
"A must-read resource for anyone who is serious about embracing the opportunity of big data." —Craig Vaughan, Global Vice President, SAP

Data Science for Business

What You Need to Know About Data Mining and Data-Analytic Thinking

Foster Provost & Tom Fawcett

www.it-ebooks.info

Data Science for Business What You Need to Know About Data Mining and Data-Analytic Thinking

This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. By learning data science principles, you will understand the many data mining techniques in use today. More importantly, these principles underpin the processes and strategies necessary to solve business problems through data mining techniques.

"This book goes beyond data analytics 101. It's the essential guide for those of us (all of us?) whose businesses are built on the ubiquity of data opportunities and the new mandate for data-driven decision-making."

-Tom Phillips, CEO Media6Degrees; former Head of Google Search and Analytics

"The authors, both renowned experts in data science before it had a name, have taken a complex topic and made it accessible to all levels. This is the first book of its kind, with a focus on data science concepts as applied to practical business problems. It is liberally sprinkled with compelling real-world examples outlining familiar, accessible problems in the business world: customer churn, targeted marketing, even whiskey analytics!

The book is unique in that it does not give a cookbook of algorithms, rather it helps the reader understand the underlying concepts behind data science, and most importantly how to approach and be successful at problem solving. Whether you are looking for a good comprehensive overview of data science or are a budding data scientist in need of the basics, this is a must-read."

- Chris Volinsky, Director, Statistics Research, AT&T Labs Winner of the \$1 Million Netflix Challenge

"Data is the foundation of new waves of productivity growth, innovation, and richer customer insight. Only recently viewed broadly as a source of competitive advantage, dealing well with data is rapidly becoming table stakes to stay in the game. The authors' deep applied experience makes this a must read—a window into your competitor's strategy."

—Alan Murray, Serial Entrepreneur; Partner Coriolis Ventures

www.it-ebooks.info

Twitter: @oreillymedia facebook.com/oreilly

Data Science for Business

Foster Provost and Tom Fawcett

www.it-ebooks.info

Data Science for Business

by Foster Provost and Tom Fawcett

Copyright © 2013 Foster Provost and Tom Fawcett. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (*http://my.safaribooksonline.com*). For more information, contact our corporate/ institutional sales department: 800-998-9938 or *corporate@oreilly.com*.

Editors: Mike Loukides and Meghan Blanchette Production Editor: Christopher Hearse Proofreader: Kiel Van Horn Indexer: WordCo Indexing Services, Inc. **Cover Designer:** Mark Paglietti **Interior Designer:** David Futato **Illustrator:** Rebecca Demarest

July 2013: First Edition

Revision History for the First Edition:

2013-07-25: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449361327 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps. *Data Science for Business* is a trademark of Foster Provost and Tom Fawcett.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-36132-7

[LSI]

Table of Contents

Pre	face	xi
1.	Introduction: Data-Analytic Thinking	. 1
	The Ubiquity of Data Opportunities	1
	Example: Hurricane Frances	3
	Example: Predicting Customer Churn	4
	Data Science, Engineering, and Data-Driven Decision Making	4
	Data Processing and "Big Data"	7
	From Big Data 1.0 to Big Data 2.0	8
	Data and Data Science Capability as a Strategic Asset	9
	Data-Analytic Thinking	12
	This Book	14
	Data Mining and Data Science, Revisited	14
	Chemistry Is Not About Test Tubes: Data Science Versus the Work of the Data	
	Scientist	15
	Summary	16
2.	Business Problems and Data Science Solutions.	19
	Fundamental concepts: A set of canonical data mining tasks; The data mining proce	ss;
	Supervised versus unsupervised data mining.	
	From Business Problems to Data Mining Tasks	19
	Supervised Versus Unsupervised Methods	24
	Data Mining and Its Results	25
	The Data Mining Process	26
	Business Understanding	27
	Data Understanding	28
	Data Preparation	29
	Modeling	31
	Evaluation	31

