
M A N N I N G

Robert I. Kabacoff

SECOND EDITION

IN ACTION
Data analysis and graphics with R

www.it-ebooks.info

http://www.it-ebooks.info/

Praise for the First Edition

Lucid and engaging—this is without doubt the fun way to learn R!

—Amos A. Folarin, University College London

Be prepared to quickly raise the bar with the sheer quality that R can produce.

—Patrick Breen, Rogers Communications Inc.

An excellent introduction and reference on R from the author of the best R website.

—Christopher Williams, University of Idaho

Thorough and readable. A great R companion for the student or researcher.

—Samuel McQuillin, University of South Carolina

Finally, a comprehensive introduction to R for programmers.

—Philipp K. Janert, Author of Gnuplot in Action

Essential reading for anybody moving to R for the first time.

—Charles Malpas, University of Melbourne

One of the quickest routes to R proficiency. You can buy the book on Friday and

have a working program by Monday.

—Elizabeth Ostrowski, Baylor College of Medicine

One usually buys a book to solve the problems they know they have. This book

solves problems you didn't know you had.

—Carles Fenollosa, Barcelona Supercomputing Center

Clear, precise, and comes with a lot of explanations and examples…the book can

be used by beginners and professionals alike, and even for teaching R!

—Atef Ouni, Tunisian National Institute of Statistics

A great balance of targeted tutorials and in-depth examples.

—Landon Cox, 360VL Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

ii

www.it-ebooks.info

http://www.it-ebooks.info/

R in Action
SECOND EDITION

Data analysis and graphics with R

ROBERT I. KABACOFF

M A N N I N G

SHELTER ISLAND

www.it-ebooks.info

http://www.it-ebooks.info/

iv

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Copyeditor: Tiffany Taylor
PO Box 761 Proofreader: Toma Mulligan
Shelter Island, NY 11964 Typesetter: Marija Tudor

Cover designer: Marija Tudor

ISBN: 9781617291388
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

v

brief contents

PART 1 GETTING STARTED .. 1

1 ■ Introduction to R 3

2 ■ Creating a dataset 20

3 ■ Getting started with graphs 46

4 ■ Basic data management 71

5 ■ Advanced data management 89

PART 2 BASIC METHODS .. 115

6 ■ Basic graphs 117

7 ■ Basic statistics 137

PART 3 INTERMEDIATE METHODS .. 165

8 ■ Regression 167

9 ■ Analysis of variance 212

10 ■ Power analysis 239

11 ■ Intermediate graphs 255

12 ■ Resampling statistics and bootstrapping 279

www.it-ebooks.info

http://www.it-ebooks.info/

BRIEF CONTENTSvi

PART 4 ADVANCED METHODS ... 299

13 ■ Generalized linear models 301

14 ■ Principal components and factor analysis 319

15 ■ Time series 340

16 ■ Cluster analysis 369

17 ■ Classification 389

18 ■ Advanced methods for missing data 414

PART 5 EXPANDING YOUR SKILLS ... 435

19 ■ Advanced graphics with ggplot2 437

20 ■ Advanced programming 463

21 ■ Creating a package 491

22 ■ Creating dynamic reports 513

23 ■ Advanced graphics with the lattice package 1 online only

www.it-ebooks.info

www.manning.com/kabacoff2
http://www.it-ebooks.info/

vii

contents
preface xvii
acknowledgments xix
about this book xxi
about the cover illustration xxvii

PART 1 GETTING STARTED ... 1

1 Introduction to R 3

1.1 Why use R? 5

1.2 Obtaining and installing R 7

1.3 Working with R 7

Getting started 8 ■ Getting help 10 ■ The workspace 11
Input and output 13

1.4 Packages 15

What are packages? 15 ■ Installing a package 15
Loading a package 15 ■ Learning about a
package 16

1.5 Batch processing 16

1.6 Using output as input: reusing results 17

1.7 Working with large datasets 17

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSviii

1.8 Working through an example 18

1.9 Summary 19

2 Creating a dataset 20

2.1 Understanding datasets 21

2.2 Data structures 22

Vectors 22 ■ Matrices 23 ■ Arrays 24 ■ Data frames 25
Factors 28 ■ Lists 30

2.3 Data input 32

Entering data from the keyboard 33 ■ Importing data from a
delimited text file 34 ■ Importing data from Excel 37
Importing data from XML 38 ■ Importing data from the
web 38 ■ Importing data from SPSS 38 ■ Importing data
from SAS 39 ■ Importing data from Stata 40 ■ Importing
data from NetCDF 40 ■ Importing data from HDF5 40
Accessing database management systems (DBMSs) 40
Importing data via Stat/Transfer 42

2.4 Annotating datasets 43

Variable labels 43 ■ Value labels 43

2.5 Useful functions for working with data objects 43

2.6 Summary 44

3 Getting started with graphs 46

3.1 Working with graphs 47

3.2 A simple example 49

3.3 Graphical parameters 50

Symbols and lines 51 ■ Colors 52 ■ Text characteristics 53
Graph and margin dimensions 54

3.4 Adding text, customized axes, and legends 56

Titles 56 ■ Axes 57 ■ Reference lines 60 ■ Legend 60
Text annotations 61 ■ Math annotations 63

3.5 Combining graphs 64

Creating a figure arrangement with fine control 68

3.6 Summary 70

4 Basic data management 71

4.1 A working example 71

4.2 Creating new variables 73

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix

4.3 Recoding variables 75

4.4 Renaming variables 76

4.5 Missing values 77

Recoding values to missing 78 ■ Excluding missing values
from analyses 78

4.6 Date values 79

Converting dates to character variables 81 ■ Going
further 81

4.7 Type conversions 81

4.8 Sorting data 82

4.9 Merging datasets 83

Adding columns to a data frame 83 ■ Adding rows to
a data frame 84

4.10 Subsetting datasets 84

Selecting (keeping) variables 84 ■ Excluding (dropping)
variables 84 ■ Selecting observations 85 ■ The subset()
function 86 ■ Random samples 87

4.11 Using SQL statements to manipulate data
frames 87

4.12 Summary 88

5 Advanced data management 89

5.1 A data-management challenge 90

5.2 Numerical and character functions 91

Mathematical functions 91 ■ Statistical functions 92
Probability functions 94 ■ Character functions 97
Other useful functions 98 ■ Applying functions to matrices
and data frames 99

5.3 A solution for the data-management challenge 101

5.4 Control flow 105

Repetition and looping 105 ■ Conditional
execution 106

5.5 User-written functions 107

5.6 Aggregation and reshaping 109

Transpose 110 ■ Aggregating data 110 ■ The reshape2
package 111

5.7 Summary 113

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx

PART 2 BASIC METHODS .. 115

6 Basic graphs 117

6.1 Bar plots 118

Simple bar plots 118 ■ Stacked and grouped bar plots 119
Mean bar plots 120 ■ Tweaking bar plots 121
Spinograms 122

