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6.1 Testing Joint Hypotheses: The F-
test 1 of 3 

Principles of Econometrics, 5e 

 A null hypothesis with multiple conjectures, expressed with more than one equal 

sign, is called a joint hypothesis 

1. Example: Should a group of explanatory variables should be included in a 

particular model? 

2. Example: Does the quantity demanded of a product depend on the prices of 

substitute goods, or only on its own price?  
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6.1 Testing Joint Hypotheses: The F-
test 2 of 3 

Principles of Econometrics, 5e 

 Both examples are of the form: 

 (6.1) 

 The joint null hypothesis in (6.1) contains three conjectures  (three equal signs): 

β4 = 0, β5 = 0, and β6 = 0 

 A test of H0 is a joint test for whether all three conjectures hold simultaneously 
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Example 6.1 Testing the Effect of 
Advertising 1 of 4 

Principles of Econometrics, 5e 

 Consider the model: 

  (6.2) 

 Test whether or not advertising has an effect on sales – but advertising is in the 

model as two variables 

 Advertising will have no effect on sales if β3 = 0 and β4 = 0  

 Advertising will have an effect if β3 ≠ 0 or β4 ≠ 0 or if both β3 and β4 are nonzero 
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Example 6.1 Testing the Effect of 
Advertising 2 of 4 

Principles of Econometrics, 5e 

 The null hypotheses are: 

 

 Relative to the null hypothesis H0 : β3 = 0, β4 = 0 the model in (6.2) is called the 

unrestricted model 

 The restrictions in the null hypothesis have not been imposed on the model 

 It contrasts with the restricted model, which is obtained by assuming the parameter 

restrictions in H0 are true 
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Example 6.1 Testing the Effect of 
Advertising 3 of 4 

Principles of Econometrics, 5e 

 When H0 is true, β3 = 0 and β4 = 0, and ADVERT and ADVERT2 drop out of the 

model 

 (6.3) 

 The F-test for the hypothesis H0 : β3 = 0, β4 = 0 is based on a comparison of the 

sums of squared errors (sums of squared least squares residuals) from the 

unrestricted model in (6.2) and the restricted model in (6.3)  

 Shorthand notation for these two quantities is SSEU and SSER, respectively 
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Example 6.1 Testing the Effect of 
Advertising 4 of 4 

Principles of Econometrics, 5e 

 Adding variables to a regression reduces the sum of squared error 

 more of the variation in the dependent variable becomes attributable to the variables 

in the regression and less of its variation becomes attributable to the error 

 In terms of our notation, SSER – SSEU ≥ 0 

 we find that SSEU = 1532.084 and SSER = 1896.391. Adding ADVERT and 

ADVERT2 to the equation reduces the sum of squared errors from 1896.391 to 

1532.084 
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6.1 Testing Joint Hypotheses: The F-
test 3 of 3 

Principles of Econometrics, 5e 

 A The F-statistic determines what constitutes a large reduction or a small reduction in the sum of 

squared errors 

  (6.4) 

  where J is the number of restrictions, N is the number of observations and K is the number of 

coefficients in the unrestricted model 

 If the null hypothesis is true, then the statistic F has what is called an F-distribution with J  

numerator degrees of freedom and N - K denominator degrees of freedom 

 If the null hypothesis is not true, then the difference between SSER and SSEU becomes large 
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Example 6.2 The F-Test Procedure 
1 of 3 

Principles of Econometrics, 5e 

1. Specify the null and alternative hypotheses:  

 The joint null hypothesis is H0 : β3 = 0, β4 = 0. The alternative hypothesis is H0 : 

β3 ≠ 0 or β4 ≠ 0 both are nonzero 

2. Specify the test statistic and its distribution if the null hypothesis is true: 

 Having two restrictions in H0  means J = 2 

  Also, recall that N = 75: 
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Example 6.2 The F-Test Procedure 
2 of 3 

Principles of Econometrics, 5e 

3. Set the significance level and determine the rejection region 

4. Calculate the sample value of the test statistic and, if desired, the p-value 

 

 

 The corresponding p-value is p = P(F(2, 71) > 8.44) = 0.0005 
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Example 6.2 The F-Test Procedure 
3 of 3 

Principles of Econometrics, 5e 

5. State your conclusion 

 Since F = 8.44 > Fc = 3.126, we reject the null hypothesis that both β3 = 0 and 

β4 = 0, and conclude that at least one of them is not zero 

 Advertising does have a significant effect upon sales revenue 

 The same conclusion is reached by noting that p-value = 0.0005 < 0.05 
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6.1.1 Testing the Significance of the 
Model 1 of 3 

