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8.1 The Nature of Heteroskedasticity 
1 of 3 

Principles of Econometrics, 5e 

 Consider our basic linear function: 

 The random error 𝑒𝑖 represents the collection of all the factors other than income 

that affect household expenditure on food 

 The assumption of strict exogeneity says that when using information on household 

income our best prediction of the random error is zero 

 If sample values are randomly selected, then the technical expression for this 

assumption is that given income the conditional expected value of the random error 

𝑒𝑖 is zero 
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𝐹𝑂𝑂𝐷_𝐸𝑋𝑃𝑖 = 𝛽1 + 𝛽2𝐼𝑁𝐶𝑂𝑀𝐸𝑖 + 𝑒𝑖 



8.1 The Nature of Heteroskedasticity 
2 of 3 

Principles of Econometrics, 5e 

 If the assumption of strict exogeneity holds then the regression function is 

 

 Holding income constant, and given our model, what is the source of the variation in 

household food expenditures? It must be from the random error 

 Recall that the random error in the regression is the difference between any 

observation on the outcome variable and its conditional expectation, that is: 

    (8.2) 
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𝐸 𝐹𝑂𝑂𝐷_𝐸𝑋𝑃𝑖|𝐼𝑁𝐶𝑂𝑀𝐸𝑖  =  𝛽1 +  𝛽2𝐼𝑁𝐶𝑂𝑀𝐸 

𝑒𝑖 = 𝐹𝑂𝑂𝐷_𝐸𝑋𝑃𝑖 − 𝐸 𝐹𝑂𝑂𝐷_𝐸𝑋𝑃𝑖|𝐼𝑁𝐶𝑂𝑀𝐸𝑖  



8.1 The Nature of Heteroskedasticity 
3 of 3 

Principles of Econometrics, 5e 

 In such a case, when the error variances for all observations are not the same, we say 

that heteroskedasticity exists 

 Alternatively, we say the random error 𝑒𝑖 is heteroskedastic 

 Conversely, if all observations come from probability density functions with the 

same variance, we say that homoskedasticity exists, and 𝑒𝑖 is homoskedastic 
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8.2 Heteroskedasticity in the Multiple 
Regression Model 1 of 2 

Principles of Econometrics, 5e 

 The existence of heteroskedasticity is a violation of one of our least squares 

assumptions 

 For the multiple regression model                                                                    

assumption MR3 is 

 The simplest statement of the conditional heteroskedasticity is  
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𝑣𝑎𝑟 𝑒𝑖|𝑋 = 𝑣𝑎𝑟 𝑦𝑖|𝑋 = 𝜎2 

𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖2 +··· +𝛽𝑘𝑥𝑖𝐾 + 𝑒𝑖 , 𝑖 =  1, … ,𝑁, 

(8.3)   𝑣𝑎𝑟 𝑒𝑖|𝑋 = 𝑣𝑎𝑟 𝑦𝑖|𝑋 = 𝜎𝑖
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8.2 Heteroskedasticity in the Multiple 
Regression Model 2 of 2 

Principles of Econometrics, 5e 

 Heteroskedasticity often arises when using cross-sectional data 

 The term cross-sectional data refers to having data on a number of economic units 

such as firms or households, at a given point in time 

 Heteroskedasticity is not a property that is necessarily restricted to cross-sectional 

data 

 With time series data it is possible that the conditional error variance will change 
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8.2.1 The Heteroskedastic Regression 
Model 

Principles of Econometrics, 5e 

 The multiple regression model is 

 We assume we have a random sample 

 The heteroskedasticity assumption in (8.3) becomes 

(8.4) 

 where                  is a function of xi that is sometimes called the skedastic function 

 Where                 is a constant  
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𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖2 +··· +𝛽𝐾𝑥𝑖𝐾 + 𝑒𝑖 

var(𝑦𝑖|𝑥𝑖) = var(𝑒𝑖|𝑥𝑖) = 𝜎2ℎ(𝑥𝑖) = 𝜎𝑖
2 

0 
ℎ(𝑥𝑖) > 0 

𝜎2 > 0 



8.2.2 Heteroskedasticity Consequences for the OLS 
Estimator 

Principles of Econometrics, 5e 

 There are two implications of heteroskedacity 

1. The least squares estimator is still a linear and unbiased estimator, but it is no 

longer best. There is another estimator with a smaller variance 

2. The standard errors usually computed for the least squares estimator are incorrect. 

Confidence intervals and hypothesis tests that use these standard errors may be 

misleading  
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8.3 Heteroskedasticity Robust Variance 
Estimator 1 of 2 

