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2Getting to Know Your Data

It’s tempting to jump straight into mining, but first, we need to get the data ready. This involves
having a closer look at attributes and data values. Real-world data are typically noisy,
enormous in volume (often several gigabytes or more), and may originate from a hodge-
podge of heterogenous sources. This chapter is about getting familiar with your data.
Knowledge about your data is useful for data preprocessing (see Chapter 3), the first
major task of the data mining process. You will want to know the following: What are
the types of attributes or fields that make up your data? What kind of values does each
attribute have? Which attributes are discrete, and which are continuous-valued? What
do the data look like? How are the values distributed? Are there ways we can visualize
the data to get a better sense of it all? Can we spot any outliers? Can we measure the
similarity of some data objects with respect to others? Gaining such insight into the data
will help with the subsequent analysis.

“So what can we learn about our data that’s helpful in data preprocessing?” We begin
in Section 2.1 by studying the various attribute types. These include nominal attributes,
binary attributes, ordinal attributes, and numeric attributes. Basic statistical descriptions
can be used to learn more about each attribute’s values, as described in Section 2.2.
Given a temperature attribute, for example, we can determine its mean (average value),
median (middle value), and mode (most common value). These are measures of
central tendency, which give us an idea of the “middle” or center of distribution.

Knowing such basic statistics regarding each attribute makes it easier to fill in missing
values, smooth noisy values, and spot outliers during data preprocessing. Knowledge of
the attributes and attribute values can also help in fixing inconsistencies incurred dur-
ing data integration. Plotting the measures of central tendency shows us if the data are
symmetric or skewed. Quantile plots, histograms, and scatter plots are other graphic dis-
plays of basic statistical descriptions. These can all be useful during data preprocessing
and can provide insight into areas for mining.

The field of data visualization provides many additional techniques for viewing data
through graphical means. These can help identify relations, trends, and biases “hidden”
in unstructured data sets. Techniques may be as simple as scatter-plot matrices (where
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two attributes are mapped onto a 2-D grid) to more sophisticated methods such as tree-
maps (where a hierarchical partitioning of the screen is displayed based on the attribute
values). Data visualization techniques are described in Section 2.3.

Finally, we may want to examine how similar (or dissimilar) data objects are. For
example, suppose we have a database where the data objects are patients, described by
their symptoms. We may want to find the similarity or dissimilarity between individ-
ual patients. Such information can allow us to find clusters of like patients within the
data set. The similarity/dissimilarity between objects may also be used to detect out-
liers in the data, or to perform nearest-neighbor classification. (Clustering is the topic
of Chapters 10 and 11, while nearest-neighbor classification is discussed in Chapter 9.)
There are many measures for assessing similarity and dissimilarity. In general, such mea-
sures are referred to as proximity measures. Think of the proximity of two objects as a
function of the distance between their attribute values, although proximity can also be
calculated based on probabilities rather than actual distance. Measures of data proximity
are described in Section 2.4.

In summary, by the end of this chapter, you will know the different attribute types
and basic statistical measures to describe the central tendency and dispersion (spread)
of attribute data. You will also know techniques to visualize attribute distributions and
how to compute the similarity or dissimilarity between objects.

2.1 Data Objects and Attribute Types

Data sets are made up of data objects. A data object represents an entity—in a sales
database, the objects may be customers, store items, and sales; in a medical database, the
objects may be patients; in a university database, the objects may be students, professors,
and courses. Data objects are typically described by attributes. Data objects can also be
referred to as samples, examples, instances, data points, or objects. If the data objects are
stored in a database, they are data tuples. That is, the rows of a database correspond to
the data objects, and the columns correspond to the attributes. In this section, we define
attributes and look at the various attribute types.

2.1.1 What Is an Attribute?

An attribute is a data field, representing a characteristic or feature of a data object. The
nouns attribute, dimension, feature, and variable are often used interchangeably in the
literature. The term dimension is commonly used in data warehousing. Machine learning
literature tends to use the term feature, while statisticians prefer the term variable. Data
mining and database professionals commonly use the term attribute, and we do here
as well. Attributes describing a customer object can include, for example, customer ID,
name, and address. Observed values for a given attribute are known as observations. A set
of attributes used to describe a given object is called an attribute vector (or feature vec-
tor). The distribution of data involving one attribute (or variable) is called univariate.
A bivariate distribution involves two attributes, and so on.



HAN 09-ch02-039-082-9780123814791 2011/6/3 2:25 Page 41 #3

2.1 Data Objects and Attribute Types 41

The type of an attribute is determined by the set of possible values—nominal, binary,
ordinal, or numeric—the attribute can have. In the following subsections, we introduce
each type.

2.1.2 Nominal Attributes

Nominal means “relating to names.” The values of a nominal attribute are symbols or
names of things. Each value represents some kind of category, code, or state, and so nomi-
nal attributes are also referred to as categorical. The values do not have any meaningful
order. In computer science, the values are also known as enumerations.

Example 2.1 Nominal attributes. Suppose that hair color and marital status are two attributes
describing person objects. In our application, possible values for hair color are black,
brown, blond, red, auburn, gray, and white. The attribute marital status can take on
the values single, married, divorced, and widowed. Both hair color and marital status
are nominal attributes. Another example of a nominal attribute is occupation, with the
values teacher, dentist, programmer, farmer, and so on.

Although we said that the values of a nominal attribute are symbols or “names
of things,” it is possible to represent such symbols or “names” with numbers. With
hair color, for instance, we can assign a code of 0 for black, 1 for brown, and so on.
Another example is customor ID, with possible values that are all numeric. However,
in such cases, the numbers are not intended to be used quantitatively. That is, mathe-
matical operations on values of nominal attributes are not meaningful. It makes no
sense to subtract one customer ID number from another, unlike, say, subtracting an age
value from another (where age is a numeric attribute). Even though a nominal attribute
may have integers as values, it is not considered a numeric attribute because the inte-
gers are not meant to be used quantitatively. We will say more on numeric attributes in
Section 2.1.5.

Because nominal attribute values do not have any meaningful order about them and
are not quantitative, it makes no sense to find the mean (average) value or median
(middle) value for such an attribute, given a set of objects. One thing that is of inter-
est, however, is the attribute’s most commonly occurring value. This value, known as
the mode, is one of the measures of central tendency. You will learn about measures of
central tendency in Section 2.2.

2.1.3 Binary Attributes

A binary attribute is a nominal attribute with only two categories or states: 0 or 1, where
0 typically means that the attribute is absent, and 1 means that it is present. Binary
attributes are referred to as Boolean if the two states correspond to true and false.

Example 2.2 Binary attributes. Given the attribute smoker describing a patient object, 1 indicates
that the patient smokes, while 0 indicates that the patient does not. Similarly, suppose
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the patient undergoes a medical test that has two possible outcomes. The attribute
medical test is binary, where a value of 1 means the result of the test for the patient
is positive, while 0 means the result is negative.

A binary attribute is symmetric if both of its states are equally valuable and carry
the same weight; that is, there is no preference on which outcome should be coded
as 0 or 1. One such example could be the attribute gender having the states male and
female.

A binary attribute is asymmetric if the outcomes of the states are not equally impor-
tant, such as the positive and negative outcomes of a medical test for HIV. By convention,
we code the most important outcome, which is usually the rarest one, by 1 (e.g., HIV
positive) and the other by 0 (e.g., HIV negative).

2.1.4 Ordinal Attributes

An ordinal attribute is an attribute with possible values that have a meaningful order or
ranking among them, but the magnitude between successive values is not known.

Example 2.3 Ordinal attributes. Suppose that drink size corresponds to the size of drinks available at
a fast-food restaurant. This nominal attribute has three possible values: small, medium,
and large. The values have a meaningful sequence (which corresponds to increasing
drink size); however, we cannot tell from the values how much bigger, say, a medium
is than a large. Other examples of ordinal attributes include grade (e.g., A+, A, A−, B+,
and so on) and professional rank. Professional ranks can be enumerated in a sequential
order: for example, assistant, associate, and full for professors, and private, private first
class, specialist, corporal, and sergeant for army ranks.

Ordinal attributes are useful for registering subjective assessments of qualities that
cannot be measured objectively; thus ordinal attributes are often used in surveys for
ratings. In one survey, participants were asked to rate how satisfied they were as cus-
tomers. Customer satisfaction had the following ordinal categories: 0: very dissatisfied,
1: somewhat dissatisfied, 2: neutral, 3: satisfied, and 4: very satisfied.

Ordinal attributes may also be obtained from the discretization of numeric quantities
by splitting the value range into a finite number of ordered categories as described in
Chapter 3 on data reduction.

The central tendency of an ordinal attribute can be represented by its mode and its
median (the middle value in an ordered sequence), but the mean cannot be defined.

Note that nominal, binary, and ordinal attributes are qualitative. That is, they describe
a feature of an object without giving an actual size or quantity. The values of such
qualitative attributes are typically words representing categories. If integers are used,
they represent computer codes for the categories, as opposed to measurable quantities
(e.g., 0 for small drink size, 1 for medium, and 2 for large). In the following subsec-
tion we look at numeric attributes, which provide quantitative measurements of an
object.
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2.1.5 Numeric Attributes

A numeric attribute is quantitative; that is, it is a measurable quantity, represented in
integer or real values. Numeric attributes can be interval-scaled or ratio-scaled.

Interval-Scaled Attributes
Interval-scaled attributes are measured on a scale of equal-size units. The values of
interval-scaled attributes have order and can be positive, 0, or negative. Thus, in addition
to providing a ranking of values, such attributes allow us to compare and quantify the
difference between values.

Example 2.4 Interval-scaled attributes. A temperature attribute is interval-scaled. Suppose that we
have the outdoor temperature value for a number of different days, where each day is
an object. By ordering the values, we obtain a ranking of the objects with respect to
temperature. In addition, we can quantify the difference between values. For example, a
temperature of 20◦C is five degrees higher than a temperature of 15◦C. Calendar dates
are another example. For instance, the years 2002 and 2010 are eight years apart.