6.2 Pie charts 123

6.3 Histograms 125

6.4 Kernel density plots 127

6.5 Box plots 129

Using parallel box plots to compare groups 129 ■ Violin
plots 132

6.6 Dot plots 133

6.7 Summary 136

7 Basic statistics 137

7.1 Descriptive statistics 138

A menagerie of methods 138 ■ Even more methods 140
Descriptive statistics by group 142 ■ Additional methods
by group 143 ■ Visualizing results 144

7.2 Frequency and contingency tables 144

Generating frequency tables 145 ■ Tests of
independence 151 ■ Measures of association 152
Visualizing results 153

7.3 Correlations 153

Types of correlations 153 ■ Testing correlations for
significance 156 ■ Visualizing correlations 158

7.4 T-tests 158

Independent t-test 158 ■ Dependent t-test 159
When there are more than two groups 160

7.5 Nonparametric tests of group differences 160

Comparing two groups 160 ■ Comparing more than two
groups 161

7.6 Visualizing group differences 163

7.7 Summary 164

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi

PART 3 INTERMEDIATE METHODS 165

8 Regression 167

8.1 The many faces of regression 168

Scenarios for using OLS regression 169 ■ What you need to
know 170

8.2 OLS regression 171

Fitting regression models with lm() 172 ■ Simple linear
regression 173 ■ Polynomial regression 175
Multiple linear regression 178 ■ Multiple linear regression
with interactions 180

8.3 Regression diagnostics 182

A typical approach 183 ■ An enhanced approach 187
Global validation of linear model assumption 193
Multicollinearity 193

8.4 Unusual observations 194

Outliers 194 ■ High-leverage points 195 ■ Influential
observations 196

8.5 Corrective measures 198

Deleting observations 199 ■ Transforming variables 199
Adding or deleting variables 201 ■ Trying a different
approach 201

8.6 Selecting the “best” regression model 201

Comparing models 202 ■ Variable selection 203

8.7 Taking the analysis further 206

Cross-validation 206 ■ Relative importance 208

8.8 Summary 211

9 Analysis of variance 212

9.1 A crash course on terminology 213

9.2 Fitting ANOVA models 215

The aov() function 215 ■ The order of formula terms 216

9.3 One-way ANOVA 218

Multiple comparisons 219 ■ Assessing test assumptions 222

9.4 One-way ANCOVA 223

Assessing test assumptions 225 ■ Visualizing the results 225

9.5 Two-way factorial ANOVA 226

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii

9.6 Repeated measures ANOVA 229

9.7 Multivariate analysis of variance (MANOVA) 232

Assessing test assumptions 234 ■ Robust MANOVA 235

9.8 ANOVA as regression 236

9.9 Summary 238

10 Power analysis 239

10.1 A quick review of hypothesis testing 240

10.2 Implementing power analysis with the pwr package 242

t-tests 243 ■ ANOVA 245 ■ Correlations 245
Linear models 246 ■ Tests of proportions 247
Chi-square tests 248 ■ Choosing an appropriate effect size
in novel situations 249

10.3 Creating power analysis plots 251

10.4 Other packages 252

10.5 Summary 253

11 Intermediate graphs 255

11.1 Scatter plots 256

Scatter-plot matrices 259 ■ High-density scatter plots 261
3D scatter plots 263 ■ Spinning 3D scatter plots 265
Bubble plots 266

11.2 Line charts 268

11.3 Corrgrams 271

11.4 Mosaic plots 276

11.5 Summary 278

12 Resampling statistics and bootstrapping 279

12.1 Permutation tests 280

12.2 Permutation tests with the coin package 282

Independent two-sample and k-sample tests 283
Independence in contingency tables 285 ■ Independence
between numeric variables 285 ■ Dependent two-sample
and k-sample tests 286 ■ Going further 286

12.3 Permutation tests with the lmPerm package 287

Simple and polynomial regression 287 ■ Multiple
regression 288 ■ One-way ANOVA and ANCOVA 289
Two-way ANOVA 290

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii

12.4 Additional comments on permutation tests 291

12.5 Bootstrapping 291

12.6 Bootstrapping with the boot package 292

Bootstrapping a single statistic 294 ■ Bootstrapping several
statistics 296

12.7 Summary 298

PART 4 ADVANCED METHODS 299

13 Generalized linear models 301

13.1 Generalized linear models and the glm() function 302

The glm() function 303 ■ Supporting functions 304
Model fit and regression diagnostics 305

13.2 Logistic regression 306

Interpreting the model parameters 308 ■ Assessing the impact
of predictors on the probability of an outcome 309
Overdispersion 310 ■ Extensions 311

13.3 Poisson regression 312

Interpreting the model parameters 314 ■ Overdispersion 315
Extensions 317

13.4 Summary 318

14 Principal components and factor analysis 319

14.1 Principal components and factor analysis in R 321

14.2 Principal components 322

Selecting the number of components to extract 323
Extracting principal components 324 ■ Rotating principal
components 327 ■ Obtaining principal components scores 328

14.3 Exploratory factor analysis 330

Deciding how many common factors to extract 331
Extracting common factors 332 ■ Rotating factors 333
Factor scores 336 ■ Other EFA-related packages 337

14.4 Other latent variable models 337

14.5 Summary 338

15 Time series 340

15.1 Creating a time-series object in R 343

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxiv

15.2 Smoothing and seasonal decomposition 345

Smoothing with simple moving averages 345 ■ Seasonal
decomposition 347

15.3 Exponential forecasting models 352

Simple exponential smoothing 353 ■ Holt and Holt-Winters
exponential smoothing 355 ■ The ets() function and
automated forecasting 358

15.4 ARIMA forecasting models 359

Prerequisite concepts 359 ■ ARMA and ARIMA models 361
Automated ARIMA forecasting 366

15.5 Going further 367

15.6 Summary 367

16 Cluster analysis 369

16.1 Common steps in cluster analysis 370

16.2 Calculating distances 372

16.3 Hierarchical cluster analysis 374

16.4 Partitioning cluster analysis 378

K-means clustering 378 ■ Partitioning around medoids 382

16.5 Avoiding nonexistent clusters 384

16.6 Summary 387

17 Classification 389

17.1 Preparing the data 390

17.2 Logistic regression 392

17.3 Decision trees 393

Classical decision trees 393 ■ Conditional inference trees 397

17.4 Random forests 399

17.5 Support vector machines 401

Tuning an SVM 403

17.6 Choosing a best predictive solution 405

17.7 Using the rattle package for data mining 408

17.8 Summary 413

18 Advanced methods for missing data 414

18.1 Steps in dealing with missing data 415

18.2 Identifying missing values 417

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xv

18.3 Exploring missing-values patterns 418

Tabulating missing values 419 ■ Exploring missing data
visually 419 ■ Using correlations to explore missing
values 422

