Self-driving Cars & Data Collection

Privacy Perceptions of Networked Autonomous Vehicles

<u>Cara Bloom</u>, Joshua Tan, Javed Ramjohn, Lujo Bauer

Carnegie Mellon University

Why networked autonomous vehicle (AV) privacy?

Why networked AV privacy?

1. Data collection capabilities

Why networked AV privacy?

Data collection capabilities
 Operated by a private company

Why networked AV privacy?

- 1. Data collection capabilities
- 2. Operated by a private company
- 3. Collection of physical information in public

Discover what is 'reasonable' data collection and use for autonomous vehicle (AV) fleets

1. What do people think AV fleets are capable of?

- 1. What do people think AV fleets are capable of?
- 2. How comfortable are people with AV fleet capabilities?

- 1. What do people think AV fleets are capable of?
- 2. How comfortable are people with AV fleet capabilities?
- 3. How much effort would people expend to opt out?

Up Next1. Study Design2. Findings3. Policy Applications

Study Design

- Exploratory online survey

Study Design

- Exploratory online survey
- Privacy primed & unprimed groups

Primary Uses

Primary Uses

Necessary for autonomous navigation

Primary Uses	Image Capture	Aggregation & Storage	Specific Incident Analysis	Continuous Analysis
Secondary Uses	Perceiving People	Recognition	Identification	Tracking
	Perceiving Vehicles	Recognition	Identification	Tracking

General AV questions

Effort to opt out

Bias against Uber & demographics

Study Design

- Exploratory online survey
- Privacy primed & unprimed groups
- Pittsburgh & four similar cities

Recruitment

- Ads on Craigslist
- Posts on city Subreddits

- Posters Pittsburgh only

302 Participants

- 60% male
- 25% in tech fields
 Avg. age 34 [18, 79]

Question:

What do people think networked fleets of autonomous vehicles are capable of?

Privacy Questions

Primary Uses	Image Capture	Aggregation & Storage	Specific Incident Analysis	Continuous Analysis
Secondary Uses	Perceiving People	Recognition	Identification	Tracking
	Perceiving Vehicles	Recognition	Identification	Tracking

Capture images Aggregate and store info Analyze specific incidents Analyze continuously Recognize individuals Identify individuals Track individuals Recognize vehicles Identify vehicles Track vehicles

Primary Uses

Capture images Aggregate and store info Analyze specific incidents Analyze continuously **Recognize individuals** Identify individuals Track individuals **Recognize vehicles** Identity vehicles Track vehicles

How likely do you think this scenario is to be happening now?

Capture images Aggregate and store info Analyze specific incidents Analyze continuously

Recognize individuals

Identify individuals

Track individuals Recognize vehicles How likely do you think this scenario is to be happening now?

Q13. A self-driving car recognizes a vehicle that has been seen by another self-driving car in the fleet

Track vehicles

Identity vehicles

Capture images Aggregate and store info Analyze specific incidents Analyze continuously

Recognize individuals

Identify individuals

Track individuals Recognize vehicles Identify vehicles

Track vehicles

How likely do you think this scenario is to be happening now?

Q13. A self-driving car recognizes a vehicle that has been seen by another self-driving car in the fleet

For example: Uber knows that different selfdriving cars encountered the same vehicle on different days, but does not know who owns the vehicle

Participant misconceptions

Participant misconceptions

Question:

How comfortable are people with these potential capabilities?

Capture images Aggregate and store info Analyze specific incidents Analyze continuously Recognize individuals Identify individuals Track individuals Recognize vehicles Identify vehicles Track vehicles

How comfortable are you with the scenario?

Differentiation is less clear than for likelihood questions

Differentiation is less clear than for likelihood questions

Q25. I would feel _____ if my car was tracked each time it encountered a self-driving car.

Reasonable benefit

Reasonable benefit **Ubiquity**

Ubiquity Reasonable benefit Necessary for AVs

Ubiquity Reasonable benefit Necessity for AVs Consent

Question:

How much effort would people expend to opt out?

Effort to Opt Out

Q36. How many minutes would you spend in the system to successfully opt out?

Effort to Opt Out

Q36. How many minutes would you spend in the system to successfully opt out?