Temperatures in Celsius and Fahrenheit do not have a true zero-point, that is, neither
0◦C nor 0◦F indicates “no temperature.” (On the Celsius scale, for example, the unit of
measurement is 1/100 of the difference between the melting temperature and the boiling
temperature of water in atmospheric pressure.) Although we can compute the difference
between temperature values, we cannot talk of one temperature value as being a multiple
of another. Without a true zero, we cannot say, for instance, that 10◦C is twice as warm
as 5◦C. That is, we cannot speak of the values in terms of ratios. Similarly, there is no
true zero-point for calendar dates. (The year 0 does not correspond to the beginning of
time.) This brings us to ratio-scaled attributes, for which a true zero-point exits.

Because interval-scaled attributes are numeric, we can compute their mean value, in
addition to the median and mode measures of central tendency.

Ratio-Scaled Attributes
A ratio-scaled attribute is a numeric attribute with an inherent zero-point. That is, if
a measurement is ratio-scaled, we can speak of a value as being a multiple (or ratio)
of another value. In addition, the values are ordered, and we can also compute the
difference between values, as well as the mean, median, and mode.

Example 2.5 Ratio-scaled attributes. Unlike temperatures in Celsius and Fahrenheit, the Kelvin (K)
temperature scale has what is considered a true zero-point (0◦K = −273.15◦C): It is
the point at which the particles that comprise matter have zero kinetic energy. Other
examples of ratio-scaled attributes include count attributes such as years of experience
(e.g., the objects are employees) and number of words (e.g., the objects are documents).
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Additional examples include attributes to measure weight, height, and speed, and
monetary quantities (e.g., you are 100 times richer with $100 than with $1).

2.1.6 Discrete versus Continuous Attributes

In our presentation, we have organized attributes into nominal, binary, ordinal, and
numeric types. There are many ways to organize attribute types. The types are not
mutually exclusive.

Classification algorithms developed from the field of machine learning often talk of
attributes as being either discrete or continuous. Each type may be processed differently.
A discrete attribute has a finite or countably infinite set of values, which may or may not
be represented as integers. The attributes hair color, smoker, medical test, and drink size
each have a finite number of values, and so are discrete. Note that discrete attributes
may have numeric values, such as 0 and 1 for binary attributes or, the values 0 to 110 for
the attribute age. An attribute is countably infinite if the set of possible values is infinite
but the values can be put in a one-to-one correspondence with natural numbers. For
example, the attribute customer ID is countably infinite. The number of customers can
grow to infinity, but in reality, the actual set of values is countable (where the values can
be put in one-to-one correspondence with the set of integers). Zip codes are another
example.

If an attribute is not discrete, it is continuous. The terms numeric attribute and con-
tinuous attribute are often used interchangeably in the literature. (This can be confusing
because, in the classic sense, continuous values are real numbers, whereas numeric val-
ues can be either integers or real numbers.) In practice, real values are represented
using a finite number of digits. Continuous attributes are typically represented as
floating-point variables.

2.2 Basic Statistical Descriptions of Data

For data preprocessing to be successful, it is essential to have an overall picture of your
data. Basic statistical descriptions can be used to identify properties of the data and
highlight which data values should be treated as noise or outliers.

This section discusses three areas of basic statistical descriptions. We start with mea-
sures of central tendency (Section 2.2.1), which measure the location of the middle or
center of a data distribution. Intuitively speaking, given an attribute, where do most of
its values fall? In particular, we discuss the mean, median, mode, and midrange.

In addition to assessing the central tendency of our data set, we also would like to
have an idea of the dispersion of the data. That is, how are the data spread out? The most
common data dispersion measures are the range, quartiles, and interquartile range; the
five-number summary and boxplots; and the variance and standard deviation of the data.
These measures are useful for identifying outliers and are described in Section 2.2.2.

Finally, we can use many graphic displays of basic statistical descriptions to visually
inspect our data (Section 2.2.3). Most statistical or graphical data presentation software
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packages include bar charts, pie charts, and line graphs. Other popular displays of data
summaries and distributions include quantile plots, quantile–quantile plots, histograms,
and scatter plots.

2.2.1 Measuring the Central Tendency: Mean, Median, and Mode

In this section, we look at various ways to measure the central tendency of data. Suppose
that we have some attribute X , like salary, which has been recorded for a set of objects.
Let x1,x2, . . . ,xN be the set of N observed values or observations for X . Here, these val-
ues may also be referred to as the data set (for X). If we were to plot the observations
for salary, where would most of the values fall? This gives us an idea of the central ten-
dency of the data. Measures of central tendency include the mean, median, mode, and
midrange.

The most common and effective numeric measure of the “center” of a set of data is
the (arithmetic) mean. Let x1,x2, . . . ,xN be a set of N values or observations, such as for
some numeric attribute X , like salary. The mean of this set of values is

x̄ =

N∑
i=1

xi

N
=

x1+ x2+ ·· ·+ xN

N
. (2.1)

This corresponds to the built-in aggregate function, average (avg() in SQL), provided in
relational database systems.

Example 2.6 Mean. Suppose we have the following values for salary (in thousands of dollars), shown
in increasing order: 30, 36, 47, 50, 52, 52, 56, 60, 63, 70, 70, 110. Using Eq. (2.1), we have

x̄ =
30+ 36+ 47+ 50+ 52+ 52+ 56+ 60+ 63+ 70+ 70+ 110

12

=
696

12
= 58.

Thus, the mean salary is $58,000.

Sometimes, each value xi in a set may be associated with a weight wi for i = 1, . . . ,N .
The weights reflect the significance, importance, or occurrence frequency attached to
their respective values. In this case, we can compute

x̄ =

N∑
i=1

wixi

N∑
i=1

wi

=
w1x1+w2x2+ ·· ·+wN xN

w1+w2+ ·· ·+wN
. (2.2)

This is called the weighted arithmetic mean or the weighted average.
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Although the mean is the singlemost useful quantity for describing a data set, it is not
always the best way of measuring the center of the data. A major problem with the mean
is its sensitivity to extreme (e.g., outlier) values. Even a small number of extreme values
can corrupt the mean. For example, the mean salary at a company may be substantially
pushed up by that of a few highly paid managers. Similarly, the mean score of a class in
an exam could be pulled down quite a bit by a few very low scores. To offset the effect
caused by a small number of extreme values, we can instead use the trimmed mean,
which is the mean obtained after chopping off values at the high and low extremes. For
example, we can sort the values observed for salary and remove the top and bottom 2%
before computing the mean. We should avoid trimming too large a portion (such as
20%) at both ends, as this can result in the loss of valuable information.

For skewed (asymmetric) data, a better measure of the center of data is the median,
which is the middle value in a set of ordered data values. It is the value that separates the
higher half of a data set from the lower half.

In probability and statistics, the median generally applies to numeric data; however,
we may extend the concept to ordinal data. Suppose that a given data set of N values
for an attribute X is sorted in increasing order. If N is odd, then the median is the
middle value of the ordered set. If N is even, then the median is not unique; it is the two
middlemost values and any value in between. If X is a numeric attribute in this case, by
convention, the median is taken as the average of the two middlemost values.

Example 2.7 Median. Let’s find the median of the data from Example 2.6. The data are already sorted
in increasing order. There is an even number of observations (i.e., 12); therefore, the
median is not unique. It can be any value within the two middlemost values of 52 and
56 (that is, within the sixth and seventh values in the list). By convention, we assign the
average of the two middlemost values as the median; that is, 52+56

2 =
108

2 = 54. Thus,
the median is $54,000.

Suppose that we had only the first 11 values in the list. Given an odd number of
values, the median is the middlemost value. This is the sixth value in this list, which has
a value of $52,000.

The median is expensive to compute when we have a large number of observations.
For numeric attributes, however, we can easily approximate the value. Assume that data
are grouped in intervals according to their xi data values and that the frequency (i.e.,
number of data values) of each interval is known. For example, employees may be
grouped according to their annual salary in intervals such as $10–20,000, $20–30,000,
and so on. Let the interval that contains the median frequency be the median inter-
val. We can approximate the median of the entire data set (e.g., the median salary) by
interpolation using the formula

median= L1+

(
N/2−

(∑
freq

)
l

freqmedian

)
width, (2.3)

where L1 is the lower boundary of the median interval, N is the number of values in
the entire data set,

(∑
freq

)
l is the sum of the frequencies of all of the intervals that are
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lower than the median interval, freqmedian is the frequency of the median interval, and
width is the width of the median interval.

The mode is another measure of central tendency. The mode for a set of data is the
value that occurs most frequently in the set. Therefore, it can be determined for qualita-
tive and quantitative attributes. It is possible for the greatest frequency to correspond to
several different values, which results in more than one mode. Data sets with one, two,
or three modes are respectively called unimodal, bimodal, and trimodal. In general, a
data set with two or more modes is multimodal. At the other extreme, if each data value
occurs only once, then there is no mode.

Example 2.8 Mode. The data from Example 2.6 are bimodal. The two modes are $52,000 and
$70,000.

For unimodal numeric data that are moderately skewed (asymmetrical), we have the
following empirical relation:

mean−mode≈ 3× (mean−median). (2.4)

This implies that the mode for unimodal frequency curves that are moderately skewed
can easily be approximated if the mean and median values are known.

The midrange can also be used to assess the central tendency of a numeric data set.
It is the average of the largest and smallest values in the set. This measure is easy to
compute using the SQL aggregate functions, max() and min().

Example 2.9 Midrange. The midrange of the data of Example 2.6 is 30,000+110,000
2 = $70,000.

In a unimodal frequency curve with perfect symmetric data distribution, the mean,
median, and mode are all at the same center value, as shown in Figure 2.1(a).

Data in most real applications are not symmetric. They may instead be either posi-
tively skewed, where the mode occurs at a value that is smaller than the median
(Figure 2.1b), or negatively skewed, where the mode occurs at a value greater than the
median (Figure 2.1c).

Mode

Median

Mean Mode

Median

MeanMean
Median
Mode

(a) Symmetric data (b) Positively skewed data (c) Negatively skewed data

Figure 2.1 Mean, median, and mode of symmetric versus positively and negatively skewed data.
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2.2.2 Measuring the Dispersion of Data: Range, Quartiles, Variance,
Standard Deviation, and Interquartile Range

We now look at measures to assess the dispersion or spread of numeric data. The mea-
sures include range, quantiles, quartiles, percentiles, and the interquartile range. The
five-number summary, which can be displayed as a boxplot, is useful in identifying
outliers. Variance and standard deviation also indicate the spread of a data distribution.