18.4 Understanding the sources and impact of missing data 424

18.5 Rational approaches for dealing with incomplete data 425

18.6 Complete-case analysis (listwise deletion) 426

18.7 Multiple imputation 428

18.8 Other approaches to missing data 432

Pairwise deletion 432 ■ Simple (nonstochastic)
imputation 433

18.9 Summary 433

PART 5 EXPANDING YOUR SKILLS 435

19 Advanced graphics with ggplot2 437

19.1 The four graphics systems in R 438

19.2 An introduction to the ggplot2 package 439

19.3 Specifying the plot type with geoms 443

19.4 Grouping 447

19.5 Faceting 450

19.6 Adding smoothed lines 453

19.7 Modifying the appearance of ggplot2 graphs 455

Axes 455 ■ Legends 457 ■ Scales 458 ■ Themes 460
Multiple graphs per page 461

19.8 Saving graphs 462

19.9 Summary 462

20 Advanced programming 463

20.1 A review of the language 464

Data types 464 ■ Control structures 470 ■ Creating
functions 473

20.2 Working with environments 475

20.3 Object-oriented programming 477

Generic functions 477 ■ Limitations of the S3 model 479

20.4 Writing efficient code 479

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxvi

20.5 Debugging 483

Common sources of errors 483 ■ Debugging tools 484
Session options that support debugging 486

20.6 Going further 489

20.7 Summary 490

21 Creating a package 491

21.1 Nonparametric analysis and the npar package 492

Comparing groups with the npar package 494

21.2 Developing the package 496

Computing the statistics 497 ■ Printing the results 500
Summarizing the results 501 ■ Plotting the results 504
Adding sample data to the package 505

21.3 Creating the package documentation 506

21.4 Building the package 508

21.5 Going further 512

21.6 Summary 512

22 Creating dynamic reports 513

22.1 A template approach to reports 515

22.2 Creating dynamic reports with R and Markdown 517

22.3 Creating dynamic reports with R and LaTeX 522

22.4 Creating dynamic reports with R and Open Document 525

22.5 Creating dynamic reports with R and Microsoft Word 527

22.6 Summary 531

afterword Into the rabbit hole 532

appendix A Graphical user interfaces 535

appendix B Customizing the startup environment 538

appendix C Exporting data from R 540

appendix D Matrix algebra in R 542

appendix E Packages used in this book 544

appendix F Working with large datasets 551

appendix G Updating an R installation 555

references 558

index 563

bonus chapter 23 Advanced graphics with the lattice package 1
available online at manning.com/RinActionSecondEdition
also available in this eBook

www.it-ebooks.info

www.manning.com/RinActionSecondEdition
www.manning.com/kabacoff
http://www.it-ebooks.info/

xvii

preface
What is the use of a book, without pictures or conversations?

 —Alice, Alice’s Adventures in Wonderland

It’s wondrous, with treasures to satiate desires both subtle and gross; but it’s not

for the timid.

 —Q, “Q Who?” Stark Trek: The Next Generation

When I began writing this book, I spent quite a bit of time searching for a good quote

to start things off. I ended up with two. R is a wonderfully flexible platform and lan-

guage for exploring, visualizing, and understanding data. I chose the quote from

Alice’s Adventures in Wonderland to capture the flavor of statistical analysis today—an

interactive process of exploration, visualization, and interpretation.

 The second quote reflects the generally held notion that R is difficult to learn.

What I hope to show you is that is doesn’t have to be. R is broad and powerful, with so

many analytic and graphic functions available (more than 50,000 at last count) that it

easily intimidates both novice and experienced users alike. But there is rhyme and rea-

son to the apparent madness. With guidelines and instructions, you can navigate the

tremendous resources available, selecting the tools you need to accomplish your work

with style, elegance, efficiency—and more than a little coolness.

 I first encountered R several years ago, when applying for a new statistical consult-

ing position. The prospective employer asked in the pre-interview material if I was

conversant in R. Following the standard advice of recruiters, I immediately said yes,

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACExviii

and set off to learn it. I was an experienced statistician and researcher, had 25 years

experience as an SAS and SPSS programmer, and was fluent in a half dozen program-

ming languages. How hard could it be? Famous last words.

 As I tried to learn the language (as fast as possible, with an interview looming), I

found either tomes on the underlying structure of the language or dense treatises on

specific advanced statistical methods, written by and for subject-matter experts. The

online help was written in a spartan style that was more reference than tutorial. Every

time I thought I had a handle on the overall organization and capabilities of R, I

found something new that made me feel ignorant and small.

 To make sense of it all, I approached R as a data scientist. I thought about what it

takes to successfully process, analyze, and understand data, including

■ Accessing the data (getting the data into the application from multiple sources)
■ Cleaning the data (coding missing data, fixing or deleting miscoded data, trans-

forming variables into more useful formats)
■ Annotating the data (in order to remember what each piece represents)
■ Summarizing the data (getting descriptive statistics to help characterize the

data)
■ Visualizing the data (because a picture really is worth a thousand words)
■ Modeling the data (uncovering relationships and testing hypotheses)
■ Preparing the results (creating publication-quality tables and graphs)

Then I tried to understand how I could use R to accomplish each of these tasks.

Because I learn best by teaching, I eventually created a website (www.statmethods.net)

to document what I had learned.

 Then, about a year later, Marjan Bace, Manning’s publisher, called and asked if I

would like to write a book on R. I had already written 50 journal articles, 4 technical

manuals, numerous book chapters, and a book on research methodology, so how

hard could it be? At the risk of sounding repetitive—famous last words.

 A year after the first edition came out in 2011, I started working on the second edi-

tion. The R platform is evolving, and I wanted to describe these new developments. I

also wanted to expand the coverage of predictive analytics and data mining—impor-

tant topics in the world of big data. Finally, I wanted to add chapters on advanced data

visualization, software development, and dynamic report writing.

 The book you’re holding is the one that I wished I had so many years ago. I have

tried to provide you with a guide to R that will allow you to quickly access the power of

this great open source endeavor, without all the frustration and angst. I hope you

enjoy it.