Principles of Econometrics, 5e 13 Further Inference in the Multiple Regression Model 

 Consider again the general multiple regression model with (K - 1) explanatory 

variables and K unknown coefficients 

 (6.5) 

 To examine whether we have a viable explanatory model, we set up the following 

null and alternative hypotheses: 

 (6.6)  
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6.1.1 Testing the Significance of the 
Model 2 of 3 

Principles of Econometrics, 5e 14 Further Inference in the Multiple Regression Model 

 Since we are testing whether or not we have a viable explanatory model, the test for 

(6.6) is sometimes referred to as a test of the overall significance of the regression 

model. 

 Given that the t-distribution can only be used to test a single null hypothesis, we 

use the F-test for testing the joint null hypothesis in (6.6)  

 The restricted model, assuming the null hypothesis is true, becomes: 

 The least squares estimator of β1 in this restricted model is: 
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6.1.1 Testing the Significance of the 
Model 3 of 3 

Principles of Econometrics, 5e 15 Further Inference in the Multiple Regression Model 

 The restricted sum of squared errors from the hypothesis (6.6) is: 

 

  Thus, to test the overall significance of a model, but not in general, the F-test 

statistic can be modified and written as: 

 (6.8) 
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6.1.2 The Relationship Between t- and 
F-Tests 1 of 2 

Principles of Econometrics, 5e 16 Further Inference in the Multiple Regression Model 

 What happens if we have a null hypothesis which is not a joint hypothesis; it only 

has one equality in 𝐻0  

 When testing a single “equality” null hypothesis (a single restriction) against a “not 

equal to” alternative hypothesis, either a t-test or an F-test can be used 

 Two-tail t-tests are equivalent to F-tests when there is a single hypothesis 𝐻0 



6.1.2 The Relationship Between t- and 
F-Tests 2 of 2 

Principles of Econometrics, 5e 17 Further Inference in the Multiple Regression Model 

 The elements of an F-test 

1. The null hypothesis H0 consists of one or more equality restrictions on the model 

parameters  βk  

2. The alternative hypothesis states that one or more of the equalities in the null 

hypothesis is not true 

3. The test statistic is the F-statistic in (6.4) 

4. If the null hypothesis is true, F has the F-distribution with J numerator degrees of 

freedom and N - K denominator degrees of freedom 

5. When testing a single equality null hypothesis, it is perfectly correct to use either 

the t- or F-test procedure: they are equivalent 



6.1.3 More General F-Tests 

Principles of Econometrics, 5e 18 Further Inference in the Multiple Regression Model 

 The conjectures made in the null hypothesis were that particular coefficients are 

equal to zero 

 The F-test can also be used for much more general hypotheses  

 Any number of conjectures (≤ K) involving linear hypotheses with equal signs 

can be tested 



Example 6.5 Testing Optimal 
Advertising 1 of 3 

Principles of Econometrics, 5e 19 Further Inference in the Multiple Regression Model 

 Consider the issue of testing: 

 (6.11) 

 If ADVERT0 = $1,900 per month, then: 

 Or 

 Note that when H0 is true, β3 = 1 – 3.8β4 so that: 

3 4 0 β 2β 1 ADVERT 
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Example 6.5 Testing Optimal 
Advertising 2 of 3 

Principles of Econometrics, 5e 20 Further Inference in the Multiple Regression Model 

 Or (6.12) 

 The calculated value of the F-statistic is: 

 For α = 0.05, the critical value is Fc = 3.976 Since F = 0.9362 < Fc = 3.976, we do 

not reject H0  

 We conclude that an advertising expenditure of $1,900 per month is optimal is 

compatible with the data 
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Example 6.5 Testing Optimal 
Advertising 3 of 3 

Principles of Econometrics, 5e 21 Further Inference in the Multiple Regression Model 

 The t-value is t = 0.9676 

 F = 0.9362 is equal to t2 = (0.9676)2 

 The p-values are identical: 
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6.1.4 Using Computer Software 

Principles of Econometrics, 5e 22 Further Inference in the Multiple Regression Model 

 Though it is possible and instructive to compute an F-value by using the restricted 

and unrestricted sums of squares, it is often more convenient to use the power of 

econometric software 

 Most software packages have commands that will automatically compute t- and F-

values and their corresponding p-values when provided with a null hypothesis 

 These tests belong to a class of tests called Wald tests 

 



