dy
dx

= du
dx

+ dv
dx

The derivative of the sum (or difference) of two functions is the sum (or difference) of the deriva-
tives. This rule extends to more than two terms in a sum.

Derivative Rule 6. If y = uv, where u = f (x) and v = g(x) are functions of x, then
dy
dx

= du
dx

v + udv
dx

This is called the product rule. The quotient rule, for y = u∕v, is obtained by inserting v−1 for v
in the product rule.

Derivative Rule 7. If y = ex, then
dy
dx

= ex
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If y = exp(ax + b), then
dy
dx

= exp(ax + b) × a

In general, the derivative of the exponential function is the exponential function times the deriva-
tive of the exponent.

Derivative Rule 8. If y = ln(x), then
dy
dx

= 1
x
, x > 0

If y = ln(ax + b), then
dy
dx

= 1
ax + b

× a

Derivative Rule 9. (The Chain Rule of Differentiation). Let y = ![u(x)], so that y depends on
u which in turn depends on x. Then

dy
dx

= dy
du
× du

dx
For example, in Derivative Rule 8, y = ln(ax + b), or y = ln[u(x)] where u = ax + b. Then

dy
dx

= dy
du
× du

dx
= 1

u
× a = 1

ax + b
× a

E X A M P L E A.1 Slope of a Linear Function

The derivative of y = f (x) = 4x + 1 is
dy
dx

= d(4x)
dx

+ d(1)
dx

= 4

Because this function is the equation of a straight line,
y = mx + b, its slope is constant and given by the coefficient
of x, which in this case is 4.

E X A M P L E A.2 Slope of a Quadratic Function

Consider the function y = x2 – 8x + 16, shown in Figure A.3.
This quadratic function is a parabola. Using the rules of
derivatives, the slope of a line tangent to the curve is

dy
dx

=
d
(
x2 − 8x + 16

)

dx
=

d
(
x2)

dx
− 8

d
(
x1)

dx
+ d(16)

dx

= 2x1 − 8x0 + 0 = 2x − 8

This result means that the slope of the tangent line to this
curve is dy∕dx = 2x – 8. The derivative and function values
are shown for several values of x in Table A.2.

Note a few things. First, the slope is different at each
value of x. The slope is negative for values of x < 4, the
slope is zero when x = 4, and the slope is positive for values
of x > 4. To interpret these slopes, recall that the derivative
of a function at a point is the slope of the tangent at that
point. The slope of the tangent is the rate of change of the
function—how much y = f (x) is changing as x changes. At
x = 0, the derivative is −8, indicating that y is falling as x
increases, and that the rate of change is 8 units in y per unit

change in x. At x = 2, the rate of change of the function has
diminished, and at x = 4, the rate of change of the function
is dy∕dx = 0. That is, at x = 4, the slope of the tangent to the
curve is zero. For values of x > 4, the derivative is positive,
which indicates that the function y = f (x) is increasing as x
increases.

T A B L E A.2 The Function y = x2 − 8x + 16 and
Derivative Values

x y = f (x) dy∕dx
0 16 −8
2 4 −4
4 0 0
6 4 4
8 16 8
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2 4 6 8

y = f (x)

y = f (x)

dy/dx = 4

FIGURE A.3 The function y = x2 – 8x + 16.

E X A M P L E A.3 Taylor Series Approximation

The approximation of the logarithm in (A.4) uses a very
powerful tool called a Taylor series approximation. For the
function !(y) = ln(y) it is illustrated in Figure A.4. Assume
that we know the point A on the function: for y = y0, we
know the function value !

(
y0
)
= ln

(
y0
)
. The approximation

idea is to draw a line tangent to the curve !(y) = ln(y) at A,
then approximate the point on the curve !

(
y1
)
= ln

(
y1
)

by
the point B on the tangent line. For a smooth curve like
ln(y), this strategy works well, and the approximation error

Approximation error

B = linear approximation of ln(y1)

f(y0) = ln(y0)

Slope of tangent line
= dln(y)/dy = 1/y

A

y0 y1

C

f(y) = ln(y)

f(y1) = ln(y1)

FIGURE A.4 Taylor series approximation of ln(y).

will be small if y1 is close to y0. The slope of the tangent line at
point A,

(
y0, !

(
y0
)
= ln

(
y0
))

, is the derivative of the function
!(y) = ln(y) evaluated at y0. Using Derivative Rule 8, we have

dln(y)
dy

||||y=y0

= 1
y
||||y=y0

= 1
y0

The value of the linear approximation at B is given by geom-
etry. Recall that the slope of the tangent (straight) line is “the
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rise over the run.” The “run” is A to C, or
(
y1 – y0

)
, and the

corresponding “rise” is C to B. Then

tangent slope = dln(y)
dy

||||y=y0

= 1
y0

= rise
run

= CB
AC

=
B − ln

(
y0
)

y1 − y0

Solving this equation for B = approximate value of f
(
y1
)
, we

obtain the expression in (A.4),

B = ln
(
y0
)
+ dln(y)

dy
||||y=y0

(
y1 − y0

)
= ln

(
y0
)
+ 1

y0

(
y1 − y0

)

The Taylor series approximation is used in many contexts.

Derivative Rule 10. (Taylor series approximation). If f (x) is a smooth function, then

!(x) ≅ !(a) + d!(x)
dx

||||x=a
(x − a) = !(a) + ! ′(a)(x − a)

where f ′(a) is a common notation for the first derivative of the function f (x) evaluated at x = a.
The approximation is good for x close to a. See Exercise A.16 for a second-order Taylor series
approximation.

A.3.2 Elasticity of a Nonlinear Relationship
Given the slope of a curve, the elasticity of y with respect to changes in x is given by a slightly
modified (A.8),

εyx =
dy∕y
dy∕x

= dy
dx
× x

y
= slope × x

y

For example, the quadratic function y = ax2 + bx + c is a parabola. The slope (derivative) is
dy∕dy = 2ax + b. The elasticity is

εyx = slope × x
y
= (2ax + b) x

y

As a numerical example, consider the curve defined by y = !(x) = x2 − 8x + 16. The graph of
this quadratic function is shown in Figure A.3. The slope of the curve is dy∕dx = 2x – 8. When
x = 6, the slope of the tangent line is dy∕dx = 4. When x = 6, the corresponding value of y = 4.
So the elasticity at that point is

εxy = (dy∕dx) × (x∕y) = (2x − 8)(x∕y) = 4(6∕4) = 6

A 1% increase in x is associated with a 6% change in y.

A.3.3 Second Derivatives
Since the derivative dy∕dx of f (x) is a function of x itself, we can define the derivative of the first
derivative of f (x), or second derivative of f (x), as

d2y
dx2 = d(dy∕dx)

dx
The second derivative of a function is interpreted as the rate of change of the first derivative and
indicates whether the function is increasing or decreasing at an increasing, constant or decreas-
ing rate.
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E X A M P L E A.4 Second Derivative of a Linear Function

Find the second derivative of y = 4x + 1. Using the rules of
differentiation

dy
dx

= d(4x + 1)
dx

= 4

and
d2y
dx2 = d(dy∕dx)

dx
= d(4)

dx
= 0.

The function y = !(x) = 4x + 1 is a straight line and has a
constant first derivative, or slope, 4. The rate of change of the
first derivative is zero, and the function increases at a con-
stant rate.

E X A M P L E A.5 Second Derivative of a Quadratic Function

Find the second derivative of the function y = x2 − 8x + 16
shown in Figure A.3.

dy
dx

=
d
(
x2 − 8x + 16

)

dx
= 2x − 8

d2y
dx2 = d(2x − 8)

dx
= 2

The second derivative of y = !(x) is positive and the
constant 2, which indicates that the first derivative is increas-
ing for −∞ < x < ∞. For x < 4 the function is decreasing
at a decreasing rate since the negative slope becomes less
steep; for x > 4 the function increases at an increasing
rate. At x = 4 the function is at its minimum and the slope
is zero.

A.3.4 Maxima and Minima
Using first and second derivatives, we can define relative, or local, maxima and minima of func-
tions, as shown in Figure A.5.

The function y = !(x) has a relative or local maximum at x = a if f (a) is greater than any
other value of f (x) in an interval around x = a; the function y = !(x) has a relative or local
minimum at x = a if f (a) is less than any other value of f (x) in an interval around x = a. The
conditions for a local maximum or minimum of a function y = !(x) at x = a are as follows:

f(x)

f(x)

x

Local
minimum

Slope zero at local minimum
and increasing

Slope zero at local maximum
and decreasing

Local
maximum

FIGURE A.5 Local maxima and minima.
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y = f (x, z)

z

C

A

D

Δy

Δx

z0

x0
x

y

B

Slope of CD =
x = x0, z = z0

∂f (x, z)

∂x

FIGURE A.6 Three-dimensional diagram of a partial derivative.

If y = !(x) and dy∕dx are nice (continuous) functions at x = a, and if dy∕dx = 0 at x = a then

1. If d2y∕dx2 < 0 at x = a then f (a) is a local maximum.
2. If d2y∕dx2 > 0 at x = a then f (a) is a local minimum.

E X A M P L E A.6 Finding the Minimum of a Quadratic Function

In Examples A.3 and A.5, we considered the function
y = x2 − 8x + 16. To locate possible local minima or
maxima, obtain the first derivative, set it to zero, and
solve for values of x where dy∕dx = 0. For this function,
dy∕dx = 2x − 8 = 0 implies that at x = 4 we may have a

local maximum or a local minimum. Since d2y∕dx2 = 2 > 0,
the function is increasing at an increasing rate at x = 4 (and
everywhere else), and thus !(4) = 0 is a local minimum of
y = x2 − 8x + 16.

Two notes regarding Example A.6: first, y = !(x) achieves its global or absolute minimum at
x = 4 as well as its local minimum. Second, if dy∕dx = 0 at a point x = a where d2y∕dx2 = 0
then the “test” for a local maxima or minima using first and second derivatives does not apply.

A.3.5 Partial Derivatives
When a functional relationship includes several variables, such as y = !(x, z), the slope depends
on the values of x and z, and there are slopes in two directions rather than one. In Figure A.6, we
illustrate the partial derivative of the function with respect to x, holding z constant at the value
z = z0.

At the point
(
x0, z0

)
, the value of the function is y0 = !

(
x0, z0

)
. The slope of the tangent line

CD is the partial derivative.

Slope of CD = ∂!(x, z)
∂x

||||x=x0,z=z0

The vertical bar indicates that the partial derivative function is evaluated at the point
(
x0, z0

)
.

To find the partial derivative, we use the already established rules. Consider the function
y = !(x, z) = ax2 + bx + cz + d
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To find the partial derivative of y with respect to x, treat z as a constant. Then

∂y
∂x =

d
(
ax2)

dx
+ d(bx)

dx
+ d(cz)

dx
+ d(d)

dx
= 2ax + b

Using Derivative Rule 1, the third and fourth terms in the derivative are zero, because cz and d
are treated as constants.

A.3.6 Maxima and Minima of Bivariate Functions
Let y = !(x, z) be a continuous function of two variables, or a bivariate function, with continuous
first derivatives. In order for the point (x = a, z = b) to be a local maximum or minimum three
conditions must be met.

1. The two partial derivatives be zero when evaluated at that point:
∂y
∂x

||||x=a, z=b
= 0, ∂y

∂z
||||x=a, z=b

= 0

These slope conditions are depicted in Figure A.7.
2. For a local maximum, shown in Figure A.7(a), the second partial derivatives must both be

negative at the point (x = a, z = b)

∂2y
∂x2

|||||x=a, z=b
< 0, ∂2y

∂z2

|||||x=a, z=b
< 0

These two conditions ensure that the function is concave and moving downward in the direc-
tions of the x and z axes.

For a local minimum, shown in Figure A.7(b), the second partial derivatives must both
be positive at the point (x = a, z = b) so that the function is convex and the function is
moving upward in both the x and z directions

∂2y
∂x2

|||||x=a, z=b
> 0, ∂2y

∂z2

|||||x=a, z=b
> 0

3. For a local maximum or minimum, the product of the second-order direct partials evaluated
at (x = a, z = b) must be larger than the square of the second-order cross-partial derivative
at (x = a, z = b), that is,

(
∂2y
∂x2

|||||x=a, z=b

)(
∂2y
∂z2

|||||x=a, z=b

)
>

(
∂2y
∂x∂z

|||||x=a, z=b

)2

y

(a) (b)

z

dy/dz = 0

dy/dz = 0

dy/dx = 0

dy/dx = 0

(x = a, z = b)

(x = a, z = b)
x

y

zx

FIGURE A.7 (a) Local maximum and (b) local minimum.
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For a local maximum, this condition ensures that the function is moving downward in all
directions from (x = a, z = b), not just along the x and z axes. For a local minimum, this
condition ensures that the function is moving upward in all directions from (x = a, z = b),
not just along the x and z axes.

E X A M P L E A.7 Maximizing a Profit Function

A firm produces two goods, x and y. The firm’s profit func-
tion is π = 64x − 2x2 + 4xy − 4y2 + 32y − 14. Find the profit
maximizing level of output of x and y. The first partial deriva-
tives are

∂π∕∂x = 64 − 4x + 4y, ∂π∕∂y = 4x − 8y + 32

The first condition for a maximum or minimum is to set these
first derivatives to zero and solve for possible profit maximiz-
ing values (x∗, y∗)

64 − 4x + 4y = 0
4x − 8y + 32 = 0

}
⇒ x∗ = 40, y∗ = 24

These two values may maximize profit, minimize profit,
or neither. We must check the second and third conditions
above. The second direct and cross-partial derivatives are

∂2π
∂x2 = ∂(64 − 4x + 4y)

∂x = −4

∂2π
∂y2 = ∂(4x − 8y + 32)

∂y = −8

∂2π
∂x∂y = ∂(64 − 4x + 4y)

∂y = 4

Both of the second direct partial derivatives are negative, sat-
isfying the second condition for a local maximum. The third
condition is that(

∂2π
∂x2

)(
∂2π
∂y2

)
>
(
∂2π
∂x∂y

)2

This condition is satisfied too, since (−4)(−8) = 32 > (4)2 =
16. Thus, profit is maximized at x∗ = 40, y∗ = 24, and the
maximum profit is π∗ = 1650.

E X A M P L E A.8 Minimizing a Sum of Squared Differences

The least squares problem is to find values α and β that min-
imize the objective function S(α, β) = ∑n

i=1
(
yi − α − βxi

)2

where
(
yi, xi

)
, i = 1,… , n are data values. Given three

pairs of data values
(
y1, x1

)
= (1, 1),

(
y2, x2

)
= (5, 2), and(

y3, x3
)
= (2, 3), find the minimizing values of α and β.

To find the minimizing values we first expand

S(α, β) =
n∑

i=1

(
yi − α − βxi

)2

=
n∑

i=1

(
y2

i + α
2 + β2x2

i − 2αyi − 2βxiyi + 2αβxi
)

=
n∑

i=1
y2

i + nα2 + β2
n∑

i=1
x2

i − 2α
n∑

i=1
yi − 2β

n∑
i=1

xiyi

+2αβ
n∑

i=1
xi

For the n = 3 given data pairs
3∑

i=1
y2

i = 30,
3∑

i=1
x2

i = 14,
3∑

i=1
yi = 8,

3∑
i=1

xiyi = 17,
3∑

i=1
xi = 6

The objective function is then

S(α, β) = 30 + 3α2 + β2(14) − 2α(8) − 2β(17) + 2αβ(6)
= 30 + 3α2 + 14β2 − 16α − 34β + 12αβ

The first direct partial derivatives are
∂S(α, β)
∂α = 6α − 16 + 12β, ∂S(α, β)

∂β = 28β − 34 + 12α

Setting these two equations to zero and solving yields
α∗ = 5∕3 and β∗ = 1∕2. The second-order partial derivatives
are

∂2S(α, β)
∂α2 = ∂(6α − 16 + 12β)

∂α = 6

∂2S(α, β)
∂β2 = ∂(28β − 34 + 12α)

∂β = 28

∂2S(α, β)
∂α∂β = ∂(6α − 16 + 12β)

∂β = 12

Both second direct partial derivatives are positive, and the
third condition is satisfied because
(
∂2S(α, β)
∂α2

)(
∂2S(α, β)
∂β2

)
= 6(28)

= 168 >
(
∂2S(α, β)
∂α∂β

)2
= 144

Thus, the values α∗ = 5∕3, β∗ = 1∕2 minimize the least
squares objective function, which takes the value S

(
α∗, β∗

)
≅

8.167.



❦

❦ ❦

❦

762 APPENDIX A Mathematical Tools

A.4 Integrals
An integral is an “antiderivative.” If f (x) is a function, we can ask the question, “Of what function
F(x) is this the derivative?” The answer is given by the indefinite integral

∫ !(x) dx = F(x) + C

The function f (x) + C, where C is a constant called the constant of integration, is an antideriva-
tive of f (x) because

d[F(x) + C]
dx

= d[F(x)]
dx

+ d[C]
dx

= ! (x)

Finding F(x) is an application of reversing the rules for derivatives. For example, using the rules
of derivatives,

d
(
xn + C

)

dx
= nxn−1

Thus, ∫nxn−1dx = xn + C = F(x) + C, so in this case F(x) = xn. Many indefinite integrals have
been worked out and are tabled in your favorite calculus book and at many websites.

Some handy facts about integrals are as follows:

Integral Rule 1.

∫
[
!(x) + g(x)

]
dx = ∫ !(x)dx + ∫ g(x)dx

An integral of a sum is the sum of the integrals.
Integral Rule 2.

∫ c!(x)dx = c∫ !(x)dx

Constants can be factored out of integrals.

These rules can be combined so that

Integral Rule 3.

∫
[
c1!(x) + c2g(x)

]
dx = c1∫ !(x) dx + c2∫ g(x)dx

Integral Rule 4 (power rule).

∫ xndx = 1
n + 1xn+1 + C, where n ≠ −1

Integral Rule 5 (power rule n = −1).

∫ x−1dx = ln(x) + C for x > 0

Integral Rule 6 (constant function).

∫ k dx = kx + C

Integral Rule 7 (exponential function).

∫ ekxdx = 1
k

ekx + C

A.4.1 Computing the Area Under a Curve
An important use of integrals in econometrics and statistics is to calculate areas under curves. For
example, in Figure A.8, what is the shaded area under the curve f (x)?
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a b x

f (x)

f (x)

FIGURE A.8 Area under a curve.

The area between a curve f (x) and the x-axis, between the limits a and b, is given by the definite
integral

∫
b

a
!(x)dx

The value of this integral is provided by the fundamental theorem of calculus, which says that

∫
b

a
!(x)dx = F(b) − F(a)

E X A M P L E A.9 Area Under a Curve

Consider the function

!(x) =
{

2x 0 ≤ x ≤ 1
0 otherwise (A.12)

This is the equation of a straight line through the origin, as
shown in Figure A.9.

What is the shaded area in Figure A.9, the area under
the line between a and b? The answer can be found using
the geometry of triangles. The area of a triangle is half the
base times the height, 1

2 × base × height. Triangles can be
identified by their corners. Let Δ0bc represent the area of the
triangle formed by the points 0 (the origin), b, and c. Similarly
Δ0ad represents the area of the smaller triangle formed by
the points 0, a, and d. The shaded area that represents the area
under f (x) = 2x between a and b is the difference between the
areas of these two triangles.

Area = Δ0bc − Δ0ad

=
(1

2 b
)
(2b) − 1

2 a(2a)

= b2 − a2 (A.13)

Equation (A.13) gives us an easy formula for calculating the
area under f (x) = 2x falling between a and b.

2

2b

2a

0 1a
x

b

c

d

f(x)

f(x) = 2x

FIGURE A.9 Area under the curve f (x) = 2x, 0 ≤ x ≤ 1.
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Using integration, the area under the curve f (x) = 2x and
above the x-axis between the limits x = a and x = b is
obtained by finding the definite integral of f (x) = 2x.
To use the fundamental theorem of calculus, we need the
indefinite integral. Using the power rule, Integral Rule 4,
we obtain

∫ 2xdx = 2∫ xdx = 2
[

1
2 x2 + C

]
= x2 + 2C

= x2 + C1 = F(x) + C1

where F(x) = x2 and the constant of integration is C1. The
area we seek is given by

∫
b

a
2xdx = F(b) − F(a) = b2 − a2 (A.14)

This is the same answer we obtained in (A.13) using
geometry.

Many times the algebra is abbreviated, because the con-
stant of integration does not affect the definite integral. You
will see for definite integrals

∫
b

a
2xdx = x2|||

b

a
= b2 − a2

The vertical bar notation means: evaluate the expression first
at b and subtract from it the value of the expression at a.

A.5 Exercises

A.1 Each of the following formulas, (1), (2), and (3), represents a supply or demand relation.
(1) Q = −3 + 2P where P = 10
(2) Q = 100 – 20P where P = 4
(3) Q = 50P−2 where P = 2
a. Calculate the slope of each function at the given point.
b. Interpret the slope found in (a). Do the slopes change for different values of P and Q? Is it a supply

curve (positive relationship) or a demand curve (inverse relationship)?
c. Calculate the elasticity of each function at the given point.
d. Interpret the elasticity found in (c). Do the elasticities change for different values of P and Q?

A.2 The infant mortality rate (MORTALITY) for a country is related to the annual per capita
income (INCOME, U.S. $1000) in that country. Three relationships that may describe this
relationship are
(1) ln(MORTALITY) = 7.5 − 0.5ln(INCOME)
(2) MORTALITY = 1400 − 100INCOME + 1.67INCOME2

(3) MORTALITY = 1500 − 50INCOME
a. Sketch each of these relationships between MORTALITY and INCOME between INCOME = 0

and INCOME = 30.
b. For each of these relationships, calculate the elasticity of infant mortality with respect to income

if (i) INCOME = 1, (ii) INCOME = 3, and (iii) INCOME = 25.
A.3 Suppose the rate of inflation INF, the annual percentage increase in the general price level, is related

to the annual unemployment rate UNEMP by the equation INF = −3 + 7 × (1∕UNEMP).
a. Sketch the curve for values of UNEMP between 1 and 10.
b. Where is the impact of a change in the unemployment rate the largest?
c. If the unemployment rate is 5%, what is the marginal effect of an increase in the unemployment

rate on the inflation rate?
A.4 Simplify the following expressions:

a. x2/3x2/7

b. x2∕3 ÷ x2∕7

c. (
x6y4)−1∕2
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A.5 Below are the 2015 GDP ($US) figures provided by the World Bank for a few countries.
a. Express each in scientific notation.

i. Maldives GDP $3,142,812,004
ii. Nicaragua GDP $12,692,562,187

iii. Ecuador GDP $100,871,770,000
iv. New Zealand GDP $173,754,075,210
v. India GDP $2,073,542,978,208

vi. United States GDP $17,946,996,000,000
b. Using scientific notation divide the U.S. GDP by the GDP in (i) Maldives (ii) Ecuador.
c. The population of New Zealand in 2015 was 4.595 million. Use calculations with scientific nota-

tion to compute the per capita income in New Zealand. Express the result in scientific notation.
d. The 2015 population of St. Lucia was 184,999 and its GDP was $1,436,390,325. Use calcula-

tions with scientific notation to compute the per capita income in St. Lucia. Express the result in
scientific notation.

e. Using scientific notation, express the sum of the U.S. and New Zealand GDP values. [Hint: Write
each number as a10x where x is a convenient number for both and a is a numerical value, then
simplify.]

A.6 Technology affects agricultural production by increasing yield over time. Let WHEATt = average
wheat production (tonnes per hectare) for the period 1950–2000 (t = 1, …, 51) in Western Australia’s
Mullewa Shire.
a. Suppose production is defined by WHEATt = 0.58 + 0.14 ln(t). Plot this curve. Find the slope and

elasticity at the point t = 49 (1998).
b. Suppose production is defined by WHEATt = 0.78 + 0.0003 t2. Plot this curve. Find the slope and

elasticity at the point t = 49 (1998).
A.7 Consider the function WAGE = !(AGE) = 10 + 200AGE − 2AGE2.

a. Sketch the curve for values of AGE between AGE = 20 and AGE = 70.
b. Find the derivative dWAGE∕dAGE and evaluate it at AGE = 30, AGE = 50, and AGE = 60. On

the curve in part (a), sketch the tangent to the curve at AGE = 30.
c. Find the AGE at which WAGE is maximized.
d. Compute WAGE1 = !(29.99) and WAGE2 = !(30.01). Locate these values (approximately) on

your sketch from part (a).
e. Evaluate m =[!(30.01) − !(29.99)]∕0.02. Compare this value to the value of the derivative com-

puted in (b). Explain, geometrically, why the values should be close. The value m is a “numerical
derivative,” which is useful for approximating derivatives.

A.8 Sketch each of the demand curves below. (i) Indicate the area under the curve between prices P = 1
and P = 2 on the sketch. (ii) Using integration, calculate the area under the curve between prices
P = 1 and P = 2.
a. Q = 15 − 5P
b. Q = 10P−1∕2

c. Q = 10∕P
A.9 Consider the function !(y) = 1∕100 over the interval 0 < y < 100 and !(y) = 0 otherwise.

a. Calculate the area under the curve f (y) for the interval 30 < y < 50 using a geometric argument.
b. Calculate the area under the curve f (y) for the interval 30 < y < 50 as an integral.
c. What is a general expression for the area under f (y) over the interval [a, b], where 0 < a < b < 100?
d. Calculate the integral from y = 0 to y = 100 of the function y!(y) = y∕100.

A.10 Consider the function !(y) = 2e−2y for 0 < y < ∞.
a. Draw a sketch of the function.
b. Compute the integral of f(y) from y = 1 to y = 2 and illustrate the value on the part (a) sketch.

A.11 Let y0 = 1. For each of the values y1 = 1.01, 1.05, 1.10, 1.15, 1.20, and 1.25 compute
a. The actual percentage change in y using equation (A.2).
b. The approximate percentage change in y using equation (A.3).
c. Comment on how well the approximation in equation (A.3) works as the value of y1 increases.
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A.12 A firm uses labor (L) and capital (K) to produce output (Q). Suppose the production function is
Q = 6L1∕2K1∕3. The firm sells its product at price P = 4 and pays its labor a wage W = 12 with the
price of capital being R = 5.
a. Find the combination of labor and capital that maximizes profits π = P × Q − (W × L) − (R × K)

where Q is given by the production function. Check all conditions for a relative maximum.
b. Find the marginal product of labor, ∂Q∕∂L, and the marginal product of capital, ∂Q∕∂K, at the

profit maximizing amounts of labor and capital.
A.13 Use Derivative Rule 10 (Taylor Series approximation) to approximate each of the functions below at

x = 1.5 and x = 2. Let a = 1. Calculate the percentage approximation error in each case.
a. !(x) = 3x2 − 5x + 1
b. !(x) = ln(2x)
c. !(x) = e2x

A.14 Suppose that a person’s earnings (INCOME) are determined by their education (EDUC) and experi-
ence (EXPER) according to the relation

INCOME = −2EDUC2 + 78EDUC − 2EXPER2 + 66EXPER − 2EDUC × EXPER

Find the values of education and experience that maximize the person’s income.
A.15 A variable y changes value from y0 = 4 to y1 = 4.6.

a. Compute the relative change in y.
b. Compute the percentage change in y.
c. If the value of y is 4, what is the value of y if it increases by 18%?

A.16 Derivative Rule 10 is a “first-order” Taylor series approximation. A “second-order” Taylor series
approximation is

!(x) ≅ ! (a) + d!(x)
dx

||||x=a
(x − a) + 1

2
d2!(x)

dx2
||||x=a

(x − a)2

= !(a) + ! ′(a)(x − a) + 1
2!

′′(a)(x − a)2

where f ′′(a) represents the second derivative of the function evaluated at the point x = a.
a. Use both the first- and second-order Taylor series approximations to approximate the function

!(x) = e2x at x = 1.5 and x = 2. Let a = 1. Calculate the percentage approximation error in
each case.

b. Draw a sketch of the function !(x) = e2x for 0 < x < 3. On the sketch show the tangent line to
the function at a = 1. On the same graph extrapolate the tangent line to show the location of the
first-order approximation when x = 2. Show the value of the second-order approximation when
x = 2.

c. Calculate the percentage approximation error for the first- and second-order Taylor series approx-
imations in part (b). Which is better in this case?

A.17 In 2015, the GDP (in nominal U.S. dollars) of Belarus was GDPB = $54, 608, 962, 634.99 and that of
Poland was GDPP = $474, 783, 393, 022.95.
a. Write GDPB in scientific notation.
b. Use scientific notation to divide GDPP by GDPB. Show your work.
c. Write the natural log of GDPP.
d. Find exp

[
ln
(
GDPA

)
− ln

(
GDPB

)]
. Write the solution in scientific notation. Show your work.

A.18 Carry out the following:
a. Suppose your wage rate increases from $17/hr to $18/hr. What is the percentage increase in your

wage?
b. Calculate 100[ln(18) – ln(17)].
c. Suppose your wage rate increases from $17/hr to $28/hr. What is the percentage increase in your

wage?
d. Calculate 100[ln(28) – ln(17)].
e. Calculate ln(1.02).
f. Calculate ln(1.57).
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A.19 Suppose your wage rate is determined by

WAGE = −19.68 + 2.52EDUC + 0.55EXPER − 0.007EXPER2

where EDUC is years of schooling and EXPER is years of work experience. Using calculus, what
value of EXPER maximizes WAGE for a person with 16 years of education? Show your work.

A.20 Suppose wages are determined by the following equation. EDUC = years of education, EXPER =
years of work experience, and FEMALE = 1 if person is female, 0 otherwise.

WAGE = −23.06 + 2.85EDUC + 0.80EXPER − 0.008EXPER2 − 9.21FEMALE
+ 0.34(FEMALE × EDUC) − 0.015(EDUC × EXPER)

Find ∂WAGE/∂EDUC for a female with 16 years of schooling and 10 years of experience. Show
your work.
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Probability Concepts
L E A R N I N G O B J E C T I V E S

Based on the material in this appendix, you should be able to

1. Explain the difference between a random
variable and its values, and give an
example.

2. Explain the difference between discrete and
continuous random variables, and give
examples of each.

3. State the characteristics of probability density
functions (pdf ) for discrete and continuous
random variables, and give examples illustrating
these characteristics.

4. Compute probabilities of events, given the
probability density function for a discrete or
continuous random variable.

5. Show, geometrically and algebraically, using
integration, how to compute probabilities given
a pdf for a continuous random variable.

6. Use the definitions of expected values for
discrete and continuous random variables to
compute expectations, given a pdf f(x) and a
function g(x).

7. Define the variance of a random variable, and
explain in what sense the values of a random
variable are more spread out if the variance is
larger.

8. Use a joint pdf for two continuous random
variables to compute probabilities of joint
events, and to find the (marginal) pdf of each
individual random variable.

9. Find the conditional pdf for one random variable
given the value of another and their joint pdf, and
use it to compute conditional probabilities, the
conditional mean, and the conditional variance.

10. Define the covariance and correlation between
two random variables, and compute these
values given a joint probability function.

11. Explain and apply the law of iterated
expectations. Explain the variance and
covariance decompositions.

12. Find the distribution of a random variable
Y = g(X), when g(X) is a strictly increasing or
decreasing function, given the probability
density function f(x) for the random variable X.

13. Obtain a random number from a probability
density function f(x) when its cumulative
distribution function F(x) is invertible.

14. Explain in what sense random numbers
generated by a computer are random, and
in what sense they are not.

K E Y W O R D S
binary variable
binomial random variable
cdf
change of variable technique
chi-square distribution
conditional pdf
conditional probability
continuous random variables

correlation
covariance
covariance decomposition
cumulative distribution function
degrees of freedom
discrete random variable
expected value
experiment

F-distribution
inversion method
iterated expectation
Jacobian
joint probability density function
marginal distributions
mean
median

768
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modulus
normal distribution
pdf
Poisson distribution
probability
probability density function

pseudo-random numbers
random number
random number seed
random variable
standard deviation
standard normal distribution

statistically independent
strictly monotonic
t-distribution
uniform distribution
variance
variance decomposition

We assume that you have had a basic probability and statistics course and that you have read the
Probability Primer that precedes Chapter 2. If you have not read the Probability Primer, then do
so now.

In this appendix we summarize rules of expected values and variances for discrete random
variables for easy reference. We then develop similar rules for continuous random variables that
will require the use of integral concepts introduced in Appendix A.4. We review the properties
of some important discrete and continuous random variables, including the t-, chi-square, and
F-distributions. Finally, we introduce concepts related to computer-generated random numbers.

B.1 Discrete Random Variables
In this section we provide a summary of operations with discrete random variables. See the Prob-
ability Primer for examples and general background discussion.

A random variable is a variable whose value is unknown until it is observed; in other words,
it is a variable that is not perfectly predictable. A discrete random variable can take only a
limited, or countable, number of values. An example of a discrete random variable is the number
of late credit card bill payments last year by a randomly selected individual. A special case occurs
when a random variable can only be one of two possible values. A payment is either late or it is
not. Outcomes like this can be characterized by a binary variable taking the value one for late
payments and zero for those that are on time. Such variables are also called indicator variables,
or dummy variables.

We summarize the probabilities of possible outcomes using a probability density function
( pdf ). The pdf for a discrete random variable indicates the probability of each possible value
occurring. For a discrete random variable X the value of the probability density function f (x) is
the probability that the random variable X takes the value x, f (x) = P(X = x). Because f (x) is a
probability, it must be true that 0 ≤ f (x) ≤ 1 and, if X takes n possible values x1, …, xn, then the
sum of their probabilities must be one

P
(
X = x1

)
+ P

(
X = x2

)
+ · · · + P

(
X = xn

)
= !

(
x1
)
+ !

(
x2
)
+ · · · + !

(
xn
)
= 1

The cumulative distribution function (cdf ) is an alternative way to represent probabilities. The
cdf of the random variable X, denoted by F(x), gives the probability that X is less than or equal
to a specific value x. That is,

F(x) = P(X ≤ x) (B.1)

Two key features of a probability distribution are its center (location) and width (dispersion).
A measure of the center is the mean, or expected value; measures of dispersion are variance,
and its square root—the standard deviation.

B.1.1 Expected Value of a Discrete Random Variable
The mean of a random variable is given by its mathematical expectation. If X is a discrete
random variable taking the values x1,…, xn then the mathematical expectation, or expected value,
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of X is

μX = E(X) = x1P
(
X = x1

)
+ x2P

(
X = x2

)
+ · · · + xnP

(
X = xn

)
(B.2a)

The expected value, or mean, of X is a weighted average of its values, the weights being the
probabilities that the values occur. The mean is often symbolized by μ or μX. It is the average value
of the random variable in all possible experimental outcomes from the underlying experiment.
Because the probability that the discrete random variable X takes the value x is given by its pdf
f (x), P(X = x) = f (x), the expected value in (B.2a) can be written equivalently as

μX = E(X) = x1!
(
x1
)
+ x2!

(
x2
)
+ · · · + xn!

(
xn
)

=
n∑

i=1
xi!

(
xi
)
= ∑

x
x!(x) (B.2b)

Functions of random variables are also random. Expected values are obtained using calculations
similar to those in (B.2). If X is a discrete random variable and g(X) is a function of it, then

E
[
g(X)

]
= ∑

x
g(x)!(x) (B.3)

Using (B.3) we can develop some frequently used rules. If a is a constant, then

E(aX) = aE(X) (B.4)

Similarly, if a and b are constants, then we can show that

E(aX + b) = aE(X) + b (B.5)

To see how this result is obtained, we apply the definition in (B.3) to the function g(X) = aX + b

E
[
g(X)

]
=∑

g(x)!(x) = ∑(ax + b)!(x) = ∑[
ax!(x) + b!(x)

]

=∑[
ax!(x)

]
+∑[

b!(x)
]
= a

∑
x!(x) + b

∑
!(x)

= aE(X) + b

In the final step we recognize E(X) from its definition in (B.2), and use the fact that ∑!(x) = 1.
If g1(X), g2(X), …, gM(X) are functions of X, then

E
[
g1(X) + g2(X) + · · · + gM(X)

]
= E

[
g1(X)

]
+ E

[
g2(X)

]
+ · · · + E

[
gM(X)

]
(B.6)

This rule extends to any number of functions. The expected value of a sum is always the sum
of the expected values.

A similar rule does not work, in general, for nonlinear functions. That is, E
[
g(X)

] ≠ g
[
E(X)

]
.

For example, E
(
X2) ≠ [

E(X)
]2.

B.1.2 Variance of a Discrete Random Variable
The variance of a discrete random variable X is the expected value of

g(X) =
[
X − E(X)

]2

The variance of a random variable is important in characterizing the scale of measurement and the
spread of the probability distribution. We give it the symbol σ2, which is read “sigma squared,”
or σ2

X . Algebraically, letting E(X) = μX,

var(X) = σ2
X = E

[(
X − μX

)2] = E
(
X2) − μ2

X (B.7)
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The variance of a random variable is the average squared difference between the random variable
X and its mean value μ. The larger the variance of a random variable, the more “spread out” its
values are. The square root of the variance is called the standard deviation; it is denoted by σ
or σX. It measures the spread or dispersion of a distribution and has the advantage of being in the
same units of measure as the random variable.

A useful property of variances is the following. Let a and b be constants; then
var(aX + b) = a2var(X) (B.8)

This result is proven in the Probability Primer, Section P.5.4.
Two other characteristics of a probability distribution are its skewness and kurtosis. These

are defined as

skewness =
E
[(

X − μX
)3]

σ3
X

(B.9)

and

kurtosis =
E
[(

X − μX
)4]

σ4
X

(B.10)

Skewness measures the lack of symmetry of a distribution. If the distribution is symmetric, then
its skewness = 0. Distributions with long tails to the left are negatively skewed, and skewness
< 0. Distributions with long tails to the right are positively skewed, and skewness > 0. Kurtosis
measures the “peakedness” of a distribution. A distribution with large kurtosis has more values
concentrated near the mean and a relatively high central peak. A distribution that is relatively flat
has a lower kurtosis. The benchmark value for kurtosis is 3, which is the kurtosis of the normal
distribution that we discuss later in this appendix (Section B.3.5).

B.1.3 Joint, Marginal, and Conditional Distributions
If X and Y are discrete random variables, then the joint probability that X = a and Y = b is given
by the joint pdf of X and Y , written as f (x, y), and P[X = a,Y = b] = f (a, b). The sum of the joint
probabilities is one, ∑x

∑
y!(x, y) = 1. Given a joint probability density function, we can obtain

the probability distributions of individual random variables, which are also known as marginal
distributions. If X and Y are two discrete random variables, then

!X(x) =
∑
y
!(x, y) for each value X can take (B.11)

For discrete random variables, the probability that the random variable Y takes the value y given
that X = x is written P(Y = y|X = x). This conditional probability is given by the conditional pdf
f (y|x):

!(y|x) = P(Y = y|X = x) = P(Y = y,X = x)
P(X = x) = !(x, y)

!X(x)
(B.12)

Two random variables are statistically independent if the conditional probability that Y = y given
that X = x, is the same as the unconditional probability that Y = y for all x and y values. In this
case, knowing the value of X does not alter the probability distribution of Y . If X and Y are
independent random variables, then

P(Y = y|X = x) = P(Y = y) (B.13)
Equivalently, if X and Y are independent, then the conditional pdf of Y given X = x is the same
as the unconditional, or marginal, pdf of Y alone,

!(y|x) = !(x, y)
!X(x)

= !Y(y) (B.14)
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The converse is also true, so that if (B.13) or (B.14) is true for every possible pair of x and y
values, then X and Y are statistically independent.

Solving (B.14) for the joint pdf, we can also say that X and Y are statistically independent if
their joint pdf factors into the product of their marginal pdf s

!(x, y) = !X(x)!Y(y) (B.15)

If (B.15) is true for each and every pair of x and y values, then X and Y are statistically inde-
pendent. This result extends to more than two random variables. If X, Y , and Z are statisti-
cally independent, then their joint probability density function can be factored and written as
f (x, y, z) = fX(x) • fY(y) • fZ(z).