 P.S. I was offered the job but didn’t take it. But learning R has taken my career in

directions that I could never have anticipated. Life can be funny.

www.it-ebooks.info

www.statmethods.net
http://www.it-ebooks.info/

xix

acknowledgments
A number of people worked hard to make this a better book. They include

■ Marjan Bace, Manning’s publisher, who asked me to write this book in the first

place.
■ Sebastian Stirling and Jennifer Stout, development editors on the first and sec-

ond editions, respectively. Each spent many hours helping me organize the

material, clarify concepts, and generally make the text more interesting.
■ Pablo Domínguez Vaselli, technical proofreader, who helped uncover areas of

confusion and provided an independent and expert eye for testing code. I
came to rely on his vast knowledge, careful reviews, and considered judgment.

■ Olivia Booth, the review editor, who helped obtain reviewers and coordinate

the review process.
■ Mary Piergies, who helped shepherd this book through the production process,

and her team of Tiffany Taylor, Toma Mulligan, Janet Vail, David Novak, and
Marija Tudor.

■ The peer reviewers who spent hours of their own time carefully reading

through the material, finding typos, and making valuable substantive sugges-

tions: Bryce Darling, Christian Theil Have, Cris Weber, Deepak Vohra, Dwight
Barry, George Gaines, Indrajit Sen Gupta, Dr. L. Duleep Kumar Samuel,

Mahesh Srinivason, Marc Paradis, Peter Rabinovitch, Ravishankar Rajagopalan,

Samuel Dale McQuillin, and Zekai Otles.
■ The many Manning Early Access Program (MEAP) participants who bought the

book before it was finished, asked great questions, pointed out errors, and
made helpful suggestions.

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTSxx

Each contributor has made this a better and more comprehensive book.

 I would also like to acknowledge the many software authors who have contributed

to making R such a powerful data-analytic platform. They include not only the core

developers, but also the selfless individuals who have created and maintain contrib-

uted packages, extending R’s capabilities greatly. Appendix E provides a list of the

authors of contributed packages described in this book. In particular, I would like

to mention John Fox, Hadley Wickham, Frank E. Harrell, Jr., Deepayan Sarkar, and

William Revelle, whose works I greatly admire. I have tried to represent their contribu-

tions accurately, and I remain solely responsible for any errors or distortions inadver-

tently included in this book.

 I really should have started this book by thanking my wife and partner, Carol Lynn.

Although she has no intrinsic interest in statistics or programming, she read each

chapter multiple times and made countless corrections and suggestions. No greater

love has any person than to read multivariate statistics for another. Just as important,

she suffered the long nights and weekends that I spent writing this book, with grace,

support, and affection. There is no logical explanation why I should be this lucky.

 There are two other people I would like to thank. One is my father, whose love of

science was inspiring and who gave me an appreciation of the value of data. I miss him

dearly. The other is Gary K. Burger, my mentor in graduate school. Gary got me inter-

ested in a career in statistics and teaching when I thought I wanted to be a clinician.

This is all his fault.

www.it-ebooks.info

http://www.it-ebooks.info/

xxi

about this book
If you picked up this book, you probably have some data that you need to collect, sum-

marize, transform, explore, model, visualize, or present. If so, then R is for you! R has

become the worldwide language for statistics, predictive analytics, and data visualiza-

tion. It offers the widest range of methodologies for understanding data currently

available, from the most basic to the most complex and bleeding edge.

 As an open source project it’s freely available for a range of platforms, including

Windows, Mac OS X, and Linux. It’s under constant development, with new proce-

dures added daily. Additionally, R is supported by a large and diverse community of

data scientists and programmers who gladly offer their help and advice to users.

 Although R is probably best known for its ability to create beautiful and sophisti-

cated graphs, it can handle just about any statistical problem. The base installation

provides hundreds of data-management, statistical, and graphical functions out of the

box. But some of its most powerful features come from the thousands of extensions

(packages) provided by contributing authors.

 This breadth comes at a price. It can be hard for new users to get a handle on what

R is and what it can do. Even the most experienced R user is surprised to learn about

features they were unaware of.

 R in Action, Second Edition provides you with a guided introduction to R, giving you

a 2,000-foot view of the platform and its capabilities. It will introduce you to the most

important functions in the base installation and more than 90 of the most useful con-

tributed packages. Throughout the book, the goal is practical application—how you

can make sense of your data and communicate that understanding to others. When

you finish, you should have a good grasp of how R works and what it can do and where

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxxii

you can go to learn more. You’ll be able to apply a variety of techniques for visualizing

data, and you’ll have the skills to tackle both basic and advanced data analytic

problems.

What’s new in the second edition

If you want to delve into the use of R more deeply, the second edition offers more

than 200 pages of new material. Concentrated in the second half of the book are new

chapters on data mining, predictive analytics, and advanced programming. In particu-

lar, chapters 15 (time series), 16 (cluster analysis), 17 (classification), 19 (ggplot2

graphics), 20 (advanced programming), 21 (creating a package), and 22 (creating

dynamic reports) are new. In addition, chapter 2 (creating a dataset) has more

detailed information on importing data from text and SAS files, and appendix F

(working with large datasets) has been expanded to include new tools for working

with big data problems. Finally, numerous updates and corrections have been made

throughout the text.

Who should read this book

R in Action, Second Edition should appeal to anyone who deals with data. No back-

ground in statistical programming or the R language is assumed. Although the book is

accessible to novices, there should be enough new and practical material to satisfy

even experienced R mavens.

 Users without a statistical background who want to use R to manipulate, summa-

rize, and graph data should find chapters 1–6, 11, and 19 easily accessible. Chapters 7

and 10 assume a one-semester course in statistics; and readers of chapters 8, 9, and

12–18 will benefit from two semesters of statistics. Chapters 20–22 offer a deeper dive

into the R language and have no statistical prerequisites. I’ve tried to write each chap-

ter in such a way that both beginning and expert data analysts will find something

interesting and useful.

Roadmap

This book is designed to give you a guided tour of the R platform, with a focus on

those methods most immediately applicable for manipulating, visualizing, and under-

standing data. The book has 22 chapters and is divided into 5 parts: “Getting Started,”

“Basic Methods,” “Intermediate Methods,” “Advanced Methods,” and “Expanding

Your Skills." Additional topics are covered in seven appendices.

 Chapter 1 begins with an introduction to R and the features that make it so useful

as a data-analysis platform. The chapter covers how to obtain the program and how to

enhance the basic installation with extensions that are available online. The remain-

der of the chapter is spent exploring the user interface and learning how to run pro-

grams interactively and in batch.

 Chapter 2 covers the many methods available for getting data into R. The first half

of the chapter introduces the data structures R uses to hold data, and how to enter

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxiii

data from the keyboard. The second half discusses methods for importing data into R

from text files, web pages, spreadsheets, statistical packages, and databases.