6.1.5 Large Sample Tests 1 of 3 

Principles of Econometrics, 5e 23 Further Inference in the Multiple Regression Model 

 There are two key requirements for the F-statistic to have the F-distribution in 

samples of all sizes  

1. assumptions MR1–MR6 must hold  

2. the restrictions in H0 must be linear functions of the parameters β1, β2, …, βk a 

 In this section, we are concerned with what test statistics are valid in large samples 

when the errors are no longer normally distributed or when the strict exogeneity 

assumption is weakened to E (ei) = 0 and cov(ei , xjk) = 0(i ≠ j) 



6.1.5 Large Sample Tests 2 of 3 

Principles of Econometrics, 5e 24 Further Inference in the Multiple Regression Model 

 An F random variable is defined as the ratio of two independent chi-square (χ2) 

random variables, each divided by their degrees of freedom 

 

 

 Note that 𝜎2  =  𝑆𝑆𝐸𝑈/(N − K), and so the result in (6.13) is identical to the F-

statistic first introduced in (6.4) 

 When we drop the normality assumption or weaken the strict exogeneity 

assumption, the argument becomes slightly different 
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6.1.5 Large Sample Tests 3 of 3 

Principles of Econometrics, 5e 25 Further Inference in the Multiple Regression Model 

 We can go one step further and say that replacing σ2 by its consistent estimator 𝜎2  

does not change the asymptotic distribution of 𝑉1 That is, 

 

 This statistic is a valid alternative for testing joint linear hypotheses in large samples 

under less restrictive assumptions 

 Test statistics for joint hypotheses which are nonlinear functions of the parameters s 

can typically be carried out by your software with relative ease 
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6.2 The Use of Nonsample Information 
1 of 5 

Principles of Econometrics, 5e 26 Further Inference in the Multiple Regression Model 

 In many estimation problems we have information over and above the 

information contained in the sample observations  

  This nonsample information may come from many places, such as economic 

principles or experience  

 When it is available, it seems intuitive that we should find a way to use it 



6.2 The Use of Nonsample Information 
2 of 5 

Principles of Econometrics, 5e 27 Further Inference in the Multiple Regression Model 

 Consider the log-log functional form for a demand model for beer: 

 (6.17) ln 𝑄 = β1+ β2 ln 𝑃𝐵 + β3 ln 𝑃𝐿 + β4 ln 𝑃𝑅 + β5 ln 𝐼 + 𝑒 

 This model is a convenient one because it precludes infeasible negative prices, 

quantities, and income, and because the coefficients β2, β3, β4, and β5 are elasticities 

 A relevant piece of nonsample information can be derived by noting that if all prices 

and income go up by the same proportion, we would expect there to be no change in 

quantity demanded 



6.2 The Use of Nonsample Information 
3 of 5 

Principles of Econometrics, 5e 28 Further Inference in the Multiple Regression Model 

 Having all prices and income change by the same proportion is equivalent to 

multiplying each price and income by a constant, say λ: 

 (6.18) 

ln 𝑄 = β1 + β2 ln 𝜆𝑃𝐵 + β3 ln 𝜆𝑃𝐿 + β4 ln 𝜆𝑃𝑅 + β5 ln 𝜆𝐼 =β1 +

β2 ln 𝑃𝐵 + β3 ln 𝑃𝐿 + β4 ln 𝑃𝑅 + β5 ln 𝐼 + (β2+ β3+ β4 + β5) ln 𝜆 + 𝑒 



6.2 The Use of Nonsample Information 
4 of 5 

Principles of Econometrics, 5e 29 Further Inference in the Multiple Regression Model 

 To have no change in ln(Q) when all prices and income go up by the same 

proportion, it must be true that: 

 Start with 

 Solve the restriction for one of the parameters, say β4: 

 Substituting gives: 
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6.2 The Use of Nonsample Information 
5 of 5 

Principles of Econometrics, 5e 30 Further Inference in the Multiple Regression Model 

 Properties of this restricted least squares estimation procedure: 

1. The restricted least squares estimator is biased, unless the constraints we 

impose are exactly true 

2. The restricted least squares estimator is that its variance is smaller than the 

variance of the least squares estimator, whether the constraints imposed are true 

or not 



6.3 Model Specification 

Principles of Econometrics, 5e 31 Further Inference in the Multiple Regression Model 

 In any econometric investigation, choice of the model is one of the first steps 

 What are the important considerations when choosing a model?  