	Deployment Implications for Managing the Data Science Team Other Analytics Techniques and Technologies Statistics Database Querying Data Warehousing Regression Analysis Machine Learning and Data Mining Answering Business Questions with These Techniques Summary	32 34 35 35 37 38 39 39 40 41
3.	Introduction to Predictive Modeling: From Correlation to Supervised Segmentation. <i>Fundamental concepts: Identifying informative attributes; Segmenting data by progressive attribute selection.</i> <i>Exemplary techniques: Finding correlations; Attribute/variable selection; Tree induction.</i>	43
	Models, Induction, and Prediction	44
	Supervised Segmentation	48
	Selecting Informative Attributes	49
	Example: Attribute Selection with Information Gain	56
	Supervised Segmentation with Tree-Structured Models	62
	Visualizing Segmentations	67
	Trees as Sets of Rules	71
	Probability Estimation	71
	Example: Addressing the Churn Problem with Tree Induction	73
	Summary	78
4.	Fitting a Model to Data Fundamental concepts: Finding "optimal" model parameters based on data; Choose the goal for data mining; Objective functions; Loss functions.	ing
	Exemplary techniques: Linear regression; Logistic regression; Support-vector machine	nes.
	Classification via Mathematical Functions	83
	Linear Discriminant Functions	85
	Optimizing an Objective Function	87
	An Example of Mining a Linear Discriminant from Data	88
	Linear Discriminant Functions for Scoring and Ranking Instances	90
	Support Vector Machines, Briefly	91
	Regression via Mathematical Functions	94
	Class Probability Estimation and Logistic "Regression"	96
	* Logistic Regression: Some Technical Details	99
	Example: Logistic Regression versus Tree Induction	102
	Nonlinear Functions, Support Vector Machines, and Neural Networks	105

Summary

5.	Overfitting and Its Avoidance Fundamental concepts: Generalization; Fitting and overfitting; Complexity control.	111
	Exemplary techniques: Cross-validation; Attribute selection; Tree pruning;	
	Regularization.	
	Generalization	111
	Overfitting	113
	Overfitting Examined	113
	Holdout Data and Fitting Graphs	113
	Overfitting in Tree Induction	116
	Overfitting in Mathematical Functions	118
	Example: Overfitting Linear Functions	119
	* Example: Why Is Overfitting Bad?	124
	From Holdout Evaluation to Cross-Validation	126
	The Churn Dataset Revisited	129
	Learning Curves	130
	Overfitting Avoidance and Complexity Control	133
	Avoiding Overfitting with Tree Induction	133
	A General Method for Avoiding Overfitting	134
	* Avoiding Overfitting for Parameter Optimization	136
	Summary	140
6.	Similarity, Neighbors, and Clusters	141
	Fundamental concepts: Calculating similarity of objects described by data; Using	
	similarity for prediction; Clustering as similarity-based segmentation.	
	Exemplary techniques: Searching for similar entities; Nearest neighbor methods; Clustering methods; Distance metrics for calculating similarity.	
	Similarity and Distance	142
	Nearest-Neighbor Reasoning	144
	Example: Whiskey Analytics	144
	Nearest Neighbors for Predictive Modeling	146
	How Many Neighbors and How Much Influence?	149
	Geometric Interpretation, Overfitting, and Complexity Control	151
	Issues with Nearest-Neighbor Methods	154
	Some Important Technical Details Relating to Similarities and Neighbors	157
	Heterogeneous Attributes	157
	* Other Distance Functions	158
	* Combining Functions: Calculating Scores from Neighbors	161
	Clustering Example: Whiskey Analytics Revisited	163
		163
	Hierarchical Clustering	164

