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a b s t r a c t

Hydraulic axial piston pump is broadly-used in aerospace, ocean engineering and construction machin-
ery since it is the vital component of fluid power systems. In the light of the undiscoverability of its
fault and the potential serious losses, it is valuable and challenging to complete the fault identification
of a hydraulic pump accurately and effectively. Owing to the limitations of shallow machine learning
methods in the intelligent fault diagnosis, more attention has been paid to deep learning methods.
Hyperparameter plays an important role in a deep learning model. Although some manual tuning
methods may represent good results in some cases, it is hard to reproduce due to the differences of
datasets and other factors. Hence, Bayesian optimization (BO) algorithm is adopted to automatically
select the hyperparameters. Firstly, the time–frequency images of vibration signals by continuous
wavelet transform are taken as input data. Secondly, by setting some hyperparameters, a preliminary
convolutional neural network (CNN) model is established. Thirdly, by identifying the range of each
hyperparameter, BO based on Gaussian process is employed to construct an adaptive CNN model
named CNN-BO. The performance of CNN-BO is verified by comparing with traditional LeNet 5 and
improved LeNet 5 with manual optimization. The results indicate that CNN-BO can accomplish the
intelligent fault diagnosis of a hydraulic pump accurately.

© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

As a pivotal power part of fluid drive system, hydraulic ax-
al piston pump (HAPP) has been widely used in construction
achinery, aerospace, forging machinery, marine and mining ma-
hinery [1–3]. Once there is failure in a hydraulic piston pump, it
ill produce an impact on the whole hydraulic system. More se-
ere losses will be inflicted on the practical industrial production
nd personal safety [4–6]. Moreover, the distinct characteristics
f its faults are sealing, hiddenness, coupling, randomness and
omplexity, which make it hard for feature extraction and fault
dentification. Therefore, it is of great essence to search for an
fficient and feasible method to diagnose the faults of HAPP.
With the emergence of mechanical big data and the devel-

pment of artificial intelligence in interdisciplinary subjects, in-
elligent methods have aroused great attention in the fields of
achinery fault diagnosis [7–10]. By combining Kalman filters
nd artificial neural network, Cho et al. achieved the accurate and
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effective fault recognition of wind turbine in different states [11].
By using empirical mode decomposition for feature extraction, an
intelligent diagnosis method based on artificial neural network
was utilized for rolling bearing [12]. As for data imbalance, an
improved method based on support vector machine (SVM) was
used for fault diagnosis of steering actuator in an automated driv-
ing vehicle [13]. Among them, grey wolf optimizer algorithm was
introduced to tune the threshold. By taking the effect of data im-
balance and signal heterogeneity into account, an improved SVM
was developed for fault detection of braking system in high-speed
train by combining weighted-feature strategy and cost-sensitive
learning [14]. The above shallow models can be effective in solv-
ing some uncomplicated classification problems, while they are
strongly dependent on the experience and knowledge of feature
extraction.

Owing to the limitations of the generalization capability of
shallow models in dealing with complex problems, deep learning
(DL) based methods present the special superiority [15–17]. By
using real-valued output-based diversity metric, a deep ensemble
learning method was developed for gearbox and bearing fault
diagnosis under the interferences of working conditions and noise
[18]. As for data insufficiency, Li et al. proposed a fault diagnosis
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ethod of wind turbine by integrating transfer learning and con-
olutional autoencoder [19]. Chen et al. accomplished the fault
iagnosis of gearbox by employing a convolution neural network
CNN) [20]. Chen et al. developed a modified CNN model for
earing fault diagnosis by implementing the time–frequency con-
ersion using cyclic spectral coherence [21]. By analyzing acoustic
ignal, Kumar et al. applied a CNN into the failure identification
owards centrifugal pump [22]. Based on vibration signal, a subset
ethod combined deep auto-encoder with particle smarm op-