Principles of Econometrics, 5e 

 Calculation of a correct estimate for the OLS variance  

 (8.8) 

 The White heteroskedasticity-consistent estimator (HCE) that is valid in large 

samples for the simple regression model is 
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8.3 Heteroskedasticity Robust Variance 
Estimator 2 of 2 

Principles of Econometrics, 5e 

 Where 𝑒 𝑖 is the least squares residual from the regression model, 

 This variance estimator is robust because it is valid whether heteroskedasticity is 

present or not 

 If we are not sure whether the random errors are heteroskedastic or homoskedastic, 

then we can use a robust variance estimator and be confident that our standard 

errors, t-tests, and interval estimates are valid in large samples 

 This does not address the implication that the least square estimator is no longer the 

best 
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8.4 Generalized Least Squares: Known Form 
of Variance 

Principles of Econometrics, 5e 

 To develop an estimator that is better than the least squares estimator, we need to 

make a further assumption about how the variances 𝜎𝑖
2 change with each 

observation  

 This means making an assumption about the skedastic function h(𝑥𝑖) 

 The further assumption is necessary because the best linear unbiased estimator in the 

presence of heteroskedasticity, an estimator known as the generalized least squares 

(GLS) estimator, depends on the unknown 𝜎𝑖
2 
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8.4.1 Transforming the Model: Proportional 
Heteroskedasticity 1 of 5 

Principles of Econometrics, 5e 

 An estimator known as the generalized least squares estimator, depends on the 

unknown σ2
i 

  To make the generalized least squares estimator operational, some structure is 

imposed on σ2
i 

 One possibility: 
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(8.11) var 𝑒𝑖|𝑥𝑖 = 𝜎𝑖
2 = 𝜎2ℎ(𝑥𝑖) = 𝜎2𝑥𝑖 , 𝑥𝑖 > 0 



8.4.1 Transforming the Model: Proportional 
Heteroskedasticity 2 of 5 

Principles of Econometrics, 5e 

 We change or transform the model into one with homoskedastic errors: 

 Leaving the basic structure of the model intact, we turn the heteroskedastic error 

model into a homoskedastic error model 

 After the transformation, applying OLS to the transformed model gives a best linear 

unbiased estimator 

 

     (8.12) 
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8.4.1 Transforming the Model: Proportional 
Heteroskedasticity 3 of 5 

Principles of Econometrics, 5e 

 Define the following transformed variables: 

 (8.13) 

 Our model is now 

    (8.14) 

 The beauty of this transformed model is that the new transformed error term e∗ i is 

homoskedastic 
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8.4.1 Transforming the Model: Proportional 
Heteroskedasticity 4 of 5 

Principles of Econometrics, 5e 

 If X is a random variable and a is a constant, then var(aX) = 𝑎2var(X). Applying that 

rule here we have 

    (8.15) 

 The transformed error term will retain the properties of zero mean and zero 

correlation between different observations 
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var 𝑒𝑖
∗ = var
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8.4.1 Transforming the Model: Proportional 
Heteroskedasticity 5 of 5 

Principles of Econometrics, 5e 

 To obtain the best linear unbiased estimator for a model with heteroskedasticity of 

the type specified in (8.11): 

1. Calculate the transformed variables given in (8.13) 

2. Use OLS to estimate the transformed model given in (8.14), yielding estimates 

𝛽1  and  𝛽2   

  The estimator obtained in this way is called a generalized least squares estimator 
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8.4.2 Weighted Least Squares: Proportional 
Heteroskedasticity 

Principles of Econometrics, 5e 

 One way of viewing the generalized least squares estimator is as a weighted least 

squares estimator 

 Minimizing the sum of squared transformed errors: 

 

 

 

 The squared errors are weighted by 
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Example 8.3 Applying GLS/WLS to 
the Food Expenditure Data 

Principles of Econometrics, 5e 

 Applying the generalized (weighted) least squares procedure to our food expenditure 

problem: 

     8.17 

 A 95% confidence interval for β2 is given by:  
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FOOD_EXP 
𝑖
= 78.68 + 10.45𝐼𝑁𝐶𝑂𝑀𝐸𝑖