 Many users initially approach R because they want to create graphs, so we jump

right into that topic in chapter 3. No waiting required. We review methods of creating

graphs, modifying them, and saving them in a variety of formats.

 Chapter 4 covers basic data management, including sorting, merging, and subset-

ting datasets, and transforming, recoding, and deleting variables.

 Building on the material in chapter 4, chapter 5 covers the use of functions (math-

ematical, statistical, character) and control structures (looping, conditional execu-

tion) for data management. I then discuss how to write your own R functions and how

to aggregate data in various ways.

 Chapter 6 demonstrates methods for creating common univariate graphs, such as

bar plots, pie charts, histograms, density plots, box plots, and dot plots. Each is useful

for understanding the distribution of a single variable.

 Chapter 7 starts by showing how to summarize data, including the use of descrip-

tive statistics and cross-tabulations. We then look at basic methods for understanding

relationships between two variables, including correlations, t-tests, chi-square tests,

and nonparametric methods.

 Chapter 8 introduces regression methods for modeling the relationship between a

numeric outcome variable and a set of one or more numeric predictor variables.

Methods for fitting these models, evaluating their appropriateness, and interpreting

their meaning are discussed in detail.

 Chapter 9 considers the analysis of basic experimental designs through the analysis

of variance and its variants. Here we’re usually interested in how treatment combina-

tions or conditions affect a numerical outcome. Methods for assessing the appropri-

ateness of the analyses and visualizing the results are also covered.

 Chapter 10 provides a detailed treatment of power analysis. Starting with a discus-

sion of hypothesis testing, the chapter focuses on how to determine the sample size

necessary to detect a treatment effect of a given size with a given degree of confi-

dence. This can help you to plan experimental and quasi-experimental studies that

are likely to yield useful results.

 Chapter 11 expands on the material in chapter 6, covering the creation of graphs

that help you to visualize relationships among two or more variables. These include

various types of 2D and 3D scatter plots, scatter-plot matrices, line plots, correlograms,

and mosaic plots.

 Chapter 12 presents analytic methods that work well in cases where data are sam-

pled from unknown or mixed distributions, where sample sizes are small, where outli-

ers are a problem, or where devising an appropriate test based on a theoretical

distribution is too complex and mathematically intractable. They include both resam-

pling and bootstrapping approaches—computer-intensive methods that are easily

implemented in R.

 Chapter 13 expands on the regression methods in chapter 8 to cover data that are

not normally distributed. The chapter starts with a discussion of generalized linear

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxxiv

models and then focuses on cases where you’re trying to predict an outcome variable

that is either categorical (logistic regression) or a count (Poisson regression).

 One of the challenges of multivariate data problems is simplification. Chapter 14
describes methods of transforming a large number of correlated variables into a

smaller set of uncorrelated variables (principal component analysis), as well as meth-

ods for uncovering the latent structure underlying a given set of variables (factor anal-
ysis). The many steps involved in an appropriate analysis are covered in detail.

 Chapter 15 describes methods for creating, manipulating, and modeling time

series data. It covers visualizing and decomposing time series data, as well as exponen-
tial and ARIMA approaches to forecasting future values.

 Chapter 16 illustrates methods of clustering observations into naturally occurring

groups. The chapter begins with a discussion of the common steps in a comprehen-
sive cluster analysis, followed by a presentation of hierarchical clustering and parti-

tioning methods. Several methods for determining the proper number of clusters are

presented.
 Chapter 17 presents popular supervised machine-learning methods for classifying

observations into groups. Decision trees, random forests, and support vector

machines are considered in turn. You’ll also learn about methods for evaluating the
accuracy of each approach.

 In keeping with my attempt to present practical methods for analyzing data, chap-

ter 18 considers modern approaches to the ubiquitous problem of missing data val-

ues. R supports a number of elegant approaches for analyzing datasets that are
incomplete for various reasons. Several of the best are described here, along with

guidance for which ones to use when, and which ones to avoid.

 Chapter 19 wraps up the discussion of graphics with a presentation of one of R’s
most useful and advanced approaches to visualizing data: ggplot2. The ggplot2 pack-

age implements a grammar of graphics that provides a powerful and consistent set of

tools for graphing multivariate data.
 Chapter 20 covers advanced programming techniques. You’ll learn about object-

oriented programming techniques and debugging approaches. The chapter also pres-

ents a variety of tips for efficient programming. This chapter will be particularly help-
ful if you’re seeking a greater understanding of how R works, and it’s a prerequisite

for chapter 21.

 Chapter 21 provides a step-by-step guide to creating R packages. This will allow you
to create more sophisticated programs, document them efficiently, and share them

with others.

 Finally, chapter 22 offers several methods for creating attractive reports from
within R. You’ll learn how to generate web pages, reports, articles, and even books

from your R code. The resulting documents can include your code, tables of results,

graphs, and commentary.

 The afterword points you to many of the best internet sites for learning more

about R, joining the R community, getting questions answered, and staying current

with this rapidly changing product.

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxv

 Last, but not least, the seven appendices (A through G) extend the text’s coverage

to include such useful topics as R graphic user interfaces, customizing and upgrading

an R installation, exporting data to other applications, using R for matrix algebra (à la

MATLAB), and working with very large datasets.

 We also offer a bonus chapter, which is available online only from the publisher’s

website at manning.com/RinActionSecondEdition. Online chapter 23 covers the

lattice package, which is introduced in chapter 19.

Advice for data miners

Data mining is a field of analytics concerned with discovering patterns in large data

sets. Many data-mining specialists are turning to R for its cutting-edge analytical capa-

bilities. If you’re a data miner making the transition to R and want to access the lan-

guage as quickly as possible, I recommend the following reading sequence: chapter 1

(introduction), chapter 2 (data structures and those portions of importing data that

are relevant to your setting), chapter 4 (basic data management), chapter 7 (descrip-

tive statistics), chapter 8 (sections 1, 2, and 6; regression), chapter 13 (section 2; logis-

tic regression), chapter 16 (clustering), chapter 17 (classification), and appendix F

(working with large datasets). Then review the other chapters as needed.

Code examples

In order to make this book as broadly applicable as possible, I’ve chosen examples from

a range of disciplines, including psychology, sociology, medicine, biology, business, and

engineering. None of these examples require a specialized knowledge of that field.

 The datasets used in these examples were selected because they pose interesting

questions and because they’re small. This allows you to focus on the techniques

described and quickly understand the processes involved. When you’re learning new

methods, smaller is better. The datasets are provided with the base installation of R or

available through add-on packages that are available online.