Range, Quartiles, and Interquartile Range
To start off, let’s study the range, quantiles, quartiles, percentiles, and the interquartile
range as measures of data dispersion.

Let x1,x2, . . . ,xN be a set of observations for some numeric attribute, X . The range
of the set is the difference between the largest (max()) and smallest (min()) values.

Suppose that the data for attribute X are sorted in increasing numeric order. Imagine
that we can pick certain data points so as to split the data distribution into equal-size
consecutive sets, as in Figure 2.2. These data points are called quantiles. Quantiles are
points taken at regular intervals of a data distribution, dividing it into essentially equal-
size consecutive sets. (We say “essentially” because there may not be data values of X that
divide the data into exactly equal-sized subsets. For readability, we will refer to them as
equal.) The kth q-quantile for a given data distribution is the value x such that at most
k/q of the data values are less than x and at most (q− k)/q of the data values are more
than x, where k is an integer such that 0< k < q. There are q− 1 q-quantiles.

The 2-quantile is the data point dividing the lower and upper halves of the data dis-
tribution. It corresponds to the median. The 4-quantiles are the three data points that
split the data distribution into four equal parts; each part represents one-fourth of the
data distribution. They are more commonly referred to as quartiles. The 100-quantiles
are more commonly referred to as percentiles; they divide the data distribution into 100
equal-sized consecutive sets. The median, quartiles, and percentiles are the most widely
used forms of quantiles.

Q2 Q3Q1

25th
percentile

75th
percentile

Median

25%

Figure 2.2 A plot of the data distribution for some attribute X . The quantiles plotted are quartiles. The
three quartiles divide the distribution into four equal-size consecutive subsets. The second
quartile corresponds to the median.
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The quartiles give an indication of a distribution’s center, spread, and shape. The first
quartile, denoted by Q1, is the 25th percentile. It cuts off the lowest 25% of the data.
The third quartile, denoted by Q3, is the 75th percentile—it cuts off the lowest 75% (or
highest 25%) of the data. The second quartile is the 50th percentile. As the median, it
gives the center of the data distribution.

The distance between the first and third quartiles is a simple measure of spread
that gives the range covered by the middle half of the data. This distance is called the
interquartile range (IQR) and is defined as

IQR= Q3−Q1. (2.5)

Example 2.10 Interquartile range. The quartiles are the three values that split the sorted data set into
four equal parts. The data of Example 2.6 contain 12 observations, already sorted in
increasing order. Thus, the quartiles for this data are the third, sixth, and ninth val-
ues, respectively, in the sorted list. Therefore, Q1 = $47,000 and Q3 is $63,000. Thus,
the interquartile range is IQR = 63− 47= $16,000. (Note that the sixth value is a
median, $52,000, although this data set has two medians since the number of data values
is even.)

Five-Number Summary, Boxplots, and Outliers
No single numeric measure of spread (e.g., IQR) is very useful for describing skewed
distributions. Have a look at the symmetric and skewed data distributions of Figure 2.1.
In the symmetric distribution, the median (and other measures of central tendency)
splits the data into equal-size halves. This does not occur for skewed distributions.
Therefore, it is more informative to also provide the two quartiles Q1 and Q3, along
with the median. A common rule of thumb for identifying suspected outliers is to
single out values falling at least 1.5× IQR above the third quartile or below the first
quartile.

Because Q1, the median, and Q3 together contain no information about the end-
points (e.g., tails) of the data, a fuller summary of the shape of a distribution can be
obtained by providing the lowest and highest data values as well. This is known as
the five-number summary. The five-number summary of a distribution consists of the
median (Q2), the quartiles Q1 and Q3, and the smallest and largest individual obser-
vations, written in the order of Minimum, Q1, Median, Q3, Maximum.

Boxplots are a popular way of visualizing a distribution. A boxplot incorporates the
five-number summary as follows:

Typically, the ends of the box are at the quartiles so that the box length is the
interquartile range.

The median is marked by a line within the box.

Two lines (called whiskers) outside the box extend to the smallest (Minimum) and
largest (Maximum) observations.
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Figure 2.3 Boxplot for the unit price data for items sold at four branches of AllElectronics during a given
time period.

When dealing with a moderate number of observations, it is worthwhile to plot
potential outliers individually. To do this in a boxplot, the whiskers are extended to the
extreme low and high observations only if these values are less than 1.5× IQR beyond
the quartiles. Otherwise, the whiskers terminate at the most extreme observations occur-
ring within 1.5× IQR of the quartiles. The remaining cases are plotted individually.
Boxplots can be used in the comparisons of several sets of compatible data.

Example 2.11 Boxplot. Figure 2.3 shows boxplots for unit price data for items sold at four branches of
AllElectronics during a given time period. For branch 1, we see that the median price of
items sold is $80, Q1 is $60, and Q3 is $100. Notice that two outlying observations for
this branch were plotted individually, as their values of 175 and 202 are more than 1.5
times the IQR here of 40.

Boxplots can be computed in O(n logn) time. Approximate boxplots can be com-
puted in linear or sublinear time depending on the quality guarantee required.

Variance and Standard Deviation

Variance and standard deviation are measures of data dispersion. They indicate how
spread out a data distribution is. A low standard deviation means that the data observa-
tions tend to be very close to the mean, while a high standard deviation indicates that
the data are spread out over a large range of values.
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The variance of N observations, x1,x2, . . . ,xN , for a numeric attribute X is

σ 2
=

1

N

N∑
i=1

(xi − x̄)2 =

(
1

N

N∑
i=1

x2
i

)
− x̄2, (2.6)

where x̄ is the mean value of the observations, as defined in Eq. (2.1). The standard
deviation, σ , of the observations is the square root of the variance, σ 2.

Example 2.12 Variance and standard deviation. In Example 2.6, we found x̄ = $58,000 using Eq. (2.1)
for the mean. To determine the variance and standard deviation of the data from that
example, we set N = 12 and use Eq. (2.6) to obtain

σ 2
=

1

12
(302
+ 362

+ 472 . . .+ 1102)− 582

≈ 379.17

σ ≈
√

379.17≈ 19.47.

The basic properties of the standard deviation, σ , as a measure of spread are as
follows:

σ measures spread about the mean and should be considered only when the mean is
chosen as the measure of center.

σ = 0 only when there is no spread, that is, when all observations have the same
value. Otherwise, σ > 0.

Importantly, an observation is unlikely to be more than several standard deviations
away from the mean. Mathematically, using Chebyshev’s inequality, it can be shown that

at least
(

1− 1
k2

)
× 100% of the observations are no more than k standard deviations

from the mean. Therefore, the standard deviation is a good indicator of the spread of a
data set.

The computation of the variance and standard deviation is scalable in large databases.

2.2.3 Graphic Displays of Basic Statistical Descriptions of Data

In this section, we study graphic displays of basic statistical descriptions. These include
quantile plots, quantile–quantile plots, histograms, and scatter plots. Such graphs are help-
ful for the visual inspection of data, which is useful for data preprocessing. The first
three of these show univariate distributions (i.e., data for one attribute), while scatter
plots show bivariate distributions (i.e., involving two attributes).

Quantile Plot
In this and the following subsections, we cover common graphic displays of data distri-
butions. A quantile plot is a simple and effective way to have a first look at a univariate
data distribution. First, it displays all of the data for the given attribute (allowing the user
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to assess both the overall behavior and unusual occurrences). Second, it plots quantile
information (see Section 2.2.2). Let xi , for i = 1 to N , be the data sorted in increasing
order so that x1 is the smallest observation and xN is the largest for some ordinal or
numeric attribute X . Each observation, xi , is paired with a percentage, fi , which indicates
that approximately fi × 100% of the data are below the value, xi . We say “approximately”
because there may not be a value with exactly a fraction, fi , of the data below xi . Note
that the 0.25 percentile corresponds to quartile Q1, the 0.50 percentile is the median,
and the 0.75 percentile is Q3.

Let

fi =
i− 0.5

N
. (2.7)

These numbers increase in equal steps of 1/N , ranging from 1
2N (which is slightly

above 0) to 1− 1
2N (which is slightly below 1). On a quantile plot, xi is graphed against

fi . This allows us to compare different distributions based on their quantiles. For exam-
ple, given the quantile plots of sales data for two different time periods, we can compare
their Q1, median, Q3, and other fi values at a glance.

Example 2.13 Quantile plot. Figure 2.4 shows a quantile plot for the unit price data of Table 2.1.

Quantile–Quantile Plot
A quantile–quantile plot, or q-q plot, graphs the quantiles of one univariate distribution
against the corresponding quantiles of another. It is a powerful visualization tool in that it
allows the user to view whether there is a shift in going from one distribution to another.

Suppose that we have two sets of observations for the attribute or variable unit price,
taken from two different branch locations. Let x1, . . . ,xN be the data from the first
branch, and y1, . . . ,yM be the data from the second, where each data set is sorted in
increasing order. If M = N (i.e., the number of points in each set is the same), then we
simply plot yi against xi , where yi and xi are both (i− 0.5)/N quantiles of their respec-
tive data sets. If M < N (i.e., the second branch has fewer observations than the first),
there can be only M points on the q-q plot. Here, yi is the (i− 0.5)/M quantile of the y
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Figure 2.4 A quantile plot for the unit price data of Table 2.1.
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Table 2.1 A Set of Unit Price Data for Items
Sold at a Branch of AllElectronics

Unit price Count of
($) items sold

40 275

43 300

47 250

− −

74 360

75 515

78 540

− −
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Figure 2.5 A q-q plot for unit price data from two AllElectronics branches.

data, which is plotted against the (i− 0.5)/M quantile of the x data. This computation
typically involves interpolation.

Example 2.14 Quantile–quantile plot. Figure 2.5 shows a quantile–quantile plot for unit price data of
items sold at two branches of AllElectronics during a given time period. Each point cor-
responds to the same quantile for each data set and shows the unit price of items sold at
branch 1 versus branch 2 for that quantile. (To aid in comparison, the straight line rep-
resents the case where, for each given quantile, the unit price at each branch is the same.
The darker points correspond to the data for Q1, the median, and Q3, respectively.)