 What are the consequences of choosing the wrong model?  

 Are there ways of assessing whether a model is adequate 

 Three essential features of model choice are 

1. choice of functional form,  

2. choice of explanatory variables (regressors) to be included in the model 

3. whether the multiple regression assumptions MR1–MR6, listed in Chapter 5, hold 



6.3.1 Causality versus Prediction 1 of 2 

Principles of Econometrics, 5e 32 Further Inference in the Multiple Regression Model 

 With causal inference we are primarily interested in the effect of a change in a 

regressor on the conditional mean of the dependent variable 

 We wish to be able to say that a one-unit change in an explanatory variable will 

cause a particular change in the mean of the dependent variable, other factors held 

constant 

 This type of analysis is important for policy work 



6.3.1 Causality versus Prediction 2 of 2 

Principles of Econometrics, 5e 33 Further Inference in the Multiple Regression Model 

 On the other hand, if the purpose of a model is to predict the value of a dependent 

variable, then, for regressor choice, it is important to choose variables that are highly 

correlated with the dependent variable and that lead to a high 𝑅2 

 Predictive analysis using variables from the increasingly popular field of “big data” 

is an example of where variables are chosen for their predictive ability rather than to 

examine causal relationships. 



6.3.2 Omitted Variables 1 of 2 

Principles of Econometrics, 5e 34 Further Inference in the Multiple Regression Model 

 It is possible that a chosen model may have important variables omitted 

 Our economic principles may have overlooked a variable, or lack of data may lead 

us to drop a variable even when it is prescribed by economic theory 

 There are four observations for the omitted variable bias proof: 

1. Omitting a relevant variable is a special case of using a restricted least squares 

estimator where the restriction β3 = 0 is not true. It leads to a biased estimator for 

β2 but one with a lower variance 



6.3.2 Omitted Variables 2 of 2 

Principles of Econometrics, 5e 35 Further Inference in the Multiple Regression Model 

2. Knowing the sign of β3 and the sign of the covariance between x and z tells us the 

direction of the bias 

3. The 𝑏𝑖𝑎𝑠 𝑏2
∗ 𝑿 = 𝐸 𝑏2

∗ 𝑿  − 𝛽2 = 𝛽3
𝑐𝑜𝑣 (𝑥,𝑧)

𝑣𝑎𝑟 (𝑥)
 can also be written as 𝛽3𝛾

2   where 

𝛾2  is the least squares estimate of 𝛾2 from the regression equation E(z|x) = 𝛾1+ 𝛾1x 

4. The importance of the assumption E (𝑒𝑖 |X ) = 0 becomes clear 

 In the equation 𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖 + 𝑣𝑖 , we have E (𝑣𝑖 | 𝑥𝑖) = 𝛽3𝐸(𝑧𝑖 |𝑥𝑖) . It is the 

 nonzero value for E (𝑧𝑖 |𝑥𝑖) that leads to the biased estimator for 𝛽2 



6.3.3 Irrelevant Variables 

Principles of Econometrics, 5e 36 Further Inference in the Multiple Regression Model 

 You to think that a good strategy is to include as many variables as possible in your 

model 

 Doing so will not only complicate your model unnecessarily, but may also inflate the 

variances of your estimates because of the presence of irrelevant variables 

 those whose coefficients are zero because they have no direct effect on the 

dependent variable 



6.3.4 Control Variables 1 of 2 
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 Variables included in the equation to avoid omitted variable bias in the coefficient of 

interest are called control variables 

 For a control variable to serve its purpose and act as a proxy for an omitted variable, 

it needs to satisfy a conditional mean independence assumption 

 Labor economists are interested in the question: 

 What is the causal relationship between more education and higher wages? 

 One variable that is clearly relevant, but difficult to include because it cannot be 

observed, is ability 



6.3.4 Control Variables 2 of 2 
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 More able people are likely to have more education, and so ability and education 

will be correlated 

 If we look at the equation 𝐸 𝐴𝐵𝐼𝐿𝐼𝑇𝑌 𝐸𝐷𝑈𝐶𝐴𝑇𝐼𝑂𝑁, 𝐼𝑄 = 𝐸 𝐴𝐵𝐼𝐿𝐼𝑇𝑌 𝐼𝑄  

 IQ is correlated with both education and ability  

 Once we know somebody’s IQ, knowing their level of education does not add any 

extra information about their ability 

 we can proceed to use IQ as a control variable or a proxy variable to replace 

ABILITY 



6.3.5 Choosing a Model 1 of 3 
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1. Is the purpose of the model to identify causal effects or prediction? Careful 

selection of control variables is necessary if the goal is to predict not find causality 

then using variables that have high predictive power is the major concern 

2. Having theoretical knowledge and understanding of the relationship are important 

for choosing the variables and functional form 

3. If an estimated equation has coefficients with unexpected signs, or unrealistic 

magnitudes, they could be caused by a misspecification 



6.3.5 Choosing a Model 2 of 3 

Principles of Econometrics, 5e 40 Further Inference in the Multiple Regression Model 