𝑠𝑒                  23.79  1.39
 

   2 2
? β se β 10.451 2.024 1.386 7.65,13.26ct    



8.5 Generalized Least Squares: Unknown 
Form of Variance 1 of 4 

Principles of Econometrics, 5e 

 In order to deal with the more general specification we need a model that is flexible, 

parsimonious, and for which 𝜎𝑖
2> 0 

  One specification that works well is: 
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8.18     

𝜎𝑖
2 = exp(𝛼1 + 𝛼2𝑧𝑖2 +⋯+ 𝛼𝑆𝑧𝑖𝑆 

= exp(𝛼1)exp(𝛼2𝑧𝑖2 +⋯+ 𝛼𝑆𝑧𝑖𝑆)

= 𝜎2ℎ(𝑧𝑖2, ⋯ , 𝑧𝑖𝑆)

 



8.5 Generalized Least Squares: Unknown 
Form of Variance 2 of 4 

Principles of Econometrics, 5e 

 A Equation (8.18) is called the model of multiplicative heteroskedasticity 

 It includes homoskedasticity as a special case; when α2 =···=αS = 0 the error 

variance is 

 It is called a multiplicative model because 
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𝜎𝑖
2 = exp(𝛼1) = 𝜎2 

exp(𝛼1)exp(𝛼2𝑧𝑖2 +⋯+ 𝛼𝑆𝑧𝑖𝑆)
= exp(𝛼1)exp(𝛼2𝑧𝑖2). . . exp(𝛼𝑠𝑧𝑖𝑠) 



8.5 Generalized Least Squares: Unknown 
Form of Variance 3 of 4 

Principles of Econometrics, 5e 

 Multiplicative Heteroskedasticity, Special Case 1: 

  There are three plausible variance functions, they are a special cases of  

 var(𝑒𝑖|𝑥𝑖) = 𝜎𝑖
2 = 𝜎2𝑥𝑖

𝛼2 

 Where ∝2 is an unknown parameter 
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var(𝑒𝑖|𝑥𝑖) = 𝜎𝑖
2 = 𝜎2𝑥𝑖

𝛼2 



8.5 Generalized Least Squares: Unknown 
Form of Variance 4 of 4 

Principles of Econometrics, 5e 

 Multiplicative Heteroskedasticity, Special Case 2: Grouped Heteroskedasticity 

 Suppose we are considering just two groups 

 𝐷𝑖 = 1 if an observation is in one group and 𝐷𝑖 = 0 for observations in the other 

group, Then the variance function is: 
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var(𝑒𝑖|𝑥𝑖) = exp(𝛼1 + 𝛼1𝐷𝑖) =  
exp(𝛼1) = 𝜎2 𝐷𝑖 = 0

exp(𝛼1 + 𝛼2) = 𝜎2exp(𝛼2) 𝐷𝑖 = 1
 



8.5.1 Estimating the Multiplicative 
Model 1 of 2 

Principles of Econometrics, 5e 

 How do we proceed with estimation with an assumption like (8.18) 

 With the model of multiplicative heteroskedasticity, we use several estimation steps 

 FEASIBLE GLS PROCEDURE 

1. Estimate the original model by OLS, saving the OLS residuals êi 

2. Use the least squares residuals and the variables 𝑧𝑖2, ⋯ , 𝑧𝑖𝑆 to estimate 

∝1, ∝2 ⋯ ,∝𝑆 
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8.5.1 Estimating the Multiplicative 
Model 2 of 2 

Principles of Econometrics, 5e 

3. Calculate the estimated skedastic function ĥ (𝑧𝑖2, ⋯ , 𝑧𝑖𝑆) 

4. . Divide each observation by  h ̂(𝑧𝑖2, ⋯ , 𝑧𝑖𝑆) and apply OLS to the transformed 

data, or use WLS regression with weighting factor 1/ ĥ (𝑧𝑖2, ⋯ , 𝑧𝑖𝑆) 

 The resulting estimates are called feasible generalized least squares (FGLS) 

estimates or estimated generalized least squares (EGLS) estimates 
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8.6 Detecting Heteroskedasticity 

Principles of Econometrics, 5e 

 In many applications, there is uncertainty about the presence, or absence, of 

heteroscedasticity 

 There are two methods we can use to detect heteroskedasticity 

1. An informal way using residual charts 

2. A formal way using statistical tests 
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8.6.1 Residual Plots 1 of 2 