B.1.4 Expectations Involving Several Random Variables
A rule similar to (B.3) exists for functions of several random variables. Let X and Y be discrete
random variables with joint pdf f (x, y). If g(X, Y) is a function of X and Y , then

E
[
g(X,Y )

]
= ∑

x

∑
y

g(x, y)!(x, y) (B.16)

Using (B.16) we can show that

E(X + Y ) = E(X) + E(Y ) (B.17)

This follows by using the definition (B.16) and letting g(X, Y ) = X + Y . Then

E(X + Y) =∑
x

∑
y

g(x, y)!(x, y) [general definition]

=∑
x

∑
y
(x + y)!(x, y) [specific function]

=∑
x

∑
y

x!(x, y) +∑
x

∑
y

y!(x, y) [separate terms]

=∑
x

x
∑
y
!(x, y) +∑

y
y
∑
x
!(x, y) [factor constants from 2nd sum]

=∑
x

x!(x) +∑
y

y!(y) [recognize marginal pdf ]

= E(X) + E(Y) [recognize expected values]

To go from the fourth to the fifth line, we have used (B.11) to obtain the marginal distributions
of X and Y , and the fact that the order of summation does not matter. Using the same logic, we
can show that

E(aX + bY + c) = aE(X) + bE(Y ) + c (B.18)

In general, E[g(X,Y )] ≠ g[E(X ),E(Y )]. For example, in general, E(XY ) ≠ E(X )E(Y ). If, however,
X and Y are statistically independent, then using (B.16), we can also show that E(XY ) = E(X )E(Y ).
To see this, recall that if X and Y are independent, then their joint pdf factors into the product of
the marginal pdf s, f(x, y) = f(x) f(y). Letting g(X,Y ) = XY, we have

E(XY ) = E
[
g(X,Y )

]
= ∑

x

∑
y

xy!(x, y) = ∑
x

∑
y

xy!(x)!(y)

=∑
x

x!(x)∑
y

y!(y) = E(X)E(Y )

This rule can be extended to more independent random variables.
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B.1.5 Covariance and Correlation
One particular application of (B.16) is the derivation of the covariance between X and Y . Define
a function that is the product of X minus its mean times Y minus its mean,

g(X,Y ) =
(
X − μX

)(
Y − μY

)
(B.19)

The covariance is the expected value of (B.19)

cov(X,Y ) = σXY = E
[(

X − μX
)(

Y − μY
)]

= E(XY ) − μXμY (B.20)

If the covariance σXY of the variables is positive, then when x values are greater than their mean,
the y values also tend to be greater than their mean, and when x values are below their mean,
then the y values also tend to be less than their mean. In this case the random variables X and Y
are said to be positively or directly associated. If σXY < 0, then the association is negative, or
inverse. If σXY = 0, then there is neither a positive nor a negative relationship.

Interpreting the actual value of σXY is difficult, because X and Y may have different units of
measurement. Scaling the covariance by the standard deviations of the variables eliminates the
units of measurement, and defines the correlation between X and Y:

ρ = cov(X,Y )√
var(X)

√
var(Y )

=
σXY
σXσY

(B.21)

As with the covariance, the correlation ρ between two random variables measures the degree of
linear association between them. However, unlike the covariance, the correlation must lie between
–1 and 1. The correlation between X and Y is 1 if there is a perfect positive linear relationship
between X and Y and –1 if there is a perfect negative, or inverse, association between X and Y .
If there is no linear association between X and Y , then cov(X,Y ) = 0 and ρ = 0. For other val-
ues of correlation, the magnitude of the absolute value |ρ| indicates the “strength” of the linear
association between the values of the random variables.

If X and Y are independent random variables, then the covariance and correlation between
them are zero. The converse of this relationship is not true. Independent random variables X and Y
have zero covariance, indicating that there is no linear association between them. However, just
because the covariance or correlation between two random variables is zero does not mean that
they are necessarily independent. There may be more complicated nonlinear associations such as
X2 + Y 2 = 1.

In (B.17) we found the expected value of a sum of random variables. There are similar rules
for variances. If a and b are constants, then

var(aX + bY ) = a2var(X) + b2var(Y ) + 2ab cov(X,Y ) (B.22)

To see this, it is convenient to define a new discrete random variable Z = aX + bY . This random
variable has expected value

μZ = E(Z) = E(aX + bY) = aE(X) + bE(Y ) = aμX + bμY

The variance of Z is

var(Z) = E
[(

Z − μZ
)2]

= E
{[

(aX + bY) −
(
aμX + bμY

)]2}
[substitute Z]

= E
{[(

aX − aμX
)
+
(
bY − bμY

)]2}
[combine like terms]
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= E
{[

a
(
X − μX

)
+ b

(
Y − μY

)]2}
[factor]

= E
[
a2(X − μX

)2 + b2(Y − μY
)2 + 2ab

(
X − μX

)(
Y − μY

)]
[expand]

= E
[
a2(X − μX

)2] + E
[
b2(Y − μY

)2] + E
[
2ab

(
X − μX

)(
Y − μY

)]
[group terms]

= a2var(X) + b2var(Y) + 2abcov(X,Y) [factor and recognize]
These rules extend to more random variables. For example, if X, Y , and Z are random variables,
then

var(aX + bY + cZ ) = a2var(X ) + b2var(Y ) + c2var(Z ) + 2abcov(X,Y )

+ 2bccov(Y,Z ) + 2accov(X,Z ) (B.23)

B.1.6 Conditional Expectations
If X and Y are two random variables with joint probability distribution f (x, y), then the conditional
probability distribution of Y given X is f (y|x). We can use this conditional pdf to compute the
conditional mean of Y given a value of X. That is, we can obtain the expected value of Y given that
X = x. The conditional expectation E(Y|X = x) is the average (or mean) value of Y given that X
takes the value x. In the discrete case, it is defined to be

E(Y|X = x) = ∑
y

yP(Y = y|X = x) = ∑
y

y!(y|x) (B.24)

Similarly, we can define the conditional variance of Y given X. This is the variance of the con-
ditional distribution of Y given X. In the discrete case, it is

var(Y|X = x) = ∑
y

[
y − E(Y|X = x)

]2!(y|x) (B.25)

B.1.7 Iterated Expectations
The law of iterated expectations says that the expected value of Y is equal to the expected value
of the conditional expectation of Y given X. That is,

E(Y ) = EX
[
E(Y|X )

]
(B.26)

In Probability Primer Section P.6.3, we provide a numerical example of the Law of Iterated Expec-
tations, and give the proof.

B.1.8 Variance Decomposition
Just as we can break up the expected value using the Law of Iterated Expectations, we can decom-
pose the variance of a random variable into two parts.

Variance Decomposition: var(Y ) = varX
[
E(Y|X )

]
+ EX

[
var(Y|X )

]
(B.27)

This result says that the variance of the random variable Y equals the sum of the variance of the
conditional mean of Y given X and the mean of the conditional variance of Y given X. We discuss
the variance decomposition for discrete random variables in Section P.6.4 of the Probability
Primer. Here we provide the proof and a numerical example.
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Proof of the Variance Decomposition We use the relationship between the marginal,
conditional, and joint pdf s to prove the variance decomposition for discrete random variables.
First, write out var(Y ) in an expanded form.

var(Y ) = ∑
y

(
y − μy

)2!(y)

= ∑
y

(
y − μy

)2
{∑

x
!(x, y)

}
[replace marginal density]

= ∑
y

(
y − μy

)2
{∑

x
!(y|x) !(x)

}
[replace joint density]

= ∑
x

∑
y

(
y − μy

)2!(y|x) !(x) [change order of summation]

= ∑
x

∑
y

(
y − E(Y|x) + E(Y|x) − μy

)2!(y|x)!(x) [subtract and add conditional mean]

= ∑
x

∑
y

([
y−E(Y|x)]+[E(Y|x)−μy

])2
!(y|x)!(x) [group terms, then square and expand]

= ∑
x

∑
y

{(
y − E(Y|x))2 +

(
E(Y|x) − μy

)2 + 2
(
y − E(Y|x))(E(Y|x) − μy

)}
!(y|x)!(x)

= ∑
x

∑
y

(
y − E(Y|x))2!(y|x)!(x) [Term 1]

+∑
x

∑
y

(
E(Y|x) − μy

)2!(y|x)!(x) [Term 2]

+∑
x

∑
y

2
(
y − E(Y|x))(E(Y|x) − μy

)
!(y|x)!(x) [Term 3]

Examine the three terms separately.

Term 3:
Term 3 = ∑

x

∑
y

2
(
y − E(Y|x))(E(Y|x) − μy

)
!(y|x)!(x)

= 2∑
x

{∑
y

(
y − E(Y|x))(E(Y|x) − μy

)
!(y|x)

}
!(x) [group inner sum]

= 2∑
x

{(
E(Y|x) − μy

)[∑
y

(
y − E(Y|x))!(y|x)

]}
!(x) [factor out constant]

= 2∑
x

{(
E(Y|x) − μy

)
[0]

}
!(x)

= 0

In the third line above we recognize that in the summation over the values of y the expression(
E(Y|x) − μy

)
does not vary, so that it can be factored out. The remaining term in the square

brackets is zero because
∑
y

(
y − E(Y|x))!(y|x)

= ∑
y

y!(y|x) − E(Y|x)∑
y
!(y|x) [

factor out the constant E(Y|X)]

= E(Y|x) − E(Y|x) = 0
[

definition of conditional expectation & ∑
y
!(y|x) = 1

]
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Term 2:
Term 2 =∑

x

∑
y

(
E(Y|x) − μy

)2!(y|x)!(x)

=∑
x

{∑
y

(
E(Y|x) − μy

)2!(y|x)
}
!(x)

=∑
x

{(
E(Y|x) − μy

)2∑
y
!(y|x)

}
!(x)

[
factor out

(
E(Y|x) − μy

)2]

=∑
x

{(
E(Y|x) − μy

)2}!(x)
[∑

y
!(y|x) = ∑

y
P
(
Y = y|X = x

)
= 1

]

=∑
x

(
E(Y|x) − μy

)2!(x)

= varX
[
E(Y|X)]

In the final step, we label Term 2 as varX[E(Y|X)] =
∑
x

(
E(Y|x) − μy

)2!(x). The intuition behind
the terminology is discussed in Section P.6.3. The key point is that E(Y|X) varies as the value of
X varies. One way to recognize this is to say E(Y|X) = g(X). Using first principles var

[
g(X)

]
=

E
{

g(X) − E
[
g(X)

]}2. Also EX
[
g(X)

]
= EX[E(Y|X)] = E(Y ) = μy using the law of iterated expec-

tations. Then

varX
[
g(X)

]
= EX

{[
g(X) − μy

]2} = EX

{[
E(Y|X) − μy

]2} = ∑
x

[
E(Y|x) − μy

]2!(x)

Term 1:
Term ! =∑

x

∑
y

(
y − E(Y|x))2!(y|x)!(x)

=∑
x

{∑
y

(
y − E(Y|x))2!(y|x)

}
!(x)

=∑
x

var(Y|x)!(x)

= EX
[
var(Y|X)]

Term 1 is the expectation of the conditional variance of Y given X. A key point here, as in Term 2,
is that the conditional variance of Y given X is a function of X.

E X A M P L E B.1 Variance Decomposition: Numerical Example

The calculations illustrating the variance decomposition are
somewhat involved. We have broken it up into parts to sim-
plify the logic.

Variance of Y

For the population in Table P.1, given in the Probabil-
ity Primer, the unconditional variance of Y is var(Y ) =
E
(
Y 2) − μ2

Y. We have shown that E(Y ) = μY = 2∕5. Also,

E
(
Y 2) = ∑

y
y2!Y(y) = 02 × (6∕10) + 12 × (4∕10) = 2∕5

Then var(Y ) = E
(
Y 2) − μ2

Y = 2∕5 −(2∕5)2 = 6∕25 = 0.24.

Variance of the Conditional Expectation
of Y Given X

The first component of the variance decomposition is
varX[E(Y|X)]. As we have noted earlier, E(Y|X) = g(X)
is a function of X. We computed these values to be
E(Y|X = 1) = 1, E(Y|X = 2) = 1∕2, E(Y|X = 3) = 1∕3, and
E(Y|X = 4) = 1∕4. What is the variance of these terms,
treating X as random? The variance of a function of X,
g(X), is

varX
[
g(X)

]
= ∑

x

{
g(x) − EX

[
g(x)

]}2
!X(x)
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Using the law of iterated expectations
EX
[
g(x)

]
= EX[E(Y|X = x)] = E(Y) .

The calculation we need is
varX

[
E(Y|X)] = ∑

x

[
E(Y|X = x) − μY

]2!X(x)

=
[∑

x
E(Y|X = x)2!X(x)

]
− μ2

Y

Now
∑
x

E(Y|X = x)2!X(x)

= E(Y|X = 1)2!X(1) + E(Y|X = 2)2!X(2)

+ E(Y|X = 3)2!X(3) + E(Y|X = 4)2!X(4)

= 12
( 1

10
)
+
(1

2
)2 ( 2

10
)
+
(1

3
)2 ( 3

10
)
+
(1

4
)2 ( 4

10
)

= 5
24

Then,

varX
[
E(Y|X)] =

[∑
x

E(Y|X = x)2!X(x)
]
− μ2

Y = 5
24 −

(2
5
)2

= 29
600 = 0.048333…

That is, E(Y|X) exhibits variation as X changes and has vari-
ance 0.0483.

Expectation of the Conditional Variance
of Y Given X

The second component of the variance decomposition is
EX[var(Y|X)]. The conditional variance var(Y|X = x) varies
randomly as X varies, if we treat X as random, so that
finding its expected value makes sense. For the population
in Table P.1, we have already computed the conditional
means E(Y|X = x) for each x. The conditional variances are
var(Y|X = x) = E

(
Y 2|X = x

)
− [E(Y|X = x)]2 so we need

the terms E
(
Y 2|X = x

)
for each value of X. These are

E
(
Y 2|X = 1

)
= 1, E

(
Y 2|X = 2

)
= 1∕2,

E
(
Y 2|X = 3

)
= 1∕3, E

(
Y 2|X = 4

)
= 1∕4

Then

var(Y|X = 1) = E
(
Y 2|X = 1

)
−
[
E(Y|X = 1)

]2

= 1 − 12 = 0
var(Y|X = 2) = E

(
Y 2|X = 2

)
−
[
E(Y|X = 2)

]2

= 1∕2 − (1∕2)2 = 1∕4
var(Y|X = 3) = E

(
Y 2|X = 3

)
−
[
E(Y|X = 3)

]2

= 1∕3 − (1∕3)2 = 2∕9
var(Y|X = 4) = E

(
Y 2|X = 4

)
−
[
E(Y|X = 4)

]2

= 1∕4 − (1∕4)2 = 3∕16

The expected value of the conditional variance is

EX
[
var(Y|X)] =∑

x
var(Y|X = x)!X(x)

= 0(1∕10) + (1∕4)(2∕10)
+ (2∕9)(3∕10) + (3∕16)(4∕10)

= 23∕120 = 0.191666…

The interpretation of this expectation is that if we repeatedly
drew a random member from the population in Table P.1,
and for each value computed the conditional variance
var(Y|X = x), the average of the conditional variance in
many trials would approach 0.19167.

Variance of Y Decomposed

We have shown that for the population in Table P.1
varX[E(Y|X)] = 29∕600 and EX[var(Y|X)] = 23∕120. The
variance decomposed is

var(Y ) = varX
[
E
(
Y|X)] + EX

[
var(Y|X)]

= 29
600 + 23

120 = 144
600 = 6

25 = 0.24

This is the same value for var(Y ) that we derived in the first
step above.

B.1.9 Covariance Decomposition
Recall that the covariance between two random variables Y and X is cov(X,Y ) =
E
[(

X − μX
)(

Y − μY
)]

. For discrete random variables the expectation is
cov(X,Y ) = ∑

x

∑
y

(
x − μX

)(
y − μY

)
!(x, y)

By using the relationships between marginal, conditional, and joint pdf s we can show
cov(X,Y ) = ∑

x

(
x − μX

)
E(Y|X = x)!(x)
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Recall that E(Y|X) = g(X) is a function of X. The covariance between X and Y can be calculated
as the expected value of X, minus its mean, times a function of X,

cov(X,Y ) = EX

[(
X − μX

)
E(Y|X)

]
(B.28)

A numerical example of this covariance decomposition is given in the Probability Primer
Section P.6.5.

Proof of the Covariance Decomposition
cov(X,Y ) =∑

x

∑
y

(
x − μX

)(
y − μY

)
!(x, y)

=∑
x

∑
y

(
x − μX

)
y!(x, y) − μY

∑
x

∑
y

(
x − μX

)
!(x, y)

In this expression, the second term is zero, because
∑
x

∑
y

(
x − μX

)
!(x, y) =∑

x

(
x − μX

)∑
y
!(x, y)

[
factor out

(
x − μX

)]

=∑
x

(
x − μX

)
!(x)

[∑
y
!(x, y) = !(x)

]

=∑
x

x!(x) − μX
∑
x
!(x)

= μX − μX = 0
[∑

x
!(x) = 1

]

Then
cov(X,Y ) =∑

x

∑
y

(
x − μX

)(
y − μY

)
!(x, y) = ∑

x

∑
y

(
x − μX

)
y!(x, y)

=∑
x

(
x − μX

){∑
y

y!(y|x)
}
!(x)

=∑
x

(
x − μX

)
E(Y|X = x)!(x)

B.2 Working with Continuous Random Variables
Continuous random variables can take any value in at least one interval. In economics, variables
like income and market prices are treated as continuous random variables. In Figure P.2 of the
Probability Primer, we depict the probability density function for a continuous random variable
that ranges between zero and infinity, or x > 0. Because continuous random variables can take
uncountably many values, the probability that any single value occurs in a random experiment
is zero. For example, P(X = 100) = 0 or P(X = 200) = 0. Probability statements for continuous
random variables are meaningful when we ask about outcomes within intervals, or ranges. We
can ask, “What is the probability that X takes a value between 100 and 200?” These ideas were
introduced in Sections P.1 and P.2 of the Probability Primer. There we noted that probabilities
like these are areas under a curve that is the probability density function. It would be a good
time to review those sections now if the concepts are not fresh in your minds. What we did not
discuss in the Probability Primer was how exactly such probabilities are calculated. We delayed
that discussion until now, because tools from integral calculus are required.

In this section, we discuss how to work with continuous random variables. The interpreta-
tion of probabilities, expected values, and variances carries over from what you learned about
discrete random variables. What changes is the algebra—summation signs turn into integrals,
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and this takes a little getting used to. If you have not done so, review the discussion of integrals
in Appendix A.4.

B.2.1 Probability Calculations
If X is a continuous random variable with probability density function f (x), then f (x) must obey
certain properties:

!(x) ≥ 0 (B.29)

∫
∞

−∞
!(x)dx = 1 (B.30)

P(a ≤ X ≤ b) = ∫
b

a
!(x)dx (B.31a)

Property (B.29) states that the pdf cannot take negative values. Property (B.30) states that the
total area under the pdf , which is the probability that X falls between −∞ and∞, is one. Property
(B.31a) states that the probability that X falls in the interval [a, b] is the area under the curve f (x)
between those values. Because a single point has probability zero, it is also true that

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b) = ∫
b

a
!(x)dx (B.31b)

The cumulative distribution function, cdf , for a continuous random variable is F(x) = P(X ≤ x).
Using the cdf we can compute

P(X ≤ a) = ∫
a

−∞
!(x)dx = F(a) (B.32a)

The cdf is obtained by integrating the pdf . The integral is an “antiderivative,” so that we can
obtain the pdf f (x) by differentiating the cdf F(x). That is,

!(x) = dF(x)
dx

= F ′(x) (B.32b)

The concept of a cdf is useful in many ways, including working with computer software, which
includes the cdf s of many random variables so that probabilities can be easily computed.

E X A M P L E B.2 Probability Calculation Using Geometry

Let X be a continuous random variable with pdf f(x) =
2(1 − x) for 0 ≤ x ≤ 1. This pdf is depicted in Figure B.1.

Property (B.29) holds for x in the interval [0, 1]. Fur-
thermore, property (B.30) holds because

∫
∞

−∞
!(x)dx = ∫

1

0
2(1 − x)dx = ∫

1

0
2dx − ∫

1

0
2xdx

= 2x
||||
1

0
− x2||||

1

0
= 2 − 1 = 1

Using Figure B.1, we can compute P
(

1
4 ≤ X ≤ 3

4

)
= 1

2
using geometry. Using integration, we come to the same
conclusion:

P
(1

4 ≤ X ≤ 3
4
)
= ∫

3∕4

1∕4
!(x)dx = ∫

3∕4

1∕4
2(1 − x)dx

= ∫
3∕4

1∕4
2dx − ∫

3∕4

1∕4
2xdx = 2x

||||
3∕4

1∕4
− x2||||

3∕4

1∕4

= 1 −
(9

6 −
1
16

)
= 1

2

The cumulative distribution function is F(x) = 2x – x2 for x in
the interval [0, 1], so the probability can also be computed as

P
(1

4 ≤ X ≤ 3
4
)
= F

(3
4
)
− F

(1
4
)
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FIGURE B.1 Probability density function f (x) = 2(1− x).

E X A M P L E B.3 Probability Calculation Using Integration

Let X be a continuous random variable with pdf f(x) = 3x2

for x in the interval [0,1]. Properties (B.29) and (B.30) hold.
Because the pdf is a quadratic, we cannot use simple geom-
etry to compute P

(
1
4 ≤ X ≤ 3

4

)
. We must use integration,

obtaining

P
(1

4 ≤ X ≤ 3
4
)
= ∫

3∕4

1∕4
!(x) dx = ∫

3∕4

1∕4
3x2dx = x3||||

3∕4

1∕4

= 9
64 −

1
64 = 1

8

B.2.2 Properties of Continuous Random Variables
If X is a continuous random variable with probability density function f (x), then its expected
value is

μX = E(X) = ∫
∞

−∞
x!(x)dx (B.33)

Compare this to the expected value of a discrete random variable in (B.2). An integral has replaced
the summation. The interpretation of E(X) is exactly the same as in the discrete case. It is the
average value of X that occurs in all possible samples from an underlying experiment.

E X A M P L E B.4 Expected Value of a Continuous Random Variable

The expected value of the random variable in Example B.2 is

∫
∞

−∞
x!(x) dx = ∫

1

0
x • 2(1 − x) dx = ∫

1

0

(
2x − 2x2) dx = x2||||

1

0
− 2

3 x3 ||||
1

0
= 1 − 2

3 = 1
3

The variance of a random variable X is defined as σ2
X = E

[(
X − μX

)2]. This definition holds for
discrete and continuous random variables. In order to compute the variance we use the analog to
the rule in (B.3) for continuous random variables,

E
[
g(X)

]
= ∫

∞

−∞
g(x)!(x)dx (B.34)
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Then, letting g(x) =
(
X − μX

)2, we have

σ2
X = E

[(
X − μX

)2] = ∫
∞

−∞

(
x − μX

)2!(x) dx

= ∫
∞

−∞

(
x2 + μ2

X − 2xμX
)
!(x) dx

= ∫
∞

−∞
x2!(x) dx + μ2

X∫
∞

−∞
!(x) dx − 2μX∫

∞

−∞
x!(x) dx

= E
(
X2) + μ2

X − 2μ2
X

= E
(
X2) − μ2

X (B.35)
To go from the third line to the fourth line, we use property (B.30) and the definition of expected
value (B.33). The end result is that σ2

X = E
[(

X − μX
)2] = E

(
X2) − μ2

X as in the discrete case.

E X A M P L E B.5 Variance of a Continuous Random Variable

To obtain the variance of the random variable described in
Example B.2, we first find

E
(
X2) =∫

∞

−∞
x2!(x)dx =∫

1

0
x2•2(1 − x)dx =∫

1

0

(
2x2 − 2x3)dx

= 2
3 x3||||

1

0
− 2

4 x4||||
1

0
= 2

3 −
1
2 = 1

6

Then,

var(X) = σ2
X = E

(
X2) − μ2

X = 1
6 −

(1
3
)2

= 1
18

B.2.3 Joint, Marginal, and Conditional Probability
Distributions

To make simultaneous probability statements about more than one continuous random variable,
we need the joint probability density function of the random variables. For example, consider
the two continuous random variables U = unemployment and P = inflation rate. Suppose that
their joint pdf is as depicted in Figure B.2.

The joint pdf is a surface and probabilities are volumes under the surface. If the two random
variables are nonnegative, then we might ask, “What is the probability that inflation is less than
5% and at the same time unemployment is less than 6%?” That is, what is P(U ≤ 6, P ≤ 5)?
Geometrically the answer is that this is the volume under the surface above the rectangle (in
the base of the figure) defining the event. Just as an integral is used to obtain the area under a
curve, a double integral is used to obtain volumes like that shown in Figure B.2. Given the joint
pdf f (u, p) we can compute the probability as

P(U ≤ 6,P ≤ 5) = ∫
6

u=0 ∫
5

p=0
!(u, p) dp du

If we know the joint pdf , can we obtain the marginal pdf of one of the random variables? If so, we
can answer questions like “What is the probability that unemployment will be between 2% and
5%?” Analogous to (B.11) for discrete random variables, we integrate out the unwanted random
variable. That is, the marginal probability density function for U is

!(u) = ∫
∞

−∞
!(u, p) dp (B.36)

Then, for example, P(2 ≤ U ≤ 5) = ∫
5

2
!(u) du.
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FIGURE B.2 A joint probability density function.

We might ask “What is the probability that unemployment will be between 2% and 5% if
we can use monetary policy to keep the inflation rate at 2%?” This is a question about a
conditional probability. Given that P = 2, what is the probability that 2 ≤ U ≤ 5? Or in terms
of conditioning notation, what is P(2 ≤ U ≤ 5|P = 2)? To answer such questions for contin-
uous random variables, we need the conditional probability density function !(u|p), which
is given by

!(u|p) = !(u, p)
!(p) (B.37)

Unlike the result (B.12) for discrete random variables, we do not obtain the probability from this
division, but rather a density function that can be used for probability calculations. Not only can
we obtain conditional probabilities using !(u|p), but we can also obtain the conditional expec-
tation, or conditional mean,

E(U|P = p) = ∫
∞

−∞
u!(u|p) du (B.38)

Similarly, the conditional variance is

var(U|P = p) = ∫
∞

−∞

[
u − E(U|P = p)

]2!(u|p) du (B.39)

The importance of questions involving unemployment and inflation are of great social importance.
Economists and econometricians work on these problems, and you will glimpse the issues a few
times throughout this book. But it is difficult. So we illustrate the above concepts with a simpler
example.
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E X A M P L E B.6 Computing a Joint Probability

Let X and Y be continuous random variables with joint
pdf f(x, y) = x + y for x in [0, 1] and y in [0, 1]. You might
test your geometric skills by creating a three-dimensional
graph of this joint density function. Is it a valid density
function? It satisfies the more general version of property
(B.29), because f (x, y) ≥ 0 for all points x ∈ [0, 1] and
y ∈ [0, 1]. Also the total amount of probability, the volume
under the surface, is

∫
1

y=0 ∫
1

x=0
! (x, y)dx dy =∫

1

y=0 ∫
1

x=0
(x + y)dx dy

=∫
1

y=0 ∫
1

x=0
xdx dy + ∫

1

y=0 ∫
1

x=0
ydx dy

=∫
1

y=0

[
∫

1

x=0
xdx

]
dy +∫

1

x=0

[
∫

1

y=0
ydy

]
dx

=∫
1

y=0

[
1
2 x2||||

1

0

]
dy + ∫

1

x=0

[
y2||||

1

0

]
dx

=∫
1

y=0

1
2 dy + ∫

1

x=0

1
2 dx = 1

2 + 1
2 = 1

In the third line, we have used a property of multiple
integrals. In the Probability Primer, Section P.4, the rule
“Sum 9” states that the order of multiple summations does
not matter. Similarly, as long as the limits of integration for
one variable do not depend on the value of the other, the
order of integration does not matter when we have multiple
integrals. However, we must keep the integral symbol with its
lower and upper limits paired with the variable of integration,
indicated by dx or dy. In the first term in the third line above,
we have isolated the integral involving x inside the integral
involving y. Multiple integrals are evaluated by working
from the “inside out.” Solve the inside integral with respect
to x, and then solve the outer integral with respect to y.

E X A M P L E B.7 Another Joint Probability Calculation

For further practice with double integrals find the probability
that X is between zero and 1∕2 while Y is between 1∕4 and 3∕4
for the joint pdf in Example B.6. This is a joint probability
and is computed as follows:

P
(

0 ≤ X ≤ 1
2 ,

1
4 ≤ Y ≤ 3

4

)

= ∫
3
4

y= 1
4
∫

1
2

x=0
!(x, y)dx dy

= ∫
3
4

y= 1
4
∫

1
2

x=0
(x + y)dx dy

= ∫
3
4

y= 1
4

[

∫
1
2

x=0
xdx

]
dy + ∫

3
4

y= 1
4

y
[

∫
1
2

x=0
dx
]
dy

= ∫
3
4

y= 1
4

[
1
2 x2||||

1∕2

0

]
dy + ∫

3
4

y= 1
4

y
[

x
||||
1∕2

0

]
dy

= 1
8∫

3
4

y= 1
4

dy + 1
2∫

3
4

y= 1
4

ydy

= 1
8

(
y
||||
3∕4

1∕4

)
+ 1

2

(
1
2 y2||||

3∕4

1∕4

)

= 1
8 ×

1
2 + 1

2 ×
1
4 = 3

16
In the third step of this example, we did not change the order
of integration in the second term. This illustrates another fea-
ture of working with multiple integrals. When carrying out
the “inside” integration with respect to x the value of y is
fixed, and because it is fixed it can be factored out, leaving
a simpler inside integral.
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E X A M P L E B.8 Finding and Using a Marginal pdf

The marginal pdf of X, for x ∈ [0, 1], is

!(x) = ∫
1

y=0
!(x, y) dy = ∫

1

y=0
(x + y) dy

= ∫
1

y=0
xdy + ∫

1

y=0
ydy = x•y

||||
1

0
+ 1

2 y2||||
1

0
= x + 1

2

Technically we should also say that f(x) = 0 for x ∉ [0, 1], but
we will generally not explicitly include this extra information.
Using similar steps the marginal pdf of Y is !(y) = y + 1∕2
for values of y in the [0, 1] interval. The marginal pdf for X
can be used to compute probabilities that X falls in intervals
in the domain of X, x ∈ [0, 1]. For example,

P
(

1
2 < X < 3

4

)
= ∫

3∕4

1∕2

(
x + 1

2

)
dx =∫

3∕4

1∕2
xdx + 1

2∫
3∕4

1∕2
dx

= 1
2 x2||||

3∕4

1∕2
+ 1

2 x
||||
3∕4

1∕2

= 1
2
( 9

16 −
1
4
)
+ 1

2
(3

4 −
1
2
)

= 1
2 ×

5
16 + 1

2 ×
1
4 = 9

32

Using the marginal pdf of X, we can find its expected value.

μX = E(X) = ∫
∞

−∞
x!(x)dx = ∫

1

0
x
(

x + 1
2

)
dx

= ∫
1

0
x2dx + ∫

1

0

1
2 xdx

= 1
3 x3||||

1

0
+ 1

4 x2||||
1

0
= 1

3 + 1
4 = 7

12
The limits of integration in the first line change from (−∞,∞)
to [0, 1], because for x ∉ [0, 1], f(x) = 0 and the area (proba-
bility) under f(x) = 0 is zero.

To find the variance of X, we first find

E
(
X2) = ∫

1

0
x2!(x)dx = ∫

1

0
x2
(

x + 1
2

)
dx

= ∫
1

0
x3dx + ∫

1

0

1
2 x2dx

= 1
4 x4||||

1

0
+ 1

6 x3||||
1

0
= 1

4 + 1
6 = 5

12
Then

σ2
X = var(X) = E

(
X2) −[E(X)]2 = 5

12 −
( 7

12
)2

= 11
144

The conditional pdf of Y given that X = x is !(y|x) = !(x, y)∕!(x).

E X A M P L E B.9 Finding and Using a Conditional pdf

In Example B.6 the conditional pdf is

!(y|x) = !(x, y)
!(x) = x + y

x + 1
2

for y ∈ [0, 1]

As a specific example,

!
(
y|||X = 1

3

)
=

y + 1
3

1
3 + 1

2

= 1
5 (6y + 2) for y ∈ [0, 1]

The conditional pdf can be used to compute probabilities
that Y falls in a given interval. Also, we can compute the

conditional mean of Y given that X = 1∕3

μY|X=1∕3 = E
(

Y|||X = 1
3

)
= ∫

1

y=0
y!
(

y|||X = 1
3

)
dy

= ∫
1

y=0
y 1

5 (6y + 2)dy

= ∫
1

y=0

6
5 y2dy + ∫

1

y=0

2
5 ydy

= 6
5

(
1
3 y3||||

1

0

)
+ 2

5

(
1
2 y2||||

1

0

)
= 2

5 + 1
5 = 3

5
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Note that the conditional expected value is not the same as the
unconditional expected value μY = E(Y ) = 7

12 . To calculate
the conditional variance, we first calculate

E
(

Y 2 |||X = 1
3

)
= ∫

1

y=0
y2!

(
y |||X = 1

3

)
dy

= ∫
1

y=0
y2 1

5 (6y + 2)dy = 13
30

The conditional variance is then

var
(

Y|||X = 1
3

)
= E

(
Y 2 |||X = 1

3

)
−
[
E
(

Y |||X = 1
3

)]2

= 11
150 = 0.07333

The unconditional variance is σ2
Y = var(Y ) = 11

144 =
0.07639.

The correlation between X and Y is

ρ = cov(X,Y )
σXσY

The covariance between X and Y can be calculated using cov(X, Y ) = E(XY) – μXμY.

E X A M P L E B.10 Computing a Correlation

To compute the expected value of XY for Example B.6, we
calculate the double integral

E(XY ) = ∫
1

y=0 ∫
1

x=0
xy!(x, y)dxdy

= ∫
1

y=0 ∫
1

x=0
xy(x + y)dxdy

= ∫
1

y=0 ∫
1

x=0
x2ydxdy + ∫

1

y=0 ∫
1

x=0
xy2dxdy

= ∫
1

y=0
y
[
∫

1

x=0
x2dx

]
dy + ∫

1

y=0
y2
[
∫

1

x=0
xdx

]
dy

= 1
6 + 1

6 = 1
3

Then

cov(X,Y ) = E(XY ) − μXμY = 1
3 −

( 7
12

)( 7
12

)
= −1

144
Finally, the correlation between X and Y is

ρ = cov(X,Y )
σXσY

= −1∕144√
11∕144

√
11∕144

= −1
11 = −0.09091

B.2.4 Using Iterated Expectations with Continuous
Random Variables

A useful result, proved in Section B.1.7 for the discrete case, is the law of iterated expectations.
If X and Y are continuous random variables with joint pdf f (x,y), then the expected value of Y can
be calculated as

E(Y ) = EX
[
E(Y|X)]
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This is the same result as in (B.26) for the discrete case. The exact meaning of this expression is
best understood by first deriving it and then carrying through an illustration. To establish that this
result is true, we proceed as follows:

E(Y) = ∫
∞

y=−∞
y!(y)dy

= ∫
∞

y=−∞
y
[
∫

∞

x=−∞
!(x,y)dx

]
dy [replacing marginal pdf ]

= ∫y∫x
y!(x,y)dx dy [simplifying integral]

= ∫y∫x
y
[
!(y|x)!(x)]dx dy [replace joint pdf ]

= ∫x

[
∫y

y!(y|x)dy
]
!(x)dx [reverse order of integration]

= ∫x

[
E(Y|X)]!(x)dx [recognize E(Y|X)]

= EX
[
E(Y|X)] [recognize expectation wrt X]

In the last line of the expression, the notation EX[ • ] means that we take the expectation of the
term in brackets treating X as random. Note that we also replaced the (−∞,∞) integral form with
a simpler form in line three indicating “over all values” of the variable of integration.

E X A M P L E B.11 Using Iterated Expectation

To better understand the iterated expectation expression,
for Example B.6 find the conditional expectation of Y given
that X = x, where the value x is not specified:

E(Y|X = x) = ∫
1

y=0
y! (y|x) dy = ∫

1

y=0
y
[

x + y
x + 1

2

]
dy

= 2 + 3x
3(2x + 1)

Note that the integration over the values of Y , treating x as
given, leaves us with a function of x. If we now recognize
that x can take any value and is thus random, we can find the
expected value of the function

g(X) = 2 + 3X
3(2X + 1)

The law of iterated expectations says that if we take the expec-
tation of g(X), treating X as random, we should obtain E(Y ).

E
[
g(X)

]
= ∫

1

x=0

2 + 3x
3(2x + 1)!(x)dx

= ∫
1

x=0

2 + 3x
3(2x + 1)

(
x + 1

2
)

dx

= ∫
1

x=0

2 + 3x
3(2x + 1)

1
2 (2x + 1)dx = ∫

1

x=0

1
6 (2 + 3x)dx

= ∫
1

x=0

1
3 dx + ∫

1

x=0

1
2 xdx = 1

3 x
||||
1

0
+ 1

4 x2||||
1

0

= 1
3 + 1

4 = 7
12 = E(Y)

There are several important implications of the law of iterated expectations. First, based on
E(Y ) = EX

[
E(Y|X)], we can see that if E(Y|X) = 0, then E(Y ) = EX [E(Y|X)] = EX(0) = 0. If the

conditional expectation of Y is zero, then the unconditional expectation of Y is also zero.
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Second, if E(Y|X) = E(Y ), then cov(X,Y ) = 0. To see this, first rewrite E(XY) as

E(XY ) = ∫x∫y
xy!(x, y)dydx

= ∫x∫y
xy!(y|x)!(x)dydx

= ∫x
x
[
∫y

y! (y|x)dy
]
!(x)dx

= ∫x
x
[
E(Y|X)]!(x)dx (B.40)

If E(Y|X) = E(Y ), then the last line of (B.40) becomes

E(XY ) = ∫x
x
[
E(Y )

]
!(x)dx = E(Y )∫x

x!(x)dx

= E(Y )E(X) = μYμX

The covariance between X and Y in this case is
cov(X,Y ) = E(XY ) − μXμY = μXμY − μYμX = 0

An extremely important special case of these two results concerns the consequences of
E(Y|X) = 0. We have already seen that E(Y|X) = 0 ⇒ E(Y ) = 0. Now we can also see that if
E(Y|X) = E(Y ) = 0, then cov(X,Y ) = 0.

B.2.5 Distributions of Functions of Random Variables
As we have noted several times, a function of a random variable is random itself. The question we
address in this section is, “What is the probability density function of the new random variable?”
For the case of a discrete random variable this problem is not too hard. For example, consider
the discrete random variable X that can take the values 1, 2, 3, or 4 with probabilities 0.1, 0.2,
0.3, and 0.4, respectively. Let Y = 2 + 3X = g(X). What is the pdf for Y? In this case it is clear.
The probability that Y = 5, 8, 11, or 14 corresponds exactly to the probability that X = 1, 2, 3, or 4,
respectively, as shown in Table B.1.

What makes this possible is that each value of y corresponds to a unique value of x, and each
value of x corresponds to a unique value of y. Another way to say this is that the transformation
from X to Y is “one-to-one.” This type of relationship is ensured to hold when the function g(X)
relating Y to X is either strictly increasing or strictly decreasing. Such functions are said to be
strictly monotonic. Our function Y = 2 + 3X = g(X) is strictly (monotonically) increasing. This
guarantees that if x2 > x1, then y2 = g

(
x2
)
> y1 = g

(
x1
)
. Note in particular that we are ruling out

the possibility that y1 = y2.
Determining the distribution of Y = g(X) in the continuous case is a bit more challenging.

In the following example, we present the change-of-variable technique that applies when the
function g(X) is strictly increasing or decreasing.