 The source code for each example is available from www.manning.com/RinAction

SecondEdition and at www.github.com/kabacoff/RiA2. To get the most out of this

book, I recommend that you try the examples as you read them.

 Finally, a common maxim states that if you ask two statisticians how to analyze a

dataset, you’ll get three answers. The flip side of this assertion is that each answer will

move you closer to an understanding of the data. I make no claim that a given analysis

is the best or only approach to a given problem. Using the skills taught in this text, I

invite you to play with the data and see what you can learn. R is interactive, and the

best way to learn is to experiment.

Code conventions

The following typographical conventions are used throughout this book:

■ A monospaced font is used for code listings that should be typed as is.

www.it-ebooks.info

www.manning.com/RinActionSecondEdition
www.manning.com/RinActionSecondEdition
www.github.com/kabacoff/RiA2
www.manning.com/RinActionSecondEdition
http://www.it-ebooks.info/

ABOUT THIS BOOKxxvi

■ A monospaced font is also used within the general text to denote code words or

previously defined objects.
■ Italics within code listings indicate placeholders. You should replace them

with appropriate text and values for the problem at hand. For example,

path_to _my_file would be replaced with the actual path to a file on your

computer.
■ R is an interactive language that indicates readiness for the next line of user

input with a prompt (> by default). Many of the listings in this book capture

interactive sessions. When you see code lines that start with >, don’t type the

prompt.
■ Code annotations are used in place of inline comments (a common convention

in Manning books). Additionally, some annotations appear with numbered bul-

lets like b that refer to explanations appearing later in the text.
■ To save room or make text more legible, the output from interactive sessions

may include additional white space or omit text that is extraneous to the point

under discussion.

Author Online

Purchase of R in Action, Second Edition includes free access to a private web forum run

by Manning Publications where you can make comments about the book, ask technical

questions, and receive help from the author and from other users. To access the forum

and subscribe to it, point your web browser to www.manning.com/RinActionSecond

Edition. This page provides information on how to get on the forum once you’re reg-

istered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialog between individual readers and between readers and the author can take place.

It isn’t a commitment to any specific amount of participation on the part of the

author, whose contribution to the AO forum remains voluntary (and unpaid). We sug-

gest you try asking the author some challenging questions, lest his interest stray!

 The AO forum and the archives of previous discussions will be accessible from the

publisher’s website as long as the book is in print.

About the author

Dr. Robert Kabacoff is Vice President of Research for Management Research Group,

an international organizational development and consulting firm. He has more than

20 years of experience providing research and statistical consultation to organizations

in health care, financial services, manufacturing, behavioral sciences, government,

and academia. Prior to joining MRG, Dr. Kabacoff was a professor of psychology at

Nova Southeastern University in Florida, where he taught graduate courses in quanti-

tative methods and statistical programming. For the past five years, he has managed

Quick-R (www.statmethods.net), a popular R tutorial website.

www.it-ebooks.info

www.manning.com/RinActionSecondEdition
www.manning.com/RinActionSecondEdition
www.statmethods.net
http://www.it-ebooks.info/

xxvii

about the cover illustration
The figure on the cover of R in Action, Second Edition is captioned “A man from Zadar.”

The illustration is taken from a reproduction of an album of Croatian traditional cos-

tumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethno-

graphic Museum in Split, Croatia, in 2003. The illustrations were obtained from a

helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman

core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement

palace from around AD 304. The book includes finely colored illustrations of figures

from different regions of Croatia, accompanied by descriptions of the costumes and

of everyday life.

 Zadar is an old Roman-era town on the northern Dalmatian coast of Croatia. It’s

over 2,000 years old and served for hundreds of years as an important port on the

trading route from Constantinople to the West. Situated on a peninsula framed by

small Adriatic islands, the city is picturesque and has become a popular tourist desti-

nation with its architectural treasures of Roman ruins, moats, and old stone walls. The

figure on the cover wears blue woolen trousers and a white linen shirt, over which he

dons a blue vest and jacket trimmed with the colorful embroidery typical for this

region. A red woolen belt and cap complete the costume.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by

region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of

different continents, let alone of different hamlets or towns separated by only a few

miles. Perhaps we have traded this cultural diversity for a more varied personal life—

certainly for a more varied and fast-paced technological life.

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE COVER ILLUSTRATIONxxviii

 Manning celebrates the inventiveness and initiative of the computer business with

book covers based on the rich diversity of regional life of two centuries ago, brought

back to life by illustrations from old books and collections like this one.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Getting started

Welcome to R in Action! R is one of the most popular platforms for data

analysis and visualization currently available. It’s free, open source software,

available for Windows, Mac OS X, and Linux operating systems. This book will

provide you with the skills needed to master this comprehensive software and

apply it effectively to your own data.

 The book is divided into four sections. Part I covers the basics of installing

the software, learning to navigate the interface, importing data, and massaging it

into a useful format for further analysis.

 Chapter 1 is all about becoming familiar with the R environment. The chap-

ter begins with an overview of R and the features that make it such a powerful

platform for modern data analysis. After briefly describing how to obtain and

install the software, the user interface is explored through a series of simple

examples. Next, you’ll learn how to enhance the functionality of the basic instal-

lation with extensions (called contributed packages), that can be freely down-

loaded from online repositories. The chapter ends with an example that allows

you to test out your new skills.

 Once you’re familiar with the R interface, the next challenge is to get your

data into the program. In today’s information-rich world, data can come from

many sources and in many formats. Chapter 2 covers the wide variety of methods

available for importing data into R. The first half of the chapter introduces the

data structures R uses to hold data and describes how to input data manually.

The second half discusses methods for importing data from text files, web pages,

spreadsheets, statistical packages, and databases.

www.it-ebooks.info

http://www.it-ebooks.info/

2 CHAPTER

 From a workflow point of view, it would probably make sense to discuss data man-

agement and data cleaning next. But many users approach R for the first time out of

an interest in its powerful graphics capabilities. Rather than frustrating that interest

and keeping you waiting, we dive right into graphics in chapter 3. The chapter reviews

methods for creating graphs, customizing them, and saving them in a variety of for-

mats. The chapter describes how to specify the colors, symbols, lines, fonts, axes, titles,

labels, and legends used in a graph, and ends with a description of how to combine

several graphs into a single plot.

 Once you’ve had a chance to try out R’s graphics capabilities, it’s time to get back

to the business of analyzing data. Data rarely comes in a readily usable format. Signifi-

cant time must often be spent combining data from different sources, cleaning messy

data (miscoded data, mismatched data, missing data), and creating new variables

(combined variables, transformed variables, recoded variables) before the questions

of interest can be addressed. Chapter 4 covers basic data-management tasks in R,

including sorting, merging, and subsetting datasets, and transforming, recoding, and

deleting variables.