Principles of Econometrics, 5e 

 If the errors are homoskedastic, there should be no patterns of any sort in the 

residuals  

 If the errors are heteroskedastic, they may tend to exhibit greater variation in some 

systematic way 

 We discovered that the absolute values of the residuals do indeed tend to increase as 

income increases 
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8.6.1 Residual Plots 2 of 2 

Principles of Econometrics, 5e 

 This method of investigating heteroskedasticity can be followed for any simple 

regression 

 In a regression with more than one explanatory variable we can plot the least 

squares residuals against each explanatory variable, or against,     , to see if they 

vary in a systematic way relative to the specified variable 
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8.6.2 The Goldfeld–Quandt Test 

Principles of Econometrics, 5e 

 The Goldfeld–Quandt test uses the estimated error variances from separate sub-

sample regressions as a basis for the test 

 Let the first sub-sample contain 𝑁1 observations 

 Let the regression odel in this partition have 𝐾1 parameters 

 The test statistic is  8.22  
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𝐺𝑄 =
𝜎 1
2

𝜎 2
2 ∼ 𝐹 𝑁𝑀−𝐾1,𝑁2−𝐾2

 



Example 8.7 The Goldfeld–Quandt Test in 
the Food Expenditure Model 1 of 2 

Principles of Econometrics, 5e 

 With the observations ordered according to income xi, and the sample split into two 

equal groups of 20 observations each, yields: 

 

 Calculate:  

30 Heteroskedasticity 

2 2

1 2
? 3574.8     12921.9  

2

2

2

1

ˆ 12921.9
3.61

ˆ 3574.8
F




  



Example 8.7 The Goldfeld–Quandt Test in 
the Food Expenditure Model 2 of 2 

Principles of Econometrics, 5e 

 Believing that the variances could increase, but not decrease with income, we 

use a one-tail test with 5% critical value F(0.95, 18, 18) = 2.22 

 Since 3.61 > 2.22, a null hypothesis of homoskedasticity is rejected in favor of 

the alternative that the variance increases with income 
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8.6.3 A General Test for Conditional 
Heteroskedasticity 1 of 5 

Principles of Econometrics, 5e 

 In this section we consider a test for conditional heteroskedasticity that is related to 

some “explanatory” variables 

 Under assumptions MR1–MR5 the OLS estimator is the best linear unbiased 

estimator of the parameters 𝛽1, 𝛽2, … 𝛽𝑘 , 

 When conditional heteroskedasticity is a possibility, we suppose that the variance of 

the random error, 𝑒𝑖 , depends on a set of explanatory variables 𝑧𝑖2, 𝑧𝑖3, … 𝑧𝑖𝑘that 

may include some or all of the explanatory variables 𝑥𝑖2, … 𝑥𝑖𝑘 
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8.6.3 A General Test for Conditional 
Heteroskedasticity 2 of 5 

Principles of Econometrics, 5e 

 Assume a general expression for the conditional variance 

 

 Where h(•) is some smooth function and 𝛼2, 𝛼3, … , 𝛼s are nuisance parameters 

 We will test for any relationship between the variance of the error term and any 

function of the selected variables 
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var(𝑒𝑖|𝑧𝑖) = 𝜎𝑖
2 = 𝐸(𝑒𝑖

2|𝑧𝑖) = ℎ(𝛼1 + 𝛼2𝑧𝑖2 +⋯+ 𝛼𝑠𝑧𝑖𝑠  



8.6.3 A General Test for Conditional 
Heteroskedasticity 3 of 5 

Principles of Econometrics, 5e 

 The null and alternative hypotheses for a test for heteroskedasticity based on the 

variance function are 

 homoskedasticity ↔ 𝐻0 ∶ 𝛼2 = 𝛼3 =···= 𝛼s = 0 

 heteroskedasticity ↔ 𝐻1 ∶ not all the 𝛼s in 𝐻0 are zero 

 if the random errors are homoskedastic, then the sample size multiplied by 𝑅2, N× 

𝑅2 or simply N𝑅2, has a chi-square ( χ2 ) distribution with S − 1 degrees of freedom 
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8.6.3 A General Test for Conditional 
Heteroskedasticity 4 of 5 

Principles of Econometrics, 5e 

 The test statistic is: 