We see, for example, that at Q1, the unit price of items sold at branch 1 was slightly
less than that at branch 2. In other words, 25% of items sold at branch 1 were less than or
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equal to $60, while 25% of items sold at branch 2 were less than or equal to $64. At the
50th percentile (marked by the median, which is also Q2), we see that 50% of items
sold at branch 1 were less than $78, while 50% of items at branch 2 were less than $85.
In general, we note that there is a shift in the distribution of branch 1 with respect to
branch 2 in that the unit prices of items sold at branch 1 tend to be lower than those at
branch 2.

Histograms
Histograms (or frequency histograms) are at least a century old and are widely used.
“Histos” means pole or mast, and “gram” means chart, so a histogram is a chart of
poles. Plotting histograms is a graphical method for summarizing the distribution of a
given attribute, X . If X is nominal, such as automobile model or item type, then a pole
or vertical bar is drawn for each known value of X . The height of the bar indicates the
frequency (i.e., count) of that X value. The resulting graph is more commonly known as
a bar chart.

If X is numeric, the term histogram is preferred. The range of values for X is parti-
tioned into disjoint consecutive subranges. The subranges, referred to as buckets or bins,
are disjoint subsets of the data distribution for X . The range of a bucket is known as
the width. Typically, the buckets are of equal width. For example, a price attribute with
a value range of $1 to $200 (rounded up to the nearest dollar) can be partitioned into
subranges 1 to 20, 21 to 40, 41 to 60, and so on. For each subrange, a bar is drawn with a
height that represents the total count of items observed within the subrange. Histograms
and partitioning rules are further discussed in Chapter 3 on data reduction.

Example 2.15 Histogram. Figure 2.6 shows a histogram for the data set of Table 2.1, where buckets (or
bins) are defined by equal-width ranges representing $20 increments and the frequency
is the count of items sold.

Although histograms are widely used, they may not be as effective as the quantile
plot, q-q plot, and boxplot methods in comparing groups of univariate observations.

Scatter Plots and Data Correlation
A scatter plot is one of the most effective graphical methods for determining if there
appears to be a relationship, pattern, or trend between two numeric attributes. To con-
struct a scatter plot, each pair of values is treated as a pair of coordinates in an algebraic
sense and plotted as points in the plane. Figure 2.7 shows a scatter plot for the set of data
in Table 2.1.

The scatter plot is a useful method for providing a first look at bivariate data to see
clusters of points and outliers, or to explore the possibility of correlation relationships.
Two attributes, X , and Y , are correlated if one attribute implies the other. Correlations
can be positive, negative, or null (uncorrelated). Figure 2.8 shows examples of positive
and negative correlations between two attributes. If the plotted points pattern slopes
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Figure 2.6 A histogram for the Table 2.1 data set.
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Figure 2.7 A scatter plot for the Table 2.1 data set.
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Figure 2.8 Scatter plots can be used to find (a) positive or (b) negative correlations between attributes.
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Figure 2.9 Three cases where there is no observed correlation between the two plotted attributes in each
of the data sets.

from lower left to upper right, this means that the values of X increase as the values
of Y increase, suggesting a positive correlation (Figure 2.8a). If the pattern of plotted
points slopes from upper left to lower right, the values of X increase as the values of Y
decrease, suggesting a negative correlation (Figure 2.8b). A line of best fit can be drawn
to study the correlation between the variables. Statistical tests for correlation are given
in Chapter 3 on data integration (Eq. (3.3)). Figure 2.9 shows three cases for which
there is no correlation relationship between the two attributes in each of the given data
sets. Section 2.3.2 shows how scatter plots can be extended to n attributes, resulting in a
scatter-plot matrix.

In conclusion, basic data descriptions (e.g., measures of central tendency and mea-
sures of dispersion) and graphic statistical displays (e.g., quantile plots, histograms, and
scatter plots) provide valuable insight into the overall behavior of your data. By helping
to identify noise and outliers, they are especially useful for data cleaning.

2.3 Data Visualization

How can we convey data to users effectively? Data visualization aims to communicate
data clearly and effectively through graphical representation. Data visualization has been
used extensively in many applications—for example, at work for reporting, managing
business operations, and tracking progress of tasks. More popularly, we can take advan-
tage of visualization techniques to discover data relationships that are otherwise not
easily observable by looking at the raw data. Nowadays, people also use data visualization
to create fun and interesting graphics.

In this section, we briefly introduce the basic concepts of data visualization. We start
with multidimensional data such as those stored in relational databases. We discuss
several representative approaches, including pixel-oriented techniques, geometric pro-
jection techniques, icon-based techniques, and hierarchical and graph-based techniques.
We then discuss the visualization of complex data and relations.
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2.3.1 Pixel-Oriented Visualization Techniques

A simple way to visualize the value of a dimension is to use a pixel where the color of
the pixel reflects the dimension’s value. For a data set of m dimensions, pixel-oriented
techniques create m windows on the screen, one for each dimension. The m dimension
values of a record are mapped to m pixels at the corresponding positions in the windows.
The colors of the pixels reflect the corresponding values.

Inside a window, the data values are arranged in some global order shared by all
windows. The global order may be obtained by sorting all data records in a way that’s
meaningful for the task at hand.

Example 2.16 Pixel-oriented visualization. AllElectronics maintains a customer information table,
which consists of four dimensions: income, credit limit, transaction volume, and age. Can
we analyze the correlation between income and the other attributes by visualization?

We can sort all customers in income-ascending order, and use this order to lay out
the customer data in the four visualization windows, as shown in Figure 2.10. The pixel
colors are chosen so that the smaller the value, the lighter the shading. Using pixel-
based visualization, we can easily observe the following: credit limit increases as income
increases; customers whose income is in the middle range are more likely to purchase
more from AllElectronics; there is no clear correlation between income and age.

In pixel-oriented techniques, data records can also be ordered in a query-dependent
way. For example, given a point query, we can sort all records in descending order of
similarity to the point query.

Filling a window by laying out the data records in a linear way may not work well for
a wide window. The first pixel in a row is far away from the last pixel in the previous row,
though they are next to each other in the global order. Moreover, a pixel is next to the
one above it in the window, even though the two are not next to each other in the global
order. To solve this problem, we can lay out the data records in a space-filling curve

(a) income (b) credit_limit (c) transaction_volume (d) age

Figure 2.10 Pixel-oriented visualization of four attributes by sorting all customers in income ascending
order.



HAN 09-ch02-039-082-9780123814791 2011/6/3 2:25 Page 58 #20

58 Chapter 2 Getting to Know Your Data

(a) Hilbert curve (b) Gray code (c) Z-curve

Figure 2.11 Some frequently used 2-D space-filling curves.
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Figure 2.12 The circle segment technique. (a) Representing a data record in circle segments. (b) Laying
out pixels in circle segments.

to fill the windows. A space-filling curve is a curve with a range that covers the entire
n-dimensional unit hypercube. Since the visualization windows are 2-D, we can use any
2-D space-filling curve. Figure 2.11 shows some frequently used 2-D space-filling curves.

Note that the windows do not have to be rectangular. For example, the circle segment
technique uses windows in the shape of segments of a circle, as illustrated in Figure 2.12.
This technique can ease the comparison of dimensions because the dimension windows
are located side by side and form a circle.

2.3.2 Geometric Projection Visualization Techniques

A drawback of pixel-oriented visualization techniques is that they cannot help us much
in understanding the distribution of data in a multidimensional space. For example, they
do not show whether there is a dense area in a multidimensional subspace. Geometric
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Figure 2.13 Visualization of a 2-D data set using a scatter plot. Source: www.cs.sfu.ca/jpei/publications/
rareevent-geoinformatica06.pdf .

projection techniques help users find interesting projections of multidimensional data
sets. The central challenge the geometric projection techniques try to address is how to
visualize a high-dimensional space on a 2-D display.

A scatter plot displays 2-D data points using Cartesian coordinates. A third dimen-
sion can be added using different colors or shapes to represent different data points.
Figure 2.13 shows an example, where X and Y are two spatial attributes and the third
dimension is represented by different shapes. Through this visualization, we can see that
points of types “+” and “×” tend to be colocated.

A 3-D scatter plot uses three axes in a Cartesian coordinate system. If it also uses
color, it can display up to 4-D data points (Figure 2.14).

For data sets with more than four dimensions, scatter plots are usually ineffective.
The scatter-plot matrix technique is a useful extension to the scatter plot. For an n-
dimensional data set, a scatter-plot matrix is an n× n grid of 2-D scatter plots that
provides a visualization of each dimension with every other dimension. Figure 2.15
shows an example, which visualizes the Iris data set. The data set consists of 450 sam-
ples from each of three species of Iris flowers. There are five dimensions in the data set:
length and width of sepal and petal, and species.

The scatter-plot matrix becomes less effective as the dimensionality increases.
Another popular technique, called parallel coordinates, can handle higher dimensional-
ity. To visualize n-dimensional data points, the parallel coordinates technique draws
n equally spaced axes, one for each dimension, parallel to one of the display axes.

http://www.cs.sfu.ca/jpei/publications/rareevent-geoinformatica06.pdf
http://www.cs.sfu.ca/jpei/publications/rareevent-geoinformatica06.pdf
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Figure 2.14 Visualization of a 3-D data set using a scatter plot. Source: http://upload.wikimedia.org/
wikipedia/commons/c/c4/Scatter plot.jpg.

A data record is represented by a polygonal line that intersects each axis at the point
corresponding to the associated dimension value (Figure 2.16).

A major limitation of the parallel coordinates technique is that it cannot effec-
tively show a data set of many records. Even for a data set of several thousand records,
visual clutter and overlap often reduce the readability of the visualization and make the
patterns hard to find.

2.3.3 Icon-Based Visualization Techniques

Icon-based visualization techniques use small icons to represent multidimensional
data values. We look at two popular icon-based techniques: Chernoff faces and stick
figures.