	Nearest Neighbors Revisited: Clustering Around Centroids	169
	Example: Clustering Business News Stories	174
	Understanding the Results of Clustering	177
	* Using Supervised Learning to Generate Cluster Descriptions	179
	Stepping Back: Solving a Business Problem Versus Data Exploration	182
	Summary	184
7.	Decision Analytic Thinking I: What Is a Good Model? Fundamental concepts: Careful consideration of what is desired from data science results; Expected value as a key evaluation framework; Consideration of appropriate comparative baselines. Exemplary techniques: Various evaluation metrics; Estimating costs and benefits;	
	Calculating expected profit; Creating baseline methods for comparison.	
	Evaluating Classifiers	188
	Plain Accuracy and Its Problems	189
	The Confusion Matrix	189
	Problems with Unbalanced Classes	190
	Problems with Unequal Costs and Benefits	193
	Generalizing Beyond Classification	193
	A Key Analytical Framework: Expected Value	194
	Using Expected Value to Frame Classifier Use	195
	Using Expected Value to Frame Classifier Evaluation	196
	Evaluation, Baseline Performance, and Implications for Investments in Data	204
8.	Evaluation, Baseline Performance, and Implications for Investments in Data Summary Visualizing Model Performance	204 207 209
8.	Evaluation, Baseline Performance, and Implications for Investments in Data Summary Visualizing Model Performance. Fundamental concepts: Visualization of model performance under various kinds of uncertainty; Further consideration of what is desired from data mining results. Exemplary techniques: Profit curves; Cumulative response curves; Lift curves; ROC curves.	204 207 209
8.	Evaluation, Baseline Performance, and Implications for Investments in Data Summary Visualizing Model Performance	204 207 209
8.	Evaluation, Baseline Performance, and Implications for Investments in Data Summary Visualizing Model Performance Fundamental concepts: Visualization of model performance under various kinds of uncertainty; Further consideration of what is desired from data mining results. Exemplary techniques: Profit curves; Cumulative response curves; Lift curves; ROC curves. Ranking Instead of Classifying	204 207 209 209
8.	Evaluation, Baseline Performance, and Implications for Investments in Data Summary Visualizing Model Performance Fundamental concepts: Visualization of model performance under various kinds of uncertainty; Further consideration of what is desired from data mining results. Exemplary techniques: Profit curves; Cumulative response curves; Lift curves; ROC curves. Ranking Instead of Classifying Profit Curves	204 207 209 212
8.	 Evaluation, Baseline Performance, and Implications for Investments in Data Summary Visualizing Model Performance. Fundamental concepts: Visualization of model performance under various kinds of uncertainty; Further consideration of what is desired from data mining results. Exemplary techniques: Profit curves; Cumulative response curves; Lift curves; ROC curves. Ranking Instead of Classifying Profit Curves ROC Graphs and Curves The Area Under the ROC Curve (AUC) Cumulative Response and Lift Curves 	204 207 209 212 214 219 219
8.	 Evaluation, Baseline Performance, and Implications for Investments in Data Summary Visualizing Model Performance. Fundamental concepts: Visualization of model performance under various kinds of uncertainty; Further consideration of what is desired from data mining results. Exemplary techniques: Profit curves; Cumulative response curves; Lift curves; ROC curves. Ranking Instead of Classifying Profit Curves ROC Graphs and Curves The Area Under the ROC Curve (AUC) 	204 207 209 212 214 219
8.	 Evaluation, Baseline Performance, and Implications for Investments in Data Summary Visualizing Model Performance. Fundamental concepts: Visualization of model performance under various kinds of uncertainty; Further consideration of what is desired from data mining results. Exemplary techniques: Profit curves; Cumulative response curves; Lift curves; ROC curves. Ranking Instead of Classifying Profit Curves ROC Graphs and Curves The Area Under the ROC Curve (AUC) Cumulative Response and Lift Curves 	204 207 209 212 214 219 219
	 Evaluation, Baseline Performance, and Implications for Investments in Data Summary Visualizing Model Performance. Fundamental concepts: Visualization of model performance under various kinds of uncertainty; Further consideration of what is desired from data mining results. Exemplary techniques: Profit curves; Cumulative response curves; Lift curves; ROC curves. Ranking Instead of Classifying Profit Curves ROC Graphs and Curves The Area Under the ROC Curve (AUC) Cumulative Response and Lift Curves Example: Performance Analytics for Churn Modeling 	204 207 209 212 214 219 219 223 231 233