4. Patterns in least squares residuals can be helpful for uncovering problems caused 

by an incorrect functional form 

5. One method for assessing whether a variable or a group of variables should be 

included in an equation is to perform significance tests 

6. Have the leverage, studentized residuals, DFBETAS, and DFFITS measures 

identified any influential observations? 

7. Are the estimated coefficients robust with respect to alternative specifications 



6.3.5 Choosing a Model 3 of 3 

Principles of Econometrics, 5e 41 Further Inference in the Multiple Regression Model 

8. A test known as RESET (Regression Specification Error Test) can be useful for 

detecting omitted variables or an incorrect functional form 

9. Various model selection criteria, based on maximizing R2, or minimizing the sum of 

squared errors (SSE), subject to a penalty for too many variables, have been suggested 

10. A more stringent assessment of a model’s predictive ability is to use a “hold-out” 

sample 

11. Following the guidelines in the previous 10 points can almost inevitably lead to 

revisions of originally proposed model 



6.3.6 RESET 1 of 2 
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 RESET (REgression Specification Error Test) is designed to detect omitted 

variables and incorrect functional form 

 Suppose we have the model: 

 Let the predicted values of y be: (6.33) 

 Now consider the following two artificial models: 

 (6.34) 

 (6.35) 
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6.3.6 RESET 2 of 2 
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 In (6.34) a test for misspecification is a test of H0:γ1 = 0 against the alternative H1:γ1 

≠ 0 

  In (6.36), testing H0:γ1 = γ2 = 0 against H1: γ1 ≠ 0 and/or γ2 ≠ 0 is a test for 

misspecification 

 H0 implies that the original model is inadequate and can be improved. A failure to 

reject H0 says that the test has not been able to detect any misspecification 
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 In this section, we describe that extension, reinforce earlier material, and provide 

some more general background 

 Consider the equation (6.35) 𝐸 𝑦0 𝒙0 = 𝛽1 + 𝛽2𝑥02 + 𝛽3𝑥03 +⋯+ 𝛽𝐾𝑥0𝐾 

 Defining 𝑒0 = 𝑦0 − 𝐸 𝑦0 𝒙0 , we can write 

 (6.36) 𝑦0 = 𝛽1 + 𝛽2𝑥02 + 𝛽3𝑥03 +⋯+ 𝛽𝐾𝑥0𝐾 + 𝑒0 

 Define 𝑒𝑖 = 𝑦𝑖 − 𝐸 𝑦𝑖 𝒙𝑖  so the model used to estimate is 

 (6.38) 𝑦i = 𝛽1 + 𝛽2𝑥i2 + 𝛽3𝑥i3 +⋯+ 𝛽𝐾𝑥i𝐾 + 𝑒i 



6.4 Prediction 2 of 3 

Principles of Econometrics, 5e 45 Further Inference in the Multiple Regression Model 

 These equations make up the predictive model 

 Note that (6.36) and (6.38) do not have to be causal models 

 The error term e is simply the difference between the realized value y and its 

conditional expectation; it is the forecasting error that would occur if (𝛽1, 𝛽2,…, 𝛽𝐾) 

were known and did not have to be estimated 

 An extra assumption that we need is that 𝑒0 𝒙0  is uncorrelated with 𝑒𝑖 𝒙  for i 

= 1, 2,…,N and i ≠ 0 and  var 𝑒0 𝒙0  = var 𝑒𝑖 𝒙  = 𝜎2 
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 The forecast error is given by  

 𝑓 = 𝑦0 − 𝑦0 = (𝛽1- 𝑏1) +(𝛽2- 𝑏2)𝑥02 +(𝛽3- 𝑏3)𝑥03 +⋯+ 𝛽𝐾− 𝑏𝐾 𝑥0𝐾 + 𝑒0 

 The conditional variance of the prediction error is: 

 

 (6.41) 
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 In this section, we consider three model selection criteria: 