imization was employed for bearing fault identification [23]. A
ransfer auto-encoder optimized by particle smarm optimization
as used to achieve the effective fault diagnosis of different
earings and gears [24]. Similarly, using particle smarm optimiza-
ion for the learning of critical hyperparameter (HP), a hybrid
pproach was used for bearing failure identification by using CNN
nd SVM [25]. Fault diagnosis of converters was completed by
ombining a deep CNN and genetic algorithm [26]. There are still
ome challenges and problems in the present studies.
(1) Many studies of deep models are emphasized on the in-

elligent fault diagnosis of bearing, gearbox, and motor, it is still
ew on the HAPP. Its structure and working mechanism are more
omplex. The hiddenness and coupling of its failure makes it
ore valuable and challenging for fault diagnosis and condition
onitoring.
(2) The time-consuming preprocessing of the original signals

s conducted in the traditional intelligent diagnosis methods.
oreover, it requires more stringent knowledge on equipment

ault mechanism and the technology of data preprocessing.
(3) The setting of hyperparameters in most deep learning

odels is mostly based on empirical knowledge and manual
uning. Some of them using intelligent search algorithms or evo-
utionary algorithms still present some limitations in the compu-
ational expense and reproducibility. Moreover, it is lacking on
he application of Bayesian optimization (BO) in automatically
electing the appropriate HPs of deep models.
Therefore, the main contributions in this study are in the

ollowing:
(1) The intelligent fault diagnosis of a HAPP is explored in

onsideration of its special structure and mechanism. The on-
ology representation information of the pump is employed as
he data source, which can achieve the non-destructive condition
onitoring. The characteristics of the original sensor information

n both time domain and frequency domain are fully utilized to
ave the complicated and time-consuming signal preprocessing
teps.
(2) Different working conditions are set up, and different

ear degrees of the same fault type are included in the analy-
is. The performance of the proposed method is explored from
ifferent perspectives. By utilizing the feature extraction abil-
ty of CNN for high-dimensional information and high-precision
ecognition ability under supervised learning, the self-learning
nd classification of time–frequency features for the HAPP are
ealized.

(3) The adaptive global optimization ability of BO algorithm
s integrated to enhance diagnosis accuracy. It can present great
eproducibility, good convergence and strong robustness. The
onstructed method can be extended to other pumps and other
otating machinery.

The reminder of this work is organized in the following. Sec-
ion 2 outlines basic theory of CNN and BO. Section 3 introduces
he procedure of the proposed method. The diagnosis method
ombining BO and CNN is called CNN-BO. Section 4 details the
teps of vibration signal acquisition. In Section 5, the comparative
nalysis of main results is provided. Finally, Section 6 provides
ome conclusions.
556
2. Theoretical basis

2.1. Convolutional neural network

CNN is a special representative of feed-forward neural net-
works and presents the potent capability in mining and extracting
useful features in a supervised learning way [27,28]. The structure
of a typical CNN comprises input layer, output layer, convolu-
tional layer (Conv), pooling layer, rectified linear unit layer (ReLU)
and fully-connected layer (FC).

The convolution layer plays a critical role in feature extraction
for CNN. The input is convolved by each convolutional kernel by
conducting dot product. The size of convolutional kernel can be
understood as the local receptive field. The Conv operation can
be formulated by [29,30],

X l
v = F (

∑
u∈Mv

X l−1
u ∗ K l

v + Bl
v) (1)

where, X denotes the input of CNN, Mv is used to select the input
feature maps, l represents the lth layer of a convolutional neural
network, Kv denotes the convolutional kernel, and X l

v is attained
from (l−1)th and denotes the vth feature maps. The convolution
operation is represented by (*). Bl

v is the bias corresponding to
the jth output of the lth Conv in the convolution process. F is
an activation function and can promote the capability of CNN in
solving the nonlinear problems. As one of widely used unsatu-
rated activation functions in CNN, ReLU presents the superiority
in computing and resolving gradient vanishing.

Pooling layer can select more beneficial information from the
features provided by Conv. It can reduce the parameters at the
same time of maintaining the invariance of image feature. The
corresponding operation can be calculated by [31,32],

alv−s = F (W l
vdown(M l−1

v ) + Bl
v) (2)

among these, F denotes an activation function, the weight is
denoted by W l

v , B
l
v presents the bias, M l−1

v is used to denote the
feature map in the (l− 1)th layer. Pooling operation is expressed
by down(·), which is often the calculation of the maximum or the
average value.