	Example: Targeting Online Consumers With Advertisements	233
	Combining Evidence Probabilistically	235
	Joint Probability and Independence	236
	Bayes' Rule	237
	Applying Bayes' Rule to Data Science	239
	Conditional Independence and Naive Bayes	240
	Advantages and Disadvantages of Naive Bayes	242
	A Model of Evidence "Lift"	244
	Example: Evidence Lifts from Facebook "Likes"	245
	Evidence in Action: Targeting Consumers with Ads	247
	Summary	247
10.	Representing and Mining Text. Fundamental concepts: The importance of constructing mining-friendly data representations; Representation of text for data mining.	249
	Exemplary techniques: Bag of words representation; TFIDF calculation; N-grams; Stemming; Named entity extraction; Topic models.	
	Why Text Is Important	250
	Why Text Is Difficult	250
	Representation	251
	Bag of Words	252
	Term Frequency	252
	Measuring Sparseness: Inverse Document Frequency	254
	Combining Them: TFIDF	256
	Example: Jazz Musicians	256
	* The Relationship of IDF to Entropy	261
	Beyond Bag of Words	263
	N-gram Sequences	263
	Named Entity Extraction	264
	Topic Models	264
	Example: Mining News Stories to Predict Stock Price Movement	266
	The Task	266
	The Data	268
	Data Preprocessing	270
	Results	271
	Summary	275
11.	Decision Analytic Thinking II: Toward Analytical Engineering. Fundamental concept: Solving business problems with data science starts with analytical engineering: designing an analytical solution, based on the data, tools, a techniques available. Exemplary technique: Expected value as a framework for data science solution designed.	
		_ · ·