In the Paper:

- More correlation tests
- Comparison of privacy and safety comfort
- Uber-related exposure and bias

1. People differentiate between primary and secondary data uses

- People differentiate between primary and secondary uses
- 2. Justifications focused on necessity, consent, and ubiquity

Takeaways 1-2: Policy Application

Takeaways 1-2: Policy Application

Primary uses are reasonable, while secondary uses are not

Takeaways 1-2: Policy Application

Primary uses are reasonable, while secondary uses are not

Possible Exception: Recognition of vehicles

3. Misconceptions about new information

- 3. Misconceptions about new information
- 4. Priming had the only significant effect on effort to opt-out

Takeaways 3-4: Policy Application

People will likely react strongly to conversations about autonomous vehicle privacy

Takeaways 3-4: Policy Application

People will likely react strongly to conversations about autonomous vehicle privacy

And, it may be difficult to relay accurate information

- Companies should self-regulate

 Companies should self-regulate

 to get ahead of the narrative
 to fulfill reasonable expectations

- Companies should self-regulate
- Policy should restrict secondary uses of AVcollected information

- Companies should self-regulate
- Policy should restrict secondary uses of AVcollected information

Self-driving Cars & Data Collection

Privacy Perceptions of Networked Autonomous Vehicles

<u>Cara Bloom</u>, Joshua Tan, Javed Ramjohn, Lujo Bauer

Carnegie Mellon University 10. A self-driving car recognizes a person that has been encountered before by a different self-driving car in the fleet

○ Very Unlikely

 \bigcirc Unlikely

○ Neither Unlikely nor Likely

○ Likely

 \bigcirc Very Likely

11. Individuals are identified by name when they encounter one of the self-driving cars in the fleet

For example: Uber knows that the pedestrian next to one of

its self-driving cars is Alice

 \bigcirc Very Unlikely

⊖ Unlikely

O Neither Unlikely nor Likely

⊖ Likely

○ Very Likely

12. Individuals are tracked using each time they encounter one of its self-driving cars in the fleet

○ Very Unlikely

 \bigcirc Unlikely

○ Neither Unlikely nor Likely

- \bigcirc Likely
- \bigcirc Very Likely

Scenario	Overall	PGH	Non-PGH
Capture images Aggregate and store info	$16\% (20) \\ 42\% (54)$	$14\% (13) \\ 43\% (40)$	$\begin{array}{ccc} 19\% & (7) \\ 38\% & (14) \end{array}$
Analyze specific incidents Analyze continuously	$\begin{array}{c} 36\% \ (46) \ 43\% \ (55) \end{array}$	$\begin{array}{c} 36\% \ (33) \ 39\% \ (36) \end{array}$	$\begin{array}{c} 35\% \ (13) \ 51\% \ (19) \end{array}$
Recognize individuals Identify individuals Track individuals	$54\%~(70)\ 76\%~(98)\ 76\%~(98)$	$57\% \ (52) \ 75\% \ (69) \ 78\% \ (72)$	$49\%~(18)\ 78\%~(29)\ 70\%~(26)$
Recognize vehicles Identify vehicles Track vehicles	$\begin{array}{c} 43\% \ (56) \ 71\% \ (92) \ 85\% \ (95) \end{array}$	$\begin{array}{c} 46\% \ (42) \\ 68\% \ (63) \\ 84\% \ (67) \end{array}$	$\begin{array}{c} 38\% \ (14) \ 78\% \ (29) \ 88\% \ (28) \end{array}$

Table 2: Discomfort with technological capabilities in different scenarios, overall and by whether participants lived in Pittsburgh. The percentage (count) of participants that were uncomfortable or very uncomfortable with a scenario are shown.

Exposure to Uber & AV technology

- 78% Pgh and 42% non-Pgh were exposed to media
- 64% Pgh and 3% non-Pgh had seen one as a pedestrian

Bias against Uber

- 17% would have answered differently if Uber hadn't been the example
- 18% would trust a different AV company over Uber to have their best interests in mind

Progression of General Scenarios

General Proximity				
Walking Near 24%	Driving Near 25%	Cycling Near	Being Near in Snow <mark>61%</mark>	Riding In

	General Privacy			
Changes in Job Market	Image Capture <mark>85%</mark>	Aggregation & Analysis 77%	Accident Liability	Becoming More Common <mark>30%</mark>