1. 𝑅2 and 𝑅 2 

2. AIC 

3. SC 

 These criteria should be treated as devices that provide additional information 

about the relative merits of alternative models 
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 An alternative measure of goodness of fit called the adjusted-𝑅2, denoted𝑅 2 

 Computed as 𝑅  2= 1 − 
𝑆𝑆𝐸/(𝑁−𝐾)

𝑆𝑆𝑇/(𝑁−1)
 

 Selecting variables to maximize 𝑅 2 can be viewed as selecting variables to minimize 

SSE 

 𝐴𝐼𝐶= ln
𝑆𝑆𝐸

𝑁
+ (

2𝐾

𝑁
) and SC = ln

𝑆𝑆𝐸

𝑁
+ (

𝐾𝑙𝑛 𝑁

𝑁
) 



6.5 Poor Data, Collinearity, and 
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 When data are the result of an uncontrolled experiment, many of the economic 

variables may move together in systematic ways  

 Such variables are said to be collinear, and the problem is labeled collinearity 

 It is not just relationships between variables in a sample of data that make it difficult 

to isolate the separate effects of individual explanatory variables 

 If the values of an explanatory variable do not vary much within a sample of data, 

then it is difficult to use that data to estimate a coefficient that describes the effect of 

change in that variable 
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 Exact or extreme collinearity exists when x2 and x3 are perfectly correlated, in which 

case r23 = 1 and var(b2) goes to infinity  

  Similarly, if x2 exhibits no variation                  equals zero and var(b2) again goes to 

infinity 

 In this case x2 is collinear with the constant term 

 
2

2 2x x
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 In general, whenever there are one or more exact linear relationships among the 

explanatory  variables, then the condition of exact collinearity exists 

  In this case the least squares estimator is not defined  

 We cannot obtain estimates of βk’s using the least squares principle 

 The effects of this imprecise information are: 
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1. When estimator standard errors are large, it is likely that the usual t-tests will lead 

to the conclusion that parameter estimates are not significantly different from zero 

2. Estimators may be very sensitive to the addition or deletion of a few observations, 

or to the deletion of an apparently insignificant variable 

3. Accurate forecasts may still be possible if the nature of the collinear relationship 

remains the same within the out-of-sample observations 
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 One simple way to detect collinear relationships is to use sample correlation 

coefficients between pairs of explanatory variables 

 These sample correlations are descriptive measures of linear association 

 However, in some cases in which collinear relationships involve more than two 

of the explanatory variables, the collinearity may not be detected using auxiliary 

regression 
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 If R2 from this artificial model is above 0.80, say, the implication is that a large 

portion of the variation in x2 is explained by variation in the other explanatory 

variables 

 The collinearity problem is that the data do not contain enough ‘‘information’’ about 

the individual effects of explanatory variables to permit us to estimate all the 

parameters of the statistical model precisely  

 A second way of adding new information is to introduce nonsample information in 

the form of restrictions on the parameters 
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 The preferred equation for predicting house prices was: 

 ln(PRICE) =𝛽1+𝛽2SQFT +𝛽3AGE +𝛽4AGE
2
 + e 

 In a sample of 900 observations, it is not surprising to find a relatively large number 

of data points where the various influence measures exceed the recommended 

thresholds 

 The observations with the three largest DFFITS also have the large values for the 

influence measures 
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 In parentheses next to each of the values is the rank of its absolute value. When we 

check the characteristics of the three unusual observations, we find observation 540 

is the newest house in the sample and observation 150 is the oldest house. 

Observation 411 is both old and large 
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 In this section, we discuss estimation of models that are nonlinear in the parameters 

 Consider the model (6.50) 𝑦𝑖 = 𝛽𝑥𝑖1 + 𝛽
2𝑥𝑖2 + 𝑒𝑖 

 This example differs from the conventional linear model because the coefficient of 

𝑥𝑖2 is equal to the square of the coefficient of 𝑥𝑖1, and the number of parameters is 

not equal to the number of variables 
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 To estimate 𝛽 we can use (6.51) 𝑆 𝛽 =   (𝑦𝑖 − 𝛽𝑥𝑖1 − 𝛽
2𝑥𝑖2)

2𝑁
𝑖=1  

 When we have models that are nonlinear in the parameters, we cannot in general 

derive formulas for the parameter values that minimize the sum of squared errors 

function 

 However, for a given set of data, we can ask the computer to search for the 

parameter values that take us to the bottom of the bowl 

 Those minimizing values are known as the nonlinear least squares estimates 
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