Recomposing the Solution Pieces278A Brief Digression on Selection Bias280Our Churn Example Revisited with Even More Sophistication281The Expected Value Framework: Structuring a More Complicated BusinessProblemProblem281Assessing the Influence of the Incentive283From an Expected Value Decomposition to a Data Science Solution284Summary287 12. Other Data Science Tasks and Techniques.289 <i>Fundamental concepts: Our fundamental concepts as the basis of many common data science techniques; The importance of familiarity with the building blocks of data science.Exemplary techniques: Association and co-occurrences; Behavior profiling; Link prediction; Data reduction; Latent information mining; Movie recommendation, Biasvariance decomposition of error; Ensembles of models; Causal reasoning from data.</i> Co-occurrences and Associations: Finding Items That Go Together290Measuring Surprise: Lift and Leverage291Example: Beer and Lottery Tickets292Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Link Prediction, and Social Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary313 <i>Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science313Achie</i>		Targeting the Best Prospects for a Charity Mailing	278
A Brief Digression on Selection Bias280Our Churn Example Revisited with Even More Sophistication281The Expected Value Framework: Structuring a More Complicated BusinessProblemProblem281Assessing the Influence of the Incentive283From an Expected Value Decomposition to a Data Science Solution284Summary28712. Other Data Science Tasks and Techniques.289Fundamental concepts: Our fundamental concepts as the basis of many common datascience.289Fundamental concepts: Our fundamental concepts as the basis of many common datascience.289Exemplary techniques: Association and co-occurrences; Behavior profiling; Link prediction; Data reduction; Latent information mining; Movie recommendation; Bias- variance decomposition of error; Ensembles of models; Causal reasoning from data.Co-occurrences and Associations: Finding Items That Go Together290Measuring Surprise: Lift and Leverage291Example: Beer and Lottery Tickets292Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Link Prediction and Social Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary31013. Data Science and Business Strategy.313Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data s		The Expected Value Framework: Decomposing the Business Problem and	
Our Churn Example Revisited with Even More Sophistication281The Expected Value Framework: Structuring a More Complicated Business Problem281Assessing the Influence of the Incentive283Assessing the Influence of the Incentive283From an Expected Value Decomposition to a Data Science Solution284Summary287 12. Other Data Science Tasks and Techniques.289 Fundamental concepts: Our fundamental concepts as the basis of many common datascience techniques; The importance of familiarity with the building blocks of datascience.Exemplary techniques: Association and co-occurrences; Behavior profiling; Linkprediction; Data reduction; Latent information mining; Movie recommendation; Biasvariance decomposition of error; Ensembles of models; Causal reasoning from data.Co-occurrences and Associations: Finding Items That Go Together290Measuring Surprise: Lift and Leverage291Example: Beer and Lottery Tickets292Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Data Reduction, Latent Information, and Movie Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary313fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.Thinking Data-Analytically,		Recomposing the Solution Pieces	278
The Expected Value Framework: Structuring a More Complicated Business Problem281Assessing the Influence of the Incentive283From an Expected Value Decomposition to a Data Science Solution284Summary287 12. Other Data Science Tasks and Techniques. 289Fundamental concepts: Our fundamental concepts as the basis of many common data science techniques; The importance of familiarity with the building blocks of data science.289Exemplary techniques: Association and co-occurrences; Behavior profiling; Link prediction; Data reduction; Latent information mining; Movie recommendation; Bias- variance decomposition of error; Ensembles of models; Causal reasoning from data.Co-occurrences and Associations: Finding Items That Go Together290Measuring Surprise: Lift and Leverage291Example: Beer and Lottery Tickets293Profiling: Finding Typical Behavior296Link Prediction and Social Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary310 13. Data Science and Business Strategy. 313Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.Thinking Data-Analytically, Redux313Achieving Competitive Advantage with Data Science316Formidable Historical Advantage317Unique		A Brief Digression on Selection Bias	280
Problem281Assessing the Influence of the Incentive283From an Expected Value Decomposition to a Data Science Solution284Summary287 12. Other Data Science Tasks and Techniques.289 Fundamental concepts: Our fundamental concepts as the basis of many common datascience.Exemplary techniques: Association and co-occurrences; Behavior profiling; Linkprediction; Data reduction; Latent information mining; Movie recommendation; Biasvariance decomposition of error; Ensembles of models; Causal reasoning from data.Co-occurrences and Associations: Finding Items That Go Together290Measuring Surprise: Lift and Leverage291Example: Beer and Lottery Tickets292Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Link Prediction, Latent Information, and Movie Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary313 <i>Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science313Achieving Competitive Advantage with Data Science313Achieving Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intellectual Property318Superior Data Scientists<</i>		Our Churn Example Revisited with Even More Sophistication	281
Assessing the Influence of the Incentive283 From an Expected Value Decomposition to a Data Science Solution284 Summary12. Other Data Science Tasks and Techniques.289Fundamental concepts: Our fundamental concepts as the basis of many common data science techniques; The importance of familiarity with the building blocks of data science.289Exemplary techniques: Association and co-occurrences; Behavior profiling; Link prediction; Data reduction; Latent information mining; Movie recommendation; Bias- variance decomposition of error; Ensembles of models; Causal reasoning from data.Co-occurrences and Associations: Finding Items That Go Together290Measuring Surprise: Lift and Leverage291Example: Beer and Lottery Tickets292Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Link Prediction, Latent Information, and Movie Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data -Driven Causal Explanation and a Viral Marketing Example309Summary313Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science315Sustaining Competitive Advantage with Data Science316Formidable His		The Expected Value Framework: Structuring a More Complicated Business	