 8.30                   if the null hypothesis of homoskedasticity is true 

 There are several important features of this test: 

1. It is a large sample test. The result in (8.30) holds approximately in large samples 

2. You will often see the test referred to as a Lagrange multiplier test (LM test) or a 

Breusch–Pagan test for heteroskedasticity 
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𝑁𝑅2𝑎 𝜒 𝑆−1
2  



8.6.3 A General Test for Conditional 
Heteroskedasticity 5 of 5 

Principles of Econometrics, 5e 

3. One of the amazing features of the Breusch–Pagan/LM test is that the value of the 

statistic computed from the linear function is valid for testing an alternative 

hypothesis of heteroskedasticity where the variance function can be of any form 

given by (8.24) 

4. The Breusch–Pagan test is for conditional heteroskedasticityUnconditional 

heteroskedasticity exists when the error term variance is completely random 
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8.6.4 The White Test 1 of 3 

Principles of Econometrics, 5e 37 Heteroskedasticity 

 The variance tests used so far presupposes we have knowledge of what variables 

will appear in the variance function if the alternative hypothesis of 

heteroskedasticity is true 

 We may wish to test for heteroskedasticity without precise knowledge of the 

relevant variables 

 



8.6.4 The White Test 2 of 3 

Principles of Econometrics, 5e 38 Heteroskedasticity 

 Suppose: 

 

 The White test without cross-product terms (interactions) specifies: 

 

 Including interactions adds one further variable  

  

𝑦𝑖 = β1 + β2𝑥𝑖2 + β3𝑥𝑖3 + 𝑒𝑖 

𝑧2 = 𝑥2   𝑧3 = 𝑥3   𝑧4 = 𝑥2
2   𝑧5 = 𝑥3

2 

5 2 3z x x



8.6.4 The White Test 3 of 3 

Principles of Econometrics, 5e 39 Heteroskedasticity 

 The White test is performed using the 𝑁𝑅2 test defined in (8.29) 

 or an F-test 

 One difficulty with the White test is that it can detect problems other than 

heteroskedasticity 

 Thus, while it is a useful diagnostic, be careful about interpreting the result of a 

significant White test  



8.6.5 Model Specification and 
Heteroskedasticity 1 of 4 

Principles of Econometrics, 5e 40 Heteroskedasticity 

 As hinted at the end of the previous section, heteroskedasticity can be present 

because of a model specification error 

 If data partitions are not recognized, or important variables omitted, or an incorrect 

functional form selected, then heteroskedasticity can appear to be present 

 Don’t necessarily believe that a significant heteroskedasticity test means that 

heteroskedasticity is the problem and that using robust standard errors will be an 

adequate fix 



8.6.5 Model Specification and 
Heteroskedasticity 2 of 4 

Principles of Econometrics, 5e 41 Heteroskedasticity 

 Critically examine the model from the point of view of economic reasoning and look 

for any specification problems 

 One very common specification issue with economic data is the choice of functional 

form 

 Using a logarithmic transformation of the dependent variable has another feature, 

variance stabilization, that is useful in the context of heteroskedastic data 



8.6.5 Model Specification and 
Heteroskedasticity 3 of 4 

Principles of Econometrics, 5e 42 Heteroskedasticity 

 Economic variables like wages, incomes, house prices, and expenditures are 

right-skewed, with a long tail to the right 

 The log-normal probability distribution is useful when modeling such variables 

 If the random variable y has a log-normal probability density function, then 

ln(y) has a normal distribution, which is symmetrical and bell-shaped, and not 

skewed  



8.6.5 Model Specification and 
Heteroskedasticity 4 of 4 

Principles of Econometrics, 5e 43 Heteroskedasticity 

 The feature of the log-normal random variable that we are now interested in is that 

its variance increases when its mean and median increase 

 By choosing a log-linear or log-log model we are implicitly assuming a curvilinear 

and heteroskedastic relationship between the variables y and x 

 However, there is a linear and homoskedastic relation between ln(y) and x 



Figure 8.6 A log-linear relationship 
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Example 8.8 Variance Stabilizing Log-
transformation 1 of 3 

Principles of Econometrics, 5e 45 Heteroskedasticity 

 Consider the data file cex5_small 

 Figure 8.7(a) shows a histogram of household expenditures on entertainment per 

person, ENTERT, for those households who have positive spending, and Figure 

8.7(b) is the histogram for ln(ENTERT) 