Chernoff faces were introduced in 1973 by statistician Herman Chernoff. They dis-
play multidimensional data of up to 18 variables (or dimensions) as a cartoon human
face (Figure 2.17). Chernoff faces help reveal trends in the data. Components of the
face, such as the eyes, ears, mouth, and nose, represent values of the dimensions by their
shape, size, placement, and orientation. For example, dimensions can be mapped to the
following facial characteristics: eye size, eye spacing, nose length, nose width, mouth
curvature, mouth width, mouth openness, pupil size, eyebrow slant, eye eccentricity,
and head eccentricity.

Chernoff faces make use of the ability of the human mind to recognize small dif-
ferences in facial characteristics and to assimilate many facial characteristics at once.

http://upload.wikimedia.org/wikipedia/commons/c/c4/Scatter_plot.jpg
http://upload.wikimedia.org/wikipedia/commons/c/c4/Scatter_plot.jpg
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Figure 2.15 Visualization of the Iris data set using a scatter-plot matrix. Source: http://support.sas.com/
documentation/cdl/en/grstatproc/61948/HTML/default/images/gsgscmat.gif .

Viewing large tables of data can be tedious. By condensing the data, Chernoff faces
make the data easier for users to digest. In this way, they facilitate visualization of reg-
ularities and irregularities present in the data, although their power in relating multiple
relationships is limited. Another limitation is that specific data values are not shown.
Furthermore, facial features vary in perceived importance. This means that the similarity
of two faces (representing two multidimensional data points) can vary depending on the
order in which dimensions are assigned to facial characteristics. Therefore, this mapping
should be carefully chosen. Eye size and eyebrow slant have been found to be important.

Asymmetrical Chernoff faces were proposed as an extension to the original technique.
Since a face has vertical symmetry (along the y-axis), the left and right side of a face are
identical, which wastes space. Asymmetrical Chernoff faces double the number of facial
characteristics, thus allowing up to 36 dimensions to be displayed.

The stick figure visualization technique maps multidimensional data to five-piece
stick figures, where each figure has four limbs and a body. Two dimensions are mapped
to the display (x and y) axes and the remaining dimensions are mapped to the angle

http://support.sas.com/documentation/cdl/en/grstatproc/61948/HTML/default/images/gsgscmat.gif
http://support.sas.com/documentation/cdl/en/grstatproc/61948/HTML/default/images/gsgscmat.gif
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Figure 2.16 Here is a visualization that uses parallel coordinates. Source: www.stat.columbia.edu/∼cook/
movabletype/archives/2007/10/parallel coordi.thml.

Figure 2.17 Chernoff faces. Each face represents an n-dimensional data point (n ≤ 18).

and/or length of the limbs. Figure 2.18 shows census data, where age and income are
mapped to the display axes, and the remaining dimensions (gender, education, and so
on) are mapped to stick figures. If the data items are relatively dense with respect to
the two display dimensions, the resulting visualization shows texture patterns, reflecting
data trends.

http://www.stat.columbia.edu/~cook/movabletype/archives/2007/10/parallel_coordi.thml
http://www.stat.columbia.edu/~cook/movabletype/archives/2007/10/parallel_coordi.thml
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Figure 2.18 Census data represented using stick figures. Source: Professor G. Grinstein, Department of
Computer Science, University of Massachusetts at Lowell.

2.3.4 Hierarchical Visualization Techniques

The visualization techniques discussed so far focus on visualizing multiple dimensions
simultaneously. However, for a large data set of high dimensionality, it would be diffi-
cult to visualize all dimensions at the same time. Hierarchical visualization techniques
partition all dimensions into subsets (i.e., subspaces). The subspaces are visualized in a
hierarchical manner.

“Worlds-within-Worlds,” also known as n-Vision, is a representative hierarchical
visualization method. Suppose we want to visualize a 6-D data set, where the dimensions
are F ,X1, . . . ,X5. We want to observe how dimension F changes with respect to the other
dimensions. We can first fix the values of dimensions X3,X4,X5 to some selected values,
say, c3, c4, c5. We can then visualize F ,X1,X2 using a 3-D plot, called a world, as shown in
Figure 2.19. The position of the origin of the inner world is located at the point (c3, c4, c5)

in the outer world, which is another 3-D plot using dimensions X3,X4,X5. A user can
interactively change, in the outer world, the location of the origin of the inner world.
The user then views the resulting changes of the inner world. Moreover, a user can vary
the dimensions used in the inner world and the outer world. Given more dimensions,
more levels of worlds can be used, which is why the method is called “worlds-within-
worlds.”

As another example of hierarchical visualization methods, tree-maps display hier-
archical data as a set of nested rectangles. For example, Figure 2.20 shows a tree-map
visualizing Google news stories. All news stories are organized into seven categories, each
shown in a large rectangle of a unique color. Within each category (i.e., each rectangle
at the top level), the news stories are further partitioned into smaller subcategories.
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Figure 2.19 “Worlds-within-Worlds” (also known as n-Vision). Source: http://graphics.cs.columbia.edu/
projects/AutoVisual/images/1.dipstick.5.gif.

2.3.5 Visualizing Complex Data and Relations

In early days, visualization techniques were mainly for numeric data. Recently, more
and more non-numeric data, such as text and social networks, have become available.
Visualizing and analyzing such data attracts a lot of interest.

There are many new visualization techniques dedicated to these kinds of data. For
example, many people on the Web tag various objects such as pictures, blog entries, and
product reviews. A tag cloud is a visualization of statistics of user-generated tags. Often,
in a tag cloud, tags are listed alphabetically or in a user-preferred order. The importance
of a tag is indicated by font size or color. Figure 2.21 shows a tag cloud for visualizing
the popular tags used in a Web site.

Tag clouds are often used in two ways. First, in a tag cloud for a single item, we can
use the size of a tag to represent the number of times that the tag is applied to this item
by different users. Second, when visualizing the tag statistics on multiple items, we can
use the size of a tag to represent the number of items that the tag has been applied to,
that is, the popularity of the tag.

In addition to complex data, complex relations among data entries also raise chal-
lenges for visualization. For example, Figure 2.22 uses a disease influence graph to
visualize the correlations between diseases. The nodes in the graph are diseases, and
the size of each node is proportional to the prevalence of the corresponding disease.
Two nodes are linked by an edge if the corresponding diseases have a strong correlation.
The width of an edge is proportional to the strength of the correlation pattern of the two
corresponding diseases.

http://graphics.cs.columbia.edu/projects/AutoVisual/images/1.dipstick.5.gif
http://graphics.cs.columbia.edu/projects/AutoVisual/images/1.dipstick.5.gif
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Figure 2.20 Newsmap: Use of tree-maps to visualize Google news headline stories. Source: www.cs.umd.
edu/class/spring2005/cmsc838s/viz4all/ss/newsmap.png.

In summary, visualization provides effective tools to explore data. We have intro-
duced several popular methods and the essential ideas behind them. There are many
existing tools and methods. Moreover, visualization can be used in data mining in vari-
ous aspects. In addition to visualizing data, visualization can be used to represent the
data mining process, the patterns obtained from a mining method, and user interaction
with the data. Visual data mining is an important research and development direction.

2.4 Measuring Data Similarity and Dissimilarity

In data mining applications, such as clustering, outlier analysis, and nearest-neighbor
classification, we need ways to assess how alike or unalike objects are in comparison to
one another. For example, a store may want to search for clusters of customer objects,
resulting in groups of customers with similar characteristics (e.g., similar income, area
of residence, and age). Such information can then be used for marketing. A cluster is

http://www.cs.umd.edu/class/spring2005/cmsc838s/viz4all/ss/newsmap.png
http://www.cs.umd.edu/class/spring2005/cmsc838s/viz4all/ss/newsmap.png
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Figure 2.21 Using a tag cloud to visualize popular Web site tags. Source: A snapshot of www.flickr.com/
photos/tags/, January 23, 2010.
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Figure 2.22 Disease influence graph of people at least 20 years old in the NHANES data set.

a collection of data objects such that the objects within a cluster are similar to one
another and dissimilar to the objects in other clusters. Outlier analysis also employs
clustering-based techniques to identify potential outliers as objects that are highly dis-
similar to others. Knowledge of object similarities can also be used in nearest-neighbor
classification schemes where a given object (e.g., a patient) is assigned a class label
(relating to, say, a diagnosis) based on its similarity toward other objects in the model.

http://www.flickr.com/photos/tags/
http://www.flickr.com/photos/tags/
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This section presents similarity and dissimilarity measures, which are referred to as
measures of proximity. Similarity and dissimilarity are related. A similarity measure for
two objects, i and j, will typically return the value 0 if the objects are unalike. The higher
the similarity value, the greater the similarity between objects. (Typically, a value of 1
indicates complete similarity, that is, the objects are identical.) A dissimilarity measure
works the opposite way. It returns a value of 0 if the objects are the same (and therefore,
far from being dissimilar). The higher the dissimilarity value, the more dissimilar the
two objects are.

In Section 2.4.1 we present two data structures that are commonly used in the
above types of applications: the data matrix (used to store the data objects) and the
dissimilarity matrix (used to store dissimilarity values for pairs of objects). We also
switch to a different notation for data objects than previously used in this chapter
since now we are dealing with objects described by more than one attribute. We then
discuss how object dissimilarity can be computed for objects described by nominal
attributes (Section 2.4.2), by binary attributes (Section 2.4.3), by numeric attributes
(Section 2.4.4), by ordinal attributes (Section 2.4.5), or by combinations of these
attribute types (Section 2.4.6). Section 2.4.7 provides similarity measures for very long
and sparse data vectors, such as term-frequency vectors representing documents in
information retrieval. Knowing how to compute dissimilarity is useful in studying
attributes and will also be referenced in later topics on clustering (Chapters 10 and 11),
outlier analysis (Chapter 12), and nearest-neighbor classification (Chapter 9).

2.4.1 Data Matrix versus Dissimilarity Matrix

In Section 2.2, we looked at ways of studying the central tendency, dispersion, and spread
of observed values for some attribute X . Our objects there were one-dimensional, that
is, described by a single attribute. In this section, we talk about objects described by mul-
tiple attributes. Therefore, we need a change in notation. Suppose that we have n objects
(e.g., persons, items, or courses) described by p attributes (also called measurements or
features, such as age, height, weight, or gender). The objects are x1 = (x11,x12, . . . ,x1p),
x2 = (x21,x22, . . . ,x2p), and so on, where xij is the value for object xi of the jth attribute.
For brevity, we hereafter refer to object xi as object i. The objects may be tuples in a
relational database, and are also referred to as data samples or feature vectors.