T A B L E B.1 Change of Variable: Discrete Case

x P(X = x) = P(Y = y) y
1 0.1 5
2 0.2 8
3 0.3 11
4 0.4 14
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E X A M P L E B.12 Change of Variable: Continuous Case

Let X be a continuous random variable with pdf f(x) = 2x for
0< x< 1. Let Y = g(X) = 2X be another random variable. We
want to compute probabilities that Y falls in certain intervals.
One solution is to compute probabilities for Y based on the
probability of the corresponding event for X. For example,

P(0 < Y < 1) = P
(

0 < X < 1
2
)
= ∫

1∕2

0
2xdx = x2||||

1∕2

0
= 1

4
Although this is reasonable and relatively simple in this case,
it will not always be so. It is preferable to determine the pdf
of Y , say h(y), and use it to compute probabilities for Y . Since
X = Y∕2, we might be tempted to substitute this into the pdf
f (x) to obtain h(y) = 2(y∕2) = y for 0 < y < 2. This substitu-
tion does not work, however, because

∫
∞

−∞
h(y)dy = ∫

2

0
ydy = 1

2 y2||||
2

0
= 2

This violates property (B.30) for a probability density func-
tion. Furthermore, using h(y) to compute the probability of Y
falling in the interval (0, 1) produces 0.5, which we know is
incorrect.

The problem is that we must adjust the height of h(y) to
account for the fact that Y can take values in the interval (0, 2)
whereas X can take values only in (0, 1). In fact, a change in Y
of one unit corresponds to a change in X of half a unit. If we
adjust h(y) by this factor, we have

h(y) = 2(y∕2)
(1

2
)
= y∕2, 0 < y < 2

Using this corrected pdf , property (B.30) is satisfied:

∫
∞

−∞
h(y)dy = ∫

2

0

1
2 ydy = 1

4 y2||||
2

0
= 1

Also, we obtain the correct probability that Y falls in the inter-
val (0, 1):

P(0 < Y < 1) = ∫
1

0

1
2 ydy = 1

4 y2||||
1

0
= 1

4
Another perspective on the change-of-variable technique is
obtained by examining the integral representation for the
probability that Y falls in the interval (0, 1):

P(0 < Y < 1) = ∫
1

0
h(y)dy

The integral representation of the equivalent X event, show-
ing explicitly the lower and upper limits of the integral, is

P(0 < Y < 1) = P
(

0 < X < 1
2
)
= ∫

x=1∕2

x=0
!(x)dx

= ∫
x=1∕2

x=0
2xdx

Thinking of dx as a small change in X, and noting that
x = y/2, then dx = dy/2. Substituting this into the integral
above, we have

P(0 < Y < 1) = ∫
y∕2=1∕2

y∕2=0
2
(

1
2 y
)(

1
2 dy

)
= ∫

y=1

y=0

1
2 ydy

The adjustment factor 1/2 that we obtained intuitively
appears here in the relation of dx to dy. The mathematical
name for this adjustment factor is the Jacobian of the
transformation (actually its absolute value, as we will soon
see). Its purpose is to make the integral expression in terms
of x equal to that in terms of y. Now we are ready to describe
the change-of-variable technique more precisely.

Let X be a continuous random variable with pdf f (x). Let Y = g(X) be a function that is strictly
increasing or strictly decreasing. This condition ensures that the function is one-to-one, so that
there is exactly one Y value for each X value and exactly one X value for each Y value. The
importance of this condition on g(X) is that we can solve Y = g(X) for X. That is, we can find an
inverse function X = w(Y ). Then the pdf for Y is given by

h(y) = !
[
w(y)

]
•
||||
dw(y)

dy
|||| (B.41)

where || denotes the absolute value.

Change of Variable Technique to Find the pdf of Y: Step by Step
1. Solve y = g(x) for x in terms of y;
2. Substitute this for x in f (x); and
3. Multiply by the absolute value of the derivative dw(y)∕dy, which is called the Jacobian of

the transformation.
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The scale factor |dw(y)∕dy| is the adjustment factor that makes the probabilities (i.e., the integrals)
come out right. In Example B.12 the inverse function is X = w(Y ) = Y∕2. The Jacobian term is
dw(y)∕dy = d(y∕2)∕dy = 1

2 , and |||dw(y)∕dy||| =
|||

1
2
||| =

1
2 .

E X A M P L E B.13 Change of Variable: Continuous Case

Let X be a continuous random variable with pdf f(x) = 2x for
0 < x < 1. Let Y = g(X) = 8X3 be the function of X in which
we are interested. The function Y = g(X) = 8X3 is strictly
increasing for the set of values that X can take, 0 < x < 1.
The corresponding set of values that Y can take is 0 < y < 8.
Because the function is strictly increasing, we can solve for
the inverse function

x = w(y) =
(1

8 y
)1∕3

= 1
2 y1∕3

and
dw(y)

dy
= 1

6 y−2∕3

Applying the change-of-variable formula (B.41), we have

h(y) = !
[
w(y)

]
×
||||
dw(y)

dy
||||

= 2
(1

2 y1∕3
)
×
||||
1
6 y−2∕3||||

= 1
6 y−1∕3, 0 < y < 8

The change-of-variable technique can be modified for the
case of several random variables, X1, X2 being transformed
into Y1, Y2. For a description of the method, which requires
matrix algebra, see William Greene (2018) Econometric
Analysis, 8th edition, Pearson Prentice Hall, pp. 1120–1121.

B.2.6 Truncated Random Variables
A truncated random variable is one whose probability density function is cutoff above or
below some specified point. That is suppose that X is a continuous random variable such that
−∞ < x < ∞ and its pdf is f (x). The pdf f (x) has the properties (i) !(x) ≥ 0 and
(ii) ∫

∞

−∞
!(x) dx = 1. Now suppose that the underlying experiment is such that only x val-

ues greater than some value a are possible. What is the probability density function of this
random variable? It is not simply f (x) for x > c because the pdf would not satisfy condition (ii)
above, the area beneath it, which represents probability, would not total one. There is a simple
fix-up. The density of a truncated random variable, such that x > c, is

!(x|x > c) = !(x)
P(X > c)

The adjustment makes the area equal to one.
Intuitively, what will happen to the expected value and variance of the truncated random

variable, relative to the untruncated one? Thinking about it for a moment you can see that
E(X|x > c) > E(X) and var(X|x > c) < var(X). Specific examples of truncated random variables
will appear in the case of Poisson random variables (Section B.3.3) and normally distributed
random variables (Section B.3.5).

B.3 Some Important Probability Distributions
In this section, we give brief descriptions and summarize the properties of the probability distri-
butions used in this book.
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B.3.1 The Bernoulli Distribution
Let the random variable X denote an experimental outcome with only two possible outcomes,
A or B. Let X = 1 if the outcome is A and let X = 0 if the outcome is B. Let the probabilities of the
outcomes be P(X = 1) = p and P(X = 0) = 1 − p where 0 ≤ p ≤ 1. X is said to have a Bernoulli
distribution. The pdf of this Bernoulli random variable is

!(x|p) =
{

px(1 − p)1−x x = 0, 1
0 otherwise (B.42)

The expected value of X is E(X) = p, and its variance is var(X) = p(1 − p). This random variable
arises in choice models, such as the linear probability model (Chapters 7, 8, and 16) and in binary
and multinomial choice models (Chapter 16).

B.3.2 The Binomial Distribution
If X1, X2, …, Xn are independent random variables, each having a Bernoulli distribution with
parameter p, then X = X1 + X2 + · · · + Xn is a discrete random variable that is the number of
successes (i.e., Bernoulli experiments with outcome Xi = 1) in n trials of the experiment. The
random variable X is said to have a binomial distribution. The pdf of this random variable is

P(X = x|n, p) = !(x|n, p) =
(

n
x

)
px(1 − p)n−x for x = 0, 1,… , n (B.43)

where (
n
x

)
= n!

x!(n − x)!

is the number of combinations of n things taken x at a time. This distribution has two parameters,
n and p, where n is a positive integer indicating the number of experimental trials and 0 ≤ p ≤ 1.
These probabilities are tedious to compute by hand, but econometric software has functions to
carry out the calculations. The discrete probabilities are illustrated in Figure B.3.
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Binomial distribution
n  = 10 trials

p  = 0.3 p  = 0.5

FIGURE B.3 Binomial distributions for n = 10.
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The expected value and variance of X are

E(X) =
n∑

i=1
E
(
Xi
)
= np

var(X) =
n∑

i=1
var

(
Xi
)
= np(1 − p)

A related random variable is Y = X∕n, which is the proportion of successes in n trials of an exper-
iment. Its mean and variance are E(Y ) = p and var(Y ) = p(1 − p)∕n.

B.3.3 The Poisson Distribution
Whereas a binomial random variable is the number of event occurrences in a given number of
experimental trials, n, the Poisson random variable is the number of event occurrences in a given
interval of time or space. The probability density function for this discrete random variable X is

P(X = x|μ) = !(x|μ) = e−μμx

x! for x = 0, 1, 2, 3,… (B.44)

Probabilities depend on the parameter μ, and e ≅ 2.71828 is the base of natural logarithms. The
expected value and variance of X are E(X) = var(X) = μ. The Poisson distribution is used in
models involving count variables (Chapter 16), such as the number of visits a person makes to a
physician during a year. Probabilities for x = 0 to 10 for distributions with μ = 3 and μ = 4 are
shown in Figure B.4.

In applications of count data, we sometimes only observe positive outcomes. For example,
suppose we might survey individuals at a shopping mall and ask “How many times have you
visited the mall this year?” The answer must be one or more. Using the notion of a truncated
random variable introduced in Section B.2.6, the probability function in (B.44) becomes

!(x|μ, x > 0) = !(x|μ)
P(X > 0)

In the case of the Poisson distribution P(X > 0) = 1 − P(X = 0) = 1 − e−μ. Then the truncated
Poisson distribution is

!(x|μ, x > 0) = !(x|μ)
1 − P(X = 0) =

(e−μμx)∕x!
1 − e−μ

for x = 1, 2, 3, …
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FIGURE B.4 Poisson distributions.
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B.3.4 The Uniform Distribution
A continuous distribution that is vastly important for theoretical purposes is the uniform dis-
tribution. The random variable X with values a ≤ x ≤ b has a uniform distribution if its pdf is
given by

!(x|a, b) = 1
b − a

for a ≤ x ≤ b (B.45)

The plot of the density function is given in Figure B.5.
The area under f (x) between a and b is one, which is required of any probability density

function for a continuous random variable. The expected value of X is the midpoint of the interval
[a, b], E(X) = (a + b)/2. This can be deduced from the symmetry of the distribution. The variance
of X is var(X) = E

(
X2) − μ2 = (b − a)2∕12.

An interesting special case occurs when a = 0 and b = 1, so that f (x) = 1 for 0 ≤ x ≤ 1.
The distribution, shown in Figure B.6, describes one common meaning of “a random number
between zero and one.”

The uniform distribution has the property that any two intervals of equal width have the same
probability of occurring. That is,

P(0.1 ≤ X ≤ 0.6) = P(0.3 ≤ X ≤ 0.8) = P(0.21131 ≤ X ≤ 0.71131) = 0.5

a b
x

f (x)

1
b – a

FIGURE B.5 A uniform distribution.

x

f (x)

1

0 10.1 0.6

FIGURE B.6 A uniform distribution on
[0, 1] interval.
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Picking a number randomly between zero and one is conceptually complicated by the fact that
the interval has an uncountably infinite number of values, and the probability of any one of them
occurring is zero. What is more likely meant by such a statement is that each interval of equal
width has the same probability of occurring, no matter how narrow. This is exactly the nature of
the uniform distribution.

B.3.5 The Normal Distribution
The normal distribution was described in the Probability Primer, Section P.6. A point not
stressed at that time was why we must consult tables, like Statistical Table 1 to calculate normal
probabilities. For example, we now know that for the continuous and normally distributed
random variable X, with mean μ and variance σ2, the probability that X falls in the interval
[a, b] is

∫
b

a
!(x)dx = ∫

b

a

1√
2πσ2

exp
[
−(x − μ)2∕2σ2

]
dx

Unfortunately this integral does not have a closed-form algebraic solution. Consequently, we
wind up working with tabled values containing numerical approximations to areas under the
standard normal distribution, or we use computer software functions in a similar manner.

Moments of the Normal Distribution If X is a random variable, then E(Xr) is called
the rth moment of the random variable about the origin. Sometimes they are called raw moments.
If X ∼ N

(
μ,σ2), then we have the following useful expressions for the first three moments about

the origin:
E(X) = μ

E
(
X2) = μ2 + σ2

E
(
X3) = 0

For any random variable X, E(X − μ)r is the rth moment of the random variable about its mean.
Sometimes, these are called central moments. For the normal random variable X ∼ N

(
μ,σ2), these

are
E(X − μ) = 0

E
[
(X − μ)2

]
= σ2

E
[
(X − μ)3

]
= 0

E
[
(X − μ)4

]
= 3σ4

The second moment about the mean E
[
(X − μ)2

]
= σ2 is the variance of the random variable.

The third moment, E
[
(X − μ)3

]
= 0, is related to the skewness of the probability density function.

Because the normal distribution is symmetrical, it is not skewed, its skewness is zero. It is also
true that all odd central moments are zero, so that E

[
(X − μ)r

]
= 0 if r is an odd number. The

fourth moment about the mean, E
[
(X − μ)4

]
= 3σ4, is related to the kurtosis of the distribution,

which is a measure of the thickness of the tails of the distribution. For the normal distribution,
the standardized fourth moment E

[
(X − μ)4∕σ4] = 3 is a useful reference point for tail thickness.

For more about population moments see Appendix C.4.
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The Truncated Normal Distribution In Section B.2.6, we introduced the notion of
a truncated random variable. The truncated normal distribution has been studied quite intensely.
Suppose that X ∼ N

(
μ,σ2) but the distribution is truncated from below so that x > c. Then

!(x|x > c) = !(x)
P(X > c)

For the normal distribution

P(X > c) = P
(

X − μ
σ >

c − μ
σ

)
= 1 − Φ

(c − μ
σ

)
= 1 − Φ(α)

where Φ(α) is the cumulative distribution function of the standard normal random variable eval-
uated at α =(c − μ)∕σ. Then

!(x|x > c) = !(x)
1 − Φ(α)

Following Greene (2018, p. 921), define the Inverse Mill’s Ratio as

λ(α) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

ϕ(α)
1 − Φ(α) if truncation is from below, so that x > c

−ϕ(α)
Φ(α) if truncation is from above, so that x < c

where ϕ(α) is the probability density function of the standard normal random variable evaluated
at α =(c − μ)∕σ. Then the expected value of the truncated normal random variable is

E(X|truncation) = μ + σλ(α)

Letting δ(α) = λ(α)[λ(α) − α], the variance of the truncated normal random variable is

var(X|truncation) = σ2[1 − δ(α)]

This is consistent with the intuition about the variance of a truncated variable in Section B.2.6
because 0 < δ(α) < 1.

The normal distribution is related to the chi-square, t-, and F-distributions, which we now
discuss.

B.3.6 The Chi-Square Distribution
Chi-square random variables arise when standard normal random variables are squared. If Z1,
Z2, …, Zm denote m independent N(0,1) random variables, then

V = Z2
1 + Z2

2 +…+ Z2
m ∼ χ

2
(m) (B.46)

The notation V ∼ χ2
(m) is read as: The random variable V has a chi-square distribution with m

degrees of freedom. The degrees of freedom parameter m indicates the number of independent
N(0,1) random variables that are squared and summed to form V . The value of m determines the
entire shape of the chi-square distribution, including its mean and variance as

E(V) = E
[
χ2
(m)

]
= m

var(V) = var
[
χ2
(m)

]
= 2m (B.47)
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FIGURE B.7(a) The chi-square distribution.

In Figure B.7(a) graphs of the chi-square distribution for various degrees of freedom are presented.
The values of V must be nonnegative, v ≥ 0, because V is formed by squaring and summing m
standardized normal, N(0,1), random variables. The distribution has a long tail, or is skewed,
to the right. As the degrees of freedom m gets larger, however, the distribution becomes more
symmetric and “bell-shaped.” In fact, as m gets larger, the chi-square distribution converges to,
and essentially becomes, a normal distribution.

The 90th, 95th, and 99th percentile values of the chi-square distribution for selected values
of the degrees of freedom are given in Statistical Table 3. These values are often of interest in
hypothesis testing.

In the definition (B.46) of the chi-square random variable the Zi, i = 1,… ,m are statistically
independent standard normal, N(0, 1), random variables. If, instead, V is equal to the sum of
squares of normal random variables

(
Zi + δi

)
that have a non-zero mean δi and variance 1, then

V has a non-central chi-square distribution with m degrees of freedom and non-centrality
parameter δ = δ2

1 + δ
2
2 + · · · + δ2

m, which is denoted by χ2
(m,δ). If all δi = 0 then we have the usual

central chi-square distribution. That is,

V =
(
Z1 + δ1

)2 +
(
Z2 + δ2

)2 + · · · +
(
Zm + δm

)2 ∼ χ2
(m,δ)

In Figure B.7(b) we plot a few non-central chi-square distributions, all having m = 10 degrees of
freedom.

The effect of the non-centrality parameter is to shift the chi-square density function to
the right, increasing both the mean and the variance, which become E

[
χ2
(m,δ)

]
= m + δ and

var
[
χ2
(m,δ)

]
= 2(m + 2δ).
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FIGURE B.7(b) Non-central chi-square distributions, m = 10 degrees of
freedom and non-centrality # = 0, 3, 6.

B.3.7 The t-Distribution
A t random variable (no upper case) is formed by dividing a standard normal random variable
Z ∼ N(0,1) by the square root of an independent chi-square random variable, V ∼ χ2

(m), that has
been divided by its degrees of freedom m. If Z ∼ N(0,1) and V ∼ χ2

(m), and if Z and V are inde-
pendent, then

t = Z√
V∕m

∼ t(m) (B.48)

The t-distribution’s shape is completely determined by the degrees of freedom parameter, m, and
the distribution is symbolized by t(m).

Figure B.8(a) shows a graph of the t-distribution with m = 3 degrees of freedom relative to
the N(0,1). Note that the t-distribution is less “peaked,” and more spread out than the N(0,1).
The t-distribution is symmetric, with mean E

(
t(m)

)
= 0 and variance var

(
t(m)

)
= m∕(m − 2).

As the degrees of freedom parameter m →∞, the t(m) distribution approaches the standard
normal N(0,1).

Computer programs have functions for the cdf of t-random variables that can be used to
calculate probabilities. Since certain probabilities are widely used, Statistical Table 2 contains
frequently used percentiles of t-distributions, called critical values of the distribution. For
example, the 95th percentile of a t-distribution with 20 degrees of freedom is t(0.95,20) = 1.725.
The t-distribution is symmetric, so Statistical Table 2 shows only the right tail of the
distribution.

The statistic formed from a N(δ,1) random variable and an independent central chi-square
random variable with m degrees of freedom is called a non-central t-random variable,

t = Z + δ√
V∕m

∼ t(m,δ)

This distribution has two parameters, the degrees of freedom, m, and the non-centrality parame-
ter δ. The usual t-random variable in (B.48) has non-centrality parameter δ = 0 and is sometimes
called the central t-distribution. The additive factor in the numerator causes the resulting dis-
tribution to be centered at a value other than zero if δ ≠ 0. In Figure B.8(b), we plot the t(3,δ)
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FIGURE B.8(a) The standard normal and t(3) probability density
functions.
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FIGURE B.8(b) Non-central t-distributions, m = 3 degrees of freedom and
non-centrality # = 0, 1, 2.

density for values of δ = 0, 1, 2. The positive non-centrality parameter shifts the density function
rightward.

B.3.8 The F-Distribution
An F-random variable is formed by the ratio of two independent chi-square random variables that
have been divided by their degrees of freedom. If V1 ∼ χ2

(m1) and V2 ∼ χ2
(m2), and if V1 and V2 are

independent, then
F =

V1∕m1
V2∕m2

∼ F(m1,m2) (B.49)
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FIGURE B.9(a) The 95th percentile of an F(8,20)-random variable.

The F-distribution is said to have m1 numerator degrees of freedom and m2 denominator degrees
of freedom. The values of m1 and m2 determine the shape of the distribution, which in general
looks like Figure B.9(a). The range of the random variable is (0,∞), and it has a long tail to the
right. For example, the 95th percentile value for an F-distribution with m1 = 8 numerator degrees
of freedom and m2 = 20 denominator degrees of freedom is F(0.95,8,20) = 2.447. Critical values
(two decimal places) for the F-distribution are given in Statistical Table 4 (the 95th percentile)
and Statistical Table 5 (the 99th percentile).

In the definition (B.49), the numerator chi-square random variable V1 has a central
chi-square distribution, with non-centrality parameter δ = 0. The central and non-central
chi-square distributions are discussed in Section B.3.6. If the numerator in (B.49) has a
non-central chi-square distribution, V1 ∼ χ2

(m1,δ) with m1 degrees of freedom and non-centrality,
δ, then the F-random variable has a non-central F-distribution with numerator degrees of free-
dom m1, denominator degrees of freedom m2 and non-centrality parameter δ. This distribution
is denoted by F(m1,m2,δ). In Figure B.9(b), we show several density functions for comparison with
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FIGURE B.9(b) Non-central F(8, 20, #)-distributions with # = 0, 3, 6.
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Figure B.9(a). These have degrees of freedom m1 = 8, m2 = 20, and non-centrality δ = 0, 3, 6.
As the non-centrality parameter increases, the F-density moves to the right, increasing both its
mean and variance.

B.3.9 The Log-Normal Distribution
A continuous random variable X is said to have a log-normal distribution if

ln(X) ∼ N
(
μ, σ2), x > 0

The probability density function of X is

!(x) = 1
xσ
√

2π
exp

{
−
[
ln(x) − μ

]2

2σ2

}
, x > 0

Probabilities are computed using the cdf of the standard normal random variable, Φ(z). That is

P(X ≤ c) = P
[
ln(X) ≤ ln(c)

]
= P

{[
(ln(X) − μ)∕σ

] ≤ [
(ln(c) − μ)∕σ

]}

= Φ
[
(ln(c) − μ)∕σ

]

The parameters μ and σ2 are the mean and variance of ln(X). The pdf of X is not symmetrical.
The median of X is m = exp(μ) and μ = ln(m).1 The expected value of X is

E(X) = m exp
(
σ2∕2

)
= exp(μ) exp

(
σ2∕2

)
= exp

(
μ + σ2∕2

)

Using ω = exp
(
σ2), the variance of X is

var(X) = m2ω(ω − 1) = exp(2μ) exp
(
σ2)[exp

(
σ2) − 1

]
= exp

(
2μ + σ2)[exp

(
σ2) − 1

]

The mode of the density is m/ω so that E(X) = mean > median > mode. In Figure B.10, we plot
the log-normal density for several choices of σ with median m = 1.
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FIGURE B.10 Log-normal densities. With median m = 1 and shape
$ = 1, 0.5, 0.25.

............................................................................................................................................
1In the statistics literature σ is sometimes called the shape parameter and m the scale parameter.



❦

❦ ❦

❦

800 APPENDIX B Probability Concepts

0
0.

01
0.

02
0.

03
0.

04

f(
w

ag
e)

0 10 20 30 40 50
Wage

P(10 < wage < 20) f(wage)

FIGURE B.11 Hypothetical probability density function for WAGE, log-normal
with m = 19.23 and $ = 0.7.

A common use of the log-normal distribution in Economics is for wages, incomes, and house
prices. These variables are positive, and the distributions are skewed with a long tail to
the right, indicating that a small portion of the population has large values. Using the data
file cps5 , the median wage is $19.23, and the mean wage is $23.5. Using the expression for
the expected value of a log-normal distribution E(X) = m exp

(
σ2∕2

)
, we can calculate the

shape parameter σ =
√

2 ln(E(X)∕m), which is about 0.7 using the cps5 data values. Then the
implied distribution of WAGE is shown in Figure B.11. What is the probability that a randomly
chosen worker will have an hourly wage between $10 and $20? Graphically, it is the area under
the pdf between 10 and 20. The calculated probability, using our approximated log-normal
distribution is

P(10 < WAGE < 20) = Φ
[ ln(20) − ln(19.23)

0.7

]
− Φ

[ ln(10) − ln(19.23)
0.7

]

= Φ(0.05609) − Φ(−0.93412)

= 0.52236 − 0.17512 = 0.34724

In the cps5 data, 38.95% of the individuals have a wage between $10 and $20, so our rough
approximation using the log-normal distribution is not far off.

B.4 Random Numbers
In several chapters we carry out Monte Carlo simulations to illustrate the sampling properties of
estimators. See, for example, Chapters 3, 4, 5, 10, 11, and 16. To use Monte Carlo simulations
we rely upon the ability to create random numbers from specific probability distributions, such
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as the uniform and the normal. Using computer simulations is widespread in all sciences. In this
section we introduce to you this aspect of computing.2 You should first realize that the idea of
creating random numbers using a computer is paradoxical, because by definition random num-
bers that are “created” cannot be truly random. The random numbers generated by a computer
are pseudo-random numbers in that they “behave as if they were random.” We present one
method for generating pseudo-random numbers called the inverse transformation approach, or
the inversion method. This method assumes that we have the ability to generate pseudo-random
numbers from the uniform distribution (see Sections B.3.4 and B.4.1) on the (0, 1) interval.
The uniformly distributed random variables are then transformed into random variables with other
distributions.

E X A M P L E B.14 An Inverse Transformation

Let U be a random variable with a uniform distribution. It is a
continuous random variable with pdf h(u) = 1 for u ∈ (0, 1).
See Figure B.6 for an illustration. If Y = U1∕2, then 0 < y < 1.
Furthermore, the square root function is strictly increasing,
so that we can apply the change-of-variable technique to find
the pdf of Y . The inverse function is U = w(Y ) = Y 2, and the
Jacobian of the transformation is dw(y)∕dy = d

(
y2)∕dy = 2y.

The pdf of Y is then

!(y) = h
[
w(y)

]
× dw(y)

dy
= 1 × 2y = 2y, 0 < y < 1

(B.50)

This is a distribution that we have used in Examples B.12
and B.13. The importance of this example is that it shows
that we can obtain a random number from the distribution in
(B.50) by taking the square root of a random number from a
uniform distribution.

Example B.14 leads us toward a general technique, the inversion method, for drawing random
numbers from certain distributions. Suppose you wish to obtain a random number from a specific
probability distribution, with pdf f (y) and cdf F(y).

The Inversion Method: Step by Step

1. Obtain a uniform random number u1 in the (0, 1) interval.
2. Let u1 = F

(
y1
)
.

3. Solve the equation in step 2 for y1 = F−1(u1
)
.

4. The value y1 is a random number from the pdf f (y).

The inversion method can be used to draw random numbers from any distribution that permits you
to carry out step 3. The solution is often denoted y1 = F−1(u1

)
, where F−1 is called the inverse

cumulative distribution function. The cdf function F is said to be invertible.

............................................................................................................................................
2A well-written book on the subject is by James E. Gentle (2003) Random Number Generation and Monte Carlo
Methods, New York: Springer. Also, J. F. Kiviet (2011) Monte Carlo Simulation for Econometricians, Foundations
and Trends® in Econometrics, vol 5, nos 1–2.
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E X A M P L E B.15 The Inversion Method: An Example

Suppose the target distribution, from which we want a
random number, is f(y) = 2y, 0 < y < 1. The cdf of Y is
P(Y ≤ y) = F(y) = y2, 0 < y < 1. The two distributions
are shown in Figure B.12. Set a uniform random number
u1 = F

(
y1
)
= y2

1 and solve to obtain y1 = F−1(u1
)
=
(
u1
)1∕2.

The value y1 is a random value, or a random draw, from the
probability distribution f(y) = 2y, 0 < y < 1. This agrees per-
fectly with the result in Example B.6, where we showed that
the square root of a uniform random variable has this pdf .

In Figure B.12(a), suppose the uniform random number
value is u1 = 0.16. It falls between 0 and 1, along the vertical
axis of the cdf function F(y). The value u1 = 0.16 corresponds

1
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0.6

(a)

(b)
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0 0.2 0.4 0.6 0.8 1

u 1 = F(y1 = 0.4) = 0.16

y1 = F–1 (u 1 = 0.16) = 0.4

F
(y

)

2

1.5

1

5

0

0 0.2 0.4 0.6 0.8 1

AREA = P(0 < Y < 0.4) 
= 0.16

y1 = F–1 (u 1 = 0.16) = 0.4

F(y) = y2

f(y) = 2y

f(
y)

FIGURE B.12 (a) Cumulative distribution function and
(b) probability density function.

to the value y1 = 0.4 =
(
u1
)1∕2 = (0.16)1∕2 on the horizon-

tal axis. In the lower panel we see the connection between
the pdf and the cdf . The area under the pdf to the left of
y1 = 0.4 is the probability P(0 < Y < 0.4) = 0.16. For every
randomly drawn uniform random number ui there is a unique
corresponding yi from the distribution f(y) = 2y, 0 < y < 1.

To illustrate, in the data file uniform1 , we have 1,000
observations on two independent uniform random variables
U1 and U2 .3 Figure B.13 shows the histogram of U1 . There
are 10 intervals and approximately 10% of the values fall
into each, as we would expect for values from a uniform
distribution.

............................................................................................................................................
3The data file uniform2 contains 10,000 observations if you prefer a larger sample.
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FIGURE B.13 Histogram of 1,000 uniform random values.

Let Y1 be the square root of the U1 values. The his-
togram of these values is shown in Figure B.14. It looks like a
triangle, doesn’t it? Just like the density f(y) = 2y, 0 < y < 1.

As a second example, let us consider a slightly
more exotic distribution. The extreme value distribution
is the foundation of logit choice models that are dis-
cussed in Chapter 16. It has probability density function
!(v) = exp(−v) exp(−exp(−v)), depicted in Figure B.15.
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FIGURE B.14 Histogram of 1,000 square roots of uniform random
values.

The extreme value cdf is F(v) = exp(−exp(−v)). Despite
its complicated-looking form, we can obtain values from
this distribution using v = F−1(u) = −ln(−ln(u)). Using
the 1,000 values U1 in data file uniform1 , we obtain the
histogram of values from the extreme value distribution
shown in Figure B.16.4 The solid curve superimposed on
the histogram looks much like the extreme value density
function in Figure B.15.

............................................................................................................................................
4The solid curve is a kernel density fitted to the data using a Gaussian kernel. See Appendix C.10 for more on kernel
densities.
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FIGURE B.15 The extreme value distribution.
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FIGURE B.16 Histogram of simulated draws from the extreme value
distribution.

To summarize, the inversion method for generating random numbers from specific distributions
depends upon (1) the ability to obtain uniform random numbers and (2) the distribution having a
cdf that is invertible. The procedure does not work for joint distributions.

Knowing the inversion method, you can generate random variables from other distributions
given a uniform random number generator. Books on statistical distributions5 have instructions
on how to transform uniform random numbers into a wide variety of distributions. A particular
method for generating normal random numbers is illustrated in Exercise B.8.

............................................................................................................................................
5See, for example, Catherine Forbes, Merran Evans, Nicholas Hastings, Brian Peacock (2010) Statistical Distributions,
4th ed., John Wiley and Sons, Inc.
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B.4.1 Uniform Random Numbers
The inversion method depends upon the ability to obtain random numbers from a uniform
distribution. The generation of “random numbers” when used without modifiers usually means
uniform random numbers, which is a field of study in and of itself. As noted earlier, the notion of
computer-generated random numbers is illogical. Computers use algorithms to do their work; an
algorithm is a formula so that the product is not “random,” but randomlike. Computers generate
pseudo-random numbers. Enter that term into your favorite search engine and you will find
many, many links.

One bit of notation that appears in citations is for the mathematical modulus, denoted
“a mod b.” This is shorthand for the remainder resulting from dividing a by b. One method for
calculating the modulus is6

nmodm = n − m ceil(n∕m) + m (B.51)
where ceil is short for the ceiling function that rounds up7 to the next integer. To see how this
works:

7mod3 = 1 = 7 − 3ceil(7∕3) + 3 = 7 − 3ceil(2.3333) + 3 = 7 − 3 • 3 + 3 = 1
A standard method for creating a uniform random number is the linear congruential generator.8
Consider the recursive relationship

Xn =
(
aXn−1 + c

)
modm (B.52)

where a, c, and m are constants that we choose. It means that Xn takes the value equal to the
remainder obtained by dividing aXn−1 + c by m. It is a recursive relationship because the nth
value depends on the (n−1)th. That means we must choose a starting value X0, which is called
the random number seed. Everyone using the same seed, and values a, c, and m will generate
the same string of numbers. The value m is the divisor in (B.52), and it determines the maximum
period of the recursively generated values. The uniform random values falling in the interval
(0, 1) are obtained as Un = Xn∕m. The value of m is often chosen to be 232 when using computers
with 32-bit architecture. The values of a and c are critical to the success of the random number
generator. Bad choices result in sequences of numbers that are not random. For example, type
RANDU into your search engine. This was a popular random number generator in the 1960s
(I used it too!) that was later discovered to be very flawed, failing tests of randomness.9

E X A M P L E B.16 Linear Congruential Generator Example

To illustrate that the process defined in (B.52) can generate
apparently random numbers, we choose X0 = 1234567,
a = 1664525, b = 1013904223, and m = 232 and create
10,000 data values, labeled U1 in the data file uniform3 .10

Using a histogram with 20 bins, we would expect 5% of the
values in each, and as Figure B.17 illustrates, that is about
what we get.

The 10,000 values for U1 have sample mean 0.4987197
and variance 0.0820758 compared to the true mean and
variance for a uniform distribution of 0.5 and 0.08333.
The minimum and maximum values are 0.0000327 and
0.9998433, respectively.

............................................................................................................................................
6www.functions.wolfram.com/IntegerFunctions/Mod/27/01/03/01/0001/.
7ceil(x) is the smallest integer not less than x.
8A description and link to sources is www.en.wikipedia.org/wiki/Linear_congruential_generator.
9George Marsaglia developed a series of tests for randomness that are widely used. They are available at
www.stat.fsu.edu/pub/diehard/.
10The variable U2 in this file uses seed 987654321.
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FIGURE B.17 Histogram of 10,000 generated uniform random values.

The lessons learned from these exercises are that random numbers are not random, and some
random number generators are better than others. Ones that are popularly cited are the Mersenne
twister and the KISS+Monster algorithm. New ones continue to be developed, and each software
provider uses different algorithms which are predominately kept secret, or difficult to discover at
any rate.

The third lesson is that you should probably not attempt to write your own random number
algorithms. Professor Ken Train, an econometrician who has studied computational methods a
great deal, says,11“From a practical perspective, my advice is the following: unless one is willing
to spend considerable time investigating and resolving (literally, re-solving)…” the issues related
to designing pseudo-random number routines “… it is probably better to use available routines
rather than write a new one.” Our advice is to use your software to generate random numbers, but
when documenting your work, cite the software used and the software version, as revisions can
change results from one version to another.

B.5 Exercises

B.1 Let X1, X2, …, Xn be independent random variables which all have the same probability distribution,
with mean μ and variance σ2. Let

X = 1
n

n∑
i=1

Xi

a. Use the properties of expected values to show that E
(

X
)
= μ.

b. Use the properties of variance to show that var
(

X
)
= σ2∕n. How have you used the assumption of

independence?

............................................................................................................................................................
11Discrete Choice Methods with Simulation, 2nd ed., 2009, Cambridge University Press, p. 206.
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B.2 Suppose that Y1, Y2, Y3 is a sample of observations from a N
(
μ, σ2) population but that Y1, Y2, and

Y3 are not independent. In fact, suppose that

cov
(
Y1, Y2

)
= cov

(
Y2, Y3

)
= cov

(
Y1, Y3

)
= σ2

2
Let Y =

(
Y1 + Y2 + Y3

)
∕3.

a. Find E
(

Y
)

.
b. Find var

(
Y
)

.
B.3 Let X be a continuous random variable with probability density function given by

!(x) = −1
2 x + 1, 0 ≤ x ≤ 2

a. Graph the density function f (x).
b. Find the total area beneath f (x) for 0 ≤ x ≤ 2.
c. Find P (X ≥ 1) using both geometry and integration.
d. Find P

(
X ≤ 1

2

)
.

e. Find P
(
X = 1 1

2

)
.

f. Find the expected value and variance of X.
g. Find the cumulative distribution function of X.

B.4 Let X be a uniform random variable on the interval (a, b).
a. Use integration techniques to find the mean and variance of X.
b. Find the cumulative distribution function of X.

B.5 Use the recursive relationship in (B.52) with X0 = 79, m = 100, a = 263, and c = 71 to generate 40 val-
ues X1, X2, …, X40. Do the resulting numbers appear random? Is this a good random number generator,
or not?

B.6 Let X have a normal distribution with mean μ and variance σ2. Use the change-of-variable technique
to find the probability density function of Y = aX + b.

B.7 Show that if E(Y|X) = E(Y ), then cov
[
Y, g(X)

]
= 0 for any function g(X).

B.8 Normal random numbers are useful for Monte Carlo simulations. One way to generate them is using
the Box–Muller transformation. The Box–Muller transformation creates two new random variables,
Z1 and Z2 , that have independent N(0, 1) distributions, using

Z1 =
√
−2 ln(U1 )cos(2πU2 ), Z2 =

√
−2 ln(U1 ) sin(2πU2 )

a. Construct a histogram of Z1 and Z2 obtained by using the 1,000 uniform random values U1 and U2
in data file uniform1 (or the 10,000 values in the data file uniform2 ). Is the distribution of values
“bell shaped”?

b. Calculate the summary statistics for Z1 and Z2 . Are the sample mean and variance close to zero
and one, respectively?

c. Construct a scatter diagram for Z1 and Z2 . That is, plot Z1 (vertical axis) and Z2 (horizontal axis)
in the x–y plane. Is there any evidence of positive or negative correlation?

B.9 Let X be a continuous random variable with pdf f (x) = 3x2/8 for 0 < x < 2. Compute
a. P

(
0 < X < 1

2

)

b. P(1 < X < 2)
B.10 A continuous random variable X is said to have an exponential distribution if its pdf is f(x) = e−x,

x ≥ 0.
a. Plot this density function for 0 ≤ x ≤ 10.
b. The cumulative distribution function for X is F(x) = 1 – e−x. Plot this function over the interval

0 ≤ x ≤ 10. Is it strictly increasing or decreasing, or are you unsure?
c. Use the inverse transformation method to draw random values X1 from this distribution. Use the

1,000 values for U1 in data file uniform1 or the 10,000 values for U1 in data file uniform2 . Construct
a histogram of the values you have created. Does it resemble the plot in (a)?
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d. The true mean and variance of X are μ = 1 and σ2 = 1. How close are the sample mean and the
sample variance to the true values?

B.11 Use the recursive relationship in (B.52) with X0 = 1234567, m = 232, a = 1103515245, and
c = 12345 to generate 1,000 random values called U1 . Do the resulting numbers appear random? Is
this a good random number generator, or not? Choose another seed value and generate another 1,000
values called U2 . Find the summary statistics and sample correlation for U1 and U2 . Do the values
behave as you expect them to, or not?

B.12 Suppose that the joint pdf of the continuous random variables X and Y is f(x, y) = 6x2y for
0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
a. Does this function satisfy the conditions for a valid pdf ?
b. Find the marginal pdf of X, as well as its mean and variance.
c. Find the marginal pdf of Y .
d. Find the conditional pdf of X given Y = 1

2 .
e. Find the conditional mean and variance of X given Y = 1

2 .
f. Are X and Y independent? Explain.

B.13 Suppose that X and Y are continuous random variables with joint pdf !(x, y) = 1
2 for 0 ≤ x ≤ y ≤ 2

and f (x, y) = 0 otherwise. Note that the values of X are less than or equal to the values of Y .
a. Verify that the volume under the joint pdf is 1.
b. Find the marginal pdf s of X and Y .
c. Find P

(
X < 1

2

)
.

d. Find the cdf of Y .
e. Find the conditional probability P

(
X < 1

2
||||Y. = 1.5

)
. Are X and Y independent?

f. Find the expected value and variance of Y .
g. Use the law of iterated expectations to find E(X).

B.14 Let X and Y be two discrete random variables. X can take the values 1, 2, 3, or 4. Y can take the values
1, 2, 3. Their joint pdf is

X

1 2 3 4

Y
1 0.01 0.07 0.09 0.03
2 0.20 0 0.05 0.25
3 0.09 0.03 0.06 0.12

a. Find the marginal distributions, the pdf s of X and Y .
b. Are these two random variables statistically independent? If not, give an example that disproves

independence.
c. Find the conditional pdf of X given that Y = 2, !(x|Y = 2), for x = 1, 2, 3, and 4.
d. Find the expected value of X.
e. Find the expected value of X given that Y = 2.