 Chapter 5 builds on the material in chapter 4. It covers the use of numeric (arith-

metic, trigonometric, and statistical) and character functions (string subsetting, con-

catenation, and substitution) in data management. A comprehensive example is used

throughout this section to illustrate many of the functions described. Next, control

structures (looping, conditional execution) are discussed, and you’ll learn how to write

your own R functions. Writing custom functions allows you to extend R’s capabilities by

encapsulating many programming steps into a single, flexible function call. Finally,

powerful methods for reorganizing (reshaping) and aggregating data are discussed.

Reshaping and aggregation are often useful in preparing data for further analyses.

 After having completed part I, you’ll be thoroughly familiar with programming in

the R environment. You’ll have the skills needed to enter or access your data, clean it

up, and prepare it for further analyses. You’ll also have experience creating, customiz-

ing, and saving a variety of graphs.

Getting started

www.it-ebooks.info

http://www.it-ebooks.info/

3

Introduction to R

How we analyze data has changed dramatically in recent years. With the advent of

personal computers and the internet, the sheer volume of data we have available

has grown enormously. Companies have terabytes of data about the consumers they

interact with, and governmental, academic, and private research institutions have

extensive archival and survey data on every manner of research topic. Gleaning

information (let alone wisdom) from these massive stores of data has become an

industry in itself. At the same time, presenting the information in easily accessible

and digestible ways has become increasingly challenging.

 The science of data analysis (statistics, psychometrics, econometrics, and

machine learning) has kept pace with this explosion of data. Before personal com-

puters and the internet, new statistical methods were developed by academic

researchers who published their results as theoretical papers in professional jour-

nals. It could take years for these methods to be adapted by programmers and

incorporated into the statistical packages widely available to data analysts. Today,

This chapter covers

■ Installing R

■ Understanding the R language

■ Running programs

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 Introduction to R

new methodologies appear daily. Statistical researchers publish new and improved

methods, along with the code to produce them, on easily accessible websites.

 The advent of personal computers had another effect on the way we analyze data.

When data analysis was carried out on mainframe computers, computer time was pre-

cious and difficult to come by. Analysts would carefully set up a computer run with all

the parameters and options thought to be needed. When the procedure ran, the

resulting output could be dozens or hundreds of pages long. The analyst would sift

through this output, extracting useful material and discarding the rest. Many popular

statistical packages were originally developed during this period and still follow this

approach to some degree.

 With the cheap and easy

access afforded by personal

computers, modern data analy-

sis has shifted to a different par-

adigm. Rather than setting up a

complete data analysis all at

once, the process has become

highly interactive, with the out-

put from each stage serving as

the input for the next stage. An

example of a typical analysis is

shown in figure 1.1. At any

point, the cycles may include

transforming the data, imputing

missing values, adding or delet-

ing variables, and looping back

through the whole process again. The process stops when the analyst believes they

understand the data intimately and have answered all the relevant questions that can

be answered.

 The advent of personal computers (and especially the availability of high-resolu-

tion monitors) has also had an impact on how results are understood and presented.

A picture really can be worth a thousand words, and human beings are adept at extract-

ing useful information from visual presentations. Modern data analysis increasingly

relies on graphical presentations to uncover meaning and convey results.

 Today’s data analysts need to access data from a wide range of sources (database

management systems, text files, statistical packages, and spreadsheets), merge the

pieces of data together, clean and annotate them, analyze them with the latest meth-

ods, present the findings in meaningful and graphically appealing ways, and incorpo-

rate the results into attractive reports that can be distributed to stakeholders and the

public. As you’ll see in the following pages, R is a comprehensive software package

that’s ideally suited to accomplish these goals.

Prepare, explore, and clean data

Import Data

Fit a statistical model

Cross-validate the model

Evaluate the model fit

Evaluate model prediction on new data

Produce report

Figure 1.1 Steps in a typical data analysis

www.it-ebooks.info

http://www.it-ebooks.info/

5Why use R?

1.1 Why use R?

R is a language and environment for statistical computing and graphics, similar to the

S language originally developed at Bell Labs. It’s an open source solution to data anal-

ysis that’s supported by a large and active worldwide research community. But there

are many popular statistical and graphing packages available (such as Microsoft Excel,

SAS, IBM SPSS, Stata, and Minitab). Why turn to R?

 R has many features to recommend it:

■ Most commercial statistical software platforms cost thousands, if not tens of

thousands, of dollars. R is free! If you’re a teacher or a student, the benefits are

obvious.
■ R is a comprehensive statistical platform, offering all manner of data-analytic

techniques. Just about any type of data analysis can be done in R.
■ R contains advanced statistical routines not yet available in other packages. In

fact, new methods become available for download on a weekly basis. If you’re a

SAS user, imagine getting a new SAS PROC every few days.
■ R has state-of-the-art graphics capabilities. If you want to visualize complex data,

R has the most comprehensive and powerful feature set available.
■ R is a powerful platform for interactive data analysis and exploration. From its

inception, it was designed to support the approach outlined in figure 1.1. For

example, the results of any analytic step can easily be saved, manipulated, and

used as input for additional analyses.
■ Getting data into a usable form from multiple sources can be a challenging prop-

osition. R can easily import data from a wide variety of sources, including text

files, database-management systems, statistical packages, and specialized data

stores. It can write data out to these systems as well. R can also access data directly

from web pages, social media sites, and a wide range of online data services.
■ R provides an unparalleled platform for programming new statistical methods

in an easy, straightforward manner. It’s easily extensible and provides a natural

language for quickly programming recently published methods.
■ R functionality can be integrated into applications written in other languages,

including C++, Java, Python, PHP, Pentaho, SAS, and SPSS. This allows you to

continue working in a language that you may be familiar with, while adding R’s

capabilities to your applications.
■ R runs on a wide array of platforms, including Windows, Unix, and Mac OS X. It’s

likely to run on any computer you may have. (I’ve even come across guides for

installing R on an iPhone, which is impressive but probably not a good idea.)
■ If you don’t want to learn a new language, a variety of graphic user interfaces

(GUIs) are available, offering the power of R through menus and dialogs.

You can see an example of R’s graphic capabilities in figure 1.2. This graph, created

with a single line of code, describes the relationships between income, education, and

www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1 Introduction to R

prestige for blue-collar, white-collar, and professional jobs. Technically, it’s a scatter-

plot matrix with groups displayed by color and symbol, two types of fit lines (linear

and loess), confidence ellipses, two types of density display (kernel density estimation,

and rug plots). Additionally, the largest outlier in each scatter plot has been automati-

cally labeled. If these terms are unfamiliar to you, don’t worry. We’ll cover them in

later chapters. For now, trust me that they’re really cool (and that the statisticians

reading this are salivating).