 The extremely skewed distribution of entertainment expenditures shows the effect of 

the log-transformation 



Example 8.8 Variance Stabilizing Log-
transformation 2 of 3 

Principles of Econometrics, 5e 46 Heteroskedasticity 

 The variation in ENTERT about the fitted line increases as INCOME increases 

 Estimating the model ENTERT = β1 + β2INCOME + β3COLLEGE + 

β4ADVANCED + e 

 Obtain the least squares residuals and then estimate by OLS the model 

𝑒𝑖
2 = 𝛼1 + 𝛼2𝐼𝑁𝐶𝑂𝑀𝐸𝑖 + 𝑣𝑖 



Example 8.8 Variance Stabilizing Log-
transformation 3 of 3 

Principles of Econometrics, 5e 47 Heteroskedasticity 

 From this regression, 𝑁𝑅2 = 31.34. The critical value for a 1% level of significance 

 heteroskedasticity test is 6.635, thus we conclude that heteroskedasticity is present 

 There is little if any visual evidence of heteroskedasticity and the value of the 

heteroskedasticity test statistic is 𝑁𝑅2 = 0.36 

 so we do not reject the null hypothesis of homoskedasticity. The log-transformation 

has “cured” the heteroskedasticity problem 



Figure 8.7 Histograms of entertainment 
expenditures 
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Figure 8.8 Linear and log-linear models 
for entertainment expenditures. 
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 We previously examined the linear probability model: 

 

 Defining the error ei as the difference 𝑦𝑖 − 𝐸 𝑦𝑖|𝑥𝑖  for the ith observation, we have 

the model  

 (8.32) 

𝐸 𝑦𝑖|𝑥𝑖 = 𝑝 = β1 + β2𝑥𝑖2 +⋯+ β𝐾𝑥𝑖𝐾 

𝑦𝑖 = 𝐸 𝑦𝑖|𝑥𝑖 + 𝑒𝑖 = β1 + β2𝑥𝑖2 +⋯+ β𝐾𝑥𝑖𝐾 + 𝑒𝑖 
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 This model can be estimated with least squares 

 We know this model suffers from heteroskedasticity: 

 (8.32) 

 The error variance depends on the values of the explanatory variables 

 Instead of using least squares standard errors, we can use heteroskedasticity-robust 

standard errors 

var 𝑦𝑖|𝑥𝑖 = var 𝑒𝑖 = 𝑝𝑖 1 − 𝑝𝑖
= β1 + β2𝑥𝑖2 +⋯+ β𝐾𝑥𝑖𝐾 (1 − β1 − β2𝑥𝑖2 −⋯
− β𝐾𝑥𝑖𝐾) 
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 The first step toward obtaining GLS estimates is to estimate the variance in (8.32) 

 We can estimate pi with the least squares predictions: 

    (8.33) 

 Giving an estimated variance of: 

    (8.34) 

𝑝 𝑖 =  𝑏1 + 𝑏2𝑥𝑖2 +⋯+ 𝑏𝐾𝑥𝑖𝐾 

var 𝑒𝑖|𝑥 = 𝑝 𝑖 1 − 𝑝 𝑖  



8.7 Heteroskedasticity in the Linear 
Probability Model 4 of 4 

Principles of Econometrics, 5e 53 Heteroskedasticity 

 A word of caution is required at this point. It is possible that some of the p̂i obtained 

from (8.33) will not lie within the interval 0 < 𝑝𝑖 < 1 

 Generalized least squares estimates can be obtained by applying least squares to the 

transformed equation: 

 
𝑦𝑖

𝑝 𝑖 1 − 𝑝 𝑖
= β1

1

𝑝 𝑖 1 − 𝑝 𝑖
+ β2

𝑥𝑖2

𝑝 𝑖 1 − 𝑝 𝑖
+⋯+ β𝐾

𝑥𝑖𝐾

𝑝 𝑖 1 − 𝑝 𝑖
+

𝑒𝑖

𝑝 𝑖 1 − 𝑝 𝑖
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 A suitable test for heteroskedasticity is the White test: 

 

 This leads us to reject a null hypothesis of homoskedasticity at a 1% level of 

significance.  

 Examining the estimates in Table 8.2, we see there is little difference in the four sets 

of standard errors  

2 2 25.17      -value 0.0005N R p    
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