FC is employed to transform the obtained feature maps into
a 1D vector. Softmax classifier is used to obtain the predicted
results.

2.2. Bayesian optimization algorithm

HP tuning plays a significant role in the construction of deep
learning models. It can be completed by manual tuning and auto-
matic methods. Although good results can be obtained by manual
optimization, it mainly relies on the experience and possesses
undesired reproducibility. Random search and grid search can
tune HPs automatically, while some noneffective spaces may be
inevitable since it cannot obtain the previous searched infor-
mation. As representatives of evolutionary algorithms, genetic
algorithm and particle smarm optimization can accomplish the
global optimization, but it is not preferable on account of the
computation and convergence.

In the light of the deficiencies of the above methods, BO has
attracted great attention in parameter adjusting owing to its
distinctive advantages. The difference of BO is to consider the
previous parameter information by using Gaussian progress (GP)
to continually update the prior. And BO shows small number of
iterations and fast convergence speed. Moreover, BO still remains
robust in solving the non-convex problems, and can effectively
avoid local optimality. Owing to the good convergence and ro-
bustness, it is beneficial to employ BO to achieve the optimization
of HPs accurately and efficiently [33,34]. This paper plays an
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Fig. 1. The structure of convolutional neural network.
Fig. 2. The procedure of fault diagnosis using CNN-BO.
Fig. 3. The test bench of a hydraulic piston pump.
mphasis on BO based on GP, which is used for fitting the objec-
ive function. GP and acquisition function are considered as two
ignificant functions in BO [35].
GP can be used for parameter tuning, non-linear regression

nd classification [36,37]. It is critical to choose the suitable
ean function and covariance function. If the prior distribution
onforms to joint Gaussian, it can be represented by [38,39]:

(n1 : t) ∼ Normal(a(n1 : t ), Cθ (n1 : t , n1 : t )) (3)

where, f denotes a smooth function, n1 : t represents a finite input
collection, the mean vector is represented by a(n1 : t )i = a(ni); and
the covariance matrix is denoted by Cθ (n1 : t , n1 : t )ij = cθ (ni, nj),
hich is parameterized by θ .
When Matérn 5/2 is selected as covariance function, and a

ero-mean function is employed, the corresponding covariance
an be expressed by:

θ
M5/2(ni, nj) = exp(−

√
5r)(1 +

√
5r +

5
3
r2) (4)

mong them, r = (ni − nj)Tdiag(θ2)−1(ni − nj), diag denotes a
diagonal matrix. The covariance functions is presented with a d
length-scale HP θ . It is essential to mine the underlying functional
i

557
relationships via flexible control of the smoothness of the Matérn
5/2.

Acquisition function is a kind of heuristics for the evaluation
of an effective point according to the current model, including
the improvement based methods, the entropy based strategy
and some combined methods. The strategy of probability of im-
provement can only reflect the improved probability, but cannot
represent the amount of improvement. The method of upper
confidence bound is sensitive to parameter β . As for entropy
search strategy, it requests a large amount of computation and
the approximate technology. Compared with the above functions,
EI is a very prevailing acquisition function on the basis of im-
provement strategy. Its main superiorities are the few parameters
and simple calculation. It integrates the probability of improve-
ment and presents the improved amount as well. Moreover, it
can balance between depth and width. Moreover, the factor of
noise is considered in noisy EI, which is much closer to reality. It is
beneficial to use EI for balancing the exploration and exploitation.

EI can be expressed by [39]:

αEI (X; θ,D) = E[max(0, f (X) − f (X∗))] (5)

where, D denotes a dataset, f (X∗) represents the current best
value, and maximizing f (X) is the goal.
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Fig. 4. CWT representations of vibration signal.
Suppose that each result of the function is destructed by
-sub-Gaussian noise, the expression combining with GP can
e:

EI (X; θ,D) = σt (X; θ,D)[xΦ(x) + φ(x)] (6)

where, x =
µt (X;θ,D)−f (X∗)

σ (X;θ,D) , Φ denotes the cumulative distribution
function, and φ denotes the probability density function of the
standard normal distribution.