B.15 This exercise uses the random variables X and Y , and their joint pdf , from Exercise B.14.
a. Find the variance of X.
b. Find the variance of X given that Y = 2, and the variance of X given that Y = 3. Are they equal?
c. Find the conditional expectations E(X|Y = 1), E(X|Y = 2), and E(X|Y = 3). Using these values

show that E(X) = ∑3
i=1 E(X|Y = i)P(Y = i).

d. Find E(XY).
e. Find cov(X,Y ) = E(XY) – E(X)E(Y ).
f. Find the correlation between X and Y .

B.16 Suppose that the two continuous random variables X and Y have joint pdf !(x, y) = 21
4 x2y,

if x2 ≤ y ≤ 1.
a. Show that the marginal pdf of X is !(x) = ∫

1

x2

21
4 x2ydy = 21

8 x2(1 − x4) if −1 ≤ x ≤ 1.
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b. Show that the conditional pdf of Y given that X = 1
2 is !(y|X = 1∕2) = 32

15 y for 0.25 ≤ y ≤ 1.
c. Show that the conditional pdf of Y given X = x is !(y|X = x) = 2y

1 − x4 if x2 ≤ y ≤ 1.

d. Using the result in part (c), show that E(Y|X = x) =
(

2
3

)(
1 − x6

1 − x4

)
.

e. It can be shown that the pdf of Y is !(y) = 7
2 y5∕2 if 0 ≤ y ≤ 1. (i) Verify that this is a legitimate

pdf and (ii) using this result show that E(Y ) = 7
9 .

f. Using the results in (d) and (a), use the law of iterated expectations to show that E(Y ) =
EX[E(Y|X = x)] = 7

9 .
B.17 Consider the random variable X which is the number of heads occurring in two flips of a fair coin.

a. What values can X take? What are the probabilities of each outcome? What is the probability that
X ≤ 1.5?

b. Write down the values of the cumulative distribution function of X. What is the probability that
X ≤ 1? What is the probability that X ≤ 1.5?

c. Suppose a wager is proposed in which you will receive winnings of W = 2X dollars. What is the
probability distribution of W?

d. What are your expected winnings? Show your work.
e. What is the conditional probability density function of X given that the first flip is a head?
f. What is the conditional expectation of W = 2X given that the first flip is a head?

B.18 Suppose X is a continuous random variable that can take any value between zero and three,
0 < x < 3. The pdf is !(x) = cx2.
a. Find the value of c that makes this a legitimate pdf .
b. Using the result in (a) find P(0 < X < 2). Show your work.
c. Find the mathematical equation for the cdf F(x). Draw a sketch of the cdf for −∞ < x <∞.
d. Use the cdf in (c) to compute P(0.5 < X < 1).
e. Find the probability P(0.5 < X < 1) given that X < 2.

B.19 The cdf of the continuous random variable X is F(x) = 1 − e−2x for x ≥ 0 and F(x) = 0 otherwise.
a. Draw a sketch of the cdf .
b. Use the cdf to find the probability P(1 < X < 2).
c. Find the pdf of X. Sketch the pdf .
d. Sketch on the pdf the area representing P(1 < X < 2).

B.20 Two discrete random variables X and Y have the joint pdf !(x, y) = c(2x + y). The random variable X
takes the values x = 0, 1, 2 and the random variable Y takes the values y = 0, 1, 2, 3.
a. Find the value c that makes the probabilities sum to 1.
b. Find P(X ≥ 1, Y ≤ 1).
c. Find the marginal pdf s of X and Y .
d. Find the probability P(X ≥ 1,Y ≤ 1) given that Y ≤ 2.
e. Find the expected value of X.
f. Find the expected value of X given that Y ≤ 2.
g. Are X and Y statistically independent? Explain.

B.21 This exercise uses the joint pdf in Exercise B.14.
a. Find the variance of Y .
b. Find E(Y|X = 1), E(Y|X = 2), E(Y|X = 3), and E(Y|X = 4).
c. Calculate ∑4

x=1[E(Y|X = x) − E(Y )]2!(x). Which term in equation (B.27) does this represent?
d. Find var(Y|X = 1), var(Y|X = 2), var(Y|X = 3), var(Y|X = 4).
e. Calculate ∑4

x=1[var(Y|X = x)]!(x). Which term in equation (B.27) does this represent?
f. Use the results in parts (c) and (e) to compute var(Y ).

B.22 An econometrics instructor randomly chooses n = 5 students and gives each a problem to solve. Let
the random variables Xi = 1 if the ith student answers correctly and Xi = 0 if the student does not
answer the question correctly. Suppose that the probability that each student answers correctly is 0.80.
Let X = ∑5

i=1 Xi be the number of students who answer correctly.
a. Use the binomial distribution (B.43) to compute P(X = 3|n = 5, p = 0.80).
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b. From the first group of five students selected, four answered correctly. From a second randomly
selected group of five students, two answered correctly. How does this illustrate the concept of
sampling variation?

c. The instructor repeats the experiment of randomly selecting five students many times, recording
the value X in each experiment. What will the average number of students answering correctly
converge toward, as the number of experiments becomes very large?

d. Draw a sketch of the pdf of this random variable, locating E(X) on the graph.
e. Find var(X). How does this value relate to the concept of sampling variation?

B.23 Suppose that for the population of married U.S. women, the average number of extramarital affairs,
X, is μ = 2.
a. Use the Poisson density function in (B.44) to find the probability that a randomly chosen married

women will have X = 2 affairs.
b. Find the probability that a randomly chosen married woman will have two or more extramarital

affairs. [Hint: First compute P(X = 0) and P(X = 1).]
c. Instead of sampling the entire population of married U.S. women, suppose that we sample the pop-

ulation of women who are known to have had at least one extramarital affair. Find the probability
that a randomly chosen married woman will have two or more extramarital affairs given that she
will have had at least one. That is, find P(X ≥ 2|X ≥ 1).

B.24 Chebyshev’s inequality is a remarkable statistical result. Suppose X is a discrete or continuous random
variable with mean μ and variance σ2. Let ε be any positive number, then P(|X − μ| ≥ ε) ≤ σ2∕ε2.
a. Let X be a normal random variable with mean μ = 1 and variance σ2 = 1. Draw a sketch of the pdf

of X.
b. Let ε = 1. On the sketch in (a) show P(|X − 1| ≥ 1).
c. Using the normal probabilities in Statistical Table 1, or your computer software, compute

P(|X − 1| ≥ 1). Does the calculated value agree with Chebyshev’s inequality?
B.25 Chebyshev’s inequality is given in Exercise B.24.

a. If we let ε = kσ what does the inequality become?
b. Let X be a normal random variable with mean μ = 1 and variance σ2 = 1. Find the exact probability

P(|X − 1| ≥ 2σ). Does the value you calculate agree with the version of Chebyshev’s inequality
derived in part (a)?

c. Let U be a uniform random variable, see Section B.3.4, on the interval [0, 1]. Find the exact proba-
bility P(|U − 0.5| > 2σ). Does this result agree with the revised version of Chebyshev’s inequality
derived in part (a)?

d. Let Y be a binomial random variable based on n = 10 trials each with probability p = 0.8. For
this binomial distribution, what are the mean μ and standard deviation σ? Using your computer
software, compute P(|Y − μ| > 2σ). Does your computed value agree with the revised version of
Chebyshev’s inequality derived in part (a)?

B.26 Suppose that X is a random variable, and g(X) is a convex function of X. Then Jensen’s inequality,
as used in probability theory, says g[E(X)] ≤ E

[
g(X)

]
. A convex function “curves up” without any

inflection points. If a function g(X) has second derivative that is positive over an interval, then it is
convex over the interval.
a. Consider the function g(X) = X2 over the interval X > 0. Find the second derivative of this func-

tion. Is g(X) convex for X > 0? Draw a simple sketch of the function.
b. Suppose X is a discrete random variable taking the values x = 1, 2, 3, 4 with probabilities 0.1,

0.2, 0.3, and 0.4, respectively. Find E(X) and E(X2). Is[E(X)]2 ≤ E
(
X2)?

c. The variance of the random variable X is E
{
[X − E(X)]2} = E

(
X2) − [E(X)]2. Using Jensen’s

inequality what can we say about the variance of a random variable?
B.27 Suppose that X is a random variable, and g(X) is a concave function of X. Then Jensen’s inequality, as

used in probability theory, says g[E(X)] ≥ E
[
g(X)

]
. A concave function has a continuously diminishing

slope. If a function g(X) has second derivative that is negative over an interval, then it is concave over
the interval.
a. Consider the function g(X) = ln(X) over the interval X > 0. Find the second derivative of this

function. Is g(X) concave for X > 0? Draw a simple sketch of the function.
b. Suppose X is a discrete random variable taking the values x = 1, 2, 3, 4 with probabilities 0.1,

0.2, 0.3, and 0.4, respectively. Find E(X) and E[ln(X)]. Is ln[E(X)] ≥ E[ln(X)]?
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c. Jensen’s inequality is also true for sample averages. Suppose x1, x2, …, xn are numbers and g(x)
is a concave function. Then g

(∑n
i=1 xi∕n

) ≥ ∑n
i=1 g

(
xi
)
∕n. Suppose x1 = 1, x2 = 2, x3 = 3, and

x4 = 4. Show that ln
(∑4

i=1 xi∕4
) ≥ ∑4

i=1 ln
(
xi
)
∕4.

B.28 Let X and Y be random variables. The Cauchy–Schwarz inequality, as used in probability theory, is
[E(XY )]2 ≤ E

(
X2)E

(
Y 2).

a. Using the joint probabilities in Table P.3, in the Probability Primer, Section P.3.2, verify that
[E(XY )]2 ≤ E

(
X2)E

(
Y 2) holds.

b. Replace the random variables X and Y by X − E(X) = X − μX and Y − E(Y ) = Y − μY. Show that
the Cauchy–Schwarz inequality implies [cov(X,Y )]2 ≤ var(X) var(Y ).

c. Using the joint probabilities in Table P.3, in the Probability Primer, Section P.3.2, verify that
[cov(X, Y )]2 ≤ var(X) var(Y ).

d. Use the fact that [cov(X, Y )]2 ≤ var(X) var(Y ) to prove that the correlation ρXY must fall in the
interval [−1, 1].

e. Show that [cov(X, Y )]2 = var(X) var(Y ) if Y = a + bX, where a and b are constants.
B.29 Let X be a random variable and consider a function g(X) ≥ 0 for every value of X. Assume E[g(X)]

exists. Then Markov’s inequality is P
(
g(X) ≥ c

) ≤ c−1E[g(X)].
a. Suppose X is a discrete random variable taking the values x = 1, 2, 3, 4 with probabilities 0.1, 0.2,

0.3, and 0.4, respectively. Let g(X) = X2. Find P
[
X2 ≥ 5

]
. Find E(X2). Is P

[
X2 ≥ 5

] ≤ E
(
X2)∕5?

b. Let g(X) =
(
X − μX

)2, where μX = E(X). Let c = k2σ2
X . Show that Markov’s inequality leads to

Chebyshev’s inequality. [Author’s note: Many mathematical inequalities are used in probability
and statistics. A good list is in Dale J. Poirier (1995) Intermediate Statistics and Econometrics:
A Comparative Approach, MIT Press, Chapter 2.8. There Poirier (page 76) also relates a conver-
sation between Nobel Prize winning economist Lawrence Klein and statistician Harold Freeman.
Lawrence Klein “If the Devil promised you a theorem in return for your immortal soul, would you
accept the bargain?” Harold Freeman “No. But I would for an inequality.”]

B.30 Suppose X is a uniformly distributed variable on the (0, 1) interval. That is, f (x) = 1 if 0 < x < 1
and f (x) = 0 otherwise. Further, suppose that the conditional pdf of Y given X = x is f (y|x) = 1∕x
for 0 < y < x and f (y|x) = 0 otherwise. [Adapted from Takeshi Amemiya (1994) Introduction to
Statistics and Econometrics, Harvard University Press.]
a. Use the law of iterated expectations to show that E(Y ) = EXE(Y|X) = 1∕4.
b. Show that !(x, y) = 1∕x for 0 < x < 1 and 0 < y < x, but !(x, y) = 0 otherwise. Then show !(y) =

ln(y) for 0 < y < 1. Then find E(Y ) = ∫
1

0
y!(y) dy.

B.31 Suppose X is a uniformly distributed variable on the (0, 1) interval. That is, !(x) = 1 if 0 < x < 1
and !(x) = 0 otherwise. Suppose the random variable Y takes the values 1 and 0, and the condi-
tional probabilities of these values are P(Y = 1|X = x) = x and P(Y = 0|X = x) = 1 − x. [Adapted
from Takeshi Amemiya (1994) Introduction to Statistics and Econometrics, Harvard University Press.]
a. Use the law of iterated expectations to show E(Y ) = 1∕2.
b. Use the variance decomposition to show that var(Y ) = 1∕4.
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Review of Statistical Inference
L E A R N I N G O B J E C T I V E S

Based on the material in this appendix, you should be able to

1. Discuss the difference between a population and
a sample, and why we use samples of data as a
basis for inference about population parameters.

2. Connect the concepts of a population and a
random variable, indicating how the probability
density function of a random variable, and the
expected value and variance of the random
variable, inform us about the population.

3. Explain the difference between the population
mean and the sample mean.

4. Explain the difference between an estimate and
an estimator, and why the latter is a random
variable.

5. Explain the terms sampling variation and
sampling distribution.

6. Explain the concept of unbiasedness, and use
the rules of expected values to show that the
sample mean is unbiased.

7. Explain why we prefer unbiased estimators with
smaller variances to those with larger variances.

8. Describe the central limit theorem, and its
implications for statistical inference.

9. Explain the relation between the population
‘‘standard deviation’’ and the standard error of
the sample mean.

10. Explain the difference between point and
interval estimation, and construct and interpret
interval estimates of a population mean given a
sample of data.

11. Give, in simple terms, a clarification of what the
phrase ‘‘95% level of confidence’’ does and does
not mean in relation to interval estimation.

12. Explain the purpose of hypothesis testing, and
list the elements that must be present when
carrying out a test.

13. Discuss the implications of the possible
alternative hypotheses when testing the null
hypothesis H0∶μ = 7. Give an economic example
in which this hypothesis might be tested against
one of the alternatives.

14. Describe the level of significance of a test, and
explain the difference between the level of
significance and the p-value of a test.

15. Define Type I error and its relationship to the
level of significance of a test.

16. Explain the difference between one-tail tests
and two-tail tests, describing when one is
preferred to the other.

17. Explain the difference and implications between
the statements ‘‘I accept the null hypothesis’’
and ‘‘I do not reject the null hypothesis.’’

18. Give an intuitive explanation of maximum
likelihood estimation, and describe the
properties of the maximum likelihood estimator.

19. List the three types of tests associated with
maximum likelihood estimation and comment
on their similarities and differences.

20. Distinguish between parametric and
nonparametric estimation.

21. Understand how a kernel density estimator fits
an empirical distribution.

812



❦

❦ ❦

❦

C.1 A Sample of Data 813

K E Y W O R D S
alternative hypothesis
asymptotic distribution
BLUE
central limit theorem
central moments
estimate
estimator
experimental design
information measure
interval estimate
kernel density estimator
Lagrange multiplier test
law of large numbers
level of significance

likelihood function
likelihood ratio test
linear estimator
log-likelihood function
maximum likelihood estimation
nonparametric
null hypothesis
parametric
point estimate
population parameter
p-value
random sample
rejection region
sample mean

sample variance
sampling distribution
sampling variation
standard error
standard error of the estimate
standard error of the mean
statistical inference
test statistic
two-tail tests
Type I error
Type II error
unbiased estimators
Wald test

Economists are interested in relationships between economic variables. For example, how much
can we expect the sales of Frozen Delight ice cream to rise if we reduce the price by 5%?
How much will household food expenditure rise if household income rises by $100 per month?
Questions such as these are the main focus of this book.

However, sometimes questions of interest focus on a single economic variable. For example,
an airplane seat designer must consider the average hip size of passengers in order to allow ade-
quate room for each person, while still designing the plane to carry the profit-maximizing number
of passengers. What is the average hip size, or more precisely hip width, of U.S. flight passengers?
If a seat 18 inches wide is planned, what percent of customers will not be able to fit? Questions
like this must be faced by manufacturers of everything from golf carts to women’s jeans. How can
we answer these questions? We certainly cannot take the measurements of every man, woman,
and child in the U.S. population. This is a situation when statistical inference is used. Infer means
“to conclude by reasoning from something known or assumed.” Statistical inference means that
we will draw conclusions about a population based on a sample of data.

C.1 A Sample of Data
To carry out statistical inference, we need data. The data should be obtained from the population in
which we are interested. For the airplane seat designer this is essentially the entire U.S. population
above the age of two, since small children can fly “free” on the laps of their suffering parents.
A separate branch of statistics, called experimental design, is concerned with the question of
how to actually collect a representative sample. How would you proceed if you were asked to
obtain 50 measurements of hip size representative of the entire population? This is not such an
easy task. Ideally the 50 individuals will be randomly chosen from the population, in such a way
that there is no pattern of choices. Suppose we focus on only the population of adult flyers, since
usually there are few children on planes. Our experimental design specialist draws a sample that
is shown in Table C.1 and stored in the data file hip.
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T A B L E C.1 Sample Hip Size Data

14.96 14.76 15.97 15.71 17.77
17.34 17.89 17.19 13.53 17.81
16.40 18.36 16.87 17.89 16.90
19.33 17.59 15.26 17.31 19.26
17.69 16.64 13.90 13.71 16.03
17.50 20.23 16.40 17.92 15.86
15.84 16.98 20.40 14.91 16.56
18.69 16.23 15.94 20.00 16.71
18.63 14.21 19.08 19.22 20.23
18.55 20.33 19.40 16.48 15.54

E X A M P L E C.1 Histogram of Hip Width Data

A first step when analyzing a sample of data is to exam-
ine it visually. Figure C.1 is a histogram of the 50 data
points. Based on this figure, the “average” hip size in
this sample seems to be between 16 and 18 inches. For
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FIGURE C.1 Histogram of hip sizes.

our profit-maximizing designer this casual estimate is not
sufficiently precise. In the next section we set up an econo-
metric model that will be used as a basis for inference in this
problem.

C.2 An Econometric Model
The data in Table C.1 were obtained by sampling. Sampling from a population is an experiment.
The variable of interest in this experiment is an individual’s hip size. Before the experiment is per-
formed we do not know what the values will be, thus the hip size of a randomly chosen person is a
random variable. Let us denote this random variable as Y . We choose a sample of N = 50 individ-
uals, Y1, Y2,… , YN, where each Yi represents the hip size of a different person. The data values in
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Table C.1 are specific values of the variables, which we denote as y1, y2,… , yN. We assume that
the population has a center, which we describe by the expected value of the random variable Y ,

E(Y) = μ (C.1)
We use the Greek letter μ (“mu”) to denote the mean of the random variable Y , and also the mean
of the population we are studying. Thus if we knew μ we would have the answer to the question
“What is the average hip size of adults in the United States?” To indicate its importance to us in
describing the population we call μ a population parameter, or, more briefly, a parameter. Our
objective is to use the sample of data in Table C.1 to make inferences, or judgments, about the
unknown population parameter μ.

The other random variable characteristic of interest is its variability, which we measure by
its variance,

var(Y) = E
[
Y − E(Y)

]2 = E
[
Y − μ

]2 = σ2 (C.2)

The variance σ2 is also an unknown population parameter. As described in the Probability Primer,
the variance of a random variable measures the “spread” of a probability distribution about the
population mean, with a larger variance meaning a wider spread, as shown in Figure P.3. In the
context of the hip data, the variance tells us how much hip sizes can vary from one randomly
chosen person to the next. To economize on space, we will denote the mean and variance of a
random variable as Y ∼

(
μ, σ2)where∼means “is distributed as.” The first element in parentheses

is the population mean and the second is the population variance. So far we have not said what
kind of probability distribution we think Y has.

The econometric model is not complete. If our sample is drawn randomly, we can assume
that Y1, Y2,… , YN are statistically independent. The hip size of any one individual is independent
of the hip size of another randomly drawn individual. Furthermore, we assume that each of the
observations we collect is from the population of interest, so each random variable Yi, has the
same mean and variance, or Yi ∼

(
μ, σ2). The Yi constitute a random sample, in the statistical

sense, because Y1, Y2,… , YN are statistically independent with identical probability distributions.
It is sometimes reasonable to assume that population values are normally distributed, which we
represent by Y ∼ N

(
μ, σ2).

C.3 Estimating the Mean of a Population
How shall we estimate the population mean μ given our sample of data values in Table C.1?
The population mean is given by the expected value E(Y) = μ. The expected value of a random
variable is its average value in the population. It seems reasonable, by analogy, to use the average
value in the sample, or sample mean, to estimate the population mean. Denote by y1, y2,… , yN
the sample of N observations. Then the sample mean is

y = ∑
yi∕N (C.3)

The notation y (pronounced “y-bar”) is widely used for the sample mean, and you probably
encountered it in your statistics courses.

E X A M P L E C.2 Sample Mean of Hip Width Data

For the hip data in Table C.1 we obtain y = 17.1582, thus
we estimate that the average hip size in the population is
17.1582 inches.

Given the estimate y = 17.1582 we are inclined to ask,
“How good an estimate is 17.1582?” By that we mean how

close is 17.1582 to the true population mean, μ? Unfortu-
nately this is an ill-posed question in the sense that it can
never be answered. In order to answer it, we would have to
know μ, in which case we would not have tried to estimate it
in the first place!
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Instead of asking about the quality of the estimate we will ask about the quality of the estimation
procedure, or estimator. How good is the sample mean as an estimator of the mean of a popula-
tion? This is a question we can answer. To distinguish between the estimate and the estimator of
the population mean μ we will write the estimator as

Y =
N∑

i=1
Yi∕N (C.4)

In (C.4) we have used Yi instead of yi to indicate that this general formula is used whatever the
sample values turn out to be. In this context Yi are random variables, and thus the estimator Y
is random too. We do not know the value of the estimator Y until a data sample is obtained, and
different samples will lead to different values.

E X A M P L E C.3 Sampling Variation of Sample Means of Hip Width Data

To illustrate, we collect 10 more samples of size N = 50
and calculate the average hip size, as shown in Table C.2.
The estimates differ from sample to sample because Y
is a random variable. This variation, due to collection of
different random samples, is called sampling variation. It is
an inescapable fact of statistical analysis that the estimator
Y—indeed, all statistical estimation procedures—are subject
to sampling variability. Because of this terminology, an esti-
mator’s probability density function is called its sampling
distribution.

T A B L E C.2 Sample Means from 10 Samples

Sample y
1 17.3544
2 16.8220
3 17.4114
4 17.1654
5 16.9004
6 16.9956
7 16.8368
8 16.7534
9 17.0974

10 16.8770

We can determine how good the estimator Y is by examining its expected value, variance, and
sampling distribution.

C.3.1 The Expected Value of Y
Write out formula (C.4) fully as

Y =
N∑

i=1

1
N

Yi =
1
N

Y1 +
1
N

Y2 + · · · + 1
N

YN (C.5)

From (P.16) the expected value of this sum is the sum of expected values

E
(

Y
)
= E

( 1
N

Y1
)
+ E

( 1
N

Y2
)
+ · · · + E

( 1
N

YN

)

= 1
N

E
(
Y1
)
+ 1

N
E
(
Y2
)
+ · · · + 1

N
E
(
YN

)

= 1
N
μ + 1

N
μ + · · · + 1

N
μ

= μ
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The expected value of the estimator Y is the population mean μ that we are trying to estimate.
What does this mean? The expectation of a random variable is its average value in all possible
random samples from the population. If we did obtain many samples of size N, and obtained
their average values, like those in Table C.2, then the average of all those values would equal
the true population mean μ. This property is a good one for estimators to have. Estimators with
this property are called unbiased estimators. The sample mean Y is an unbiased estimator of the
population mean μ.

Unfortunately, while unbiasedness is a good property for an estimator to have, it does not tell
us anything about whether our estimate y = 17.1582, based on a single sample of data, is close
to the true population mean value μ. To assess how far the estimate might be from μ, we will
determine the variance of the estimator.

C.3.2 The Variance of Y
The variance of Y is obtained using the procedure for finding the variance of a sum of uncorrelated
(zero covariance) random variables in (P.23). We can apply this rule if our data are obtained by
random sampling, because with random sampling the observations are statistically independent,
and thus are uncorrelated. Furthermore, we have assumed that var

(
Yi
)
= σ2 for all observations.

Carefully note how these assumptions are used in the derivation of the variance of Y , which we
write as var

(
Y
)

:

var
(

Y
)
= var

( 1
N

Y1 +
1
N

Y2 + · · · + 1
N

YN

)

= 1
N2 var

(
Y1
)
+ 1

N2 var
(
Y2
)
+ · · · + 1

N2 var
(
YN

)

= 1
N2 σ

2 + 1
N2 σ

2 + · · · + 1
N2 σ

2

= σ2

N

(C.6)

This result tells us that (i) the variance of Y is smaller than the population variance, because the
sample size N ≥ 2, and (ii) the larger the sample size, the smaller the sampling variation of Y as
measured by its variance.

C.3.3 The Sampling Distribution of Y
If the population data are normally distributed, then we say that the random variable Yi follows a
normal distribution. In this case the estimator Y also follows a normal distribution. In (P.36) it is
noted that weighted averages of normal random variables are normal themselves. From (C.5) we
know that Y is a weighted average of Yi. If Yi ∼ N

(
μ, σ2), then Y is also normally distributed, or

Y ∼ N
(
μ, σ2∕N

)
.

We can gain some intuition about the meaning and usefulness of the finding that
Y ∼ N

(
μ, σ2∕N

)
if we examine Figure C.2. Each of the normal distributions in this figure is a

sampling distribution of Y . The differences among them are the sample sizes used in estimation.
The sample size N3 > N2 > N1. Increasing the sample size decreases the variance of the estimator
Y , var

(
Y
)
= σ2∕N, and this increases the probability that the sample mean will be “close” to the

true population parameter μ. When examining Figure C.2, recall that an area under a probability
density function (pdf ) measures the probability of an event. If ε represents a positive number,
the probability that Y falls in the interval between μ − ε and μ + ε is greater for larger samples.
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pdf of Y

N1

N2

N3

µ + εµ – ε µ

FIGURE C.2 Increasing sample size and sampling distributions of Y.

The lesson here is that having more data is better than having less data, because having a larger
sample increases the probability of obtaining an estimate “close” or “within ε” of the true
population parameter μ.

E X A M P L E C.4 The Effect of Sample Size on Sample Mean Precision

In our numerical example, suppose we want our estimate
of μ to be within 1 inch of the true value. Let us compute
the probability of getting an estimate within ε = 1 inch of
μ—that is, within the interval [μ − 1, μ + 1]. For the purpose
of illustration assume that the population is normal, σ2 = 10
and N = 40. Then Y ∼ N

(
μ, σ2∕N = 10∕40 = 0.25

)
. We

can compute the probability that Y is within 1 inch of μ by
calculating P

[
μ − 1 ≤ Y ≤ μ + 1

]
. To do so we standardize Y

by subtracting its mean μ and dividing by its standard devi-
ation σ

/√
N, and then use the standard normal distribution

and Statistical Table 1:

P
[
μ − 1 ≤ Y ≤ μ + 1

]
= P

[
−1

σ∕
√

N
≤ Y − μ
σ∕

√
N

≤ 1
σ∕

√
N

]

= P
[

−1√
0.25

≤ Z ≤ 1√
0.25

]

= P[−2 ≤ Z ≤ 2] = 0.9544

Thus, if we draw a random sample of size N = 40 from a nor-
mal population with variance 10, using the sample mean as
an estimator will provide an estimate within 1 inch of the true
value about 95% of the time. If N = 80, the probability that
Y is within 1 inch of μ increases to 0.995.

C.3.4 The Central Limit Theorem
We were able to carry out the above analysis because we assumed that the population we are
considering, hip width of U.S. adults, has a normal distribution. This implies that Yi ∼ N

(
μ, σ2),

and Y ∼ N
(
μ, σ2∕N

)
. A question we need to ask is “If the population is not normal, then what is

the sampling distribution of the sample mean?” The central limit theorem provides an answer
to this question.
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Central Limit Theorem:
If Y1,… ,YN are independent and identically distributed random variables with mean μ and
variance σ2, and Y = ∑

Yi∕N, then

ZN = Y − μ
σ
/√

N

has a probability distribution that converges to the standard normal N(0, 1) as N → ∞.

This theorem says that the sample average of N independent random variables from any proba-
bility distribution will have an approximate standard normal distribution after standardizing (i.e.,
subtracting the mean and dividing by the standard deviation), if the sample is sufficiently large.
A shorthand notation is Y a∼N

(
μ, σ2∕N

)
, where the symbol a∼ means asymptotically distributed.

The word asymptotic implies that the approximate normality of Y depends on having a large
sample. Thus even if the population is not normal, if we have a sufficiently large sample, we can
carry out calculations like those in the previous section. How large does the sample have to be? In
general, it depends on the complexity of the problem, but in the simple case of estimating a pop-
ulation mean, if N ≥ 30 then you can feel pretty comfortable in assuming that the sample mean is
approximately normally distributed, Y a∼N

(
μ, σ2∕N

)
, as indicated by the central limit theorem.

E X A M P L E C.5 Illustrating the Central Limit Theorem

To illustrate how well the central limit theorem actually
works, we carry out a simulation experiment. Let the
continuous random variable Y have a triangular distribution,
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FIGURE C.3 Central limit theorem.

with probability density function

! (y) =
{2y 0 < y < 1

0 otherwise
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Draw a sketch of the triangular pdf to understand its name.
The expected value of Y is μ = E(Y) = 2∕3, and its variance
is σ2 = var(Y) = 1∕18. The central limit theorem says that
if Y1,… ,YN are independent and identically distributed with
density f (y) then

ZN = Y − 2∕3√
1∕18

N
has a probability distribution that approaches the standard
normal distribution as N approaches infinity.

We use a random number generator to create random
values from the triangular pdf . Plotting 10,000 values gives
the histogram in Figure C.3(a). We generate 10,000 samples
of sizes N = 3, 10, and 30, compute the sample means of
each sample, and create ZN. Their histograms are shown in
Figures C.3(b)–(d). You see the amazing convergence of the
standardized sample mean’s distribution to a distribution that
is bell shaped, centered at zero, symmetric, with almost all
values between −3 and 3, just like a standard normal distri-
bution, with a sample size as small as N = 10.

C.3.5 Best Linear Unbiased Estimation
Another powerful finding about the estimator Y of the population mean is that it is the best of all
possible estimators that are both linear and unbiased. A linear estimator is simply one that is a
weighted average of Yi’s, such as Y = ∑

aiYi, where ai are constants. The sample mean Y , given
in (C.4), is a linear estimator with ai = 1∕N. The fact that Y is the “best” linear unbiased estimator
(BLUE) accounts for its wide use. “Best” means that it is the linear unbiased estimator with the
smallest possible variance. In the previous section we demonstrated that it is better to have an
estimator with a smaller variance rather than a larger one—because it increases the chances of
getting an estimate close to the true population mean μ. This important result about the estimator
Y is true if the sample values Yi ∼

(
μ, σ2) are uncorrelated and identically distributed. It does not

depend on the population being normally distributed. A proof of this result is in Section C.9.2.

C.4 Estimating the Population Variance
and Other Moments
The sample mean Y is an estimate of the population mean μ. The population mean is often called
the “first moment” since it is the expected value of Y to the first power. Higher moments are
obtained by taking expected values of higher powers of the random variable, so the second
moment of Y is E

(
Y2), the third moment is E

(
Y3), and so on. When the random variable has

its population mean subtracted, it is said to be centered. Expected values of powers of centered
random variables are called central moments, and they are often denoted as μr, so that the rth
central moment of Y is

μr = E
[
(Y − μ)r

]

The value of the first central moment is zero since μ1 = E(Y − μ)1 = E(Y) – μ = 0. It is the higher
central moments of Y that are interesting:

μ2 = E
[
(Y − μ)2

]
= σ2

μ3 = E
[
(Y − μ)3

]

μ4 = E
[
(Y − μ)4

]

You recognize that the second central moment of Y is its variance, and the third and fourth
moments appear in the definitions of skewness and kurtosis introduced in Appendix B.1.2. The
question we address in this section is, now that we have an excellent estimator of the mean of a
population, how do we estimate these higher moments? We will first consider estimation of the
population variance, and then address the problem of estimating the third and fourth moments.
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C.4.1 Estimating the Population Variance
The population variance is var(Y) = σ2 = E[Y − μ]2. An expected value is an “average” of sorts,
so if we knew μ we could estimate the variance by using the sample analog σ̃2 = ∑(

Yi − μ
)2/N.

We do not know μ, so replace it by its estimator Y , giving

σ̃2 =

∑(
Yi − Y

)2

N
This estimator is not a bad one. It has a logical appeal, and it can be shown to converge to the
true value of σ2 as the sample size N → ∞, but it is biased. To make it unbiased, we divide by
N − 1 instead of N. This correction is needed since the population mean μ has to be estimated
before the variance can be estimated. This change does not matter much in samples of at least
30 observations, but it does make a difference in smaller samples. The unbiased estimator of the
population variance σ2 is

σ̂2 =

∑(
Yi − Y

)2

N − 1 (C.7)

You may remember this estimator from a prior statistics course as the “sample variance.” Using
the sample variance we can estimate the variance of the estimator Y as

var
⋀

(
Y
)
= σ̂2∕N (C.8)

In (C.8) note that we have put a “hat” (̂) over this variance to indicate that it is an estimated
variance. The square root of the estimated variance is called the standard error of Y and is also
known as the standard error of the mean and the standard error of the estimate,

se
(

Y
)
=
√

var
⋀

(
Y
)
= σ̂∕

√
N (C.9)

C.4.2 Estimating Higher Moments
Recall that central moments are expected values, μr = E

[
(Y − μ)r

]
, and thus are averages in the

population. In statistics the law of large numbers says that sample means converge to population
averages (expected values) as the sample size N → ∞. We can estimate the higher moments by
finding the sample analog and replacing the population mean μ by its estimate Y , so that

μ̃2 = ∑(
Yi − Y

)2/
N = σ̃2

μ̃3 = ∑(
Yi − Y

)3/
N

μ̃4 = ∑(
Yi − Y

)4/
N

Note that in these calculations we divide by N and not by N − 1, since we are using the law of large
numbers (i.e., large samples) as justification, and in large samples the correction has little effect.
Using these sample estimates of the central moments we can obtain estimates of the skewness
coefficient (S) and kurtosis coefficient (K) as

skewness
⋀

= S =
μ̃3
σ̃3

kurtosis
⋀

= K =
μ̃4
σ̃4
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E X A M P L E C.6 Sample Moments of the Hip Data

The sample variance for the hip data is

σ̂2 =
∑(

yi − y
)2

N − 1 =
∑(

yi − 17.1582
)2

49 = 159.9995
49

= 3.2653

This means that the estimated variance of the sample mean is

var
⋀(

Y
)
= σ̂2

N
= 3.2653

50 = 0.0653

and the standard error of the mean is

se
(

Y
)
= σ̂

/√
N = 0.2556

The estimated skewness is S = −0.0138 and the estimated
kurtosis is K = 2.3315 using

σ̃ =
√

∑(
Yi − Y

)2/
N =

√
159.9995∕50 = 1.7889

μ̃3 =
∑(

Yi − Y
)3/

N = −0.0791

μ̃4 =
∑(

Yi − Y
)4/

N = 23.8748

Thus, the hip data is slightly negatively skewed and is slightly
less peaked than would be expected for a normal distribution.
Nevertheless, as we will see in Section C.7.4, we cannot con-
clude that the hip data follow a non-normal distribution.

E X A M P L E C.7 Using the Hip Data Estimates

How can we summarize what we have learned? Our estimates
suggest that the hip size of U.S. adults is normally distributed
with mean 17.158 inches and with a variance of 3.265;
Y ∼ N(17.158, 3.265). Based on this information, if an air-
plane seat is 18 inches wide, what percentage of customers
will not be able to fit? We can recast this question as asking
what the probability is that a randomly drawn person will
have hips larger than 18 inches,

P(Y > 18) = P
(

Y − μ
σ >

18 − μ
σ

)

We can give an approximate answer to this question by
replacing the unknown parameters by their estimates,

P(Y > 18)
⋀

≅P
(

Y − y
σ̂ > 18 − 17.158

1.8070

)
= P(Z > 0.4659)

= 0.3207
Based on our estimates, 32% of the population would not be
able to fit into a seat that is 18 inches wide.

How large would a seat have to be to fit 95% of the
population? If we let y∗ denote the required seat size,
then

P
(
Y ≤ y∗

)⋀

≅P
(

Y − y
σ̂ ≤ y∗ − 17.1582

1.8070

)

= P
(

Z ≤ y∗ − 17.1582
1.8070

)
= 0.95

Using your computer software, or the table of normal
probabilities, the value of Z such that P

(
Z ≤ z*) = 0.95 is

z* = 1.645. Then

y∗ − 17.1582
1.8070 = 1.645 ⇒ y∗ = 20.1305

Thus, to accommodate 95% of U.S. adult passengers,
we estimate that the seats should be slightly greater than
20 inches wide.

C.5 Interval Estimation
In contrast to a point estimate of the population mean μ, like y = 17.158, a confidence interval, or
interval estimate, is a range of values that may contain the true population mean. A confidence
interval contains information not only about the location of the population mean, but also about
the precision with which we estimate it.

C.5.1 Interval Estimation: σ2 Known
Let Y be a normally distributed random variable, Y ∼ N

(
μ, σ2). Assume that we have a random

sample of size N from this population, Y1, Y2,… , YN. The estimator of the population mean
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is Y = ∑N
i=1 Yi∕N. Because we have assumed that Y is normally distributed, it is also true that

Y ∼ N
(
μ, σ2∕N

)
.

For the present, let us assume that the population variance σ2 is known. This assumption is
not likely to be true, but making it allows us to introduce the notion of confidence intervals with
few complications. In the next section we introduce methods for the case when σ2 is unknown.
Create a standard normal random variable

Z = Y − μ√
σ2/N

= Y − μ
σ
/√

N
∼ N(0, 1) (C.10)

Cumulative probabilities for the standard normal are given by its cumulative distribution function
(see the Probability Primer, Section P.7)

P(Z ≤ z) = Φ(z)

These values are given in Statistical Table 1. Let zc be a “critical value” for the standard nor-
mal distribution, such that α = 0.05 of the probability is in the tails of the distribution, with
α∕2 = 0.025 of the probability in the tail to the right of zc and α∕2 = 0.025 of the probabil-
ity in the tail to the left of −zc. The critical value is the 97.5 percentile of the standard normal
distribution, zc = 1.96, with Φ(1.96) = 0.975. It is shown in Figure C.4. Thus, P(Z ≥ 1.96) =
P(Z ≤ −1.96) = 0.025 and

P(−1.96 ≤ Z ≤ 1.96) = 1 − 0.05 = 0.95 (C.11)
Substitute (C.10) into (C.11) and rearrange to obtain

P
(

Y − 1.96σ
/√

N ≤ μ ≤ Y + 1.96σ
/√

N
)
= 0.95

In general,

P
(

Y − zc
σ√
N

≤ μ ≤ Y + zc
σ√
N

)
= 1 − α (C.12)

where zc is the appropriate critical value for a given value of tail probability α such that
Φ
(
zc
)
= 1 − α∕2. In (C.12) we have defined the interval estimator

Y ± zc
σ√
N

(C.13)

Our choice of the phrase interval estimator is a careful one. Intervals constructed using (C.13), in
repeated sampling from the population, have a 100(1 − α)% chance of containing the population
mean μ.

= 0.025α
2= 0.025

1 – α = 0.95

α
2

–4 –3 –2 –1 0

–zc = –1.96 zc = 1.96

1 2 3 4 

FIGURE C.4 ! = 0.05 Critical values for the N(0, 1)
distribution.
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E X A M P L E C.8 Simulating the Hip Data: Interval Estimates

In order to use the interval estimator in (C.13) we must
have data from a normal population with a known variance.
To illustrate the computation, and the meaning of interval
estimation, we will create a sample of data using a computer
simulation. Statistical software programs contain random
number generators. These are routines that create values
from a given probability distribution. Table C.3 (data
file table_c3 ) contains 30 random values from a normal
population with mean μ = 10 and variance σ2 = 10.