From an Expected Value Decomposition to a Data Science Solution284 28712. Other Data Science Tasks and Techniques.289Fundamental concepts: Our fundamental concepts as the basis of many common data science techniques; The importance of familiarity with the building blocks of data science.289Exemplary techniques: Association and co-occurrences; Behavior profiling; Link prediction; Data reduction; Latent information mining; Movie recommendation; Bias- variance decomposition of error; Ensembles of models; Causal reasoning from data.Co-occurrences and Associations: Finding Items That Go Together290Measuring Surprise: Lift and Leverage291Example: Beer and Lottery Tickets292Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Link Prediction, Latent Information, and Movie Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary313Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313Achieving Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intangible Collateral Assets318Superior Data Sciencial Kavantage317Unique Intangible Collateral Assets318Superior Data Science Management320 <td></td> <td>Problem</td> <td>281</td>		Problem	281
From an Expected Value Decomposition to a Data Science Solution284Summary28712. Other Data Science Tasks and Techniques.289Fundamental concepts: Our fundamental concepts as the basis of many common data science techniques; The importance of familiarity with the building blocks of data science.289Exemplary techniques: Association and co-occurrences; Behavior profiling; Link prediction; Data reduction; Latent information mining; Movie recommendation; Bias- variance decomposition of error; Ensembles of models; Causal reasoning from data.Co-occurrences and Associations: Finding Items That Go Together290Measuring Surprise: Lift and Leverage291Example: Beer and Lottery Tickets292Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Link Prediction, Latent Information, and Movie Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary313Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313Achieving Competitive Advantage with Data Science315Sustaining Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Scientists<		Assessing the Influence of the Incentive	283
Summary28712. Other Data Science Tasks and Techniques.289Fundamental concepts: Our fundamental concepts as the basis of many common data science techniques; The importance of familiarity with the building blocks of data science.Exemplary techniques: Association and co-occurrences; Behavior profiling; Link prediction; Data reduction; Latent information mining; Movie recommendation; Bias- variance decomposition of error; Ensembles of models; Causal reasoning from data.Co-occurrences and Associations: Finding Items That Go Together290Measuring Surprise: Lift and Leverage291Example: Beer and Lottery Tickets292Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Link Prediction and Social Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary31013. Data Science and Business Strategy.313Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313Achieving Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intangible Collateral Assets318Superior Data Scienci Advantage317Unique Intangible Collateral Assets318Superior Data Science Management320			284
Fundamental concepts as the basis of many common data science techniques; The importance of familiarity with the building blocks of data science.Exemplary techniques: Association and co-occurrences; Behavior profiling; Link prediction; Data reduction; Latent information mining; Movie recommendation; Bias- variance decomposition of error; Ensembles of models; Causal reasoning from data.Co-occurrences and Associations: Finding Items That Go Together290 Measuring Surprise: Lift and Leverage291 Example: Beer and Lottery Tickets292 Associations Among Facebook Likes293 Profiling: Finding Typical Behavior296 Link Prediction and Social Recommendation301 Data Reduction, Latent Information, and Movie Recommendation302 Bias, Variance, and Ensemble Methods306 Oata-Driven Causal Explanation and a Viral Marketing Example309 Summary13 Jota Science and Business Strategy. 313 Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313 Achieving Competitive Advantage with Data Science315 Sustaining Competitive Advantage317 Unique Intellectual Property317 Unique Intellectual Property317 Unique Intangible Collateral Assets318 Superior Data Science Management312			287
Fundamental concepts as the basis of many common data science techniques; The importance of familiarity with the building blocks of data science.Exemplary techniques: Association and co-occurrences; Behavior profiling; Link prediction; Data reduction; Latent information mining; Movie recommendation; Bias- variance decomposition of error; Ensembles of models; Causal reasoning from data.Co-occurrences and Associations: Finding Items That Go Together290 Measuring Surprise: Lift and Leverage291 Example: Beer and Lottery Tickets292 Associations Among Facebook Likes293 Profiling: Finding Typical Behavior296 Link Prediction and Social Recommendation301 Data Reduction, Latent Information, and Movie Recommendation302 Bias, Variance, and Ensemble Methods306 Oata-Driven Causal Explanation and a Viral Marketing Example309 Summary13 Jota Science and Business Strategy. 313 Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313 Achieving Competitive Advantage with Data Science315 Sustaining Competitive Advantage317 Unique Intellectual Property317 Unique Intellectual Property317 Unique Intangible Collateral Assets318 Superior Data Science Management312	12.	Other Data Science Tasks and Techniques.	289
prediction; Data reduction; Latent information mining; Movie recommendation; Biasvariance decomposition of error; Ensembles of models; Causal reasoning from data.Co-occurrences and Associations: Finding Items That Go Together290Measuring Surprise: Lift and Leverage291Example: Beer and Lottery Tickets292Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Link Prediction and Social Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary310 13. Data Science and Business Strategy.313 Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313Achieving Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320		science techniques; The importance of familiarity with the building blocks of data	lata