Main memory-based clustering and nearest-neighbor algorithms typically operate
on either of the following two data structures:

Data matrix (or object-by-attribute structure): This structure stores the n data objects
in the form of a relational table, or n-by-p matrix (n objects×p attributes):

x11 · · · x1f · · · x1p

· · · · · · · · · · · · · · ·

xi1 · · · xif · · · xip

· · · · · · · · · · · · · · ·

xn1 · · · xnf · · · xnp

 . (2.8)
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Each row corresponds to an object. As part of our notation, we may use f to index
through the p attributes.

Dissimilarity matrix (or object-by-object structure): This structure stores a collection
of proximities that are available for all pairs of n objects. It is often represented by an
n-by-n table: 

0

d(2, 1) 0

d(3, 1) d(3, 2) 0
...

...
...

d(n, 1) d(n, 2) · · · · · · 0

 , (2.9)

where d(i, j) is the measured dissimilarity or “difference” between objects i and j. In
general, d(i, j) is a non-negative number that is close to 0 when objects i and j are
highly similar or “near” each other, and becomes larger the more they differ. Note
that d(i, i)= 0; that is, the difference between an object and itself is 0. Furthermore,
d(i, j)= d( j, i). (For readability, we do not show the d( j, i) entries; the matrix is
symmetric.) Measures of dissimilarity are discussed throughout the remainder of this
chapter.

Measures of similarity can often be expressed as a function of measures of dissimilarity.
For example, for nominal data,

sim(i, j)= 1− d(i, j), (2.10)

where sim(i, j) is the similarity between objects i and j. Throughout the rest of this
chapter, we will also comment on measures of similarity.

A data matrix is made up of two entities or “things,” namely rows (for objects)
and columns (for attributes). Therefore, the data matrix is often called a two-mode
matrix. The dissimilarity matrix contains one kind of entity (dissimilarities) and so is
called a one-mode matrix. Many clustering and nearest-neighbor algorithms operate
on a dissimilarity matrix. Data in the form of a data matrix can be transformed into a
dissimilarity matrix before applying such algorithms.

2.4.2 Proximity Measures for Nominal Attributes

A nominal attribute can take on two or more states (Section 2.1.2). For example,
map color is a nominal attribute that may have, say, five states: red, yellow, green, pink,
and blue.

Let the number of states of a nominal attribute be M . The states can be denoted by
letters, symbols, or a set of integers, such as 1, 2, . . . , M . Notice that such integers are
used just for data handling and do not represent any specific ordering.
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“How is dissimilarity computed between objects described by nominal attributes?”
The dissimilarity between two objects i and j can be computed based on the ratio of
mismatches:

d(i, j)=
p−m

p
, (2.11)

where m is the number of matches (i.e., the number of attributes for which i and j are in
the same state), and p is the total number of attributes describing the objects. Weights
can be assigned to increase the effect of m or to assign greater weight to the matches in
attributes having a larger number of states.

Example 2.17 Dissimilarity between nominal attributes. Suppose that we have the sample data of
Table 2.2, except that only the object-identifier and the attribute test-1 are available,
where test-1 is nominal. (We will use test-2 and test-3 in later examples.) Let’s compute
the dissimilarity matrix (Eq. 2.9), that is,

0

d(2, 1) 0

d(3, 1) d(3, 2) 0

d(4, 1) d(4, 2) d(4, 3) 0

.

Since here we have one nominal attribute, test-1, we set p= 1 in Eq. (2.11) so that d(i, j)
evaluates to 0 if objects i and j match, and 1 if the objects differ. Thus, we get


0

1 0

1 1 0

0 1 1 0

.

From this, we see that all objects are dissimilar except objects 1 and 4 (i.e., d(4,1)= 0).

Table 2.2 A Sample Data Table Containing Attributes
of Mixed Type

Object test-1 test-2 test-3
Identifier (nominal) (ordinal) (numeric)

1 code A excellent 45

2 code B fair 22

3 code C good 64

4 code A excellent 28
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Alternatively, similarity can be computed as

sim(i, j)= 1− d(i, j)=
m

p
. (2.12)

Proximity between objects described by nominal attributes can be computed using
an alternative encoding scheme. Nominal attributes can be encoded using asymmetric
binary attributes by creating a new binary attribute for each of the M states. For an
object with a given state value, the binary attribute representing that state is set to 1,
while the remaining binary attributes are set to 0. For example, to encode the nominal
attribute map color, a binary attribute can be created for each of the five colors previ-
ously listed. For an object having the color yellow, the yellow attribute is set to 1, while
the remaining four attributes are set to 0. Proximity measures for this form of encoding
can be calculated using the methods discussed in the next subsection.

2.4.3 Proximity Measures for Binary Attributes

Let’s look at dissimilarity and similarity measures for objects described by either
symmetric or asymmetric binary attributes.

Recall that a binary attribute has only one of two states: 0 and 1, where 0 means that
the attribute is absent, and 1 means that it is present (Section 2.1.3). Given the attribute
smoker describing a patient, for instance, 1 indicates that the patient smokes, while 0
indicates that the patient does not. Treating binary attributes as if they are numeric can
be misleading. Therefore, methods specific to binary data are necessary for computing
dissimilarity.

“So, how can we compute the dissimilarity between two binary attributes?” One
approach involves computing a dissimilarity matrix from the given binary data. If all
binary attributes are thought of as having the same weight, we have the 2× 2 contin-
gency table of Table 2.3, where q is the number of attributes that equal 1 for both objects
i and j, r is the number of attributes that equal 1 for object i but equal 0 for object j, s is
the number of attributes that equal 0 for object i but equal 1 for object j, and t is the
number of attributes that equal 0 for both objects i and j. The total number of attributes
is p, where p = q+ r+ s+ t .

Recall that for symmetric binary attributes, each state is equally valuable. Dis-
similarity that is based on symmetric binary attributes is called symmetric binary
dissimilarity. If objects i and j are described by symmetric binary attributes, then the

Table 2.3 Contingency Table for Binary Attributes

Object j

1 0 sum

1 q r q+ r

Object i 0 s t s+ t

sum q+ s r+ t p
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dissimilarity between i and j is

d(i, j)=
r+ s

q+ r+ s+ t
. (2.13)

For asymmetric binary attributes, the two states are not equally important, such as
the positive (1) and negative (0) outcomes of a disease test. Given two asymmetric binary
attributes, the agreement of two 1s (a positive match) is then considered more signifi-
cant than that of two 0s (a negative match). Therefore, such binary attributes are often
considered “monary” (having one state). The dissimilarity based on these attributes is
called asymmetric binary dissimilarity, where the number of negative matches, t , is
considered unimportant and is thus ignored in the following computation:

d(i, j)=
r+ s

q+ r+ s
. (2.14)

Complementarily, we can measure the difference between two binary attributes based
on the notion of similarity instead of dissimilarity. For example, the asymmetric binary
similarity between the objects i and j can be computed as

sim(i, j)=
q

q+ r+ s
= 1− d(i, j). (2.15)

The coefficient sim(i, j) of Eq. (2.15) is called the Jaccard coefficient and is popularly
referenced in the literature.

When both symmetric and asymmetric binary attributes occur in the same data set,
the mixed attributes approach described in Section 2.4.6 can be applied.

Example 2.18 Dissimilarity between binary attributes. Suppose that a patient record table (Table 2.4)
contains the attributes name, gender, fever, cough, test-1, test-2, test-3, and test-4, where
name is an object identifier, gender is a symmetric attribute, and the remaining attributes
are asymmetric binary.

For asymmetric attribute values, let the values Y (yes) and P (positive) be set to 1,
and the value N (no or negative) be set to 0. Suppose that the distance between objects

Table 2.4 Relational Table Where Patients Are Described by Binary Attributes

name gender fever cough test-1 test-2 test-3 test-4

Jack M Y N P N N N

Jim M Y Y N N N N

Mary F Y N P N P N
...

...
...

...
...

...
...

...
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(patients) is computed based only on the asymmetric attributes. According to Eq. (2.14),
the distance between each pair of the three patients—Jack, Mary, and Jim—is

d(Jack, Jim)=
1+ 1

1+ 1+ 1
= 0.67,

d(Jack, Mary)=
0+ 1

2+ 0+ 1
= 0.33,

d(Jim, Mary) =
1+ 2

1+ 1+ 2
= 0.75.

These measurements suggest that Jim and Mary are unlikely to have a similar disease
because they have the highest dissimilarity value among the three pairs. Of the three
patients, Jack and Mary are the most likely to have a similar disease.

2.4.4 Dissimilarity of Numeric Data: Minkowski Distance

In this section, we describe distance measures that are commonly used for computing
the dissimilarity of objects described by numeric attributes. These measures include the
Euclidean, Manhattan, and Minkowski distances.

In some cases, the data are normalized before applying distance calculations. This
involves transforming the data to fall within a smaller or common range, such as [−1,1]
or [0.0, 1.0]. Consider a height attribute, for example, which could be measured in either
meters or inches. In general, expressing an attribute in smaller units will lead to a larger
range for that attribute, and thus tend to give such attributes greater effect or “weight.”
Normalizing the data attempts to give all attributes an equal weight. It may or may not be
useful in a particular application. Methods for normalizing data are discussed in detail
in Chapter 3 on data preprocessing.

The most popular distance measure is Euclidean distance (i.e., straight line or
“as the crow flies”). Let i = (xi1, xi2, . . . , xip) and j = (xj1, xj2, . . . , xjp) be two objects
described by p numeric attributes. The Euclidean distance between objects i and j is
defined as

d(i, j)=
√
(xi1− xj1)2+ (xi2− xj2)2+ ·· ·+ (xip− xjp)2. (2.16)

Another well-known measure is the Manhattan (or city block) distance, named so
because it is the distance in blocks between any two points in a city (such as 2 blocks
down and 3 blocks over for a total of 5 blocks). It is defined as

d(i, j)= |xi1− xj1| + |xi2− xj2| + · · · + |xip− xjp|. (2.17)

Both the Euclidean and the Manhattan distance satisfy the following mathematical
properties:

Non-negativity: d(i, j)≥ 0: Distance is a non-negative number.