T A B L E C.3 30 Values from N(10, 10)

11.939 11.407 13.809
10.706 12.157 7.443

6.644 10.829 8.855
13.187 12.368 9.461

8.433 10.052 2.439
9.210 5.036 5.527
7.961 14.799 9.921

14.921 10.478 11.814
6.223 13.859 13.403

10.123 12.355 10.819

The sample mean of these values is y = 10.206 and the cor-
responding interval estimate for μ, obtained by applying the
interval estimator in (C.13) with a 0.95 probability content,
is 10.206 ± 1.96 ×

√
10∕30 = [9.074, 11.338]. To appreciate

how the sampling variability of an interval estimator arises,
consider Table C.4, which contains the interval estimate for
the sample in Table C.3, as well as the sample means and
interval estimates from another 9 samples of size 30, like that

in Table C.3. The whole 10 samples are stored in the data file
table_c4 .

T A B L E C.4
Confidence Interval Estimates from
10 Samples of Data

Sample y Lower Bound Upper Bound
1 10.206 9.074 11.338
2 9.828 8.696 10.959
3 11.194 10.063 12.326
4 8.822 7.690 9.953
5 10.434 9.303 11.566
6 8.855 7.723 9.986
7 10.511 9.380 11.643
8 9.212 8.080 10.343
9 10.464 9.333 11.596

10 10.142 9.010 11.273

Table C.4 illustrates the sampling variation of the estimator
Y . The sample mean varies from sample to sample. In this
simulation, or Monte Carlo experiment, we know that the
true population mean, μ = 10, and the estimates Y are cen-
tered at that value. The half-width of the interval estimates is
1.96σ

/√
N. Note that while the point estimates Y in Table C.4

fall near the true value μ = 10, not all of the interval estimates
contain the true value. Intervals from samples 3, 4, and 6 do
not contain the true value μ = 10. However, in 10,000 simu-
lated samples the average value of y = 10.004 and 94.86% of
intervals constructed using (C.13) contain the true parameter
value μ = 10.

These numbers in Example C.8 reveal what is, and what is not, true about interval estimates.

• Any one interval estimate may or may not contain the true population parameter value.
• If many samples of size N are obtained, and intervals are constructed using (C.13) with

(1 − α) = 0.95, then 95% of them will contain the true parameter value.
• A 95% level of “confidence” is the probability that the interval estimator will provide an

interval containing the true parameter value. Our confidence is in the procedure, not in any
one interval estimate.

Since 95% of intervals constructed using (C.13) will contain the true parameter μ = 10, we will be
surprised if an interval estimate based on one sample does not contain the true parameter. Indeed,
the fact that 3 of the 10 intervals in Table C.4 do not contain μ = 10 is surprising, since out of 10
we would assume that only one 95% interval estimate might not contain the true parameter. This
just goes to show that what happens in any one sample, or just a few samples, is not what sampling
properties tell us. Sampling properties tell us what happens in many repeated experimental trials,
or in all possible samples from a population.
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C.5.2 Interval Estimation: σ2 Unknown
The standardization in (C.10) assumes that the population variance σ2 is known. When σ2 is
unknown, it is natural to replace it with its estimator σ̂2 given in (C.7)

σ̂2 =

∑N
i=1

(
Yi − Y

)2

N − 1
When we do so, the resulting standardized random variable has a t-distribution (see Appendix
B.3.7) with (N − 1) degrees of freedom,

t = Y − μ
σ̂
/√

N
∼ t(N−1) (C.14)

The notation t(N−1) denotes a t-distribution with N − 1 “degrees of freedom.” Let the critical
value tc be the 100(1 − α∕2) -percentile value t(1−α∕2,N−1). This critical value has the property that
P
[
t(N−1) ≤ t(1−α∕2,N−1)

]
= 1 − α∕2. Critical values for the t-distribution are contained in Statistical

Table 2. If tc is a critical value from the t-distribution, then

P
(
−tc ≤ Y − μ

σ̂
/√

N
≤ tc

)
= 1 − α

Rearranging, we obtain

P
(

Y − tc
σ̂√
N

≤ μ ≤ Y + tc
σ̂√
N

)
= 1 − α

The 100(1 − α)% interval estimator for μ is

Y ± tc
σ̂√
N

or Y ± tcse
(

Y
)

(C.15)

Unlike the interval estimator for the known σ2 case in (C.13), the interval in (C.15) has center
and width that vary from sample to sample.

Remark
The confidence interval (C.15) is based upon the assumption that the population is normally
distributed, so that Y is normally distributed. If the population is not normal, then we invoke
the central limit theorem, and say that Y is approximately normal in “large” samples, which
from Figure C.3 you can see might be as few as 30 observations. In this case, we can use
(C.15), recognizing that there is an approximation error introduced in smaller samples.

E X A M P L E C.9 Simulating the Hip Data: Continued

Table C.5 contains estimated values of σ2 and interval
estimates using (C.15) for the same 10 samples used
for Table C.4. For the sample size N = 30 and the
95% confidence level, the t-distribution critical value
tc = t(0.975,29) = 2.045. The estimates Y are the same as

in Table C.4. The estimates σ̂2 vary about the true value
σ2 = 10. Of these 10 intervals, those for samples 4 and 6
do not contain the true parameter μ = 10. Nevertheless, in
10,000 simulated samples 94.82% of them contain the true
population mean μ = 10.
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T A B L E C.5 Interval Estimates Using (C.15) from 10 Samples

Sample y "̂2 Lower Bound Upper Bound
1 10.206 9.199 9.073 11.338
2 9.828 6.876 8.849 10.807
3 11.194 10.330 9.994 12.394
4 8.822 9.867 7.649 9.995
5 10.434 7.985 9.379 11.489
6 8.855 6.230 7.923 9.787
7 10.511 7.333 9.500 11.523
8 9.212 14.687 7.781 10.643
9 10.464 10.414 9.259 11.669

10 10.142 17.689 8.571 11.712

E X A M P L E C.10 Interval Estimation Using the Hip Data

We have introduced the empirical problem faced by an
airplane seat design engineer. Given a random sample
of size N = 50 we estimated the mean U.S. hip width
to be y = 17.158 inches. Furthermore we estimated the
population variance to be σ̂2 = 3.265; thus the estimated
standard deviation is σ̂ = 1.807. The standard error of the
mean is σ̂

/√
N = 1.807

/√
50 = 0.2556. The critical value

for interval estimation comes from a t-distribution with
N − 1 = 49 degrees of freedom. While this value is not in
Statistical Table 2, the correct value using our software is
tc = t(0.975,49) = 2.0095752, which we round to tc = 2.01. To
construct a 95% interval estimate we use (C.15), replacing

estimates for the estimators, to give

y ± tc
σ̂√
N

= 17.1582 ± 2.01 1.807√
50

= [16.6447, 17.6717]

We estimate that the population mean hip size falls between
16.645 and 17.672 inches. Although we do not know if
this interval contains the true population mean hip size for
sure, we know that the procedure used to create the interval
“works” 95% of the time; thus we would be surprised if the
interval did not contain the true population value μ.

C.6 Hypothesis Tests About a Population Mean
Hypothesis testing procedures compare a conjecture, or a hypothesis, that we have about a popu-
lation to the information contained in a sample of data. The conjectures we test here concern the
mean of a normal population. In the context of the problem faced by the airplane seat designer,
suppose that airplanes since 1970 have been designed assuming that the mean population hip
width is 16.5 inches. Is that figure still valid today?

C.6.1 Components of Hypothesis Tests
Hypothesis tests use sample information about a parameter—namely, its point estimate and its
standard error—to draw a conclusion about the hypothesis. In every hypothesis test, five ingredi-
ents must be present:
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Components of Hypothesis Tests

A null hypothesis, H0
An alternative hypothesis, H1
A test statistic
A rejection region
A conclusion

The Null Hypothesis The “null” hypothesis, which is denoted by H0 (H-naught), specifies
a value c for a parameter. We write the null hypothesis as H0∶μ = c. A null hypothesis is the belief
we will maintain until we are convinced by the sample evidence that it is not true, in which case
we reject the null hypothesis.

The Alternative Hypothesis Paired with every null hypothesis is a logical alternative
hypothesis, H1, that we will accept if the null hypothesis is rejected. The alternative hypothesis
is flexible and depends to some extent on the problem at hand. For the null hypothesis H0∶μ = c
three possible alternative hypotheses are

• H1 :μ > c. If we reject the null hypothesis that μ = c, we accept the alternative that μ is
greater than c.

• H1 :μ < c. If we reject the null hypothesis that μ = c, we accept the alternative that μ is less
than c.

• H1 :μ ≠ c. If we reject the null hypothesis that μ = c, we accept the alternative that μ takes
a value other than (not equal to) c.

The Test Statistic The sample information about the null hypothesis is embodied in
the sample value of a test statistic. Based on the value of a test statistic, we decide either to
reject the null hypothesis or not to reject it. A test statistic has a very special characteristic: its
probability distribution is completely known when the null hypothesis is true, and it has some
other distribution if the null hypothesis is not true.

Consider the null hypothesis H0∶μ = c. If the sample data come from a normal population
with mean μ and variance σ2, then

t = Y − μ
σ̂∕
√

N
∼ t(N−1)

If the null hypothesis H0∶μ = c is true, then

t = Y − c
σ̂∕
√

N
∼ t(N−1) (C.16)

If the null hypothesis is not true, then the t-statistic in (C.16) does not have the usual t-distribution.
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Remark
The test statistic distribution in (C.16) is based on an assumption that the population is nor-
mally distributed. If the population is not normal, then we invoke the central limit theorem,
and say that Y is approximately normal in “large” samples. We can use (C.16), recognizing
that there is an approximation error introduced if our sample is small.

The Rejection Region The rejection region depends on the form of the alternative. It is
the range of values of the test statistic that leads to rejection of the null hypothesis. They are values
that are unlikely and have low probability of occurring when the null hypothesis is true. The chain
of logic is “If a value of the test statistic is obtained that falls in a region of low probability, then
it is unlikely that the test statistic has the assumed distribution, and thus it is unlikely that the
null hypothesis is true.” If the alternative hypothesis is true, then values of the test statistic will
tend to be unusually large or unusually small. The terms “large” and “small” are determined by
choosing a probability α, called the level of significance of the test, which provides a meaning
for “an unlikely event.” The level of significance of the test α is usually chosen to be 0.01, 0.05,
or 0.10.

Conclusion When you have completed a hypothesis test, you should state your conclusion,
whether you reject the null hypothesis. However, we urge you to make it standard practice to say
what the conclusion means in the economic context of the problem you are working on—that is,
interpret the results in a meaningful way. This should be a point of emphasis in all statistical work
that you do.

We will now discuss the mechanics of carrying out alternative versions of hypothesis tests.

C.6.2 One-Tail Tests with Alternative ‘‘Greater Than’’ (>)
If the alternative hypothesis H1∶μ > c is true, then the value of the t-statistic (C.16) tends to
become larger than usual for the t-distribution. Let the critical value tc be the 100(1 − α)-percentile
t(1−α, N−1) from a t-distribution with N − 1 degrees of freedom. Then P

(
t ≤ tc

)
= 1 − α, where α

is the level of significance of the test. If the t-statistic is greater than or equal to tc, then we reject
H0∶μ = c and accept the alternative H1∶μ > c, as shown in Figure C.5.

If the null hypothesis H0∶μ = c is true, then the test statistic (C.16) has a t-distribution, and
its values would tend to fall in the center of the distribution, where most of the probability is
contained. If t < tc, then there is no evidence against the null hypothesis, and we do not reject it.

α
µ = c

µ = c

Reject H0:

Do not
reject H0:

tc = t(1–α, m)

t(m)

0

FIGURE C.5 The rejection region for the one-tail test
of H0∶$ = c against H1∶$ > c.



❦

❦ ❦

❦

C.6 Hypothesis Tests About a Population Mean 829

C.6.3 One-Tail Tests with Alternative ‘‘Less Than’’ (<)
If the alternative hypothesis H1∶μ < c is true, then the value of the t-statistic (C.16) tends to
become smaller than usual for the t-distribution. The critical value −tc is the 100α-percentile
t(α, N−1) from a t-distribution with N − 1 degrees of freedom. Then P

(
t ≤ −tc

)
= α, where α is the

level of significance of the test as shown in Figure C.6. If t ≤ −tc, then we reject H0∶μ = c and
accept the alternative H1∶μ < c. If t > −tc, then we do not reject H0∶μ = c.

Memory Trick
The rejection region for a one-tail test is in the direction of the arrow in the alternative.
If alternative is “>”, then reject in right tail. If alternative is “<”, reject in left tail.

C.6.4 Two-Tail Tests with Alternative ‘‘Not Equal To’’ (≠)
If the alternative hypothesis H1∶μ ≠ c is true, then values of the test statistic may be unusually
“large” or unusually “small.” The rejection region consists of the two “tails” of the t-distribution,
and this is called a two-tail test. In Figure C.7, the critical values for testing H0∶μ = c against
H1∶μ ≠ c are depicted. The critical value is the 100(1 − α∕2)-percentile from a t-distribution with
N − 1 degrees of freedom, tc = t(1−α/2, N−1), so that P(t ≥ tc) = P

(
t ≤ −tc

)
= α∕2.

If the value of the test statistic t falls in the rejection region, either tail of the t(N−1) distribution,
then we reject the null hypothesis H0∶μ = c and accept the alternative H1∶μ ≠ c. If the value of
the test statistic t falls in the nonrejection region, between the critical values −tc and tc, then we
do not reject the null hypothesis H0∶μ = c.

t(m)

Do not
reject H0:

µ = c

Reject H0:
µ = c

–tc = t(α, m)

α

0

FIGURE C.6 Critical value for one-tail test H0∶$ = c
versus H1∶$ < c.

–tc = t(α/2, m) tc = t(1− α/2, m)

α/2 α/2

Reject H0: µ = c
Accept H1: µ ≠ cDo not reject

 H0: µ = c
Reject H0: µ = c
Accept H1: µ ≠ c

f(t)

t(m)

FIGURE C.7 Rejection region for a test of H0∶$ = c against H1∶$ ≠ c.
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E X A M P L E C.11 One-tail Test Using the Hip Data

Let us illustrate by testing the null hypothesis that the pop-
ulation hip size is 16.5 inches, against the alternative that it
is greater than 16.5 inches. The following five-step format is
recommended.

1. The null hypothesis is H0∶μ = 16.5. The alternative
hypothesis is H1∶μ > 16.5.

2. The test statistic t =
(

Y − 16.5
)/(

σ̂
/√

N
)
∼ t(N−1) if the

null hypothesis is true.
3. Let us select the level of significance α = 0.05. The crit-

ical value tc = t(0.95,49) = 1.6766 for a t-distribution with
N – 1 = 49 degrees of freedom. Thus we will reject the
null hypothesis in favor of the alternative if t ≥ 1.68.

4. Using the hip data, the estimate of μ is y = 17.1582, with
estimated variance σ̂2 = 3.2653, so σ̂ = 1.807. The value
of the test statistic is

t = 17.1582 − 16.5
1.807

/√
50

= 2.5756

5. Conclusion: Since t = 2.5756 > 1.68, we reject the null
hypothesis. The sample information we have is incom-
patible with the hypothesis that μ = 16.5. We accept the
alternative that the population mean hip size is greater
than 16.5 inches, at the α = 0.05 level of significance.

E X A M P L E C.12 Two-tail Test Using the Hip Data

Let us test the null hypothesis that the population hip size
is 17 inches, against the alternative that it is not equal to
17 inches. The steps of the test are

1. The null hypothesis is H0∶μ = 17. The alternative
hypothesis is H1∶μ ≠ 17.

2. The test statistic t =
(

Y − 17
)/(

σ̂
/√

N
)
∼ t(N−1) if the

null hypothesis is true.
3. Let us select the level of significance α = 0.05. In a

two-tail test α∕2 = 0.025 of probability is allocated to
each tail of the distribution. The critical value is the
97.5 percentile of the t-distribution, which leaves 2.5%
of the probability in the upper tail, tc = t(0.975,49) = 2.01

for a t-distribution with N – 1 = 49 degrees of freedom.
Thus, we will reject the null hypothesis in favor of the
alternative if t ≥ 2.01 or if t ≤ −2.01.

4. Using the hip data, the estimate of μ is y = 17.1582, with
estimated variance σ̂2 = 3.2653, so σ̂ = 1.807. The value
of the test statistic is

t =(17.1582 − 17)
/(

1.807
/√

50
)
= 0.6191.

5. Conclusion: Since −2.01 < t = 0.6191 < 2.01 we do not
reject the null hypothesis. The sample information we
have is compatible with the hypothesis that the popula-
tion mean hip size μ = 17.

Warning
Care must be taken when interpreting the outcome of a statistical test. One of the basic
precepts of hypothesis testing is that finding a sample value of the test statistic in the non-
rejection region does not make the null hypothesis true! Suppose another null hypothesis is
H0∶μ = c∗, where c* is “close” to c. If we fail to reject the hypothesis μ = c, then we will
likely fail to reject the hypothesis that μ = c∗. In the example above, at the α = 0.05 level,
we fail to reject the hypothesis that μ is 17, 16.8, 17.2, or 17.3. In fact, in any problem there
are many hypotheses that we would fail to reject, but that does not make any of them true.
The weaker statements “we do not reject the null hypothesis” or “we fail to reject the null
hypothesis” do not send a misleading message.
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C.6.5 The p-Value
When reporting the outcome of statistical hypothesis tests it has become common practice to
report the p-value of the test. If we have the p-value of a test, p, we can determine the outcome
of the test by comparing the p-value to the chosen level of significance, α, without looking up or
calculating the critical values ourselves. The rule is

p-Value Rule
Reject the null hypothesis when the p-value is less than, or equal to, the level of significance
α. That is, if p ≤ α then reject H0. If p > α, then do not reject H0.

If you have chosen the level of significance to be α = 0.01, 0.05, 0.10, or any other value, you
can compare it to the p-value of a test and then reject, or not reject, without checking the critical
value tc.

How the p-value is computed depends on the alternative. If t is the calculated value (not the
critical value tc) of the t-statistic with N − 1 degrees of freedom, then

• if H1∶μ > c, p = probability to the right of t
• if H1∶μ < c, p = probability to the left of t
• H1∶μ ≠ c, p = sum of probabilities to the right of |t| and to the left of −|t|

The direction of the alternative indicates the tail(s) of the distribution in which the p-value falls.

E X A M P L E C.13 One-tail Test p-value: The Hip Data

In Example C.11 we used the hip data to test H0∶μ = 16.5
against H1∶μ > 16.5. The calculated t-statistic value was
t = 2.5756. In this case, since the alternative is “greater
than” (>), the p-value of this test is the probability that
a t-random variable with N − 1 = 49 degrees of freedom
is greater than 2.5756. This probability value cannot be
found in the usual t-table of critical values, but it is easily
found using the computer. Statistical software packages,
and spreadsheets such as Excel, have simple commands to
evaluate the cumulative distribution function (cdf ) (see the
Probability Primer, Section P.2) for a variety of probability
distributions. If FX(x) is the cdf for a random variable X, then
for any value x = c, P[X ≤ c] = FX(c). Given such a function
for the t-distribution, we compute the desired p-value as

p = P
(
t(49) ≥ 2.576

)
= 1 − P

(
t(49) ≤ 2.576

)
= 0.0065

Given the p-value, we can immediately conclude that at
α = 0.01 or 0.05 we reject the null hypothesis in favor of
the alternative, but if α = 0.001 we would not reject the null
hypothesis.

The logic of the p-value rule is shown in Figure C.8.
If 0.0065 of the probability lies to the right of t = 2.5756,
then the critical value tc that leaves a probability of

α = 0.01
(
t(0.99,49)

)
or α = 0.05

(
t(0.95,49)

)
in the tail must be to

the left of 2.5756. In this case, when the p-value ≤ α, it must
be true that t ≥ tc, and we should reject the null hypothesis
for either of these levels of significance. On the other hand,
it must be true that the critical value for α = 0.001 must fall
to the right of 2.5756, meaning that we should not reject the
null hypothesis at this level of significance.

–4 –3 –2 –1 0
t

t(49)

p = 0.0065

1 2 3 4
2.5756

t(0.95, 49) t(0.99, 49)

FIGURE C.8 p-value for a right-tail test.



❦

❦ ❦

❦

832 APPENDIX C Review of Statistical Inference

E X A M P L E C.14 Two-Tail Test p-Value: The Hip Data

For a two-tail test, the rejection region is in the two tails of
the t-distribution, and the p-value must similarly be calcu-
lated in the two tails of the distribution. For the hip data,
we tested the null hypothesis H0∶μ = 17 against H1∶μ ≠ 17,
yielding the test statistic value t = 0.6191. The p-value is

p = P
[
t(49) ≥ 0.6191

]
+ P

[
t(49) ≤ −0.6191

]

= 2 × 0.2694 = 0.5387

Since the p-value = 0.5387 > α = 0.05, we do not reject
the null hypothesis H0∶μ = 17 at α = 0.05 or any other
common level of significance. The two-tail p-value is shown
in Figure C.9.

t = 0.6191
p = 0.5387

 = 0.2694
p
2

–0.6191 0.6191

–t(0.975, 49) t(0.975, 49)

t(49)

 = 0.2694
p
2

FIGURE C.9 The p-value for a two-tail test.

C.6.6 A Comment on Stating Null and Alternative
Hypotheses

A statistical test procedure cannot prove the truth of a null hypothesis. When we fail to reject
a null hypothesis, all the hypothesis test can establish is that the information in a sample of
data is compatible with the null hypothesis. On the other hand, a statistical test can lead us
to reject the null hypothesis, with only a small probability, α, of rejecting the null hypothesis
when it is actually true. Thus rejecting a null hypothesis is a stronger conclusion than failing
to reject it.

The null hypothesis is usually stated in such a way that if our theory is correct, then we will
reject the null hypothesis. For example, our airplane seat designer has been operating under the
assumption (the maintained or null hypothesis) that the population mean hip width is 16.5 inches.
Casual observation suggests that people are getting larger all the time. If we are larger, and if the
airline wants to continue to accommodate the same percentage of the population, then the seat
widths must be increased. This costly change should be undertaken only if there is statistical
evidence that the population hip size is indeed larger. When using a hypothesis test we would like
to find out whether there is statistical evidence against our current “theory,” or whether the data
are compatible with it. With this goal, we set up the null hypothesis that the population mean is
16.5 inches, H0∶μ = 16.5, against the alternative that it is greater than 16.5 inches, H1∶μ > 16.5.
In this case, if we reject the null hypothesis, we have shown that there has been a “statistically
significant” increase in hip width.

You may view the null hypothesis to be too limited in this case, since it is feasible that the
population mean hip width is now smaller than 16.5 inches. The hypothesis test of the null hypoth-
esis H0∶μ ≤ 16.5 against the alternative hypothesis H1∶μ > 16.5 is exactly the same as the test
for H0∶μ = 16.5 against the alternative hypothesis H1∶μ > 16.5. The test statistic and rejection
region are exactly the same. For a one-tail test you can form the null hypothesis in either of
these ways.

Finally, it is important to set up the null and alternative hypotheses before you analyze or
even collect the sample of data. Failing to do so can lead to errors in formulating the alternative
hypothesis. Suppose that we wish to test whether μ > 16.5 and the sample mean is y = 15.5.
Does that mean we should set up the alternative μ < 16.5, to be consistent with the estimate?
The answer is no. The alternative is formed to state the conjecture that we wish to establish,
μ > 16.5.
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C.6.7 Type I and Type II Errors
Whenever we reject—or do not reject—a null hypothesis, there is a chance that we may be making
a mistake. This is unavoidable. In any hypothesis testing situation, there are two ways that we can
make a correct decision and two ways that we can make an incorrect decision.

Correct Decisions
The null hypothesis is false and we decide to reject it.
The null hypothesis is true and we decide not to reject it.

Incorrect Decisions
The null hypothesis is true and we decide to reject it (a Type I error).
The null hypothesis is false and we decide not to reject it (a Type II error).

When we reject the null hypothesis we risk what is called a Type I error. The probability of a
Type I error is α, the level of significance of the test. When the null hypothesis is true, the t-statistic
falls in the rejection region with probability α. Thus hypothesis tests will reject a true hypothesis
100α% of the time. The good news here is that we can control the probability of a Type I error by
choosing the level of significance of the test, α.

We risk a Type II error when we do not reject the null hypothesis. Hypothesis tests will lead
us to fail to reject null hypotheses that are false with a certain probability. The magnitude of the
probability of a Type II error is not under our control and cannot be computed, because it depends
on the true value of μ, which is unknown. However, we do know that

• The probability of a Type II error varies inversely with the level of significance of the test,
α, which is the probability of a Type I error. If you choose to make α smaller, the probability
of a Type II error increases.

• If the null hypothesis is μ = c, and if the true (unknown) value of μ is close to c, then the
probability of a Type II error is high.

• The larger the sample size N, the lower the probability of a Type II error, given a level of
Type I error α.

An easy to remember example of the difference between Type I and Type II errors is from the
U.S. legal system. In a trial, a person is presumed innocent. This is the “null” hypothesis, the
alternative hypothesis being that the person is guilty. If we convict an innocent person, then we
have rejected a null hypothesis that is true, committing a Type I error. If we fail to convict a guilty
person, failing to reject the false null hypothesis, then we commit a Type II error. Which is the
more costly error in this context? Is it better to send an innocent person to jail, or to let a guilty
person go free? It is better in this case to make the probability of a Type I error very small.

C.6.8 A Relationship Between Hypothesis Testing
and Confidence Intervals

There is an algebraic relationship between two-tail hypothesis tests and confidence interval esti-
mates that is sometimes useful. Suppose that we are testing the null hypothesis H0∶μ = c against
the alternative H1∶μ ≠ c. If we fail to reject the null hypothesis at the α level of significance,
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then the value c will fall within a 100(1 − α) % confidence interval estimate of μ. Conversely, if
we reject the null hypothesis, then c will fall outside the 100(1 − α) % confidence interval esti-
mate of μ. This algebraic relationship is true because we fail to reject the null hypothesis when
–tc ≤ t ≤ tc, or when

−tc ≤ Y − c
σ̂
/√

N
≤ tc

which when rearranged becomes

Y − tc
σ̂√
N

≤ c ≤ Y + tc
σ̂√
N

The endpoints of this interval are the same as the endpoints of a 100(1 − α)% confidence interval
estimate of μ. Thus for any value of c within the confidence interval, we do not reject H0∶μ = c
against the alternative H1∶μ ≠ c. For any value of c outside the confidence interval, we reject
H0∶μ = c and accept the alternative H1∶μ ≠ c.

This relationship can be handy if you are given only a confidence interval and want to deter-
mine what the outcome of a two-tail test would be.

C.7 Some Other Useful Tests
In this section we very briefly summarize some additional tests. These tests are not only useful in
and of themselves, but also illustrate the use of test statistics with chi-square and F-distributions.
These distributions were introduced in Appendix B.3.

C.7.1 Testing the Population Variance
Let Y be a normally distributed random variable, Y ∼ N(μ, σ2). Assume that we have a random
sample of size N from this population, Y1, Y2,… , YN. The estimator of the population mean is
Y = ∑

Yi∕N, and the unbiased estimator of the population variance is σ̂2 = ∑(
Yi − Y

)2/
(N − 1).

To test the null hypothesis H0∶σ2 = σ2
0, we use the test statistic

V = (N − 1) σ̂2

σ2
0

∼ χ2
(N−1)

If the null hypothesis is true, then the test statistic has the indicated chi-square distribution with
N − 1 degrees of freedom. If the alternative hypothesis is H1∶σ2 > σ2

0, then we carry out a
one-tail test. If we choose the level of significance α = 0.05, then the null hypothesis is rejected if
V ≥ χ2

(0.95,N−1), where χ2
(0.95,N−1) is the 95th percentile of the chi-square distribution with N − 1

degrees of freedom. These values can be found in Statistical Table 3, or computed using statistical
software. If the alternative hypothesis is H1∶σ2 ≠ σ2

0, then we carry out a two-tail test, and the
null hypothesis is rejected if V ≥ χ2

(0.975,N−1) or if V ≤ χ2
(0.025,N−1). The chi-square distribution

is skewed, with a long tail to the right, so we cannot use the properties of symmetry when
determining the left- and right-tail critical values.

C.7.2 Testing the Equality of Two Population Means
Let two normal populations be denoted by N

(
μ1, σ2

1
)

and N
(
μ2, σ2

2
)
. In order to estimate and test

the difference between means, μ1− μ2, we must have random samples of data from each of the
two populations. We draw a sample of size N1 from the first population, and a sample of size
N2 from the second population. Using the first sample we obtain the sample mean Y1 and sample
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variance σ̂2
1; from the second sample we obtain Y2 and σ̂2

2. How the null hypothesis H0∶μ1− μ2 = c
is tested depends on whether the two population variances are equal or not.

Case 1: Population variances are equal If the population variances are equal, so that
σ2

1 = σ2
2 = σ2

p, then we use information in both samples to estimate the common value
σ2

p. This “pooled variance estimator” is

σ̂2
p =

(
N1 − 1

)
σ̂2

1 +
(
N2 − 1

)
σ̂2

2
N1 + N2 − 2

If the null hypothesis H0∶μ1 − μ2 = c is true, then

t =

(
Y1 − Y2

)
− c

√
σ̂2

p

(
1

N1
+ 1

N2

) ∼ t(N1+N2−2)

As usual, we can construct a one-sided alternative, such as H1∶μ1−μ2 > c, or the
two-sided alternative H1∶μ1−μ2 ≠ c.

Case 2: Population variances are unequal If the population variances are not equal, then we
cannot use the pooled variance estimate. Instead, we use

t∗ =

(
Y1 − Y2

)
− c

√
σ̂2

1
N1

+
σ̂2

2
N2

The exact distribution of this test statistic is neither normal nor the usual t-distribution.
The distribution of t∗ can be approximated by a t-distribution with degrees of freedom

df =
(
σ̂2

1∕N1 + σ̂2
2∕N2

)2

⎛
⎜
⎜⎝

(
σ̂2

1∕N1
)2

N1 − 1 +
(
σ̂2

2∕N2
)2

N2 − 1
⎞
⎟
⎟⎠

This is one of several approximations that appear in the statistics literature, and your
software may well use a different one.

C.7.3 Testing the Ratio of Two Population Variances
Given two normal populations, denoted by N

(
μ1, σ2

1
)

and N
(
μ2, σ2

2
)
, we can test the null hypoth-

esis H0∶σ2
1
/
σ2

2 = 1. If the null hypothesis is true, then the population variances are equal. The test
statistic is derived from the results that

(
N1 − 1

)
σ̂2

1
/
σ2

1 ∼ χ
2
(N1−1) and

(
N2 − 1

)
σ̂2

2
/
σ2

2 ∼ χ
2
(N2−1).

In Appendix B.3.8 we define an F-random variable, which is formed by taking the ratio of two
independent chi-square random variables that have been divided by their degrees of freedom. In
this case, the relevant ratio is

F =

(
N1 − 1

)
σ̂2

1∕σ
2
1(

N1 − 1
)

(
N2 − 1

)
σ̂2

2∕σ
2
2(

N2 − 1
)

=
σ̂2

1
/
σ2

1

σ̂2
2
/
σ2

2
∼ F(N1−1,N2−1)

If the null hypothesis H0∶σ2
1
/
σ2

2 = 1 is true then the test statistic is F = σ̂2
1
/
σ̂2

2, which has
an F-distribution with N1 − 1 numerator and N2 – 1 denominator degrees of freedom. If the



❦

❦ ❦

❦

836 APPENDIX C Review of Statistical Inference

alternative hypothesis is H1∶σ2
1
/
σ2

2 ≠ 1, then we carry out a two-tail test. If we choose level
of significance α = 0.05, then we reject the null hypothesis if F ≥ F(0.975,N1−1,N2−1) or if
F ≤ F(0.025,N1−1,N2−1), where F(α,N1−1,N2−1) denotes the 100α-percentile of the F-distribution with
the specified degrees of freedom. If the alternative is one sided, H1∶σ2

1
/
σ2

2 > 1, then we reject
the null hypothesis if F ≥ F(0.95,N1−1,N2−1).

C.7.4 Testing the Normality of a Population
The tests for means and variances we have developed began with the assumption that the popu-
lations were normally distributed. Two questions immediately arise. How well do the tests work
when the population is not normal? Can we test for the normality of a population? The answer to
the first question is that the tests work pretty well even if the population is not normal, so long as
samples are sufficiently large. How large must the samples be? There is no easy answer, since it
depends on how “nonnormal” the populations are. The answer to the second question is yes, we
can test for normality. Statisticians have been vitally interested in this question for a long time, and
a variety of tests have been developed, but the tests and underlying theory are very complicated
and far outside the scope of this book.

However, we can present a test that is slightly less ambitious. The normal distribution is
symmetric and has a bell shape with a peakedness and tail thickness leading to a kurtosis of
three. Thus we can test for departures from normality by checking the skewness and kurtosis
from a sample of data. If skewness is not close to zero, or if kurtosis is not close to three, then
we reject the normality of the population. In Section C.4.2 we developed sample measures of
skewness and kurtosis as

skewness
⋀

= S =
μ̃3
σ̃3

kurtosis
⋀

= K =
μ̃4
σ̃4

The Jarque–Bera test statistic allows a joint test of these two characteristics,

JB = N
6

(
S2 + (K − 3)2

4

)

If the true distribution is symmetric and has kurtosis three, which includes the normal distribution,
then the JB test statistic has a chi-square distribution with two degrees of freedom if the sample
size is sufficiently large. If α = 0.05, then the critical value of the χ2

(2) distribution is 5.99. We
reject the null hypothesis and conclude that the data are nonnormal if JB ≥ 5.99. If we reject the
null hypothesis, then we know that the data have nonnormal characteristics, but we do not know
what distribution the population might have.

E X A M P L E C.15 Testing the Normality of the Hip Data

For the hip data, skewness and kurtosis measures were esti-
mated in Example C.6. Plugging these values into the JB test
statistic formula we obtain

JB = N
6

(
S2 + (K − 3)2

4

)

= 50
6

(
(−0.0138)2 + (2.3315 − 3)2

4

)
= 0.9325

Since JB = 0.9325 is less than the critical value 5.99, we con-
clude that we cannot reject the normality of the hip data. The
p-value for this test is the tail area of a χ2

(2) -distribution to the
right of 0.9325,

p = P
[
χ2
(2) ≥ 0.9325

]
= 0.6273
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C.8 Introduction to Maximum Likelihood
Estimation1

Maximum likelihood estimation is a powerful procedure that can be used when the population
distribution is known. In this section we introduce the concept with a very simple but revealing
example.

E X A M P L E C.16 The ‘‘Wheel of Fortune’’ Game: p = 1/4 or 3/4

Consider the following “Wheel of Fortune” game. You are
a contestant faced with two wheels, each of which is partly
shaded and partly nonshaded (see Figure C.10). Suppose that
after spinning a wheel, you win if a pointer is in the shaded
area, and you lose if the pointer is in the nonshaded area. On
wheel A 25% of the area is shaded so that the probability

(a)
Wheel A

p(WIN) = 0.25

p(WIN) = 0.75
p(LOSE) = 0.25

p(LOSE) = 0.75

(b)
Wheel B

FIGURE C.10 Wheel of fortune game.

of winning is 1/4. On wheel B 75% of the area is shaded
so that the probability of winning is 3/4. The game that you
must play is this. One of the wheels is chosen and spun three
times, with outcomes WIN, WIN, LOSS. You do not know
which wheel was chosen, and must pick which wheel was
spun. Which would you select?

............................................................................................................................................
1This section contains some advanced material.
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One intuitive approach is the following: let p denote the
probability of winning on one spin of a wheel. Choosing
between wheels A and B means choosing between p = 1∕4
and p = 3∕4. You are estimating p, but there are only
two possible estimates, and you must choose based on
the observed data. Let us compute the probability of each
sequence of outcomes for each of the wheels.

For wheel A, with p = 1/4, the probability of observing
WIN, WIN, LOSS is

1
4 ×

1
4 ×

3
4 = 3

64 = 0.0469

That is, the probability, or likelihood, of observing the
sequence WIN, WIN, LOSS when p = 1∕4 is 0.0469.

For wheel B, with p = 3∕4, the probability of observing
WIN, WIN, LOSS is

3
4 ×

3
4 ×

1
4 = 9

64 = 0.1406

The probability, or likelihood, of observing the sequence
WIN, WIN, LOSS when p = 3∕4 is 0.1406.

If we had to choose wheel A or B based on the available
data, we would choose wheel B because it has a higher prob-
ability of having produced the observed data. It is more likely
that wheel B was spun than wheel A, and p̂ = 3∕4 is called the
maximum likelihood estimate of p. The maximum likeli-
hood principle seeks the parameter values that maximize the
probability, or likelihood, of observing the outcomes actually
obtained.

E X A M P L E C.17 The ‘‘Wheel of Fortune’’ Game: 0 < p < 1

Now suppose p can be any probability between zero and one,
not just 1/4 or 3/4. We have one wheel with a proportion of
it shaded, which is the probability of WIN, but we do not
know the proportion. In three spins we observe WIN, WIN,
LOSS. What is the most likely value of p? The probability of
observing WIN, WIN, LOSS is the likelihood L and is

L(p) = p × p ×(1 − p) = p2 − p3 (C.17)

The likelihood L depends on the unknown probability p of a
WIN, which is why we have given it the notation L(p), indi-
cating a functional relationship. We would like to find the
value of p that maximizes the likelihood of observing the out-
comes actually obtained. The graph of the likelihood function
(C.17) and the choice of p that maximizes this function is
shown in Figure C.11. The maximizing value is denoted as p̂
and is called the maximum likelihood estimate of p. To find
this value of p we can use calculus. Differentiate L(p) with
respect to p,

dL(p)
dp

= 2p − 3p2

Set this derivative to zero:

2p − 3p2 = 0 ⇒ p(2 − 3p) = 0

L(p)

0.67 1.0 p0

FIGURE C.11 A likelihood function.

There are two solutions to this equation, p = 0 or p = 2∕3.
The value that maximizes L(p) is p̂ = 2∕3, which is the max-
imum likelihood estimate. That is, of all possible values of p,
between zero and one, the value that maximizes the proba-
bility of observing two wins and one loss (the order does not
matter) is p̂ = 2∕3.

Can we derive a more general formula that can be used for any observed data? In Appendix B.3.1
we introduced the Bernoulli distribution. Let us define the random variable X that takes the values
x = 1 (WIN) and x = 0 (LOSS) with probabilities p and 1 − p. The probability function for this
random variable can be written in mathematical form as

P(X = x) = ! (x|p) = px(1 − p)1−x, x = 0, 1



❦

❦ ❦

❦

C.8 Introduction to Maximum Likelihood Estimation 839

If we spin the “wheel” N times we observe N sample values x1, x2,… , xN. Assuming that the
spins are independent, we can form the joint probability function

!
(
x1,… , xN|p

)
= !

(
x1|p

)
× · · · × !

(
xN|p

)

= pΣxi(1 − p)N−Σxi

= L
(
p|x1,… , xN

)
(C.18)

The joint probability function gives the probability of observing a specific set of outcomes, and it
is a generalization of (C.17). In the last line we have indicated that the joint probability function
is algebraically equivalent to the likelihood function L

(
p|x1, … , xN

)
. The notation emphasizes

that the likelihood function depends upon the unknown probability p given the sample outcomes,
which we observe. For notational simplicity we will continue to denote the likelihood function
as L(p).

E X A M P L E C.18 The ‘‘Wheel of Fortune’’ Game: Maximizing the Log-likelihood

In the “Wheel of Fortune” game, the maximum likelihood
estimate is that value of p that maximizes L(p). To find this
estimate using calculus we use a trick to simplify the alge-
bra. The value of p that maximizes L(p) = p2(1 − p) is the
same value of p that maximizes the log-likelihood function
lnL(p) = 2 ln(p) + ln(1 − p), where “ln” is the natural loga-
rithm. The plot of the log-likelihood function is shown in
Figure C.12. Compare Figures C.11 and C.12. The maximum
of the likelihood function is L(p̂) = 0.1481. The maximum
of the log-likelihood function is lnL(p̂) = −1.9095. Both of
these maximum values occur at p̂ = 2∕3 = 0.6667.

ln L(p)

0.67 p

FIGURE C.12 A log-likelihood function.