Further, considering the potential effect of stochastic noise, the
corresponding EI can be represented by:

αEI (X; θ,D) = σt (X; θ,D)[sΦ(s) + φ(s)] (7)

among them, s =
µt (X;θ,D)−µ(θ∗)

σ (X;θ,D) , and the best expected value
calculated from the mean results are expressed by µ(θ∗).
558
3. Proposed diagnosis method

3.1. Construction of CNN

As a typical CNN model, LeNet 5 has been proved to be suc-
cessful in handwritten digit recognition and image classification
[40]. A deep learning framework is built for HAPP fault diagnosis
on the basis of conventional LeNet 5. Fig. 1 presents the infras-
tructure of CNN composed of two Conv and two FC. The smaller
convolutional kernel is preliminarily designed. ReLU activation
function is employed to provide the non-linear learning ability
for CNN. Maxpooling is used for dimension reduction by down-
sampling. Softmax regression function is set in the output layer
to achieve the prediction and classification.
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Fig. 5. Iteration process of different models.

Table 1
Key parameters of the main components.
Component Parameter name Parameter setting

Pump

Type MCY14-1B
Theoretical displacement 10 ml/r
Nominal pressure 31.5 MPa
Rated speed 1470 r/min
Rotary frequency 24.5 Hz

Drive motor Type Y132M-4

3.2. Implementation of the proposed method

Bayesian optimization algorithm is used for the selection of
Ps, and the proposed diagnosis method is presented in Fig. 2.
he detailed steps are in the following:
(1) Vibration sensor is used for signal acquisition.
(2) The 2D CWT images of 1D time series are input into CNN.
(3) An improved CNN is constructed by setting initial HPs

ased on traditional LeNet 5.
(4) HPs optimization is implemented by using Bayesian al-

orithm. The objective function is the real function relationship
etween the performance of the CNN model and HPs. The HP
ombination obtained from the acquisition function in each itera-
ion is utilized for CNN training and testing. The group that makes
he test accuracy as high as possible will be selected. Firstly, main
Ps to be optimized are identified, such as learning rate (LR),
poch, kernel size and number, batch size and so on. Secondly, an
ppropriate range is set for each HP. Thirdly, Bayesian optimiza-
ion loop is performed according to the evaluate function. GP is
sed to model the function relationship between the performance
f CNN and HPs. To decrease the effect of additional results,
oisy EI is selected as acquisition function to guide the follow-up
ampling. Finally, the optimized CNN model is verified by using
he optimal HP combinations.

(5) The fault classification of HAPP is intelligently accom-
lished by integrating a deep CNN and Bayesian optimization.

. Experimental data acquisition

The test bench of the HAPP with seven plungers is used for
ollecting typical fault data, as displayed in Fig. 3. The key pa-
ameters of the major components in the experiment are shown
n Table 1, mainly including a hydraulic pump and a drive motor.
he signal collection is completed in Yanshan University. The
ampling frequency of 10 kHz is used in the experiment.
The Piezoelectric accelerometer of YD72-D is employed for

ibration signal acquisition. It is located in the end cover of the

ump shell by direct pasting. Five different health states are taken
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into account, loose slipper failure (sx), swash plate wear (xp),
without any fault (zc), central spring wear (th) and slipper wear
(hx) respectively. Among them, zc means it is in normal opera-
tion. The other four failures occur on the slipper, swash plate and
center spring. Loose slipper failure is triggered by the deformation
and the large gap of the plunger ball head and ball socket sink.
Once the gap of plunger ball head and slipper socket is more than
the limit value, high pressure oil in plunger cavity could leak.
Metal contact friction happens between slipper and swash plate,
which will result in slipper ablation and swash plate wear. The
center spring maintains a contact seal between the cylinder block
and the valve plate, and the preload of the spring also squeezes
the return plate to push the plunger and slipper back. Spring wear
or break will make the plunger return unsuccessful or unable
to return, which leads to internal leakage, the pump oil short-
age, and even action hysteresis of the hydraulic system actuator.
Signals under five different working pressures are acquired.