Identity of indiscernibles: d(i, i)= 0: The distance of an object to itself is 0.
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Symmetry: d(i, j)= d( j, i): Distance is a symmetric function.

Triangle inequality: d(i, j)≤ d(i, k)+ d(k, j): Going directly from object i to object j
in space is no more than making a detour over any other object k.

A measure that satisfies these conditions is known as metric. Please note that the
non-negativity property is implied by the other three properties.

Example 2.19 Euclidean distance and Manhattan distance. Let x1 = (1, 2) and x2 = (3, 5) repre-
sent two objects as shown in Figure 2.23. The Euclidean distance between the two is√

22+ 32 = 3.61. The Manhattan distance between the two is 2+ 3= 5.

Minkowski distance is a generalization of the Euclidean and Manhattan distances.
It is defined as

d(i, j)= h
√
|xi1− xj1|

h+ |xi2− xj2|
h+ ·· ·+ |xip− xjp|

h, (2.18)

where h is a real number such that h ≥ 1. (Such a distance is also called Lp norm in
some literature, where the symbol p refers to our notation of h. We have kept p as
the number of attributes to be consistent with the rest of this chapter.) It represents
the Manhattan distance when h= 1 (i.e., L1 norm) and Euclidean distance when h= 2
(i.e., L2 norm).

The supremum distance (also referred to as Lmax, L∞ norm and as the Chebyshev
distance) is a generalization of the Minkowski distance for h→∞. To compute it, we
find the attribute f that gives the maximum difference in values between the two objects.
This difference is the supremum distance, defined more formally as:

d(i, j)= lim
h→∞

 p∑
f=1

|xif − xjf |
h

 1
h

=
p

max
f
|xif − xjf |. (2.19)

The L∞ norm is also known as the uniform norm.

1 2
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2

1

x2 = (3, 5)

x1 = (1, 2)

Euclidean distance
= (22 + 32)1/2 = 3.61

Manhattan distance
= 2 + 3 = 5

Supremum distance
= 5 – 2 = 3

Figure 2.23 Euclidean, Manhattan, and supremum distances between two objects.
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Example 2.20 Supremum distance. Let’s use the same two objects, x1 = (1, 2) and x2 = (3, 5), as in
Figure 2.23. The second attribute gives the greatest difference between values for the
objects, which is 5− 2= 3. This is the supremum distance between both objects.

If each attribute is assigned a weight according to its perceived importance, the
weighted Euclidean distance can be computed as

d(i, j)=
√

w1|xi1− xj1|
2+w2|xi2− xj2|

2+ ·· ·+wm|xip− xjp|
2. (2.20)

Weighting can also be applied to other distance measures as well.

2.4.5 Proximity Measures for Ordinal Attributes

The values of an ordinal attribute have a meaningful order or ranking about them,
yet the magnitude between successive values is unknown (Section 2.1.4). An exam-
ple includes the sequence small, medium, large for a size attribute. Ordinal attributes
may also be obtained from the discretization of numeric attributes by splitting the value
range into a finite number of categories. These categories are organized into ranks. That
is, the range of a numeric attribute can be mapped to an ordinal attribute f having Mf

states. For example, the range of the interval-scaled attribute temperature (in Celsius)
can be organized into the following states: −30 to −10, −10 to 10, 10 to 30, repre-
senting the categories cold temperature, moderate temperature, and warm temperature,
respectively. Let M represent the number of possible states that an ordinal attribute can
have. These ordered states define the ranking 1, . . . , Mf .

“How are ordinal attributes handled?” The treatment of ordinal attributes is
quite similar to that of numeric attributes when computing dissimilarity between
objects. Suppose that f is an attribute from a set of ordinal attributes describing
n objects. The dissimilarity computation with respect to f involves the following
steps:

1. The value of f for the ith object is xif , and f has Mf ordered states, representing the
ranking 1, . . . , Mf . Replace each xif by its corresponding rank, rif ∈ {1, . . . , Mf }.

2. Since each ordinal attribute can have a different number of states, it is often
necessary to map the range of each attribute onto [0.0, 1.0] so that each attribute
has equal weight. We perform such data normalization by replacing the rank rif

of the ith object in the f th attribute by

zif =
rif − 1

Mf − 1
. (2.21)

3. Dissimilarity can then be computed using any of the distance measures described
in Section 2.4.4 for numeric attributes, using zif to represent the f value for the ith
object.
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Example 2.21 Dissimilarity between ordinal attributes. Suppose that we have the sample data shown
earlier in Table 2.2, except that this time only the object-identifier and the continuous
ordinal attribute, test-2, are available. There are three states for test-2: fair, good, and
excellent, that is, Mf = 3. For step 1, if we replace each value for test-2 by its rank, the
four objects are assigned the ranks 3, 1, 2, and 3, respectively. Step 2 normalizes the
ranking by mapping rank 1 to 0.0, rank 2 to 0.5, and rank 3 to 1.0. For step 3, we can
use, say, the Euclidean distance (Eq. 2.16), which results in the following dissimilarity
matrix: 

0

1.0 0

0.5 0.5 0

0 1.0 0.5 0

 .

Therefore, objects 1 and 2 are the most dissimilar, as are objects 2 and 4 (i.e., d(2,1)=
1.0 and d(4,2)= 1.0). This makes intuitive sense since objects 1 and 4 are both excellent.
Object 2 is fair, which is at the opposite end of the range of values for test-2.

Similarity values for ordinal attributes can be interpreted from dissimilarity as
sim(i, j)= 1− d(i, j).

2.4.6 Dissimilarity for Attributes of Mixed Types

Sections 2.4.2 through 2.4.5 discussed how to compute the dissimilarity between objects
described by attributes of the same type, where these types may be either nominal, sym-
metric binary, asymmetric binary, numeric, or ordinal. However, in many real databases,
objects are described by a mixture of attribute types. In general, a database can contain
all of these attribute types.

“So, how can we compute the dissimilarity between objects of mixed attribute types?”
One approach is to group each type of attribute together, performing separate data
mining (e.g., clustering) analysis for each type. This is feasible if these analyses derive
compatible results. However, in real applications, it is unlikely that a separate analysis
per attribute type will generate compatible results.

A more preferable approach is to process all attribute types together, performing a
single analysis. One such technique combines the different attributes into a single dis-
similarity matrix, bringing all of the meaningful attributes onto a common scale of the
interval [0.0, 1.0].

Suppose that the data set contains p attributes of mixed type. The dissimilarity d(i, j)
between objects i and j is defined as

d(i, j)=

∑p
f=1 δ

(f )
ij d

(f )
ij∑p

f=1 δ
(f )
ij

, (2.22)
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where the indicator δ
(f )
ij = 0 if either (1) xif or xjf is missing (i.e., there is no mea-

surement of attribute f for object i or object j), or (2) xif = xjf = 0 and attribute

f is asymmetric binary; otherwise, δ
(f )
ij = 1. The contribution of attribute f to the

dissimilarity between i and j (i.e., d
(f )
ij ) is computed dependent on its type:

If f is numeric: d
(f )
ij =

|xif−xjf |

maxhxhf−minhxhf
, where h runs over all nonmissing objects for

attribute f .

If f is nominal or binary: d
(f )
ij = 0 if xif = xjf ; otherwise, d

(f )
ij = 1.

If f is ordinal: compute the ranks rif and zif =
rif−1
Mf−1 , and treat zif as numeric.

These steps are identical to what we have already seen for each of the individual
attribute types. The only difference is for numeric attributes, where we normalize so
that the values map to the interval [0.0, 1.0]. Thus, the dissimilarity between objects
can be computed even when the attributes describing the objects are of different
types.

Example 2.22 Dissimilarity between attributes of mixed type. Let’s compute a dissimilarity matrix
for the objects in Table 2.2. Now we will consider all of the attributes, which are of
different types. In Examples 2.17 and 2.21, we worked out the dissimilarity matrices
for each of the individual attributes. The procedures we followed for test-1 (which is
nominal) and test-2 (which is ordinal) are the same as outlined earlier for processing
attributes of mixed types. Therefore, we can use the dissimilarity matrices obtained for
test-1 and test-2 later when we compute Eq. (2.22). First, however, we need to compute
the dissimilarity matrix for the third attribute, test-3 (which is numeric). That is, we

must compute d(3)ij . Following the case for numeric attributes, we let maxhxh = 64 and

minhxh = 22. The difference between the two is used in Eq. (2.22) to normalize the
values of the dissimilarity matrix. The resulting dissimilarity matrix for test-3 is


0

0.55 0

0.45 1.00 0

0.40 0.14 0.86 0

 .

We can now use the dissimilarity matrices for the three attributes in our computation of

Eq. (2.22). The indicator δ
(f )
ij = 1 for each of the three attributes, f . We get, for example,

d(3, 1)= 1(1)+1(0.50)+1(0.45)
3 = 0.65. The resulting dissimilarity matrix obtained for the



2.4 Measuring Data Similarity and Dissimilarity 77

data described by the three attributes of mixed types is:⎡
⎢⎢⎢⎣

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0

⎤
⎥⎥⎥⎦ .

From Table 2.2, we can intuitively guess that objects 1 and 4 are the most similar, based
on their values for test-1 and test-2. This is confirmed by the dissimilarity matrix, where
d(4, 1) is the lowest value for any pair of different objects. Similarly, the matrix indicates
that objects 1 and 2 are the least similar.

2.4.7 Cosine Similarity

Cosine similarity measures the similarity between two vectors of an inner product space.
It is measured by the cosine of the angle between two vectors and determines whether
two vectors are pointing in roughly the same direction. It is often used to measure
document similarity in text analysis.

A document can be represented by thousands of attributes, each recording the fre-
quency of a particular word (such as a keyword) or phrase in the document. Thus,
each document is an object represented by what is called a term-frequency vector. For
example, in Table 2.5, we see that Document1 contains five instances of the word team,
while hockey occurs three times. The word coach is absent from the entire document, as
indicated by a count value of 0. Such data can be highly asymmetric.