The trick in Example C.18 works for all likelihood and log-likelihood functions and their param-
eters, so when you see maximum likelihood estimation being discussed it will always be in
terms of maximizing the log-likelihood function. For the general problem we are considering,
the log-likelihood function is the logarithm of (C.18)

ln L(p) =
N∑

i=1
ln
[
!
(
xi|p

)]

=
(

N∑
i=1

xi

)
ln(p) +

(
N −

N∑
i=1

xi

)
ln(1 − p) (C.19)

The first derivative is
d lnL(p)

dp
=

∑
xi

p
−

N −∑
xi

1 − p
Setting this to zero and replacing p by p̂ to denote the value that maximizes lnL(p) yields

∑
xi

p̂
−

N −∑
xi

1 − p̂
= 0

To solve this equation, multiply both sides by p̂(1 − p̂). This gives
(1 − p̂)∑ xi − p̂

(
N −∑

xi
)
= 0
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Finally, solving for p̂ yields
p̂ =

∑
xi

N
= x (C.20)

The estimator p̂ is the sample proportion; ∑xi is the total number of 1s (wins) out of N spins.
As you can see, p̂ is also the sample mean of xi. This result is completely general. Any time we
have two outcomes that can occur with probabilities p and 1 − p, then the maximum likelihood
estimate based on a sample of N observations is the sample proportion (C.20).

E X A M P L E C.19 Estimating a Population Proportion

This estimation strategy can be used if you are a pollster
trying to estimate the proportion of the population intending
to vote for candidate A rather than candidate B, a medical
researcher who wishes to estimate the proportion of the
population having a particular defective gene, or a marketing
researcher trying to discover whether the population of
customers prefers a blue box or a green box for their morning

cereal. Suppose in this latter case that you select 200 cereal
consumers at random and ask whether they prefer blue
boxes or green. If 75 prefer a blue box, then we would
estimate that the population proportion preferring blue
is p̂ = ∑

xi∕N = 75∕200 = 0.375. Thus, we estimate that
37.5% of the population prefers a blue box.

C.8.1 Inference with Maximum Likelihood Estimators
If we use maximum likelihood estimation, how do we perform hypothesis tests and construct
confidence intervals? The answers to these questions are found in some remarkable properties of
estimators obtained using maximum likelihood methods. Let us consider a general problem. Let
X be a random variable (either discrete or continuous) with a probability density function ! (x|θ),
where θ is an unknown parameter. The log-likelihood function, based on a random sample x1,… ,
xN of size N, is

ln L(θ) =
N∑

i=1
ln
[
!
(
xi|θ

)]

If the probability density function of the random variable involved is relatively smooth, and if
certain other technical conditions hold, then in large samples the maximum likelihood estimator
θ̂ of a parameter θ has a probability distribution that is approximately normal, with expected value
θ and a variance V = var

(
θ̂
)

that we will discuss in a moment. That is, we can say

θ̂ a∼ N(θ,V) (C.21)

where the symbol a∼ denotes “asymptotically distributed.” The word “asymptotic” refers to esti-
mator properties when the sample size N becomes large, or as N →∞. To say that an estimator is
asymptotically normal means that its probability distribution, which may be unknown when sam-
ples are small, becomes approximately normal in large samples. This is analogous to the central
limit theorem we discussed in Section C.3.4.

Based on the normality result in (C.21) it will not surprise you that we can immediately
construct a t-statistic and obtain both a confidence interval and a test statistic from it. Specifically,
if we wish to test the null hypothesis H0∶θ = c against a one-tail or two-tail alternative hypothesis,
then we can use the test statistic

t = θ̂ − c
se
(
θ̂
) a∼ t(N−1) (C.22)

If the null hypothesis is true, then this t-statistic has a distribution that can be approximated by a
t-distribution with N − 1 degrees of freedom in large samples. The mechanics of carrying out the
hypothesis test are exactly those in Section C.6.
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If tc denotes the 100(1 – α/2)-percentile t(1−α∕2,N−1), then a 100(1 − α)% confidence interval
for θ is

θ̂ ± tcse
(
θ̂
)

This confidence interval is interpreted just like those in Section C.5.

Remark
These asymptotic results in (C.21) and (C.22) hold only in large samples. We have indicated
that the distribution of the test statistic can be approximated by a t-distribution with N − 1
degrees of freedom. If N is truly large, then the t(N−1)-distribution converges to the standard
normal distribution N(0, 1) and the 100(1 − α∕2)-percentile value t(1−α∕2,N−1) converges to
the corresponding percentile from the standard normal distribution. Asymptotic results are
used, rightly or wrongly, when the sample size N may not be large. We prefer using the
t-distribution critical values, which are adjusted for small samples by the degrees of freedom
correction, when obtaining interval estimates and carrying out hypothesis tests.

C.8.2 The Variance of the Maximum Likelihood Estimator
A key ingredient in both the test statistic and confidence interval expressions is the standard error
se
(
θ̂
)

. Where does this come from? Standard errors are square roots of estimated variances. The
part we have delayed discussing until now is how we find the variance of the maximum likelihood
estimator, V = var

(
θ̂
)

. The variance V is given by the inverse of the negative expectation of the
second derivative of the log-likelihood function,

V = var
(
θ̂
)
=
[
−E

(
d2 lnL(θ)

dθ2

)]−1
(C.23)

This looks quite intimidating, and you can see why we put it off. What does this mean? First
of all, the second derivative measures the curvature of the log-likelihood function. A second
derivative is literally the derivative of the derivative see Appendix A.3.3. A single derivative, the
first, measures the slope of a function or the rate of change of the function. The second derivative
measures the rate of change of the slope. To obtain a maximum of the log-likelihood function, it
must be an “inverted bowl” shape, like those shown in Figure C.13.

At any point to the left of the maximum point, the slope of the log-likelihood function is
positive. At any point to the right of the maximum, the slope is negative. As we progress from
left to right the slope is decreasing (becoming less positive or more negative), so that the second
derivative must be negative. A larger absolute magnitude of the second derivative implies a

B
lnL (θ)

θ
θ

A

ˆ

FIGURE C.13 The log-likelihood functions.
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more rapidly changing slope, indicating a more sharply curved log-likelihood. This is important.
In Figure C.13 the two log-likelihood functions A and B have the same maximizing value θ̂.
Imagine yourself a climber who is trekking up one of these mountains. For which mountain is the
summit most clearly defined? For log-likelihood B, the summit is a sharp peak, and its maximum
is more easily located than that for log-likelihood A. The sharper peak has less “wiggle room”
at the summit. The smaller amount of wiggle room means that there is less uncertainty as
to the location of the maximizing value θ̂; in estimation terminology, less uncertainty means
greater precision, and a smaller variance. The more sharply curved log-likelihood function, the
one whose second derivative is larger in absolute magnitude, leads to more precise maximum
likelihood estimation, and to a maximum likelihood estimator with smaller variance. Thus the
variance V of the maximum likelihood estimator is inversely related to the (negative) second
derivative. The expected value “E” must be present because this quantity depends on the data
and is thus random, so we average over all possible data outcomes.

C.8.3 The Distribution of the Sample Proportion
It is time for an example. At the beginning of Section C.8 we introduced a random variable X
that takes the values x = 1 and x = 0 with probabilities p and 1 − p. It has log-likelihood given
in (C.19). In this problem the parameter θ that we are estimating is the population proportion p,
the proportion of x = 1 values in the population. We already know that the maximum likelihood
estimator of p is the sample proportion p̂ = ∑

xi∕N. The second derivative of the log-likelihood
function (C.19) is

d2 lnL(p)
dp2 = −

∑
xi

p2 −
N −∑

xi

(1 − p)2
(C.24)

To calculate the variance of the maximum likelihood estimator we need the “expected value” of
expression (C.24). In the expectation we treat the xi values as random because these values vary
from sample to sample. The expected value of this discrete random variable is obtained using
(P.9) in the probability primer:

E
(
xi
)
= 1 × P

(
xi = 1

)
+ 0 × P

(
xi = 0

)
= 1 × p + 0 ×(1 − p) = p

Then, using a generalization of (P.16) (the expected value of a sum is the sum of the expected
values and constants can be factored out of expectations) we find the expected value of the second
derivative as

E
(

d2 ln L(p)
dp2

)
= −

∑
E
(
xi
)

p2 −
N −∑

E
(
xi
)

(1 − p)2

= −Np
p2 −

N − Np
(1 − p)2

= − N
p(1 − p)

The variance of the sample proportion, which is the maximum likelihood estimator of p, is then

V = var(p̂) =
[
−E

(
d2 ln L(p)

dp2

)]−1
= p(1 − p)

N

The asymptotic distribution of the sample proportion, which is valid in large samples, is

p̂ a∼ N
(

p, p(1 − p)
N

)
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To estimate the variance V we must replace the true population proportion by its estimate,

V̂ = p̂(1 − p̂)
N

The standard error that we need for hypothesis testing and confidence interval estimation is the
square root of this estimated variance:

se(p̂) =
√

V̂ =
√

p̂(1 − p̂)
N

E X A M P L E C.20 Testing a Population Proportion

As a numerical example, suppose a cereal company
CEO conjectures that 40% of the population prefers a
blue box. To test this hypothesis, we construct the null
hypothesis H0∶p = 0.4 and use the two-tail alternative
H1∶p ≠ 0.4. If the null hypothesis is true, then the test
statistic t = (p̂ − 0.4)∕se(p̂) a∼ t(N−1). For a sample of
size N = 200 the critical value from the t-distribution is
tc = t(0.975,199) = 1.97. Therefore we reject the null hypothesis
if the calculated value of t ≥ 1.97 or t ≤ −1.97. If 75 of the
respondents prefer a blue box, then the sample proportion is
p̂ = 75∕200 = 0.375. The standard error of this estimate is

se(p̂) =
√

p̂(1 − p̂)
N

=
√

0.375 × 0.625
200 = 0.0342

The value of the test statistic is

t = p̂ − 0.4
se(p̂) = 0.375 − 0.4

0.0342 = −0.7303

This value is in the nonrejection region, −1.97 <
t = −0.7303 < 1.97, so we do not reject the null hypothesis
that p = 0.4. The sample data are compatible with the
conjecture that 40% of the population prefer a blue box.

The 95% interval estimate of the population proportion
p who prefer a blue box is

p̂ ± 1.97se(p̂) = 0.375 ± 1.97(0.0342) =[0.3075, 0.4424]

We estimate that between 30.8% and 44.3% of the population
prefer a blue box.

C.8.4 Asymptotic Test Procedures
When using maximum likelihood estimation, there are three test procedures that can be used, with
the choice depending on which one is most convenient in a given case. The tests are asymptotically
equivalent and will give the same result in large samples. Suppose that we are testing the null
hypothesis H0∶θ = c against the alternative hypothesis H1∶θ ≠ c. In (C.22) we have the t-statistic
for carrying out the test. How does this test really work? Basically it is measuring the distance
θ̂ − c between the estimate of θ and the hypothesized value c. This distance is normalized by the
standard error of θ̂ to adjust for how precisely we have estimated θ. If the distance between the
estimate θ̂ and the hypothesized value c is large, then that is taken as evidence against the null
hypothesis, and if the distance is large enough, we conclude that the null hypothesis is not true.

There are other ways to measure the distance between θ̂ and c that can be used to construct
test statistics. Each of the three testing principles takes a different approach to measuring the
distance between θ̂ and the hypothesized value.

The Likelihood Ratio (LR) Test Consider Figure C.14. A log-likelihood function is
shown, along with the maximum likelihood estimate θ̂ and the hypothesized value c. Note that
the distance between θ̂ and c is also reflected by the distance between the log-likelihood function
value evaluated at the maximum likelihood estimate lnL

(
θ̂
)

and the log-likelihood function value
evaluated at the hypothesized value lnL(c). We have labeled the difference between these two
log-likelihood values (1/2)LR for a reason that will become clear. If the estimate θ̂ is close to
c, then the difference between the log-likelihood values will be small. If θ̂ is far from c, then
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lnL(c)

lnL(θ)

lnL(θ)

θ
θ

1 LR2

c ˆ

ˆ

FIGURE C.14 The likelihood ratio test.

the difference between the log-likelihood values will be large. This observation leads us to the
likelihood ratio statistic, which is twice the difference between lnL

(
θ̂
)

and lnL(c),

LR = 2
[
lnL

(
θ̂
)
− lnL(c)

]
(C.25)

Based on some advanced statistical theory, it can be shown that if the null hypothesis is true,
then the LR test statistic has a chi-square distribution (see Appendix B.3.6) with J = 1 degree of
freedom. In more general contexts J is the number of hypotheses being tested and it can be greater
than 1. If the null hypothesis is not true, then the LR test statistic becomes large. We reject the null
hypothesis at the α level of significance if LR ≥ χ2

(1−α, J), where χ2
(1−α, J) is the 100(1 − α)-percentile

of a chi-square distribution with J degrees of freedom, as shown in Figure C.15. The 90th, 95th,
and 99th percentile values of the chi-square distribution for various degrees of freedom are given
in Statistical Table 3.

When estimating a population proportion p the log-likelihood function is given by (C.19).
The value of p that maximizes this function is p̂ = ∑

xi∕N. Thus, the maximum value of the
log-likelihood function is

lnL(p̂) =
(

N∑
i=1

xi

)
lnp̂ +

(
N −

N∑
i=1

xi

)
ln(1 − p̂)

= Np̂ ln p̂ + (N − Np̂) ln(1 − p̂)

= N
[
p̂ ln p̂ + (1 − p̂) ln(1 − p̂)

]

where we have used the fact that ∑ xi = Np̂.

pd
f o

f χ
2  

χ2-value
χ2

χ2

α

(J)

(1–α, J)

FIGURE C.15 Critical value from a chi-square distribution.
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E X A M P L E C.21 Likelihood Ratio Test of the Population Proportion

For our cereal box problem, p̂ = 0.375 and N = 200, so we
have
ln L(p̂) = 200

[
0.375 × ln(0.375) + (1 − 0.375) ln(1 − 0.375)

]

= −132.3126
The value of the log-likelihood function assuming
H0∶p = 0.4 is true is

ln L(0.4) =
( N∑

i=1
xi

)
ln(0.4) +

(
N −

N∑
i=1

xi

)
ln(1 − 0.4)

= 75 × ln(0.4) + (200 − 75) × ln(0.6)

= −132.5750

The problem is to assess whether −132.3126 is significantly
different from −132.5750. The LR test statistic (C.25) is

LR = 2
[
lnL(p̂) − ln L(0.4)

]

= 2 × (−132.3126 − (−132.575)) = 0.5247

If the null hypothesis p = 0.4 is true, then the LR test statis-
tic has a χ2

(1)-distribution. If we choose α = 0.05, then the
test critical value is χ2

(0.95,1) = 3.84, the 95th percentile from
the χ2

(1)-distribution. Since 0.5247 < 3.84 we do not reject the
null hypothesis.

The Wald Test In Figure C.14 it is clear that the distance (1/2)LR will depend on the
curvature of the log-likelihood function. In Figure C.16 we show two log-likelihood functions
with the hypothesized value c and the distances (1/2)LR for each of the log-likelihoods. The
log-likelihoods have the same maximum value ln L

(
θ̂
)

, but the values of the log-likelihood eval-
uated at the hypothesized value c are different.

The distance θ̂ − c translates into a larger value of (1/2)LR for the more highly curved
log-likelihood, B, so it seems reasonable to construct a test measure by weighting the distance
θ̂ − c by the magnitude of the log-likelihood’s curvature, which we measure by the negative of
its second derivative. This is exactly what the Wald statistic does:

W =
(
θ̂ − c

)2 [
−d2 ln L(θ)

dθ2

]
(C.26)

The value of the Wald statistic is larger for log-likelihood function B (more curved) than
log-likelihood function A (less curved).

If the null hypothesis is true, then the Wald statistic (C.26) has a χ2
(1) -distribution, and we

reject the null hypothesis if W ≥ χ2
(1−α,1). In more general situations we may test J > 1 hypotheses

jointly, in which case we work with a chi-square distribution with J degrees of freedom, as shown
in Figure C.15.

c

lnLA(c)

lnL(θ)

lnLB(c)

lnL(θ)

θ
θ

B A

ˆ

ˆ

FIGURE C.16 The Wald statistic.
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There is a linkage between the curvature of the log-likelihood function and the precision
of maximum likelihood estimation. The greater the curvature of the log-likelihood function, the
smaller the variance V in (C.23) and the more precise maximum likelihood estimation becomes,
meaning that we have more information about the unknown parameter θ. Conversely, the more
information we have about θ, the smaller the variance of the maximum likelihood estimator. Using
this idea we define an information measure to be the reciprocal of the variance V ,

I(θ) = −E
[

d2 ln L(θ)
dθ2

]
= V−1 (C.27)

As the notation indicates the information measure I(θ) is a function of the parameter θ. Substitute
the information measure for the second derivative in the Wald statistic in (C.26) to obtain

W =
(
θ̂ − c

)2
I(θ) (C.28)

In large samples the two versions of the Wald statistic are the same. An interesting connection
here is obtained by rewriting (C.28) as

W =
(
θ̂ − c

)2
V−1 =

(
θ̂ − c

)2/
V (C.29)

To implement the Wald test, we use the estimated variance

V̂ =
[
I
(
θ̂
)]−1

(C.30)

Then, taking the square root, we obtain the t-statistic in (C.22),
√

W = θ̂ − c√
V̂

= θ̂ − c
se
(
θ̂
) = t

That is, the t-test is also a Wald test.

E X A M P L E C.22 Wald Test of the Population Proportion

In our blue box–green box example, we know that the maxi-
mum likelihood estimate p̂ = 0.375. To implement the Wald
test we calculate

I(p̂) = V̂−1 = N
p̂(1 − p̂) =

200
0.375(1 − 0.375) = 853.3333

where V = p(1 − p)∕N and V̂ were obtained in Section C.7.3.
Then the calculated value of the Wald statistic is

W = (p̂ − c)2I(p̂) = (0.375 − 0.4)2 × 853.3333 = 0.5333

In this case the value of the Wald statistic is close in
magnitude to the LR statistic and the test conclusion is the
same. Also, when testing one hypothesis, the Wald statistic is
the square of the t-statistic, W = t2 = (−0.7303)2 = 0.5333.

The Lagrange Multiplier (LM) Test The third testing procedure that comes from
maximum likelihood theory is the Lagrange multiplier (LM) test. Figure C.17 illustrates another
way to measure the distance between θ̂ and c. The slope of the log-likelihood function, which is
sometimes called the score, is

s(θ) = d lnL(θ)
dθ (C.31)
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s(c)

c

ln L(c)

AB

θ̂B θ̂A

θ

FIGURE C.17 Motivating the Lagrange multiplier test.

The slope of the log-likelihood function depends on the value of θ, as our function notation s(θ)
indicates. The slope of the log-likelihood function at the maximizing value is zero, s

(
θ̂
)
= 0.

The LM test examines the slope of the log-likelihood function at the point c. The logic of the test
is that if θ̂ is close to c then the slope s(c) of the log-likelihood function evaluated at c should be
close to zero. In fact testing the null hypothesis θ = c is equivalent to testing s(c) = 0.

The difference between c and the maximum likelihood estimate θ̂B (maximizing ln LB) is
smaller than the difference between c and θ̂A. In contrast to the Wald test, more curvature in the
log-likelihood function implies a smaller difference between the maximum likelihood estimate
and c. If we use the information measure I(θ) as our measure of curvature (more curvature means
more information), the Lagrange multiplier test statistic can be written as

LM =
[
s(c)

]2

I(θ) =
[
s(c)

]2[I(θ)]−1 (C.32)

The LM statistic for log-likelihood function A (less curved) is greater than the LM statistic for
log-likelihood function B (more curved). If the null hypothesis is true, LM test statistic (C.32) has
a χ2

(1)-distribution, and the rejection region is the same as for the LR and Wald tests. The LM, LR,
and Wald tests are asymptotically equivalent and will lead to the same conclusion in sufficiently
large samples.

In order to implement the LM test we can evaluate the information measure at the point θ = c,
so that it becomes

LM =
[
s(c)

]2[I(c)]−1

In cases in which the maximum likelihood estimate is difficult to obtain (which it can be in
more complex problems) the LM test has an advantage because θ̂ is not required. On the other
hand, the Wald test in (C.28) uses the information measure evaluated at the maximum likelihood
estimate θ̂,

W =
(
θ̂ − c

)2
I
(
θ̂
)

It is preferred when the maximum likelihood estimate and its variance are easily obtained. The
likelihood ratio test statistic (C.25) requires calculation of the log-likelihood function at both
the maximum likelihood estimate and the hypothesized value c. As noted, the three tests are
asymptotically equivalent, and the choice of which to use is often made on the basis of con-
venience. In complex situations, however, the rule of convenience may not be a good one. The
likelihood ratio test is relatively reliable in most circumstances, so if you are in doubt, it is a safe
one to use.
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E X A M P L E C.23 Lagrange Multiplier Test of the Population Proportion

In the blue box–green box example, the value of the score,
based on the first derivative shown just below (C.19), evalu-
ated at the hypothesized value c = 0.4 is

s(0.4) =
∑

xi

c
−

N −∑
xi

1 − c
= 75

0.4 −
200 − 75
1 − 0.4 = −20.8333

The calculated information measure is

I(0.4) = N
c(1 − c) =

200
0.4(1 − 0.4) = 833.3333

The value of the LM test statistic is

LM =
[
s(0.4)

]2[I(0.4)
]−1 = [−20.8333]2 [833.3333]−1

= 0.5208

Thus, in our example, the values of the LR, Wald, and LM
test statistics are very similar and give the same conclusion.
This was to be expected, since the sample size N = 200 is
large, and the problem is a simple one.

C.9 Algebraic Supplements
C.9.1 Derivation of Least Squares Estimator

In this section we illustrate how to use the least squares principle to obtain the sample mean as
an estimator of the population mean. Represent a sample of data as y1, y2,… , yN. The population
mean is E(Y) = μ. The least squares principle says to find the value of μ that minimizes

S =
N∑

i=1

(
yi − μ

)2

where S is the sum of squared deviations of the data values from μ.
The motivation for this approach can be deduced from the following example. Suppose you

are going shopping at a number of shops along a certain street. Your plan is to shop at one store
and return to your car to deposit your purchases. Then you visit a second store and return again
to your car, and so on. After visiting each shop you return to your car. Where would you park
to minimize the total amount of walking between your car and the shops you visit? You want to
minimize the distance traveled. Think of the street along which you shop as a number line. The
Euclidean distance between a shop located at yi and your car at point μ is

di =
√(

yi − μ
)2

The squared distance, which is mathematically more convenient to work with, is

d2
i =

(
yi − μ

)2

To minimize the total squared distance between your parking spot μ and all the shops located at
y1, y2,… , yN you would minimize

S(μ) =
N∑

i=1
d2

i =
N∑

i=1

(
yi − μ

)2

which is the sum of squares function. Thus the least squares principle is really the least squared
distance principle.

Since the values of yi are known given the sample, the sum of squares function S(μ) is a
function of the unknown parameter μ. Multiplying out the sum of squares, we have

S(μ) =
N∑

i=1
y2

i − 2μ
N∑

i=1
yi + Nμ2 = a0 − 2a1μ + a2μ2
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E X A M P L E C.24 Hip Data: Minimizing the Sum of Squares Function

For the data in Table C.1 we have
a0 = ∑

y2
i = 14880.1909, a1 =

∑
yi = 857.9100,

a2 = N = 50
The plot of the sum of squares parabola is shown in
Figure C.18. The minimizing value appears to be a bit larger
than 17 in the figure. Now we will determine the minimizing
value exactly.

The value of μ that minimizes S(μ) is the “least squares
estimate.” From calculus, we know that the minimum of the
function occurs where its slope is zero. See Appendix A.3.4.
The function’s derivative gives its slope, so by equating the
first derivative of S(μ) to zero and solving, we can obtain the
minimizing value exactly. The derivative of S(μ) is

dS(μ)
dμ = −2a1 + 2a2μ

Setting the derivative to zero determines the least squares
estimate of μ, which we denote as μ̂. Setting the derivative
to zero,

−2a1 + 2a2μ̂ = 0

S(µ)
700

600

500

400

300

200

100
14 15 16 17 18 19 20

µ = 17.1582 µˆ

FIGURE C.18 The sum of squares parabola for the hip data.

Solving for μ̂ yields the formula for the least squares estimate,

μ̂ =
a1
a2

=

N∑
i=1

yi

N
= y

Thus, the least squares estimate of the population mean is the
sample mean, y. This formula can be used in general, for any
sample values that might be obtained, meaning that the least
squares estimator is

μ̂ =

N∑
i=1

Yi

N
= Y

For the hip data in Table C.1

μ̂ =

N∑
i=1

yi

N
= 857.9100

50 = 17.1582

Thus, we estimate that the average hip size in the population
is 17.1582 inches.

C.9.2 Best Linear Unbiased Estimation
One of the powerful findings about the sample mean (which is also the least squares estimator)
is that it is the best of all possible estimators that are both linear and unbiased. The fact that Y is
the best linear unbiased estimator (BLUE) accounts for its wide use. In this context we mean by
best that it is the estimator with the smallest variance of all linear and unbiased estimators. It is
better to have an estimator with a smaller variance than one with a larger variance; it increases the
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chances of getting an estimate close to the true population mean μ. This important result about the
least squares estimator is true if the sample values Yi ∼

(
μ, σ2) are uncorrelated and identically

distributed. It does not depend on the population being normally distributed. The fact that Y is
BLUE is so important that we will prove it.

The sample mean is a weighted average of the sample values,

Y =
N∑

i=1
Yi∕N = 1

N
Y1 +

1
N

Y2 + · · · + 1
N

YN

= a1Y1 + a2Y2 + · · · + aNYN

=
N∑

i=1
aiY

where the weights ai = 1∕N. Weighted averages are also called linear combinations, so we call
the sample mean a linear estimator. In fact, any estimator that can be written as ∑N

i=1 aiYi is a
linear estimator. For example, suppose the weights a∗i are constants different from ai = 1∕N. Then
we can define another linear estimator of μ as

Ỹ =
N∑

i=1
a∗i Yi

To ensure that Ỹ is different from Y , let us define

a∗i = ai + ci =
1
N

+ ci

where ci are constants that are not all zero. Thus,

Ỹ =
N∑

i=1
a∗i Yi =

N∑
i=1

( 1
N

+ ci

)
Yi

=
N∑

i=1

1
N

Yi +
N∑

i=1
ciY

= Y +
N∑

i=1
ciY

The expected value of the new estimator Ỹ is

E
[
Ỹ
]
= E

[
Y +

N∑
i=1

ciYi

]
= μ +

N∑
i=1

ciE
[
Yi
]

= μ + μ
N∑

i=1
ci

The estimator Ỹ is not unbiased unless ∑ ci = 0. We want to compare the sample mean to other
linear and unbiased estimators, so we will assume that ∑ ci = 0 holds. Now we find the variance
of Ỹ . The linear unbiased estimator with the smaller variance will be best.

var(Ỹ) = var
(

N∑
i=1

a∗i Yi

)
= var

(
N∑

i=1

( 1
N

+ ci

)
Yi

)
=

N∑
i=1

(
1
N

+ ci

)2
var(Yi)

= σ2
N∑

i=1

(
1
N

+ ci

)2
= σ2

N∑
i=1

(
1

N2 + 2
N

ci + c2
i

)
= σ2

(
1
N

+ 2
N

N∑
i=1

ci +
N∑

i=1
c2

i

)

= σ2∕N + σ2
N∑

i=1
c2

i

(
since

N∑
i=1

ci = 0
)

= var(Y) + σ2
N∑

i=1
c2

i
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It follows that the variance of Ỹ must be greater than the variance of Y , unless all the ci values
are zero, in which case Ỹ = Y .

C.10 Kernel Density Estimator
As econometricians, we work with data that are drawings from unknown distributions. For
example, Figure C.19 shows the empirical distributions of two datasets, presented here as
histograms. The variables X and Y are in the data file kernel. The problem before us is to
estimate the density functions that yielded the observations. Knowledge about the distributions
is important for statistical inference.

There are two main ways to estimate the distribution. We can use a parametric density esti-
mator, or we can use a nonparametric kernel density estimator. In the parametric approach,
we rely on density functions with well-defined functional forms characterized by parameters. For
example, the normal probability density distribution f ( • ) has a specific functional form defined
by two parameters—the mean μ and the standard deviation σ:

! (x|μ, σ) = 1
σ
√

2π
exp

(
−1

2
(x − μ

σ

)2
)

Once we have estimates of the mean and the standard deviation, μ̂ and σ̂, we plug these into the
normal density function formula to obtain

! (x)
⋀

= 1
σ̂
√

2π
exp

(
−1

2

(
x − μ̂
σ̂

)2)

Figure C.20 shows our application of this approach; the generated normal density functions are
superimposed onto the histograms of the data. We have applied this parametric approach in
the discussion about the Central Limit Theorem (C.3.4) and in discussion about ARCH models
(Chapter 14).

The histogram of the variable X, on the left in Figure C.20, is unimodal, and the normal
distribution appears to fit the shape of the data well. In contrast, the histogram of the variable
Y on the right in Figure C.20 is bimodal, and the normal distribution is a poor representation of
the underlying density function. We could try fitting the data with other parametric distributional
forms, but rather than do that, let us adopt a nonparametric kernel density estimator to capture
the shape of the data in a smooth continuous form.

Nonparametric methods do not require specific functional forms (e.g., the normal distribu-
tion formula) to generate the distribution. Instead, smoothing functions, called kernels, are used
to “fit” the shape of the distribution of the data.
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FIGURE C.19 Histograms of variables (a) unimodal variable X and (b) bimodal variable Y.
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FIGURE C.20 Parametric density estimator (a) unimodal variable X and (b) bimodal
variable Y.

The logic of the nonparametric approach can be grasped intuitively by thinking about how we set
up histograms. Figure C.21 shows two histograms for the dataset Y . The one on the left has nine
bins (i.e., the rectangles in the histogram) with bin width = 1 whereas the one on the right has
many bins each with bin width = 0.1. The histogram with less bins has the higher frequency per
bin as more observations fall into the larger bin width. More specifically, if xk is the midpoint of
the kth bin and h is the bin width, the range of values in the bin is xk ± h∕2, and the frequency count
nk is the number of observations which falls in that range. The sum of all frequencies equals the
sample size n, while the sum of the areas equals nh, since each area is nkh and ∑

knk = n. Note,
too, that the shapes of the histograms are similar, but that the one with the larger bin width is
“smoother” (fewer spikes and dips).

We can think of the histogram as a density function estimator ! (x)
⋀

, where x takes values over
the domain of x and

! (x)
⋀

= 1
nh

n∑
i=1

1
(
Ai
)

The expression 1(Ai) is an indicator function taking on the value of 1 if Ai is true; Ai is the
condition that xi is in the same bin as x. For example, suppose we wish to find ! (x)

⋀

for an x that
lies in the kth bin. Then, Ai is true for all xi such that xk – h/2 < xi < xk + h/2. Thus, in the kth
bin, ∑n

i=1 1
(
Ai
)
= nk, and the histogram density estimator for all x in the kth bin is ! (x)

⋀

= nk∕nh.
The divisor nh ensures that the bin areas sum to one.

Now consider another density estimator where, instead of having a number of predetermined
bins with midpoints xk, we consider a bin with midpoint x and count the number of observations
in the range x ± h∕2. If we repeat this process for all values of x, we can picture it as creating an
infinite number of overlapping bins along the domain of x. In this case the density estimator is
given by

! (x)
⋀

= 1
nh

n∑
i=1

1
(

x − h
2 < xi < x + h

2
)
= 1

nh

n∑
i=1

1
(
−1

2 <
xi − x

h
< 1

2
)
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FIGURE C.21 Histograms with different bin widths (a) width = 1 (b) width = 0.1.
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In practice, as you sum over the observations, the indicator function ensures that you only “count”
the relevant observations. However, this density function will not be smooth, because each obser-
vation is given a weight of either zero or one—that is, it is either in or out, according to the
condition specified in the indicator function.

Suppose we now replace this simple counting rule with a more sophisticated weighting func-
tion known as a kernel:

! (x)
⋀

= 1
nh

n∑
i=1

K
(xi − x

h

)

where K is a kernel, h is a smoothing parameter called the bandwidth, and x is any value over
the domain of possible values. There are many kernel functions; one of them is Gaussian and is
described as follows:

K
(xi − x

h

)
= 1√

2π
exp

(
−1

2
(xi − x

h

)2)

Figure C.22 shows the application of this kernel estimator to variable Y in data file kernel with four
different bandwidths. Note how the shape of the density function is controlled by the bandwidth.
The smaller the bandwidth, the better the fit, but there is a tradeoff between the number of “humps”
captured and the smoothness of the fit. Intuitively, decreasing the bandwidth is like decreasing
the bin width in the histogram, and the kernel is like a “counter”—but one which puts less weight
on observations that are further away from the point being evaluated. (Imagine moving from the
histogram on the right in Figure C.21 to the one on the left as you increase the bandwidth, and
then imagine the use of the kernel to smooth the bars.) The kernel (Gaussian) density function
with bandwidth equal to 0.4 appears to have captured the bimodality in the data.

There is a vast literature about the optimal choice of bandwidth as well as extensions of the
nonparametric methods to regression analysis. Useful references include Pagan, A. and Ullah, A.,
Nonparametric Econometrics, Cambridge University Press, 1999; and Li, Q. and Racine, J.S.
Nonparametric Econometrics: Theory and Practice, Princeton University Press, 2007.
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FIGURE C.22 Fitting with a nonparametric density estimator (a) bandwidth = 1.5,
(b) bandwidth = 1, (c) bandwidth = 0.4, and (d) bandwidth 0.1.
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C.11 Exercises

C.11.1 Problems
C.1 Suppose Y1, Y2,… , YN is a random sample from a population with mean μ and variance σ2. Rather

than using all N observations, consider an easy estimator of μ that uses only the first two observations

Y∗ =
Y1 + Y2

2
a. Show that Y* is a linear estimator.
b. Show that Y* is an unbiased estimator.
c. Find the variance of Y*.
d. Explain why the sample mean of all N observations is a better estimator than Y*.

C.2 Suppose that Y1, Y2, Y3 is a random sample from a N(μ, σ2) population. To estimate μ, consider the
weighted estimator

Ỹ = 1
2 Y1 +

1
3 Y2 +

1
6 Y3

a. Show that Ỹ is a linear estimator.
b. Show that Ỹ is an unbiased estimator.
c. Find the variance of Ỹ and compare it to the variance of the sample mean Y .
d. Is Ỹ as good an estimator as Y?
e. If σ2 = 9, calculate the probability that each estimator is within one unit on either side of μ.

C.3 The hourly sales of fried chicken at Louisiana Fried Chicken are normally distributed with mean
2,000 pieces and standard deviation 500 pieces. What is the probability that in a 9-hour day more
than 20,000 pieces will be sold?

C.4 Starting salaries for economics majors have a mean of $47,000 and a standard deviation of $8,000.
What is the probability that a random sample of 40 economics majors will have an average salary of
more than $50,000?

C.5 A store manager designs a new accounting system that will be cost-effective if the mean monthly charge
account balance is more than $170. A sample of 400 accounts is randomly selected. The sample mean
balance is $178 and the sample standard deviation is $65. Can the manager conclude that the new
system will be cost-effective?
a. Carry out a hypothesis test to answer this question. Use the α = 0.05 level of significance.
b. Compute the p-value of the test.

C.6 An econometric professor’s rule of thumb is that students should expect to spend 2 hours outside of
class on coursework for each hour in class. For a three-hour-per-week class, this means that students
are expected to do 6 hours of work outside class. The professor randomly selects eight students from
a class, and asks how many hours they studied econometrics during the past week. The sample values
are 1, 3, 4, 4, 6, 6, 8, 12.
a. Assuming that the population is normally distributed, can the professor conclude at the 0.05 level

of significance that the students are studying on average more than 6 hours per week?
b. Construct a 90% confidence interval for the population mean number of hours studied per week.

C.7 Modern labor practices attempt to keep labor costs low by hiring and laying off workers to meet
demand. Newly hired workers are not as productive as experienced ones. Assume that assembly line
workers with experience handle 500 pieces per day. A manager concludes that it is cost-effective to
maintain the current practice if new hires, with a week of training, can process more than 450 pieces
per day. A random sample of N = 50 trainees is observed. Let Yi denote the number of pieces each
handles on a randomly selected day. The sample mean is y = 460, and the estimated sample standard
deviation is σ̂ = 38.
a. Carry out a test of whether or not there is evidence to support the conjecture that current hiring

procedures are effective, at the 5% level of significance. Pay careful attention when formulating
the null and alternative hypotheses.
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b. What exactly would a Type I error be in this example? Would it be a costly one to make?
c. Compute the p-value for this test.

C.8 To evaluate alternative retirement benefit packages for its employees, a large corporation must deter-
mine the mean age of its workforce. Assume that the age of its employees is normally distributed. Since
the corporation has thousands of workers, a sample is to be taken. If the standard deviation of ages is
known to be σ = 21 years, how large should the sample be to ensure that a 95% interval estimate of
mean age is no more than four years wide?

C.9 Consider the discrete random variable Y that takes the values y = 1, 2, 3, and 4 with probabilities
0.1, 0.2, 0.3, and 0.4, respectively.
a. Sketch this pdf .
b. Find the expected value of Y .
c. Find the variance of Y .
d. If we take a random sample of size N = 3 from this distribution, what are the mean and variance

of the sample mean, Y =
(
y1 + y2 + y3

)/
3?

C.10 The sample proportion p̂ is an estimator of the population proportion p. The variance of the estimator
p̂ is var(p̂) = p(1 − p)∕N, where N is the sample size. Suppose we sample N = 100 voters. Of the
100 people sampled, 54 preferred candidate Hillary to candidate Donald.
a. Construct a 95% interval estimate of the population proportion using the approximately correct

critical value 1.96 and the estimated variance var
⋀

(p̂) = p̂(1 − p̂)∕N.
b. Calculate the alternative variance estimate, var∼(p̂) = 0.5(1 − 0.5)∕N. Is this variance estimate

larger or smaller than the one in part (a)? Will using the alternative variance make for a more
conservative, wider, interval estimate or a less conservative, narrower, one?

c. Repeat the calculation of the interval estimate using the alternative variance estimate from part (b)
and using the easier to work with critical value 2.0. Is it correct to say that this interval estimate
has “a margin of error approximately equal to plus or minus 10 percent?”

d. Define the rough and conservative “margin of error” for the sample proportion interval to be
2
[
0.5(1 − 0.5)∕N

]1∕2. Calculate the sample size required so that the margin of error is 0.07. What
sample sizes are required for 0.05, 0.03, and 0.01 margins of error?

e. A February, 2017, Gallup poll on NAFTA (North American Free Trade Agreement) resulted in
48% saying it “has been a good thing.” The poll was based on telephone interviews conducted Feb.
1-5, 2017, with a random sample of 1,035 adults, aged 18 and older, living in all 50 U.S. states
and the District of Columbia. Construct a conservative interval estimate of the true proportion of
the 18 or older population thinking NAFTA has been a good thing. A news report based on the
poll said “U.S. voters are deeply divided” on NAFTA. Do you think that is a fair statement? [One
disheartening comment on the article by a reader said “I don’t trust Poles.”]

C.11 Let X denote the birthweight of a child, measured in hundreds of grams, whose mother did not
smoke. Using a sample of N = 968 newly born children, we find the sample mean birthweight to
be X = 34.2514 hundred grams. Also ∑N

i=1

(
Xi − X

)2
= 33296.003, ∑N

i=1

(
Xi − X

)3
= −137910.04,

∑N
i=1

(
Xi − X

)4
= 6392783.3

a. Use these values to compute the sample variance, as shown in (C.7) and the sample standard
deviation, as shown in (C.9).

b. Use these values to compute μ̃2, μ̃3, μ̃4, as shown in Section C.4.2.
c. Calculate the skewness (S) and kurtosis (K) coefficients given in Section C.4.2. Are the values

compatible with the normal distribution?
d. Test the normality of the data using the Jarque–Bera test in Section C.7.4.