5. Results and discussion

5.1. Input data

The measured vibration signals were changed into 2D distribu-
tions by using CWT. The wavelet basis function is ComplexMorlet.
The center frequency of 3 and the bandwidth of 3 are set in the
experiment. Choose the length of the scale sequence as 256.

The CWT images are shown in Fig. 4. There is no remarkable
difference among the time–frequency representations in varying
conditions. It is almost impossible to differentiate each type only
based on the features from such similar wavelet images. There-
fore, it is crucial to probe an effective and feasible method to
extract the valid information and accomplish the fault classifica-
tion.

The whole datasets include 6000 time–frequency images, 1200
images for each type of five conditions. The image is resized via
the transform strategy before input into the network. For train
samples, random horizontal flip is employed to gain more useful
information. Train dataset and test dataset are established by
randomly splitting, 70% and 30% respectively.

5.2. Identification of hyperparameters

The HPs of the above CNN are further optimized by BO via
employing the identified ranges. The preliminary settings of HPs
involve the input of 64 × 64, ReLU activation function, and Max
pooling of 2 × 2. The HPs to be optimized are mainly LR, batch
size, max epoch, kernel size of Conv1 and Conv2, kernel number
of Conv1 and Conv2, and kernel number of FC1 and FC2. The
range of each HP is based on Improved LeNet 5 with manual
optimization.

With the same ranges, the optimized HP groups by using
BO and PSO are presented in Table 2. The HPs of the proposed
CNN model are detailed in Table 3, including the parameters of
the input and output layer. The HPs of traditional LeNet 5 and
Improved LeNet 5 are listed in Table 4.

The whole optimization experiment includes 100 trials. For
the three different CNN models, BO is conducted to adaptively
learn the HPs. To validate the performance of the BO
algorithm, PSO is used for comparison. The iteration process of
different models is presented in Fig. 5. CNN-BO converges in less
than 40 iterations and the classification accuracy achieves over
97%. The accuracies of traditional LeNet 5 and improved LeNet 5
are 95.05% and 96.67%. The accuracy of the proposed method is
greatly higher than that of traditional LeNet 5 and presents faster
convergence in comparison with improved LeNet 5. The CNN
model by PSO reaches the optimized accuracy of less than 97% in
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Fig. 6. Curves of training loss and accuracy with CNN-BO.
Fig. 7. Confusion matrix of different models.
ore than 80 iterations. The whole process with PSO takes about
20 h, which is much longer than the 5 h consumed by the similar
rocess with BO in 100 iterations. It can be implied that good
onvergence and classification performance are accomplished by
mploying BO algorithm.
560
5.3. Analysis of diagnosis results

To avoid random influences, ten repeated experiments are
carried out. From Fig. 6, the CNN model converges in epoch 40
and the training loss reaches a smaller value approaching zero.
The test and train accuracy only presents slight distinction.
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Table 2
Best hyperparameter group by using BO and PSO.
No. Name of hyperparameters Range BO result PSO result

1 LR [0.001, 0.01] 0.01 0.0064
2 Batch size [24, 56] 35 52
3 Max epoch [30, 60] 40 33
4 Kernel size of Conv1 [3, 7] 3 3
5 Kernel size of Conv2 [3, 7] 3 5
6 Kernel number of Conv1 [6, 20] 20 9
7 Kernel number of Conv2 [10, 30] 16 18
8 Output of FC1 [80, 160] 123 80
9 Output of FC2 [60, 100] 77 40

Table 3
Hyperparameters of the proposed CNN.
No. Layer Parameter

1 Input 64 × 64 × 3
2 LR 0.01
3 Batch size 35
4 Max epoch 40
5 Conv1 20 × 3 × 3
6 Conv2 16 × 3 × 3
7 Max pooling 1 20 × 2 × 2
8 Max pooling 2 16 × 2 × 2
9 FC1 123 × 1
10 FC2 77 × 1
11 Output 5 × 1

Table 4
Hyperparameters of traditional and improved models.
No. Name Traditional LeNet 5 Improved LeNet 5