Measuring Surprise: Lift and Leverage291Example: Beer and Lottery Tickets292Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Link Prediction and Social Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary310 13. Data Science and Business Strategy.313 Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313Achieving Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Sciencies Management320		prediction; Data reduction; Latent information mining; Movie recommendation; Bio	
Measuring Surprise: Lift and Leverage291Example: Beer and Lottery Tickets292Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Link Prediction and Social Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary310 13. Data Science and Business Strategy.313 Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313Achieving Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Sciencies Management320		Co-occurrences and Associations: Finding Items That Go Together	290
Example: Beer and Lottery Tickets292Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Link Prediction and Social Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary310 13. Data Science and Business Strategy.313 Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313Achieving Competitive Advantage with Data Science316Sustaining Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320			291
Associations Among Facebook Likes293Profiling: Finding Typical Behavior296Link Prediction and Social Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary310 13. Data Science and Business Strategy.313 <i>Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313Achieving Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Science Management320</i>			292
Profiling: Finding Typical Behavior296Link Prediction and Social Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary310 13. Data Science and Business Strategy.313 Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313Thinking Data-Analytically, Redux313Achieving Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Science Management320		1 /	293
Link Prediction and Social Recommendation301Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary310 13. Data Science and Business Strategy.313 Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313Thinking Data-Analytically, Redux313Achieving Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Science Management320			296
Data Reduction, Latent Information, and Movie Recommendation302Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary310 13. Data Science and Business Strategy.313 Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability. 313 Thinking Data-Analytically, Redux313Achieving Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Science Management320			301
Bias, Variance, and Ensemble Methods306Data-Driven Causal Explanation and a Viral Marketing Example309Summary310 13. Data Science and Business Strategy.313 Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability. 313 Thinking Data-Analytically, Redux313Achieving Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Science Management320		Data Reduction, Latent Information, and Movie Recommendation	
Data-Driven Causal Explanation and a Viral Marketing Example Summary309 31013. Data Science and Business Strategy.313Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.313Thinking Data-Analytically, Redux313Achieving Competitive Advantage with Data Science315Sustaining Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320			306
Summary310 13. Data Science and Business Strategy.313 Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability. 313 Thinking Data-Analytically, Redux313Achieving Competitive Advantage with Data Science315Sustaining Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320			
Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.Thinking Data-Analytically, Redux313Achieving Competitive Advantage with Data Science315Sustaining Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320			
Fundamental concepts: Our principles as the basis of success for a data-driven business; Acquiring and sustaining competitive advantage via data science; The importance of careful curation of data science capability.Thinking Data-Analytically, Redux313Achieving Competitive Advantage with Data Science315Sustaining Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320	13.	Data Science and Business Strategy.	313
importance of careful curation of data science capability.Thinking Data-Analytically, Redux313Achieving Competitive Advantage with Data Science315Sustaining Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320		Fundamental concepts: Our principles as the basis of success for a data-driven	
Thinking Data-Analytically, Redux313Achieving Competitive Advantage with Data Science315Sustaining Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Science Management320		business; Acquiring and sustaining competitive advantage via data science; The	
Achieving Competitive Advantage with Data Science315Sustaining Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320		importance of careful curation of data science capability.	
Achieving Competitive Advantage with Data Science315Sustaining Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320		Thinking Data-Analytically, Redux	313
Sustaining Competitive Advantage with Data Science316Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320		e i i	315
Formidable Historical Advantage317Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320			316
Unique Intellectual Property317Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320			
Unique Intangible Collateral Assets318Superior Data Scientists318Superior Data Science Management320			
Superior Data Scientists318Superior Data Science Management320			
Superior Data Science Management320			
· · · · · · · · · · · · · · · · · · ·			
Attracting and Nurturing Data Scientists and Their Teams 321		Attracting and Nurturing Data Scientists and Their Teams	321

	Examine Data Science Case Studies	323
	Be Ready to Accept Creative Ideas from Any Source	324
	Be Ready to Evaluate Proposals for Data Science Projects	324
	Example Data Mining Proposal	325
	Flaws in the Big Red Proposal	326
	A Firm's Data Science Maturity	327
14.	Conclusion.	331
	The Fundamental Concepts of Data Science	331
	Applying Our Fundamental Concepts to a New Problem: Mining Mobile	
	Device Data	334
	Changing the Way We Think about Solutions to Business Problems	337
	What Data Can't Do: Humans in the Loop, Revisited	338
	Privacy, Ethics, and Mining Data About Individuals	341
	Is There More to Data Science?	342
	Final Example: From Crowd-Sourcing to Cloud-Sourcing	343
	Final Words	344
A. Proposal Review Guide		
B.	Another Sample Proposal	351
Gla	ossary	355
uit	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	555
Bil	Bibliography	
Inc	Index	