C.12 Let Y denote the number of doctor visits in one month by a randomly chosen person. Assume that this
count variable has a Poisson distribution with E(Y) = var(Y) = λ.
a. Calculate the probabilities P(Y = 0), P(Y = 1), and P(Y = 2) assuming λ = 1.
b. We choose a random sample of N = 3 individuals and observe that the first and second

people had two doctor visits, and the third person had one. Calculate the joint probability
P
(
Y1 = 2,Y2 = 2, Y3 = 1

)
given that λ = 1.

c. Show that in general P
(

Y1 = 2,Y2 = 2, Y3 = 1||λ
)
= 0.25λ5e−3λ.
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d. The likelihood function is L
(
λ|Y1 = 2, Y2 = 2,Y3 = 1

)
= 0.25λ5e−3λ. Write down the algebraic

form of the log-likelihood, lnL
(
λ|Y1 = 2,Y2 = 2,Y3 = 1

)
.

e. Find the first derivative of the log-likelihood, set it to zero, and solve for the solution value λ̃.
f. Find the second derivative of the log-likelihood. Determine the sign of this derivative.
g. Can we claim that λ̃ is the maximum likelihood estimate of E(Y) = var(Y) = λ?

C.13 This exercise extends Exercise C.12 to the general case with a random sample of N observations,
Y1, … , YN from a population. Each outcome is assumed to have a Poisson distribution with
E(Y) = var(Y) = λ.
a. Show that the log-likelihood function is ln L

(
λ|y1, … , yN

)
= (ln λ)∑N

i=1 yi − Nλ −∑N
i=1 ln

(
yi!

)
.

b. Show that the maximum likelihood estimate is λ̃ = ∑N
i=1 yi∕N.

c. Show that the second derivative of the log-likelihood function is −
(∑N

i=1 yi

)/
λ2. What is the sign

of the second derivative?
d. The maximum likelihood estimator is λ̃ = ∑N

i=1 Yi∕N. Assuming we have a random sample from
a population with E(Y) = var(Y) = λ, find E

(
λ̃
)

and var
(
λ̃
)
.

e. The information measure I(λ) = −
{

E
[

d2 ln L(λ)
dλ2

]}
, where

[
d2 ln L(λ)

dλ2

]
= −

(∑N
i=1 Yi

)/
λ2.

Show that the information measure in this case is I(λ) = N∕λ.
C.14 Let X denote the birthweight of a child, measured in hundreds of grams. Consider children whose

mothers smoked (SMOKE = 1) and children whose mothers did not smoke (SMOKE = 0). Summary
statistics for the birthweights for these two groups are in Table C.6.

T A B L E C.6 Summary Statistics for Birthweights

SMOKE N Mean Variance Std. Dev. Skewness Kurtosis
0 968 34.25 34.43 5.87 −0.71 5.58
1 232 31.37 34.42 5.87 −1.26 7.66

a. Use the Jarque–Bera test to test the normality of each of these populations. Do we reject the null
hypothesis of normality or fail to reject normality?

b. Construct a 95% interval estimate for the population mean birthweight born to mothers who did not
smoke, μ0. Construct a 95% interval estimate for the population mean birthweight born to mothers
who did smoke, μ1. Select any value c in the 95% interval estimate for μ0. What is the outcome of
a two-tail test of the hypothesis μ1 = c using the 5% level of significance?

c. Test the null hypothesis that the population mean birthweight is the same for the two popu-
lations, H0∶μ0 = μ1 against the alternative H1∶μ0 ≠ μ1. Explain your choice to use a pooled
variance estimator or to assume that the pooled variance is inappropriate. Use the 5% level of
significance.

d. Repeat the test in part (c) for the null and alternative hypotheses H0∶μ0 ≤ μ1 and H1∶μ0 > μ1.
C.15 In this exercise we use the data from Exercise C.12 and the results in Exercise C.13 to carry out a

hypothesis test concerning the parameter λ in the Poisson distribution.
a. Using the maximum likelihood estimate from Exercise C.12, compute the information measure

I
(
λ̃
)
, given in Exercise C.13 (e).

b. Carry out a likelihood ratio test of the null hypothesis H0∶λ = 1, using the test statistic in
equation (C.25), versus the alternative H1∶λ ≠ 1 at the 5% level of significance.

c. Use the Wald statistic in equation (C.26) to carry out the test from part (b).
d. An alternative version of the Wald statistic replaces the second derivative term, −d2 ln L(λ)∕dλ2,

with I
(
λ̃
)
, as shown in equation (C.28). Carry out the test from part (b) using the modified

Wald test.
e. Evaluate the score function, shown in equation (C.31), assuming the null hypothesis is true.
f. Evaluate the information measure I(λ) assuming the null hypothesis is true.
g. Using the results in parts (e) and (f), carry out the LM test of the null hypothesis in part (b).
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C.16 Two independent food scientists are researching the shelf-life (Y) of “Bill’s Big Red” spaghetti sauce.
The first collects a random sample of 25 jars and finds their average shelf life to be Y = 48 months.
The second researcher collects a random sample of 100 jars and finds their average shelf life to be
Y2 = 40 months.
a. Find the ratio of the standard error of Y1 relative to the standard error of Y2.
b. A combined estimate can be obtained by finding the weighted average Ỹ = cY1 + (1 − c) Y2.

Is there any value of c that makes this estimator of μ unbiased?
c. What value of c yields the combined estimate with the smallest standard error? Explain the intuition

behind your solution, and why weighting the two means equally, with c = 0.5, is not the best choice.
C.17 Suppose school children are subjected to a standardized math test each spring. In the population of

comparable children, the test score Y is normally distributed with mean 500 and standard deviation
100, Y ∼ N

(
μ = 500, σ2 = 1002). It is claimed that reducing class sample size will increase test scores.

a. How can we tell if reducing class size actually does increase test scores? Would you be convinced
if a sample of N = 25 students from the smaller classes had an average test score of 510? Calculate
the probability of obtaining a sample mean of Y = 510, or more, even if smaller classes actually
have no effect on test performance.

b. Show that a class average of 533 will be reached by chance only 5% of the time, if the smaller
class sizes have no effect. Is the following statement correct or incorrect? “We can conclude that
smaller classes raise average test scores if a class of 25 students has an average test score of 533
or better, with this result being due to sampling error with probability 5%.”

c. Suppose that smaller classes actually do improve the average mean population test score to 550.
What is the probability of observing a class of 25 with an average score of 533 or better? If our
objective is to determine whether smaller classes increase test scores, is it better for this number
to be larger or smaller?

d. If smaller classes increase average test score to 550, what is the probability of having a small class
average of less than or equal to 533?

e. Draw a figure showing two normal distributions, one with mean 500 and standard deviation 100,
and the other with mean 550 and standard deviation 100. On the figure locate the value 533. In
part (b) we showed that if the change in class size has no effect on test scores, we would still obtain
a class average of 533 or more by chance 5% of the time; we would incorrectly conclude that the
smaller classes helped test scores, which is a Type I error. In part (d) we derived the probability
that we would obtain a class average test score of less than 533, making us unable to conclude that
smaller classes help, even though smaller classes did help. This is a Type II error. If we push the
threshold to the right, say 540, what happens to Type I and Type II errors? If we push the threshold
to the left, say 530, what happens to the probability of Type I and Type II errors?

C.11.2 Computer Exercises
C.18 Does being in a small class help primary school students learning, and performance on achievement

tests? Use the sample data file star5_small to explore this question.
a. Consider students in regular-sized classes, with REGULAR = 1. Construct a histogram of MATH-

SCORE. Carry out the Jarque–Bera test for normality at the 5% level of significance. What do you
conclude about the normality of the data?

b. Calculate the sample mean, standard deviation and standard error of the mean for MATHSCORE
in regular-sized classes. Use the t-statistic in equation (C.16) to test the null hypothesis that the
population mean (the population of students who are enrolled in regular-sized classes) μR is 490
versus the alternative that it isn’t. Use the 5% level of significance. What is your conclusion?

c. Given the result of the normality test in (a), do you think the test in part (b) is justifiable? Explain
your reasoning.

d. Construct a 95% interval estimate for the mean μR.
e. Repeat the test in (b) for the population of students in small classes, SMALL = 1. Denote the

population mean for these students as μS. Use the 5% level of significance. What is your conclusion?
f. Let μR and μS denote the population mean test scores on the math achievement test, MATHSCORE.

Using the appropriate test, outlined in Section C.7.2, test the null hypothesis H0∶μS – μR ≤ 0 against
the alternative H1∶μS – μR > 0. Use the 1% level of significance. Does it appear that being in a small
class increases the expected math test score, or not?
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C.19 Does having a household member with an advanced degree increase household income relative to a
household that includes a member having only a college degree? Use the sample data file cex5_small
to explore this question.
a. Construct a histogram of incomes for households that include a member with an advanced degree.

Construct another histogram of incomes for households that include a member with a college
degree. What do you observe about the shape and location of these two histograms?

b. In the sample that includes a member with an advanced degree, what percentage of households
have household incomes greater than $10,000 per month? What is the percentage for households
that include a member having a college degree?

c. Test the null hypothesis that the population mean income for households including a member with
an advanced degree, μADV, is less than, or equal to, $9,000 per month against the alternative that it
is greater than $9,000 per month. Use the 5% level of significance.

d. Test the null hypothesis that the population mean income for households including a member with
a college degree, μCOLL, is less than, or equal to, $9,000 per month against the alternative that it is
greater than $9,000 per month. Use the 5% level of significance.

e. Construct 95% interval estimates for μADV and μCOLL.
f. Test the null hypothesis μADV ≤ μCOLL against the alternative μADV > μCOLL. Use the 5% level of

significance. What is your conclusion?
C.20 How much variation is there in household incomes in households including a member with an

advanced degree? Use the sample data file cex5_small to explore this question. Let σ2
ADV denote the

population variance.
a. Test the null hypothesis σ2

ADV = 2500 against the alternative σ2
ADV > 2500. Use the 5% level of

significance. Clearly state the test statistic and the rejection region. What is the p-value for this
test?

b. Test the null hypothesis σ2
ADV = 2500 against the alternative σ2

ADV < 2500. Use the 5% level of
significance. Clearly state the test statistic and the rejection region. What is the p-value for this
test?

c. Test the null hypothesis σ2
ADV = 2500 against the alternative σ2

ADV ≠ 2500. Use the 5% level of
significance. Clearly state the test statistic and the rejection region.

C.21 School officials consider performance on a standardized math test acceptable if 40% of the population
of students score at least 500 points. Use the sample data file star5_small to explore this topic.
a. Compute the sample proportion of students enrolled in regular-sized classes who score 500 points

or more. Calculate a 95% interval estimate of the population proportion. Based on this interval can
we reject the null hypothesis that the population proportion of students in regular-sized classes
who score 500 points or better is p = 0.4?

b. Test the null hypothesis that the population proportion p of students in a regular-sized class who
score 500 points or more is less than or equal to 0.4 against the alternative that the true proportion
is greater than 0.4. Use the 5% level of significance.

c. Test the null hypothesis that the population proportion p of students in a regular-sized class who
score 500 points or more is equal to 0.4 against the alternative that the true proportion is less than
0.4. Use the 5% level of significance.

d. Repeat parts (a)–(c) for students in small classes.
C.22 Consider two populations of Chinese chemical firms: those who export their products and those who

do not. Let us consider the sales revenue for these two types of firms. Use the data file chemical_small
for this exercise. It contains data on 1200 firms in 2006.
a. The variable LSALES is ln(SALES). Construct a histogram for this variable and test whether the

data are normally distributed using the Jarque–Bera test with 10% level of significance.
b. Create the variable SALES= exp(LSALES). Construct a histogram for this variable and test whether

the data are normally distributed using the Jarque–Bera test with 10% level of significance.
c. Consider two populations of firms: those who export (EXPORT = 1) and those who do not

(EXPORT = 0). Let μ1 be the population mean of LSALES for firms that export, and let μ0 be the
population mean of LSALES for firms that do not export. Estimate the difference in means μ1 − μ0
and interpret this value. [Hint: Use the properties of differences in log-variables.]

d. Test the hypothesis that the means of these two populations are equal. Use the test that assumes
the population variances are unequal. What do you conclude?
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C.23 Does additional education have as large a payoff for females as males? Use the data file cps5 to explore
this question. If your software does not permit using this larger sample use cps5_small.
a. Calculate the sample mean wage of females who have 12 years of education. Calculate the sample

mean wage of females with 16 years of education. What did you discover?
b. Calculate a 95% interval estimate for the population mean wage of females with 12 years of educa-

tion. Repeat the calculation for the wages of females with 16 years of education. Do the intervals
overlap?

c. Calculate the sample mean wage of males who have 12 years of education. Calculate the sample
mean wage of males with 16 years of education. What did you discover? How does the difference
in wages for males compare to the difference of wages for females in part (a)?

d. Calculate a 95% interval estimate for the population mean wage of males with 12 years of
education. Repeat the calculation for the wages of males with 16 years of education. Does the
interval for males with 12 years of education overlap with the comparable interval for females?
Does the interval for males with 16 years of education overlap with the comparable interval for
females?

e. Denote the population means of interest by μF16, μF12, μM16, μM12 where F and M denote
female and male, and 12 and 16 denote years of education. Estimate the parameter
θ =

(
μF16 – μF12

)
–
(
μM16 – μM12

)
by replacing population means by sample means.

f. Calculate a 95% interval estimate of θ. Based on the interval estimate, what can you say about the
benefits of the addition of four years of education for males versus females? Use the 97.5 percentile
from the standard normal, 1.96, when calculating the interval estimate.

C.24 How much does the variation in wages change when individuals receive more education? Is the vari-
ation different for males and females? Use the data file cps5 to explore this question. If your software
does not permit using this larger sample use cps5_small.
a. Calculate the sample variance of wages of females who have 12 years of education. Calculate the

sample variance of wages of females who have 18 years of education. What did you discover?
b. Carry out a two-tail test, using a 5% level of significance, of the hypothesis that the variance of

wage is the same for females with 12 years of education and females with 18 years of education.
c. Calculate the sample variance of wages of males who have 12 years of education. Calculate the

sample variance of wages of males who have 18 years of education. What did you discover?
d. Carry out a two-tail test, using a 5% level of significance, of the hypothesis that the variance of

wage is the same for males with 12 years of education and males with 18 years of education.
e. Carry out a two-tail test of the null hypothesis that the mean wage for males with 18 years of

education is the same as the mean wage of females with 18 years of education. Use the 1% level
of significance.

C.25 What happens to the household budget share of necessity items, like food, when total household expen-
ditures increase? Use data file malwai_small for this exercise.
a. Obtain the summary statistics, including the median and 90th percentile, of total household

expenditures.
b. Construct a 95% interval estimate for the proportion of income spent on food by households with

total expenditures less than or equal to the median.
c. Construct a 95% interval estimate for the proportion of income spent on food by households with

total expenditures more than or equal to the 90th percentile.
d. Summarize your findings from parts (b) and (c).
e. Test the null hypothesis that the population mean proportion of income spent on food by households

is 0.4. Use a two-tail test and the 5% level of significance. Carry out the test separately using the
complete sample, and using the samples of households with total expenditures less than or equal
to the median, and again for households whose total expenditures are in the top 10%.

C.26 At the famous Fulton Fish Market in New York City sales of Whiting (a type of fish) vary from day
to day. Over a period of several months, daily quantities sold (in pounds) were observed. These data
are in the data file fultonfish.
a. Using the data for Monday sales, test the null hypothesis that the mean quantity sold is greater than

or equal to 10,000 pounds a day, against the alternative that the mean quantity sold is less than
10,000 pounds. Use the α = 0.05 level of significance. Be sure to (i) state the null and alternative
hypotheses, (ii) give the test statistic and its distribution, (iii) indicate the rejection region, including
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a sketch, (iv) state your conclusion, and (v) calculate the p-value for the test. Include a sketch
showing the p-value.

b. Assume that daily sales on Tuesday (X2) and Wednesday (X3) are normally distributed with means
μ2 and μ3, and variances σ2

2 and σ2
3, respectively. Assume that sales on Tuesday and Wednesday

are independent of each other. Test the hypothesis that the variances σ2
2 and σ2

3 are equal against
the alternative that the variance on Tuesday is larger. Use the α = 0.05 level of significance. Be
sure to (i) state the null and alternative hypotheses, (ii) give the test statistic and its distribution,
(iii) indicate the rejection region, including a sketch, (iv) state your conclusion, and (v) calculate
the p-value for the test. Include a sketch showing the p-value.

c. We wish to test the hypothesis that mean daily sales on Tuesday and Wednesday are equal against
the alternative that they are not equal. Using the result in part (b) as a guide to the appropriate
version of the test (Appendix C.7), carry out this hypothesis test using the 5% level of significance.

d. Let the daily sales for Monday, Tuesday, Wednesday, Thursday, and Friday be denoted as X1,
X2, X3, X4, and X5, respectively. Assume that Xi ∼ NID

(
μi, σ2

i
)
. Define total weekly sales as

W = X1 + X2 + X3 + X4 + X5. Derive the expected value and variance of W, using appropriate
theorems about normal distributions. Be sure to show your work and justify your answer.

e. Referring to part (d), let E(W) = μ. Assume that we estimate μ using

μ̂ = X1 + X2 + X3 + X4 + X5

where Xi is the sample mean for the ith day. Derive the probability distribution of μ̂ and construct
an approximate (valid in large samples) 95% interval estimate for μ. Justify the validity of your
interval estimator.

C.27 A credit score is a numerical expression based on a level analysis of a person’s credit files, to represent
the creditworthiness of the person. A credit score is primarily based on a credit report information
typically sourced from credit bureaus. Use the data file lasvegas for this exercise.
a. Construct a histogram for the variable CREDIT . Does the histogram look symmetrical and

“bell-shaped?” Test the normality of the variable CREDIT using the Jarque–Bera test and level of
significance 5%.

b. Let two populations of CREDIT be defined by those who were delinquent (DELINQUENT = 1)
and those who were not delinquent (DELINQUENT = 0). Using the test described in Section C.7.3,
carry out a test of the hypothesis that the variances in these two populations are equal against the
alternative that they are not equal. Use the 5% level of significance.

c. Use the appropriate one-tail test in Section C.7.2, based on your answer in part (b), to test the
equality of CREDIT means for the two populations.

d. Using the test in Section C.7.1, test the null hypothesis that the variance of the population who
was not delinquent is 3600 versus the alternative that it is not 3600.

C.28 Is it true that more capable individuals ultimately attain more years of schooling? Use the data file
koop_tobias_87 to study this question. The data file includes 1987 information on males who were
between 14 and 22 years of age in 1979.
a. In the data the variable SCORE is an index based on 10 aptitude/IQ tests given in 1980. We can

loosely use this variable as some measure of ability. Construct a histogram of SCORE. What are
the sample mean and the standard deviation?

b. The variable EDUC is the individual’s years of schooling completed by 1993. What percentage of
the men had completed at least 12 years of education by 1993?

c. Calculate the sample mean number of years of schooling completed by men with SCORE greater
than or equal to zero. Calculate the sample mean number of years of schooling completed by men
with SCORE less than zero. Test the null hypothesis that the population of men with SCORE ≥ 0
have mean years of education, μ1, that is greater than the mean number of years of education, μ0,
for those with lower scores. State the null and alternative hypotheses, give the test statistic, and
your conclusion using a 5% level of significance.

d. Some of the men came from broken homes, as indicated by the variable BROKEN. Test the null
hypothesis that the population of men from broken homes have mean years of education, μ1, that is
less than the mean number of years of education, μ0, for those who were not from broken homes.
State the null and alternative hypotheses, give the test statistic, and your conclusion using a 5%
level of significance.
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C.29 Do more highly educated parents tend to have more educated children? Use the data file
koop_tobias_87 to study this question. The data file includes 1987 information on males who were
between 14 and 22 years of age in 1979.
a. The variable EDUC is the individual’s years of schooling completed by 1993. What percentage

of the men had completed at least 16 years of education by 1993? What percentage of the men’s
mothers had at least 16 years of education? What percentage of fathers had at least 16 years of
education?

b. Calculate the sample mean number of years of schooling completed by men with fathers who had
16 or more years of education. Calculate the sample mean number of years of schooling completed
by men with fathers who had less than 16 years of education. Test the null hypothesis that the
population of men with more educated fathers have mean years of education, μ1, that is greater
than the mean number of years of education, μ0, for those with less educated fathers. State the
null and alternative hypothesis, give the test statistic, and your conclusion using a 5% level of
significance.

c. Investigate the question of whether more highly educated men, those with more than 12 years of
schooling, tend to marry more highly educated women, those with more than 12 years of schooling.
State the null and alternative hypotheses, give the test statistic, and your conclusion using a 5%
level of significance.

C.30 Do households with more children tend to result in more broken homes? Use the data file
koop_tobias_87 to study this question. The data file includes 1987 information on males who were
between 14 and 22 years of age in 1979. It includes the number of siblings the man had as well as
whether he came from a broken home.
a. Create the variable KIDS = SIBS + 1. To simplify the following arithmetic, let KIDS = 3 if the

number of household children is equal to 3 or more. The variable KIDS takes the values 1, 2,
and 3. Calculate the number of men who came from families with KIDS = 1, and KIDS = 2, and
KIDS = 3.

b. Calculate the number of households that were broken having 1, 2, or 3 children. Calculate the
number of households that were not broken with KIDS = 1, KIDS = 2, and KIDS = 3.

c. The famous statistician Karl Pearson developed a test for the null hypothesis that two characteristics
are unrelated versus the alternative that they are related. If the number of children and broken
homes are unrelated, we should expect 176.167 of 1057 households with each of the six possible
outcomes. Pearson’s chi-square test is calculated as

PEARSON =
(
O1 − E1

)2

E1
+
(
O2 − E2

)2

E2
+ · · · +

(
O6 − E6

)2

E6

where Ei is the “expected” number of outcomes and Oi is the “observed” number of outcomes for
each of six outcomes. If there is no relation between the variables the test statistic has a χ2

(m) distri-
bution, with m =

(
c1 − 1

)
×
(
c2 − 1

)
degrees of freedom, where c1 is the number of categories for

variable 1 and c2 is the number of categories for variable 2. The null hypothesis that the variables
are unrelated is rejected if the value of PEARSON is greater than the 100(1−α)-percentile from
the chi-square distribution. Carry out Pearson’s test for the existence of a relationship between
BROKEN and KIDS at the 5% level.

d. Explore your software. Does it have a command to automatically create two-way tables of frequen-
cies? Does it have a command to calculate Pearson’s chi-square statistic? If so, carry out the test
in part (c) without modifying the variable KIDS to have only three outcomes. Report the two-way
table and the test result.
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Statistical Tables
Standard Normal Distribution

– 4 – 3 – 2 – 1 0
z

1 2 3 4

Example:
P(Z ≤ 1.73) = Φ(1.73) = 0.9582

T A B L E D.1 Cumulative Probabilities for the Standard Normal Distribution !(z) = P(Z ≤ z)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Source: This table was generated using the SAS® function PROBNORM.
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Example:

P(t(30) ≤ 1.697) = 0.95
P(t(30) > 1.697) = 0.05

– 4 – 3 – 2 – 1 0
t

1 2 3 4

T A B L E D.2 Percentiles of the t-distribution

df t(0.90, df) t(0.95, df) t(0.975, df) t(0.99, df) t(0.995, df)
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
31 1.309 1.696 2.040 2.453 2.744
32 1.309 1.694 2.037 2.449 2.738
33 1.308 1.692 2.035 2.445 2.733
34 1.307 1.691 2.032 2.441 2.728
35 1.306 1.690 2.030 2.438 2.724
36 1.306 1.688 2.028 2.434 2.719
37 1.305 1.687 2.026 2.431 2.715
38 1.304 1.686 2.024 2.429 2.712
39 1.304 1.685 2.023 2.426 2.708
40 1.303 1.684 2.021 2.423 2.704
50 1.299 1.676 2.009 2.403 2.678
∞ 1.282 1.645 1.960 2.326 2.576

Source: This table was generated using the SAS® function TINV.
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Example:

P(χ2   ≤ 9.488) = 0.95
P(χ2   > 9.488) = 0.05

0 10 20

(4)

(4)

2

T A B L E D.3 Percentiles of the Chi-square Distribution

df "2
(0.90, df) "2

(0.95, df) "2
(0.975, df) "2

(0.99,df) "2
(0.995, df)

1 2.706 3.841 5.024 6.635 7.879
2 4.605 5.991 7.378 9.210 10.597
3 6.251 7.815 9.348 11.345 12.838
4 7.779 9.488 11.143 13.277 14.860
5 9.236 11.070 12.833 15.086 16.750
6 10.645 12.592 14.449 16.812 18.548
7 12.017 14.067 16.013 18.475 20.278
8 13.362 15.507 17.535 20.090 21.955
9 14.684 16.919 19.023 21.666 23.589

10 15.987 18.307 20.483 23.209 25.188
11 17.275 19.675 21.920 24.725 26.757
12 18.549 21.026 23.337 26.217 28.300
13 19.812 22.362 24.736 27.688 29.819
14 21.064 23.685 26.119 29.141 31.319
15 22.307 24.996 27.488 30.578 32.801
16 23.542 26.296 28.845 32.000 34.267
17 24.769 27.587 30.191 33.409 35.718
18 25.989 28.869 31.526 34.805 37.156
19 27.204 30.144 32.852 36.191 38.582
20 28.412 31.410 34.170 37.566 39.997
21 29.615 32.671 35.479 38.932 41.401
22 30.813 33.924 36.781 40.289 42.796
23 32.007 35.172 38.076 41.638 44.181
24 33.196 36.415 39.364 42.980 45.559
25 34.382 37.652 40.646 44.314 46.928
26 35.563 38.885 41.923 45.642 48.290
27 36.741 40.113 43.195 46.963 49.645
28 37.916 41.337 44.461 48.278 50.993
29 39.087 42.557 45.722 49.588 52.336
30 40.256 43.773 46.979 50.892 53.672
35 46.059 49.802 53.203 57.342 60.275
40 51.805 55.758 59.342 63.691 66.766
50 63.167 67.505 71.420 76.154 79.490
60 74.397 79.082 83.298 88.379 91.952
70 85.527 90.531 95.023 100.425 104.215
80 96.578 101.879 106.629 112.329 116.321
90 107.565 113.145 118.136 124.116 128.299

100 118.498 124.342 129.561 135.807 140.169
110 129.385 135.480 140.917 147.414 151.948
120 140.233 146.567 152.211 158.950 163.648

Source: This table was generated using the SAS® function CINV.
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Example:

P(F(4,30) ≤ 2.69) = 0.95
P(F(4,30) > 2.69) = 0.05

0 1 2 3 4
F

65

T A B L E D.4 95th Percentile for the F-distribution

v2/v1 1 2 3 4 5 6 7 8 9 10 12 15 20 30 60 ∞
1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 243.91 245.95 248.01 250.10 252.20 254.31
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.46 19.48 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.62 8.57 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.75 5.69 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.50 4.43 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.81 3.74 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.38 3.30 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.08 3.01 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.86 2.79 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.70 2.62 2.54
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.25 2.16 2.07
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.04 1.95 1.84
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.92 1.82 1.71
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.84 1.74 1.62
35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 2.04 1.96 1.88 1.79 1.68 1.56
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.74 1.64 1.51
45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 1.97 1.89 1.81 1.71 1.60 1.47
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.95 1.87 1.78 1.69 1.58 1.44
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.65 1.53 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.55 1.43 1.25
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.46 1.32 1.00

Source: This table was generated using the SAS® function FINV.
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Example:

P(F(4,30) ≤ 4.02) = 0.99
P(F(4,30) > 4.02) = 0.01

0 1 2 3 4
F

65

T A B L E D.5 99th Percentile for the F-distribution

v2/v1 1 2 3 4 5 6 7 8 9 10 12 15 20 30 60 ∞
1 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5928.36 5981.07 6022.47 6055.85 6106.32 6157.28 6208.73 6260.65 6313.03 6365.87
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.47 99.48 99.50
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.50 26.32 26.13
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.84 13.65 13.46
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.38 9.20 9.02
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.23 7.06 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 5.99 5.82 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.20 5.03 4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.65 4.48 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.25 4.08 3.91
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.21 3.05 2.87
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.78 2.61 2.42
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.54 2.36 2.17
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.39 2.21 2.01
35 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88 2.74 2.60 2.44 2.28 2.10 1.89
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.20 2.02 1.80
45 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74 2.61 2.46 2.31 2.14 1.96 1.74
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.56 2.42 2.27 2.10 1.91 1.68
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.03 1.84 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.86 1.66 1.38
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.70 1.47 1.00

Source: This table was generated using the SAS® function FINV.
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z

ϕ(z)

–4

0
.1

.2
.3

.4

–3 –2 –1 0

Standard Normal Density

Example: ϕ(1.0) = 0.24197

1 2 3

0.24197

4

T A B L E D.6 Standard Normal pdf Values $(z)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.39894 0.39892 0.39886 0.39876 0.39862 0.39844 0.39822 0.39797 0.39767 0.39733
0.1 0.39695 0.39654 0.39608 0.39559 0.39505 0.39448 0.39387 0.39322 0.39253 0.39181
0.2 0.39104 0.39024 0.38940 0.38853 0.38762 0.38667 0.38568 0.38466 0.38361 0.38251
0.3 0.38139 0.38023 0.37903 0.37780 0.37654 0.37524 0.37391 0.37255 0.37115 0.36973
0.4 0.36827 0.36678 0.36526 0.36371 0.36213 0.36053 0.35889 0.35723 0.35553 0.35381
0.5 0.35207 0.35029 0.34849 0.34667 0.34482 0.34294 0.34105 0.33912 0.33718 0.33521
0.6 0.33322 0.33121 0.32918 0.32713 0.32506 0.32297 0.32086 0.31874 0.31659 0.31443
0.7 0.31225 0.31006 0.30785 0.30563 0.30339 0.30114 0.29887 0.29659 0.29431 0.29200
0.8 0.28969 0.28737 0.28504 0.28269 0.28034 0.27798 0.27562 0.27324 0.27086 0.26848
0.9 0.26609 0.26369 0.26129 0.25888 0.25647 0.25406 0.25164 0.24923 0.24681 0.24439
1.0 0.24197 0.23955 0.23713 0.23471 0.23230 0.22988 0.22747 0.22506 0.22265 0.22025
1.1 0.21785 0.21546 0.21307 0.21069 0.20831 0.20594 0.20357 0.20121 0.19886 0.19652
1.2 0.19419 0.19186 0.18954 0.18724 0.18494 0.18265 0.18037 0.17810 0.17585 0.17360
1.3 0.17137 0.16915 0.16694 0.16474 0.16256 0.16038 0.15822 0.15608 0.15395 0.15183
1.4 0.14973 0.14764 0.14556 0.14350 0.14146 0.13943 0.13742 0.13542 0.13344 0.13147
1.5 0.12952 0.12758 0.12566 0.12376 0.12188 0.12001 0.11816 0.11632 0.11450 0.11270
1.6 0.11092 0.10915 0.10741 0.10567 0.10396 0.10226 0.10059 0.09893 0.09728 0.09566
1.7 0.09405 0.09246 0.09089 0.08933 0.08780 0.08628 0.08478 0.08329 0.08183 0.08038
1.8 0.07895 0.07754 0.07614 0.07477 0.07341 0.07206 0.07074 0.06943 0.06814 0.06687
1.9 0.06562 0.06438 0.06316 0.06195 0.06077 0.05959 0.05844 0.05730 0.05618 0.05508
2.0 0.05399 0.05292 0.05186 0.05082 0.04980 0.04879 0.04780 0.04682 0.04586 0.04491
2.1 0.04398 0.04307 0.04217 0.04128 0.04041 0.03955 0.03871 0.03788 0.03706 0.03626
2.2 0.03547 0.03470 0.03394 0.03319 0.03246 0.03174 0.03103 0.03034 0.02965 0.02898
2.3 0.02833 0.02768 0.02705 0.02643 0.02582 0.02522 0.02463 0.02406 0.02349 0.02294
2.4 0.02239 0.02186 0.02134 0.02083 0.02033 0.01984 0.01936 0.01888 0.01842 0.01797
2.5 0.01753 0.01709 0.01667 0.01625 0.01585 0.01545 0.01506 0.01468 0.01431 0.01394
2.6 0.01358 0.01323 0.01289 0.01256 0.01223 0.01191 0.01160 0.01130 0.01100 0.01071
2.7 0.01042 0.01014 0.00987 0.00961 0.00935 0.00909 0.00885 0.00861 0.00837 0.00814
2.8 0.00792 0.00770 0.00748 0.00727 0.00707 0.00687 0.00668 0.00649 0.00631 0.00613
2.9 0.00595 0.00578 0.00562 0.00545 0.00530 0.00514 0.00499 0.00485 0.00470 0.00457
3.0 0.00443 0.00430 0.00417 0.00405 0.00393 0.00381 0.00370 0.00358 0.00348 0.00337

Source: This table was generated using the SAS® function PDF(“normal,” z).
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Index
A
Absolute value, 749
Adjusted-R2, 286
Akaike information criteria (AIC), 286
Alternative functional forms, 162
Alternative hypothesis, 118, 827

stating, 832
tests of, 119–122

Alternative robust sandwich
estimators, 411–413

Alternative-specific variables, 707
AME (average marginal effect), 692,

740–741
Annual indicator variables, 329
Antilogarithm, 751
ARCH See Autoregressive conditional

heteroskedastic (ARCH) model
ARCH-in-mean, 626
ARDL See Autoregressive distributed

lag (ARDL) models
ARDL(p, q) model, 421–423, 430,

433–443, 456–462
Area under a curve, 762–764
AR(1) errors, 422–423, 443, 444, 457,

458
assumptions for, 454–455
estimation with, 452–455
higher order, testing for, 442–443
Phillips curve with, 455
properties of, 454–455, 479–480
testing for, 441

AR(1) model, 570–572
AR(2) model, 431–432
Assumptions

fixed effects, 661
independence of irrelevant

alternatives, 705
panel data regression, 639
random effects model, 637, 660
simple linear regression models, 47,

50–58, 60, 67–70, 72–74, 76, 82,
84–88

Asymptotic, 73
Asymptotically unbiased, 228
Asymptotic distributions, 229, 410, 819
Asymptotic normality, 229–230
Asymptotic properties, 227

of estimators, 483
Asymptotic refinement, 258
Asymptotic test procedures, 843–848
Asymptotic variance, 254
ATE See Average treatment effect

(ATE)
ATT See Average treatment effect on

the treated (ATT)
Attenuation bias, 488
Augmented Dickey–Fuller test,

578–579

Autocorrelation, 57, 424–427 See also
Serially correlated errors, testing
for

correlogram, 426
HAC standard errors, 448–452
lagged-dependent variable, models

with, 488
population autocorrelation of order,

one, 425
sample, 425–427
significance testing, 425–426

Autoregressive conditional
heteroskedastic (ARCH) model,
615–616

asymmetric effect, 623
GARCH-in-mean and time-varying

risk premium, 624–625
GARCH model, 622–624

Autoregressive distributed lag (ARDL)
models, 421, 564, 568

ARDL(p, q) model, 421–423, 430,
433–443, 456–462

IDL model representation, 457–458
multipliers from ARDL

representation, deriving,
458–461

Autoregressive error See AR(1) errors
Autoregressive model, 421

AR(1) error, 422–423, 441, 443, 444,
452–455, 457, 458

Auxiliary regression, 289–291
Average marginal effect (AME), 689,

692, 740–741
Average treatment effect (ATE), 343
Average treatment effect on the treated

(ATT), 344, 347

B
Balanced panels, 9, 636
Bandwidth, 853
Base group See Reference group
Baton Rouge house data, 78–79, 82
Bayesian information criterion See

Schwarz criterion (SC)
Bernoulli distribution, 790
Best linear unbiased estimators

(BLUE), 72, 193, 212, 377, 820,
849–851

Best linear unbiased predictor (BLUP),
154

Between estimator, 680
Bias

attenuation, 488
relative, 522
selection, 723
simultaneous equations, 488

Biased estimator, 68, 74
Big data, 5

Binary choice models, 682–702
with binary endogenous variable,

699–700
with continuous endogenous variable,

699
dynamic, 702
linear probability, 683–685
logit, 693–695
and panel data, 701–702
probit, 686–693
random utility models, 741–743

Binary endogenous explanatory
variables, 700–701

Binary variables, 769 See also Indicator
variables

Binomial distribution, 149, 790–791
Binomial random variable, 791
Bivariate function maxima and

minima, 760–761
Bivariate normal distribution, 37–39
Bivariate probit, 700
BLS See Bureau of Labor Statistics

(BLS), United States
BLUE See Best linear unbiased

estimators (BLUE)
BLUP See Best linear unbiased

predictor (BLUP)
Bootstrapping, 254

asymptotic refinement, 258
bias estimate, 256
for nonlinear functions, 258–259
percentile interval estimate, 257
resampling, 255–256
standard error, 256–257

Bootstrap sample, 255
Breusch–Pagan test, 387, 409
Bureau of Labor Statistics (BLS),

United States, 88

C
Canonical correlations, 520

analysis, 521
first, 521
second, 521
smallest, 521

Cauchy–Schwarz inequality, 811
Causality, 342

vs. prediction, 273–274
Causal modeling and treatment effects

causal effects nature and, 342–343
control variables, 345–347
decomposing, 344–345
overlap assumption, 347
regression discontinuity designs,

347–350
treatment effect models, 343–344

Causal relationship, 50
cdf See Cumulative distribution

function (cdf )
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Ceiling, 805
Censored data, 747
Censored sample, 389
Central chi-square distribution, 795,

798
Central limit theorem, 56, 73, 229,

818–820
Central moments, 820
Central t-distribution, 796
Chain rule of differentiation, 755
Change of variable technique, 787–789,

807
Chebyshev’s inequality, 810, 811
Chi-square distribution, 794–796

central, 795, 798
non-central, 795

Chi-square errors, 250–252
Chi-square test, 261, 270, 271, 409
Choice models, 790

binary, 682–702
multinomial, 702–709
ordered, 709–712

Chow test, 326–328
CIA See Conditional independence

assumption (CIA)
Cluster-robust standard errors,

648–651, 677–679
fixed effects estimation with, 650–651
OLS estimation with, 648–650

Cochrane–Orcutt estimator, 454
Coefficient of determination, 158
Coefficient of variation, 189
Cointegration, 564, 582–583

error correction model, 584–585
regression in absence of, 585–586
vector error correction model and,

600–601
Collinearity, 224, 288

consequences of, 289–290
identifying and mitigating, 290–292
influential observations, 293–294

Combined error, 637, 639
Compound interest, 174
Conditional expectation, 25, 30, 511,

774, 782, 786
Conditional heteroskedasticity, 203,

385–387, 647–648
Conditional independence assumption

(CIA), 345
Conditional logit model, 702, 707–709
Conditionally normal, 615
Conditional mean, 615
Conditional mean independence, 278
Conditional means graph, 349
Conditional probability, 21, 782
Conditional probability density

function, 771, 782, 784–785
Conditional variance, 31, 55, 100–101,

615, 774, 782
Confidence intervals, 113, 825,

833–834 See also Interval
estimate

Consistent estimators, 492, 493
Constant of integration, 762

Constant term, 202
Constant variance, 619
Consumption function, 545

in first differences, 586–587
Contemporaneous correlation, 534, 535
Contemporaneous exogeneity, 444
Contemporaneously uncorrelated, 483,

487–489, 545
lagged-dependent variable models

with serial correlation, 488
measurement error, 487–488
omitted variables, 488
simultaneous equations bias, 488

Continuous random variables, 17, 19,
26, 27, 32, 35, 37, 769, 778–789

distributions of functions of, 787–789
expected value, 24, 780–781
probability calculations, 779–780
properties of, 780–781
truncated, 789
variance of, 781

Control variables, 211, 278–280, 345
Correlation(s), 28, 773–774, 785 See

also Autocorrelation
analysis, 158
calculation of, 28
canonical, 520, 521
defined, 424
of error, 57
partial, 502
positive, 773
and R2, 158–160
serial (see Autocorrelation)