1 Input 32 × 32 × 3 64 × 64 × 3
2 LR 0.009 0.009
3 Batch size 32 42
4 Max epoch 40 40
5 Conv1 6 × 5 × 5 9 × 3 × 3
6 Conv2 16 × 5 × 5 18 × 5 × 5
7 Max pooling 1 6 × 2 × 2 9 × 2 × 2
8 Max pooling 2 16 × 2 × 2 18 × 2 × 2
9 FC1 120 × 1 120 × 1
10 FC2 84 × 1 84 × 1
11 Output 5 × 1 5 × 1

The statistical results of confusion matrix are shown in Fig. 7.
t can be found that an improvement in the fault types of sx and
h is achieved by CNN-BO compared with three different models.
561
Table 5
Classification precision of each type with different models.
Types CNN-BO CNN-PSO Improved LeNet 5 Traditional LeNet 5

zc 100.00 98.61 99.17 98.56
xp 100.00 98.89 97.55 97.20
hx 97.53 99.72 98.63 97.26
sx 95.28 93.15 93.02 88.51
th 94.63 87.86 94.27 85.33

Classification precision is the ratio of labels predicted to be
correct to the labels that are considered to be correct by the
model. It can be used for the analysis of classification result for
each condition. As displayed in Table 5, the precision of both zc
and xp reaches up to 100%. In comparison to the other three
models, CNN-BO represents the higher precision on sx and th.
Compared with traditional LeNet 5, the precision of CNN-BO for
sx increases by 6.77%, and 9.30% for th. The precisions of CNN-BO
for five states are higher than those of CNN-PSO, and there is an
increase of 6.77% for th.

The average accuracy of ten experiments in test dataset is
shown in Fig. 8. For CNN-BO, no obvious difference is observed
among the ten results. Compared with traditional LeNet 5, CNN-
BO presents the remarkable enhancement. A slight improvement
of accuracy can be obtained compared to Improved LeNet 5.
Compared with CNN-PSO, CNN-BO shows much stronger stability
and higher accuracy. It can be indicated that the performance of
the model is promoted via automatic optimization of HPs by using
BO.

To explore the results learned by CNN-BO, t-distributed
stochastic neighbor embedding (t-SNE) is exploited for the re-
duction and visualization. The horizontal axis and vertical axis
represent the two dimensions of t-SNE embedding space, namely
Component 1 and Component 2. Each point denotes a testing
data. It can be seen from Fig. 9 that scattered spots are observed
from the feature distribution of input. Although some features
in types of zc and xp begin to get together, most features in
different conditions present almost uniform distribution from the
information extracted by Conv 1 and Conv 2. Through the learning
of FC, feature clusters are formed in the same types, and obvious
classes are distinct in this stage. CNN-BO successfully achieves the
fault classification of a HAPP using the time–frequency images of
vibration signals.
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Fig. 9. Feature representations visualized by t-SNE.
. Conclusions

By integrating the deep learning theory and Bayesian opti-
ization algorithm, an improved method is constructed to intel-

igently realize the fault identification of hydraulic pump.
Bayesian optimization algorithm achieves the adaptive learn-

ng of model hyperparameters, and presents faster convergence
nd better robustness compared with PSO. The constructed CNN-
O attains the average classification accuracy of 96.94%, which
ncreases by 2.92% compared with that of traditional LeNet 5.
oreover, it presents the remarkable improvements for loose
lipper failure and central spring wear. The classification preci-
ions of the swash plate wear and normal condition reach up to
00%. The precisions of CNN-BO for five states are higher than
hose of CNN-PSO, especially an increase of 6.77% is realized
or central spring wear. The classification performance is further
emonstrated by the visualization of t-SNE. Therefore, the useful
562
information implied in the time–frequency features of original
signal can be effectively learned by CNN-BO and the different
conditions of the pump are accurately distinguished.

In future work, the enhancement will be focused on the Gaus-
sian function in the Bayesian optimization to better model the
objective function. The present study is emphasized on the ex-
ploitation of single vibration signal from a hydraulic piston pump,
furthermore, the research will be explored based on multiple
source fused features.
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