Term-frequency vectors are typically very long and sparse (i.e., they have many 0 val-
ues). Applications using such structures include information retrieval, text document
clustering, biological taxonomy, and gene feature mapping. The traditional distance
measures that we have studied in this chapter do not work well for such sparse numeric
data. For example, two term-frequency vectors may have many 0 values in common,
meaning that the corresponding documents do not share many words, but this does not
make them similar. We need a measure that will focus on the words that the two docu-
ments do have in common, and the occurrence frequency of such words. In other words,
we need a measure for numeric data that ignores zero-matches.

Table 2.5 Document Vector or Term-Frequency Vector

Document team coach hockey baseball soccer penalty score win loss season

Document1 5 0 3 0 2 0 0 2 0 0

Document2 3 0 2 0 1 1 0 1 0 1

Document3 0 7 0 2 1 0 0 3 0 0

Document4 0 1 0 0 1 2 2 0 3 0
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similarity function, we have

sim(x, y)=
x · y
||x||||y||

, (2.23)

where ||x|| is the Euclidean norm of vector x= (x1, x2, . . . , xp), defined as√
x2

1 + x2
2 + ·· ·+ x2

p . Conceptually, it is the length of the vector. Similarly, ||y|| is the

Euclidean norm of vector y. The measure computes the cosine of the angle between vec-
tors x and y. A cosine value of 0 means that the two vectors are at 90 degrees to each
other (orthogonal) and have no match. The closer the cosine value to 1, the smaller the
angle and the greater the match between vectors. Note that because the cosine similarity
measure does not obey all of the properties of Section 2.4.4 defining metric measures, it
is referred to as a nonmetric measure.

Example 2.23 Cosine similarity between two term-frequency vectors. Suppose that x and y are the
first two term-frequency vectors in Table 2.5. That is, x= (5,0,3,0,2,0,0,2,0,0) and
y= (3,0,2,0,1,1,0,1,0,1). How similar are x and y? Using Eq. (2.23) to compute the
cosine similarity between the two vectors, we get:

xt
· y= 5× 3+ 0× 0+ 3× 2+ 0× 0+ 2× 1+ 0× 1+ 0× 0+ 2× 1

+ 0× 0+ 0× 1= 25

||x|| =
√

52+ 02+ 32+ 02+ 22+ 02+ 02+ 22+ 02+ 02 = 6.48

||y|| =
√

32+ 02+ 22+ 02+ 12+ 12+ 02+ 12+ 02+ 12 = 4.12

sim(x, y)= 0.94

Therefore, if we were using the cosine similarity measure to compare these documents,
they would be considered quite similar.

When attributes are binary-valued, the cosine similarity function can be interpreted
in terms of shared features or attributes. Suppose an object x possesses the ith attribute
if xi = 1. Then xt

· y is the number of attributes possessed (i.e., shared) by both x and
y, and |x||y| is the geometric mean of the number of attributes possessed by x and the
number possessed by y. Thus, sim(x, y) is a measure of relative possession of common
attributes.

A simple variation of cosine similarity for the preceding scenario is

sim(x, y)=
x · y

x · x+ y · y− x · y
, (2.24)

which is the ratio of the number of attributes shared by x and y to the number of
attributes possessed by x or y. This function, known as the Tanimoto coefficient or
Tanimoto distance, is frequently used in information retrieval and biology taxonomy.
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2.5 Summary

Data sets are made up of data objects. A data object represents an entity. Data objects
are described by attributes. Attributes can be nominal, binary, ordinal, or numeric.

The values of a nominal (or categorical) attribute are symbols or names of things,
where each value represents some kind of category, code, or state.

Binary attributes are nominal attributes with only two possible states (such as 1 and
0 or true and false). If the two states are equally important, the attribute is symmetric;
otherwise it is asymmetric.

An ordinal attribute is an attribute with possible values that have a meaningful order
or ranking among them, but the magnitude between successive values is not known.

A numeric attribute is quantitative (i.e., it is a measurable quantity) represented
in integer or real values. Numeric attribute types can be interval-scaled or ratio-
scaled. The values of an interval-scaled attribute are measured in fixed and equal
units. Ratio-scaled attributes are numeric attributes with an inherent zero-point.
Measurements are ratio-scaled in that we can speak of values as being an order of
magnitude larger than the unit of measurement.

Basic statistical descriptions provide the analytical foundation for data preprocess-
ing. The basic statistical measures for data summarization include mean, weighted
mean, median, and mode for measuring the central tendency of data; and range, quan-
tiles, quartiles, interquartile range, variance, and standard deviation for measuring the
dispersion of data. Graphical representations (e.g., boxplots, quantile plots, quantile–
quantile plots, histograms, and scatter plots) facilitate visual inspection of the data and
are thus useful for data preprocessing and mining.

Data visualization techniques may be pixel-oriented, geometric-based, icon-based, or
hierarchical. These methods apply to multidimensional relational data. Additional
techniques have been proposed for the visualization of complex data, such as text
and social networks.

Measures of object similarity and dissimilarity are used in data mining applications
such as clustering, outlier analysis, and nearest-neighbor classification. Such mea-
sures of proximity can be computed for each attribute type studied in this chapter,
or for combinations of such attributes. Examples include the Jaccard coefficient for
asymmetric binary attributes and Euclidean, Manhattan, Minkowski, and supremum
distances for numeric attributes. For applications involving sparse numeric data vec-
tors, such as term-frequency vectors, the cosine measure and the Tanimoto coefficient
are often used in the assessment of similarity.

2.6 Exercises

2.1 Give three additional commonly used statistical measures that are not already illus-
trated in this chapter for the characterization of data dispersion. Discuss how they can
be computed efficiently in large databases.
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2.2 Suppose that the data for analysis includes the attribute age. The age values for the data
tuples are (in increasing order) 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30,
33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.

(a) What is the mean of the data? What is the median?

(b) What is the mode of the data? Comment on the data’s modality (i.e., bimodal,
trimodal, etc.).

(c) What is the midrange of the data?

(d) Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data?

(e) Give the five-number summary of the data.

(f) Show a boxplot of the data.

(g) How is a quantile–quantile plot different from a quantile plot?

2.3 Suppose that the values for a given set of data are grouped into intervals. The intervals
and corresponding frequencies are as follows:

age frequency

1–5 200

6–15 450

16–20 300

21–50 1500

51–80 700

81–110 44

Compute an approximate median value for the data.

2.4 Suppose that a hospital tested the age and body fat data for 18 randomly selected adults
with the following results:

age 23 23 27 27 39 41 47 49 50

%fat 9.5 26.5 7.8 17.8 31.4 25.9 27.4 27.2 31.2

age 52 54 54 56 57 58 58 60 61

%fat 34.6 42.5 28.8 33.4 30.2 34.1 32.9 41.2 35.7

(a) Calculate the mean, median, and standard deviation of age and %fat.

(b) Draw the boxplots for age and %fat.

(c) Draw a scatter plot and a q-q plot based on these two variables.

2.5 Briefly outline how to compute the dissimilarity between objects described by the
following:

(a) Nominal attributes

(b) Asymmetric binary attributes
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(c) Numeric attributes

(d) Term-frequency vectors

2.6 Given two objects represented by the tuples (22, 1, 42, 10) and (20, 0, 36, 8):

(a) Compute the Euclidean distance between the two objects.

(b) Compute the Manhattan distance between the two objects.

(c) Compute the Minkowski distance between the two objects, using q = 3.

(d) Compute the supremum distance between the two objects.

2.7 The median is one of the most important holistic measures in data analysis. Pro-
pose several methods for median approximation. Analyze their respective complexity
under different parameter settings and decide to what extent the real value can be
approximated. Moreover, suggest a heuristic strategy to balance between accuracy and
complexity and then apply it to all methods you have given.

2.8 It is important to define or select similarity measures in data analysis. However, there
is no commonly accepted subjective similarity measure. Results can vary depending on
the similarity measures used. Nonetheless, seemingly different similarity measures may
be equivalent after some transformation.

Suppose we have the following 2-D data set:

A1 A2

x1 1.5 1.7

x2 2 1.9

x3 1.6 1.8

x4 1.2 1.5

x5 1.5 1.0

(a) Consider the data as 2-D data points. Given a new data point, x = (1.4,1.6) as a
query, rank the database points based on similarity with the query using Euclidean
distance, Manhattan distance, supremum distance, and cosine similarity.

(b) Normalize the data set to make the norm of each data point equal to 1. Use Euclidean
distance on the transformed data to rank the data points.

2.7 Bibliographic Notes

Methods for descriptive data summarization have been studied in the statistics literature
long before the onset of computers. Good summaries of statistical descriptive data min-
ing methods include Freedman, Pisani, and Purves [FPP07] and Devore [Dev95]. For
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statistics-based visualization of data using boxplots, quantile plots, quantile–quantile
plots, scatter plots, and loess curves, see Cleveland [Cle93].

Pioneering work on data visualization techniques is described in The Visual Dis-
play of Quantitative Information [Tuf83], Envisioning Information [Tuf90], and Visual
Explanations: Images and Quantities, Evidence and Narrative [Tuf97], all by Tufte, in
addition to Graphics and Graphic Information Processing by Bertin [Ber81], Visualizing
Data by Cleveland [Cle93], and Information Visualization in Data Mining and Knowledge
Discovery edited by Fayyad, Grinstein, and Wierse [FGW01].

Major conferences and symposiums on visualization include ACM Human Factors
in Computing Systems (CHI), Visualization, and the International Symposium on Infor-
mation Visualization. Research on visualization is also published in Transactions on
Visualization and Computer Graphics, Journal of Computational and Graphical Statistics,
and IEEE Computer Graphics and Applications.

Many graphical user interfaces and visualization tools have been developed and can
be found in various data mining products. Several books on data mining (e.g., Data
Mining Solutions by Westphal and Blaxton [WB98]) present many good examples and
visual snapshots. For a survey of visualization techniques, see “Visual techniques for
exploring databases” by Keim [Kei97].

Similarity and distance measures among various variables have been introduced in
many textbooks that study cluster analysis, including Hartigan [Har75]; Jain and Dubes
[JD88]; Kaufman and Rousseeuw [KR90]; and Arabie, Hubert, and de Soete [AHS96].
Methods for combining attributes of different types into a single dissimilarity matrix
were introduced by Kaufman and Rousseeuw [KR90].
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