Correlograms, 426, 439–440
Count data models, 713–716
Covariance, 27–29, 773–774

decomposition, 34, 103, 777–778
of least squares estimators, 69–72,

74–75
zero, 52, 87, 103

Covariance matrix, 213
CPS See Current Population Survey

(CPS)
Cragg–Donald F-test statistic, 521,

522, 559, 561
Critical values, 115, 217, 796
Cross-sectional data, 8–9, 51, 57, 291

heteroskedasticity and, 371
weakening strict exogeneity,

230–231
Cumulative distribution function (cdf ),

18–19, 769
of continuous random variables, 779
inverse, 801

Cumulative multiplier, 446
Current Population Survey (CPS), 7
Curvilinear forms, 77

D
Data See also specific types of data

experimental, 6
generating process, 51, 58, 84, 85, 87,

106, 108, 109, 147, 250, 483

interpreting, 14
nonexperimental, 7
obtaining, 14
quasi-experimental, 6–7
sample creation of, 108–109
sampling, 813–814
types of, 7–9

DataFerrett, 14
Data generation process (DGP), 51, 58,

84, 85, 87, 106, 108, 109, 147,
250, 483

Decimals and percentages, 751
Decomposition

covariance, 34, 103, 777–778
sum of squares, 193
variance, 33–34, 774–777

Definite integral, 763, 764
Degrees of freedom, 75, 114, 215, 794

denominator, 798
numerator, 798

Delay multipliers, 445, 456
Delete-one strategy, 169
Delta method, 233, 248

nonlinear function of single
parameter, 248–249

Denominator degrees of freedom, 798
Dependent variable, 49
Derivatives, 753
Deterministic trend, 567, 569–570
Deviation(s)

about individual means, 679
from mean form, 67

DF See Degrees of freedom
DFBETAS measure, 170
DFFITS measure, 170
Dichotomous variables See Indicator

variables
Dickey–Fuller tests, 577

with intercept and no trend,
577–579

with intercept and trend, 579–580
with no intercept and no trend,

580–581
Differenced data, 342
Difference estimator, 334–335,

640–642
with additional controls, 336–337
application of, 335–336
with fixed effects, 337–338

Differences-in-differences estimator,
338–342, 366–367

Difference stationary, 586, 587
Discrete change effect, 688
Discrete random variables, 16–18, 21,

24–26, 30–32, 34, 769
expected value of, 769–770
variance of, 770–771

Distributed lag model, 419, 420
autoregressive (see Autoregressive

distributed lag (ARDL) models)
finite, 420, 445
infinite, 421–422, 456–463
Okun’s law, 446

Distributed lag weight, 445
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Distribution(s)
of functions of random variables,

787–789
of sample proportion, 842–843
sampling, 816–818

Double summation, 23
Dummy variables, 769 See also

Indicator variables
intercept, 319
least squares, 644–646
slope, 320–321

Dummy variable trap, 320, 325
Durbin–Watson bounds test, 478–479
Durbin–Watson test, 443, 476–479
Dynamic binary choice model, 702
Dynamic relationships, 420–424, 598

autoregressive distributed lag
models, 421

autoregressive model, 421–423
finite distributed lags, 420–421
infinite distributed lag models,

421–422

E
Econometric(s), 1–4
Econometric model, 4–5

as basis for statistical inference,
814–815

causality and prediction, 5
data generation, 5–7, 51
data types for, 7–9
defined, 3
equations in, 723–724
multiple regression model, 198–201
random error and strict exogeneity,

52–53
random error variation, 54–56
regression function, 53–54
research process in, 9–10
simple linear regression, 49–59

Economic model
multiple regression model, 197–198
simple linear regression, 47–49,

65–66
EGARCH See Exponential GARCH

(EGARCH)
EGLS See Estimated generalized least

squares (EGLS)
Elasticity, 64–65

income elasticity, 64–65
linear relationship, 753
nonlinear relationship, 757
semi-elasticity, 79
unit elasticity, 178

Empirical analysis, 17
Endogeneity, 654–656
Endogenous regressors, 482–487, 655
Endogenous variables, 88, 482, 487,

492, 503, 532, 545
Error(s) See also Standard errors

AR(1), 422–423, 441, 443, 444,
452–455, 457, 458

contemporaneously uncorrelated,
487–488

forecast, 430
mean squared error, 193–195
normality, 56
random, 4, 52–56, 74, 107
specification, 59
term, IDL model, 461–462
Type I, 119–120, 833
Type II, 120, 833

Error components, estimation of,
679–680

Error correction, 599 See also Vector
error correction (VEC)

Error correlation, 648
Error normality, 204
Errors-in-variables, 487
Error variance estimation,

207–208
Error variance estimator, 212
Estimated generalized least squares

(EGLS), 380
Estimates

estimators vs. (see Simple linear
regression model)

interpreting, 63
least squares, 74–75, 98–99
maximum likelihood, 691
standard error of, 821

Estimating/estimation, 4, 583
of error components, 679–680
fixed effects with cluster-robust

standard errors, 650–651
nonlinear relationship, 77–82
nonparametric, 851
parametric, 851
population variance, 820–822
random effects model, 653–654
regression parameters, 59–66
variance of error term, 74–77

Estimator(s), 816
between, 680
within, 642–644
best linear unbiased, 72, 820,

849–851
biased, 68, 74, 194
difference, 640–642
estimates vs. (see Simple linear

regression model)
fixed effects, 640–646, 701
Hausman–Taylor, 658–660
kernel density, 851–853
least squares, 66–73
linear, 67, 72, 73, 100, 102, 103, 105,

820, 850
maximum likelihood, 841–842
random effects, 651–663, 701
unbiased, 68–70, 72, 74, 84–86, 88,

102, 104–106, 109, 111, 817
variance of, 841–842

Estimator bias, 194
Exact collinearity, 320
Exactly identified, 503
Exogeneity, 431, 444

assumptions, 56–57
strict, 482

Exogenous variables, 86, 483, 498, 499,
532, 545

Expectations See also Mean
conditional, 774, 782, 784, 786
iterated, 774
of several random variables, 772
unconditional, 784

Expected values, 23, 48, 769, 816–817
calculation of, 24
conditional, 25
of continuous random variables, 24
of discrete random variables,

769–770
of least squares estimators, 68–69
rules for, 25
of several random variables, 27

Experimental design, 813
Experiments, 17, 770
Explanatory variables, 204
Exponential function, 751
Exponential GARCH (EGARCH), 625
Exponents, 749
Extreme value distribution, 803

F
F-distribution, 797–799
Feasible generalized least squares

(FGLS), 380, 684
Federal Reserve Economic Data

(FRED), 14
FGLS See Feasible generalized least

squares (FGLS)
Financial variables, characteristics of,

617
Finite distributed lags, 420–421,

445–448
First canonical correlation, 521
First derivative, 753
First difference, 564, 586
First-order autoregressive model (AR(1)

model), 422–423, 441, 443, 444,
452–455, 457, 458, 570–572

First-stage equations, 496 See Reduced
form equations

First-stage regression, 498
instrument strength assessment

using, 500–502
Fixed effects, 643
Fixed effects estimator, 640–646
Fixed effects model, 645

with cluster-robust standard errors,
650–651

Forbidden regression, 700
Forcing variable, 348
Forecast error, 154, 192
Forecast error variance decompositions,

605–607
Forecasting, 419, 430–438

AR(2) model, OLS estimation of,
431–432

assumptions for, 435–436
error, 283, 430
Granger causality, testing for,

437–438
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Forecasting (contd.)
interval, 433–435
lag length selection, 436–437
short-term, 430
standard error, 433–435
unemployment, 432–433

FRED See Federal Reserve Economic
Data (FRED)

Frequency distribution, of simulated
models, 619

Frisch–Waugh–Lovell (FWL) theorem,
209–211, 315–316, 502, 568

F-test See Joint hypotheses testing
(F-test)

Fuller-modified LIML, 558–559
Functional form, 153
Fuzzy regression discontinuity design,

350
FWL See Frisch–Waugh–Lovell (FWL)

theorem

G
Gauss–Markov theorem, 72–73

multiple regression model, 211, 272,
278, 289

proof of, 102
Generalized (GARCH)-in-mean,

624–625
Generalized least squares (GLS), 375,

448, 453–454
known form of variance, 375–377
unknown form of variance, 377–383

Generalized least squares estimator,
505, 684

Generalized method-of-moments
(GMM) estimation, 504–505

Generalized (GARCH) model,
622–625

General linear hypothesis, 131
Geometrically declining lag, 421,

456–457
Geometry, probability calculation

using, 779–780
GLS See Generalized least squares

(GLS)
Goldfeld–Quandt test, 384–385
Goodness-of-fit measure (R2), 153,

156–158
correlation analysis, 158–160
with instrumental variables

estimates, 505
log-linear model, 176
multiple regression model, 208–209

Granger causality, testing for,
437–438

Grouped heteroskedasticity, 380
Growth model, 174

H
HAC (heteroskedasticity and

autocorrelation consistent)
standard errors, 448–452

Hausman–Taylor estimator, 658–660

Hausman test, 527, 654–656
for endogeneity, 505–506
logic of, 507–508

HCE See White
heteroskedasticity-consistent
estimator (HCE)

Heckit, 723–725, 744
Hedonic model, 318
Heterogeneity, 635, 638, 640
Heteroskedastic errors, 370
Heteroskedasticity, 165

conditional, 385–387
detecting, 383–388
in food expenditure model, 167
generalized least squares (GLS),

375–383
Lagrange multiplier tests for,

408–410
in linear probability model, 390–391
model specification, 388–389
in multiple regression model,

370–374
nature of, 369–370
robust variance estimator, 374–375
unconditional, 387, 416

Heteroskedastic partition, 383
Histogram, 689
Homoskedasticity, 55, 203, 370, 379
Hypothesis testing, 113, 118, 826–834

See also specific tests
alternative hypothesis, 118
binary logit model, 695–697
components of, 826–827
and confidence intervals, 833–834
examples of, 123–126
with instrumental variables

estimates, 504
left-tail test, 125
for linear combination of coefficients,

221–222
null hypothesis, 118
one-tail test, 120–122, 220–221
p-value, 126–129
rejection region, 119–122
right-tail test, 123–124
sampling properties of, 149
step-by-step procedure, 218
test of significance of single

coefficient, 219–220
test statistic, 119
two-tail test, 125–126, 218

I
Identification problem, 536–538, 604,

612–613
multinomial probit model, 703
simultaneous equations models,

536–538
supply and demand, 543
two-stage least squares estimation,

541
vector autoregressive model,

612–613

Identified parameters, 503
IIA (independence of irrelevant

alternatives), 705
Impact multiplier, 445
Implicit form of equations, 558
Impulse response functions, 603–605
IMR (inverse Mills ratio), 723, 724
Incidental parameters problem, 702
Income elasticity, 64–65
Inconsistency of OLS estimator,

486–487, 492
Indefinite integral, 762
Independence of irrelevant alternatives

(IIA), 705
Independent random-x linear

regression model, 85
Independent variable, 49, 84

random and independent x, 84–85
random and strictly exogenous x,

86–87
random sampling, 87–88

Index models, 710
Index of summation, 23
Indicator function, 852
Indicator variables, 16, 318, 769

causal modeling, 342–350
Chow test and, 326–328
controlling for time, 328–329
intercept, 318–320
linear probability model, 331–332
log-linear models, 329–330
qualitative factors and, 323–326
regression with, 82–83
slope-indicator variables, 320–322
treatment effects, 332–342

Indirect least squares, 551
Indirect least squares estimator, 511
Individual heterogeneity, 638, 640–643,

653
Individual-specific variables, 703, 707
Inequalities, 749
Inference, 113 See also Statistical

inference
Infinite distributed lag (IDL) models,

421–422, 456–463 See also
Autoregressive distributed lag
(ARDL) models

ARDL representation, consistency
testing for, 457–458

assumptions for, 462–463
error term, 461–462
geometrically declining lags, 456–457
multipliers from ARDL

representation, deriving,
458–461

Influence diagrams, for regression
models, 533

Information measure, 846, 847
Innovation, 604
Instrumental variables (IV), 482, 492,

498, 658–659
alternatives to, 557–562
estimators, 493, 495

consistency of, 494–495
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inefficiency of, 529
sampling properties of, 528–530

validity testing, 508–509
Instrumental variables (IV) estimation,

350, 538
generalized method-of-moments

estimation, 504–505
in general model, 502–504
good instrumental variable,

characteristics of, 492
goodness-of-fit with instrumental

variables estimates, 505
hypothesis testing with instrumental

variables estimates, 504
in multiple regression model,

498–500
in simple regression model,

492–493
using two-stage least squares,

495–496
Instrumental variables probit (IV

probit), 699
Instrument strength assessment

first-stage model, 500–502
more than one instrumental

variable, 501–502
one instrumental variable, 500
weak instruments, 500–501

in general model, 503–504
Integers, 749
Integrals, 762

area under curve computation,
762–764

definite, 763, 764
indefinite, 762

Integration, probability calculation
using, 780

Interaction variable, 320
Intercept, 545, 752
Intercept indicator variable, 319
Interim multiplier, 446
Interpretation, 778
Interval estimate, 154
Interval estimation, 131, 822–826

for linear combination of coefficients,
217–218

multiple regression model, 216–218,
249, 250

obtaining, 115–116
sampling context, 116–117
for single coefficient, 216–217
t-distribution, 113–115

Interval estimators, 115, 148
Inverse cumulative distribution

function, 801
Inverse function, 788
Inverse Mills ratio (IMR), 723,

724, 794
Inverse transformation, 801
Inversion method, 801–802, 804
Investment equation, 545
Irrational numbers, 749, 750
Irrelevant variables, 277–278

Iterated expectations, 32–33, 774,
785–787

IV See Instrumental variables (IV)

J
Jacobian of the transformation, 788
Jarque–Bera test, 168–169, 836
Jensen’s Inequality, 810
Joint hypotheses testing (F-test),

261–264, 328
computer software, 268
general tests, 267–268
large sample tests, 269–271
relationship with t-tests, 265–266
statistical power of, 311–315
testing significance of model, 264–265

Joint probability, 783
Joint probability density function, 20,

771, 781
Joint test of correlations, 440
Just-identified, 503

K
k-class of estimators, 557–558
Kernel density estimator, 851–853
Kernels, 851, 853
Klein’s model I, 544–545
Kurtosis, 168, 771

L
Lagged dependent variable, 443, 444,

459
with serial correlation, 488

Lag length selection, 436–437
Lag operator, 459
Lag pattern, 420
Lagrange multiplier (LM) test, 387,

440–443, 846–848
AR(1) errors, testing for, 441
for heteroskedasticity, 408–410
higher order AR or MA errors, testing

for, 442–443
MA(1) errors, testing for, 442
panel data models, 653–654
T × R2 form of, 442

Lag weights, 420
Large numbers, law of, 821
Large sample properties, of OLS

estimator, 483–484
Latent variables, 710, 741, 743–744
Latent variable models, 720
Law of iterated expectations, 774, 785
Law of large numbers (LLN), 487, 490,

492, 536, 821
Least squares

pooled, 647, 649
restricted, 261

Least squares dummy variable model,
644–646

Least squares estimation See also
Ordinary least squares (OLS)

with chi-square errors, 250–252
with endogenous regressors, 482–487

failure of, 484–486
OLS estimator, large sample

properties of, 483–484
OLS inconsistency, 486–487

generalized, 453–454
multiple regression model, 205–207,

247
nonlinear, 453

Least squares estimator, 205, 211–212
asymptotic normality, 229–230
consistency, 227–229
derivation of, 247, 848–849
distribution of, 214–216
dummy variable, 644–646
inference for nonlinear function of

coefficients, 232–234
properties of, 407–408
variances and covariances of,

212–213
weakening strict exogeneity, 230–232

Least squares predictor, 153–156
Least squares residuals

correlogram of, 438–440
properties of, 410–411

Least variance ratio, 558
Left-tail test

of economic hypothesis, 125
p-value for, 128

Leptokurtic distribution, 617
Level of significance, 119, 828
Leverage, 170, 410, 625
Likelihood, 838
Likelihood function, 690, 839
Likelihood ratio statistic, 844
Likelihood ratio (LR) tests, 696–697,

843–845
Limited dependent variable models,

717–725
binary choice, 682–702
censored samples and regression,

718–720
for count data, 713–716
multinomial choice, 702–709
ordered choice models, 709–712
Poisson regression, 713–716
sample selection, 723–724
simple linear regression model, 717
Tobit model, 720–722
truncated regression, 718

Limited information maximum
likelihood (LIML), 557, 558

advantages of, 559
Fuller-modified LIML, 558–559
Stock–Yogo weak IV tests, 559–561

LIML See Limited information
maximum likelihood (LIML)

Linear combination of coefficients
hypothesis testing for, 221–222
interval estimation for, 217–218

Linear combination of parameters,
129–131

hypothesis testing, 131–132
multiple regression model, 215–216,

248
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Linear congruential generator, 805–806
Linear estimators, 67, 72, 73, 100, 102,

103, 105, 820, 850
best linear unbiased estimators, 820,

849–851
Linear hypothesis, 132
Linear-log model, 163–165
Linear probability model, 331–332,

390–391, 683–685
Linear regression function, 38
Linear relationships, 162, 752

elasticity, 753
slopes and derivatives, 753

LM test See Lagrange multiplier (LM)
test

Logarithms and number e, 750–751
Logarithms and percentages, 751–752
Logistic growth curve, 296
Logistic random variables, 685
Logit, 685
Logit models

binary, 693–702
conditional, 707–709
mixed, 708
multinomial, 702–706
nested, 708
ordered, 711
robust inference in, 698

Log-likelihood function, 839
binary probit model, 691
multinomial probit model, 704
Poisson regression model, 714

Log-linear function, 79
Log-linear model, 80–81, 162, 163,

173–175, 329–330, 366
generalized R2 measure, 176
prediction intervals in, 175–177

Log-linear relationship, 388
Log-log model, 163, 177–179
Log-normal distribution, 173, 799–800
Log-reciprocal model, 184
Longitudinal data, 9
LR (likelihood ratio) tests, 696–697,

843–845

M
MA(1) errors, testing for, 442

higher order, 442–443
Marginal distributions, 20, 771
Marginal effect, 161, 752

average, 692
binary probit model, 687–688
multinomial probit model, 704
Poisson regression model, 714
probit model, 739–741

Marginal effect at means (MEM), 689,
692

Marginal effect at representative value
(MER), 689, 692

Marginal probability density function,
781, 784

Markov’s Inequality, 811
Mathematical expectation, 769 See also

Expected values

Maxima and minima, 758–759
bivariate function, 760–761

Maximum likelihood estimates, 691
Maximum likelihood estimation (MLE),

837–848
asymptotic test procedures, 843–848
censored data, 703–704
distribution of sample proportion,

842–843
inference with, 840–841
marginal and discrete change effects,

688–689
multinomial probit model, 704–705
Poisson regression model, 713–714
probit model, 690–693
simple linear regression model, 717
variance of estimator, 841–842

Maximum likelihood principle, 838
McDonald–Moffit decomposition, 721
Mean See Expected values

deviations about, 679
population, 490, 815–820, 834–835
sample, 815
standard error of, 821

Mean equation, 620
Mean reversion, 566
Mean squared error, 193–195
Median, 799
Mersenne Twister algorithm, 107
Method of moments estimation, 482

instrumental variables estimation, in
general model, 502–504

instrumental variables estimation, in
multiple regression model,
498–500

instrumental variables estimation, in
simple regression model,
492–493

instrument strength assessment
using first-stage model, 500–502

issues related to IV estimation,
504–505

IV estimation using two-stage least
squares, 495–496

IV estimator, consistency of, 494–495
of population mean and variance,

490–491
in simple regression model, 491–492
strong instruments, importance of

using, 493–494
using surplus moment conditions,

496–498
Microeconometric panel, 636
Mixed logit model, 708
Modeling

choice of functional form, 161–163
diagnostic residual plots, 165–167
influential observations identification

and, 169–171
linear-log food expenditure model,

163–165
log-linear models, 173–177
log-log models, 177–179
polynomial models, 171–173

regression errors and normal
distribution, 167–169

scaling of data, 160–161
Modulus, 805
Moments

method of (see Method of moments
estimation)

of normal distribution, 793
population, 490
sample, 490

Monotonic, strictly, 787
Monte Carlo experiment, 77, 106
Monte Carlo objectives, 109
Monte Carlo simulation (experiment),

106–111, 147–148, 525
data sample creation, 108–109
of delta method, 252–254
estimators, 823–825
heteroskedasticity, 414–416
hypothesis tests, sampling properties,

149
IV/2SLS, sampling properties of,

528–530
illustrations using simulated data,

526–528
interval estimators, sampling

properties, 148
least squares estimation with

chi-square errors, 250–252
Monte Carlo samples, choosing, 149
objectives, 109
random error, 107
random-x Monte Carlo results,

110–111, 150–151
regression function, 106–107
simultaneous equations models, 562
theoretically true values, 107–108

Moving average, 442
Multinomial choice models

conditional logit, 707–709
multinomial logit, 702–706

Multinomial logit model, 702–706
Multinomial probit model, 703, 708
Multiple regression model, 58, 196 See

also specific topics
assumptions of, 203–204
causality vs. prediction, 273–274
choice of model, 280–281
control variables, 278–280
defined, 197
delta method, 248–250
econometric model, 198–201
economic model, 197–198
error variance estimation, 207–208
Frisch–Waugh–Lovell (FWL)

theorem, 209–211
general model, 202
goodness-of-fit measurement,

208–209
heteroskedasticity in, 370–374
hypothesis testing, 218–222
instrumental variables estimation in,

498–500
interval estimation, 216–218, 249
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irrelevant variables, 277–278
joint hypotheses testing (F-test),

261–271
least squares estimation procedure,

205–207, 247
least squares estimator finite sample

properties, 211–216
least squares estimator large sample

properties, 227–234
Monte Carlo simulation, 250–254
nonlinear least squares, 294–296
nonlinear relationships, 222–226
nonsample information, 271–273
omitted variables, 275–277
parameter estimation, 205–211
poor data, collinearity, and

insignificance, 288–294
prediction, 282–288
RESET, 281–282

Multiple regression plane, 201
Multiplicative heteroskedasticity,

379–382, 411
Multiplier

analysis, 459–462
cumulative, 446
delay, 456
impact, 445
interim, 446
Lagrange, 440–443
s-period, 445
total, 446

Mundlak approach, 657–658

N
National Bureau of Economic Research

(NBER), 13–14
Natural experiments, 338, 340, 354
Natural logarithms, 750
NBER See National Bureau of

Economic Research (NBER)
Negative binomial model, 716
Nested logit model, 708
Newey–West standard errors See HAC

(heteroskedasticity and
autocorrelation consistent)
standard errors

Nominal standard error, 254
Non-central chi-square distribution,

795
Non-central F-distribution, 798
Non-centrality parameter, 795, 796
Non-central t-distribution, 797
Non-central-t-random variable, 146
Nonlinear function, 248

bootstrapping, 258–259
of coefficients, 232–234
of single parameter, 248–249
of two parameters, 249–250

Nonlinear hypotheses, F-test, 270–271
Nonlinear least squares estimation,

294–296, 453
Nonlinear relationships, 753

bivariate function maxima and
minima, 760–761

elasticity of, 757
maxima and minima, 758–759
multiple regression model, 222–226
partial derivatives, 759–760
rules for derivatives, 754–757
second derivatives, 757
simple linear regression model, 77–82

Nonparametric estimation, 851
Nonsample information, 271–273
Nonstationary time series data,

563–570
cointegration, 582–585
first-order autoregressive model,

570–572
random walk models, 572–574
regression when there is no

cointegration, 585–587
spurious regressions, 574–575
stochastic trends, consequences,

574–576
unit root tests for stationarity,

576–582
Normal-based bootstrap confidence

interval, 257
Normal distribution, 34–39, 771,

793–794
bivariate normal distribution, 37–39
moments of, 794
standard, 793
truncated, 794

Normal equations, 99, 247, 492
Normality of a population, 836
Normality testing, in food expenditure

model, 168–169
Normalization, 546, 558
Nuisance parameters, 385
Null hypothesis, 101, 103, 118, 827 See

also Hypothesis testing
F-statistic, 263
stating, 832
t-statistic when null hypothesis is not

true, 101
t-statistic when null hypothesis is

true, 103
Numerator degrees of freedom, 798

O
Odds ratio, 706
Okun’s Law, 446–447, 462
OLS See Ordinary least squares (OLS)
Omitted variables, 275–277, 488, 639
Omitted variables bias, 68, 639
One-tail tests, 120–122, 828–829

F-test, 268
for single coefficient, 220–221

Ordered choice models, 709–712
Ordered logit model, 711
Ordered probit model, 710–712
Ordinal values, 709
Ordinary least squares (OLS), 62–63,

639 See also Least squares
estimation

AR(2) model, 431–432

with cluster-robust standard errors,
648–650

difference estimator, 640–642
failure of, 535–536
heteroskedasticity, consequences for,

373–374
inconsistency of, 486–487, 492
large sample properties of, 483–484
multiple regression model, 205–207
panel data regression, 639–640

Overall significance, 264, 265
Overidentified, 503
Overlap assumption, 347, 367

P
Panel data See Longitudinal data
Panel data models, 634–663

cluster-robust standard errors,
648–651, 677–679

error assumptions, 646–651
estimation of error components,

679–680
fixed effects, 640–646
Hausman–Taylor estimator,

658–660
pooled, 647
random effects, 651–663

Panel data regression function,
636–640

Panel-robust standard errors, 649 See
also Cluster-robust standard
errors

Panel Study of Income Dynamics
(PSID), 9, 14

Parameters, 3, 4, 815
Parametric estimation, 851
Partial adjustment model, 550
Partial correlation, 502
Partial derivatives, 759–760
Partialing out, 521
pdf See Probability density function

(pdf )
Penn World Table, 9, 14
Percentage change, 751, 753
Percentiles, 36
Percentile interval estimate, 257–259
Phillips curve, 450–452

with AR(1) errors, 455
Pivotal statistics, 114, 215
Plagiarism, 12
Point estimates, 113, 822
Point prediction, 154–155
Poisson distribution, 791
Poisson random variables, 713
Poisson regression model, 713–716
Polynomial equations, 222–224
Polynomial models, 171–173
Pooled least squares, 647, 649
Pooled model, 647
Population, 17

moments, 490
normality of, 836

Population autocorrelations, 425
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Population means, 24
equality of, 834–835
estimating, 815–820

Population parameters, 24, 51, 815
Population regression function, 53–54
Population variances

estimating, 820–822
ratio of, 835–836
testing, 834

Positive correlation, 773
Predetermined variables, 545, 549
Predicting/prediction, 5, 153, 282–285

causality and, 273–274
least squares, 153–156
log-linear model, 175–176
predictive model selection criteria,

285–288
simple linear regression, 50

Prediction intervals, 153–155
defined, 153–155
development of, 192
log-linear model, 177

Predictive model, 283
Probability, 15–45, 769

conditional, 21
distributions, 23–29
joint probability density function, 20
marginal distributions, 20
random variables, 16, 17, 19, 26, 27,

32, 35, 37
summation notation, 22–23

Probability density function (pdf ), 18,
769

conditional, 76, 771, 782, 784–785
for continuous random variable, 19
joint, 771
marginal, 781, 784
normal, 34–39

Probability distributions, 17–19,
789–800

Bernoulli distribution, 790
binomial distribution, 790–791
chi-square distribution, 794–796
F-distribution, 797–799
of least square estimators, 73
log-normal distribution, 799–800
marginal, 20
normal distribution, 34–39, 793–794
Poisson distribution, 791
properties of, 23–29
t-distribution, 796–797
uniform distribution, 792–793, 801

Probability ratio, 705
Probability value (p-value), 126–127,

134, 830–832
for left-tail test, 128
for right-tail test, 127
for two-tail test, 129

Probit, 720
Probit maximum likelihood, 690–691
Probit models, 685–693

bivariate, 700
examples, 690–693
instrumental variables, 699

interpretation, 687–690
marginal effects, 739–741
maximum likelihood estimation,

690–691
multinomial, 703, 708
ordered, 709–712
robust inference in, 698

Product rule, 754
Profit function, maximizing, 761
Project STAR, 335–337
Proportional heteroskedasticity,

375–377
Pseudorandom numbers, 107, 801, 805
PSID See Panel Study of Income

Dynamics
p-value See Probability value
p-value rule, 831

Q
Quadratic and cubic equations,

171–173
Quadratic functions, 77, 162

finding minimum of, 759
second derivatives of, 758

Quadratic model, 77–78
Quasi-experiments, 338
Quotient rule, 754

R
Random and independent x, 84–85,

103–105
Random and strictly exogenous x,

86–87, 105
Random draw, 802
Random effects, 651, 653–654

estimation of, 653–654
Hausman test, 654–658
testing for random effects, 653–654
wage equation, 652–653, 656

Random error, 4, 52, 74, 107
and strict exogeneity, 52–53

Random error variation, 54–56
Random experiment, 17
Randomized controlled experiment,

333–334
Random numbers, 800–806

pseudo, 801, 805
seed, 805
uniform, 805–806

Random process See Stochastic process
Random samples, 198, 815
Random sampling, 87–88, 482
Random utility models, 741–743
Random variable, 16–19, 21, 24–27,

30–32, 34, 35, 37, 48, 51, 769
binomial, 791
continuous, 769, 778–789
discrete, 769–771
distributions of functions of, 787–789
logistic, 693
Poisson, 713
several, expectations of, 772
truncated, 789

Random walk models, 572–574
Random walk with drift model, 573, 579
Random-x Monte Carlo results,

110–111
Rational numbers, 749
RD See Regression discontinuity (RD)

designs
Real numbers, 749
Reciprocal model, 185
Recursive models, 542
Recursive substitution, 571
Reduced form, 511
Reduced-form equations, 534, 541–543
Reduced-form errors, 534
Reduced-form parameters, 534
Reference group, 319, 325
Regime effects, 329
Regional indicator variables, 325
Regression(s), 417–480
Regression discontinuity (RD) designs,

347–350
Regression errors and normal

distribution, 167–169
Regression function, 199

econometric model, 53–54
heteroskedasticity, 369, 376–377, 409
Monte Carlo simulation, 106–107

Regression parameters
estimating, 59–61
least squares principle, 61–65

Regression Specification Error Test
(RESET), 281

Rejection regions, 119–122, 828
Relative bias, 522
Relative change, 751, 753
Relative frequency, 18
Repeated experimental trials, 106
Repeated sampling, 76, 106, 257
Resampling, 254
Research papers, writing, 11–13
Research process

sources of economic data, 13–14
steps in, 10–11
writing a research paper, 11–13

Research proposals, 11
RESET See Regression Specification

Error Test (RESET)
Residual, 153
Residual plots, 383, 384
Resources for Economists (RFE), 13
Restricted least squares estimates, 272
Restricted model, 263, 264
RFE See Resources for Economists

(RFE)
Right-tail test

p-value for, 127
test of economic hypothesis, 124
test of significance, 123–124

Root mean squared error (RMSE), 287

S
Sample autocorrelations, 425–427
Sample mean, 815
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Sample moments, 490
Sample proportion, 840, 842–843
Samples

random, 815
for statistical inference, 813–814

Sample selection, 723–725
Sample standard deviation, 256
Sample variance, 821
Sampling distribution, 816–818
Sampling estimators, 66
Sampling properties, 525

bootstrapping, 257
hypothesis test, 149
interval estimators, 148
of OLS estimator, 211

Sampling variability, 76, 117, 254
Sampling variation, 66, 69, 816
Stationarity, 427–429
SC See Schwarz criterion (SC)
Scaling of data, 160–161
Scatter diagram, 60
Schwarz criterion (SC), 286
Scientific notation, 749–750
Seasonal indicator variables, 328
Second canonical correlation, 521
Second derivatives, 757

of linear function, 758
of quadratic function, 758

Second-order Taylor series
approximation, 757, 766

Second-stage equation, 496
Second-stage regression, 498
Selection bias, 333, 344, 723
Selection equation, 723
Selectivity problem, 723
Semi-elasticity, 79
Serial correlation See Autocorrelation
Serially correlated errors, testing for,

438–443 See also Autocorrelation
Durbin–Watson test, 443
Lagrange multiplier test, 440–443
least squares residuals, correlogram

of, 439–440
Short-term forecasting, 430
Significance

level of, 828
of a model, 264–265

Simple linear regression model, 46–111
See also specific topics

assessing least square estimators,
66–72

assumptions, 47, 50–58, 60, 67–70,
72–74, 76, 82, 84–88

b1 and b2 covariance, 69–72
b1 and b2 expected values, 68–69
b2 estimator, 67–68, 99–101
data generation process for, 147
derivation of least squares estimates,

98–99
econometric model, 49–59
economic model, 47–49
error term variance estimation,

74–77
Gauss–Markov theorem, 72–73, 102

independent variable, 84–88
least squares principle, 61–65
Monte Carlo simulation, 106–111
nonlinear relationships estimation,

77–82
probability distributions, 73
regression with indicator variables,

82–83
sampling variation, 69

Simple regression model
instrumental variables estimation in,

492–493
method of moments estimation in,

491–492
under random sampling, 482

Simultaneous equations bias, 488
Simultaneous equations models

identification problem, 536–538
least squares estimation failure and,

535–536
reduced form equations, 534,

541–543
supply and demand model, 532
two-stage least squares estimation,

538–545
Skedastic function, 372, 375, 414
Skewness, 168, 771
Slope, 752, 753

of linear function, 755
of quadratic function, 755–756
of tangent, 755

Slope dummy variable See Interaction
variable

Slope-indicator variables, 320–322
Smallest canonical correlation, 521
s-order sample autocorrelation, 425
Specification error, 59
Specification tests

Hausman test, 505–508
instrument validity, testing,

508–509
s-period delay multiplier, 445
Spurious regressions, 574–575
SSE See Sum of squared errors (SSE)
Standard deviation, 26, 769, 771
Standard errors, 254, 821

alternative robust, 413
of average marginal effect, 740–741
bootstrapping, 256–257
cluster-robust, 648–651,

677–679
of the estimate, 821
of forecast, 155, 433–435
interpreting, 76–77
of the mean, 821
nominal, 254
panel-robust, 649
robust, 374–375
variance and covariance and, 214

Standard normal distribution, 686, 793
Standard normal random variable, 35
Stationary variables, 564–567

trend stationary variables, 567–570,
579, 586

Statistical independence, 21–22, 51
Statistical inference, 4, 51, 113,

812–853
best linear unbiased estimation,

849–851
data samples for, 813–814
defined, 813
derivation of least squares estimator,

848–849
econometric model as basis for,

814–815
equality of population means,

834–835
estimating population mean,

815–820
estimating population variance,

820–822
hypothesis testing, 826–834
interval estimation, 822–826
kernel density estimator, 851–853
maximum likelihood estimation,

837–848
normality of a population, 836
population variance testing, 834
ratio of population variances,

835–836
Statistically independent, 771
Statistical significance, 126, 500
Stochastic process, 570
Stochastic trend, 567, 573

consequences of, 574–576
Stock–Yogo weak IV tests, 559–561
Strict exogeneity, 369, 482

implications of, 86–87, 103
multiple regression model, 199, 203
and random error, 52–53
weakening, 230–232

Strictly exogenous x, 52, 86–88, 103,
105

Strictly monotonic, 787
Strong dependence, 566
Strong instruments, importance of

using, 493–494
Structural equations, 542
Structural parameters, 545
Studentized residual, 169–170
Summation operation, 22
Sum of squared differences,

minimizing, 761
Sum of squared errors (SSE), 82, 281
Sum of squares decomposition, 193
Sum of squares due to regression, 208
Surplus instruments validity, testing,

528
Surplus moment conditions, 496–498,

508
Survey methodology, 88
Symmetrical two-tail test, 258

T
Tangent, 753
Taylor series approximation, 751,

756–757, 766
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t-distribution, 796–797
central, 796
derivation of, 144–147
interval estimation, 113–115
non-central, 796

Testing, estimating, and forecasting,
620

Test of significance, 123, 126
Test size, 522
Test statistic (t−statistic), 827
Test/testing, 5
T-GARCH, 625
Threshold ARCH (T-ARCH) model, 623
Time-invariant variables, 637, 647,

652–653, 658
Time-series data, 7–8, 56, 87, 291 See

also Nonstationary time series
data

AR(1) error, 422–423, 441, 443, 444,
452–455, 457, 458

autocorrelations, 424–427
dynamic relationships, modeling,

420–424
forecasting, 419, 430–438
serially correlated errors, testing for,

438–443
stationarity and weak dependence,

427–429
weakening strict exogeneity, 231–232

Time-series regressions, for policy
analysis, 443–463

AR(1) errors, estimation of, 452–455
finite distributed lags, 445–448
HAC standard errors, 448–452
infinite distributed lags, 456–463

Time-varying variables, 647
Time-varying variance, 615, 616, 619
Time-varying volatility, 616–620 See

Autoregressive conditional
heteroskedastic (ARCH) model

Tobit model, 720–722
Tobit Monte Carlo experiment,

745–747
Total multiplier, 446
Transformed model, 376
Truncated normal distribution, 794
Truncated Poisson distribution, 791
Truncated random variables, 789
Truncated regression, 718
t-statistic

when null hypothesis is not true, 101
when null hypothesis is true, 103

Two-stage least squares (2SLS), 482,
498, 501, 538–539, 541–545

alternatives, 557–558
general procedure, 539–540

IV estimation using, 495–496
properties of, 540
sampling properties of, 528–530

Two-tail test, 122, 134, 218, 829, 830
of economic hypothesis, 125
p-value, 129
symmetrical, 258
test of significance, 126, 129

Type I error, 119–120, 833
Type II error, 120, 833

U
Unbalanced panels, 636
Unbiased estimators, 817 See also Best

linear unbiased estimators
(BLUE)

Unbiasedness, 68–70, 72, 74, 84–86,
88, 102, 104–106, 109, 111

Unbiased predictor, 154
Unconditional expectation, 30, 52
Unconditional heteroskedasticity, 387,

416
Unconditional mean, 615
Unconditional variance, 31, 615
Uncorrelated errors, conditional,

203–204
Unemployment forecasts, 432–433
Uniform distribution, 792–793, 801
Uniform random number, 255,

805–806
Unit elasticity, 178
Unit root, 428
Unit root tests, 582

Dickey–Fuller tests with intercept
and no trend, 577–579

Dickey–Fuller tests with intercept
and trend, 579–580

Dickey–Fuller tests with no intercept
and no trend, 580–581

order of integration, 581–582
Univariate time-series models, 570
Unobserved heterogeneity, 637–639,

645–646
Unrestricted model, 263

V
VAR See Vector autoregressive (VAR)

model
Variance, 490–491, 769, 817

calculation of, 26
conditional, 31, 100–101, 774, 782
of continuous random variable, 781
decomposition, 33–34, 774–777
of discrete random variable,

770–771
of error term, estimation of, 74–77

of estimator, 841–842
known form of, 375–377
of least squares estimators, 69–72
of maximum likelihood estimator,

841–842
population, 820–822, 834–836
of random variable, 26–27
sample, 821
unknown form of, 377–383

Variance–covariance matrix See
Covariance matrix

Variance function, 379
Variance inflation factor, 289
Variance stabilization, 388, 389
Variation, sampling, 816
VEC See Vector error correction (VEC)
Vector autoregressive (VAR) model,

598, 601–602
Vector error correction (VEC),

597–601

W
Wage equation, 175, 545

fixed effects estimators of, 641
goodness of fit measure, 176
Hausman–Taylor estimation,

659–660
instrument strength in, 502
interaction variable in, 225
IV estimation of, 495, 499–500
least squares estimators, 233–234
least squares estimation of,

489–490
log-linear model, 175, 176
log-quadratic, 226
Mundlak approach, 658
random effects model, 652–654
with regional indicators, 325–326
2SLS estimation of, 499–500
specification tests for, 509

Wald estimator, 511
Wald principle, 695
Wald tests, 268, 695–696, 845–846
Weak dependence, 427–429
Weak identification, testing for,

521–525
Weak instruments, 500–501, 503,

520–525, 527 See also
Instrument strength assessment

Weighted least squares (WLS),
377–379

White heteroskedasticity-consistent
estimator (HCE), 374

White test, 387
Within estimator, 642–644
WLS See Weighted least squares (WLS)
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