 Basically, this graph indicates the following:

■ Education, income, and job prestige are linearly related.
■ In general, blue-collar jobs involve lower education, income, and prestige,

whereas professional jobs involve higher education, income, and prestige.

White-collar jobs fall in between.

bc
prof
wcincome

20 40 60 80 100

RR.engineer

2
0

4
0

6
0

8
0

minister

2
0

4
0

6
0

8
0

1
0

0

RR.engineer

education

RR.engineer

20 40 60 80

minister

RR.engineer

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

prestige

Figure 1.2 Relationships between income, education, and prestige for blue-collar (bc), white-

collar (wc), and professional (prof) jobs. Source: car package (scatterplotMatrix()

function) written by John Fox. Graphs like this are difficult to create in other statistical

programming languages but can be created with a line or two of code in R.

www.it-ebooks.info

http://www.it-ebooks.info/

7Working with R

■ There are some interesting exceptions. Railroad engineers have high income

and low education. Ministers have high prestige and low income.

Chapter 8 will have much more to say about this type of graph. The important point is

that R allows you to create elegant, informative, highly customized graphs in a simple

and straightforward fashion. Creating similar plots in other statistical languages would

be difficult, time-consuming, or impossible.

 Unfortunately, R can have a steep learning curve. Because it can do so much, the

documentation and help files available are voluminous. Additionally, because much of

the functionality comes from optional modules created by independent contributors,

this documentation can be scattered and difficult to locate. In fact, getting a handle

on all that R can do is a challenge.

 The goal of this book is to make access to R quick and easy. We’ll tour the many

features of R, covering enough material to get you started on your data, with pointers

on where to go when you need to learn more. Let’s begin by installing the program.

1.2 Obtaining and installing R

R is freely available from the Comprehensive R Archive Network (CRAN) at http://

cran.r-project.org. Precompiled binaries are available for Linux, Mac OS X, and Win-

dows. Follow the directions for installing the base product on the platform of your

choice. Later we’ll talk about adding functionality through optional modules called

packages (also available from CRAN). Appendix G describes how to update an existing

R installation to a newer version.

1.3 Working with R

R is a case-sensitive, interpreted language. You can enter commands one at a time at the

command prompt (>) or run a set of commands from a source file. There are a wide

variety of data types, including vectors, matrices, data frames (similar to datasets), and

lists (collections of objects). We’ll discuss each of these data types in chapter 2.

 Most functionality is provided through built-in and user-created functions and the

creation and manipulation of objects. An object is basically anything that can be

assigned a value. For R, that is just about everything (data, functions, graphs, analytic

results, and more). Every object has a class attribute telling R how to handle it.

 All objects are kept in memory during an interactive session. Basic functions are

available by default. Other functions are contained in packages that can be attached

to a current session as needed.

 Statements consist of functions and assignments. R uses the symbol <- for assign-

ments, rather than the typical = sign. For example, the statement

x <- rnorm(5)

creates a vector object named x containing five random deviates from a standard nor-

mal distribution.

www.it-ebooks.info

http://cran.r-project.org
http://cran.r-project.org
http://www.it-ebooks.info/

8 CHAPTER 1 Introduction to R

NOTE R allows the = sign to be used for object assignments. But you won’t
find many programs written that way, because it’s not standard syntax, there
are some situations in which it won’t work, and R programmers will make fun
of you. You can also reverse the assignment direction. For instance, rnorm(5)
-> x is equivalent to the previous statement. Again, doing so is uncommon
and isn’t recommended in this book.

Comments are preceded by the # symbol. Any text appearing after the # is ignored by

the R interpreter.

1.3.1 Getting started

If you’re using Windows, launch R from the Start menu. On a Mac, double-click the R

icon in the Applications folder. For Linux, type R at the command prompt of a termi-

nal window. Any of these will start the R interface (see figure 1.3 for an example).

 To get a feel for the interface, let’s work through a simple, contrived example. Say

that you’re studying physical development and you’ve collected the ages and weights

of 10 infants in their first year of life (see table 1.1). You’re interested in the distribu-

tion of the weights and their relationship to age.

Note: These are fictional data.

Table 1.1 The ages and weights of 10 infants

Age (mo.) Weight (kg.)

01 4.4

03 5.3

05 7.2

02 5.2

11 8.5

Figure 1.3 Example of the R

interface on Windows

Age (mo.) Weight (kg.)

09 7.3

03 6.0

09 10.4

12 10.2

03 6.1

www.it-ebooks.info

http://www.it-ebooks.info/

9Working with R

The analysis is given in listing 1.1. Age and weight data are entered as vectors using

the function c(), which combines its arguments into a vector or list. The mean and

standard deviation of the weights, along with the correlation between age and weight,

are provided by the functions mean(), sd(), and cor(), respectively. Finally, age is

plotted against weight using the plot() function, allowing you to visually inspect the

trend. The q() function ends the session and lets you quit.

> age <- c(1,3,5,2,11,9,3,9,12,3)
> weight <- c(4.4,5.3,7.2,5.2,8.5,7.3,6.0,10.4,10.2,6.1)
> mean(weight)
[1] 7.06
> sd(weight)
[1] 2.077498
> cor(age,weight)
[1] 0.9075655
> plot(age,weight)
> q()

You can see from listing 1.1 that the mean weight for these 10 infants is 7.06 kilo-

grams, that the standard deviation is 2.08 kilograms, and that there is strong linear

relationship between age in months and weight in kilograms (correlation = 0.91). The

relationship can also be seen in the scatter plot in figure 1.4. Not surprisingly, as

infants get older, they tend to weigh more.

Listing 1.1 A sample R session

2 4 6 8 10 12

5
6

7
8

9
1

0

age

w
e
ig

h
t

Figure 1.4 Scatter plot of infant weight (kg) by age (mo)

www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1 Introduction to R

The scatter plot in figure 1.4 is informative but somewhat utilitarian and unattractive.

In later chapters, you’ll see how to customize graphs to suit your needs.

TIP To get a sense of what R can do graphically, enter demo()at the com-
mand prompt. A sample of the graphs produced is included in figure 1.5.
Other demonstrations include demo(Hershey), demo(persp), and
demo(image). To see a complete list of demonstrations, enter demo() without
parameters.

1.3.2 Getting help

R provides extensive help facilities, and learning to navigate them will help you signif-

icantly in your programming efforts. The built-in help system provides details, refer-

ences, and examples of any function contained in a currently installed package. You

can obtain help using the functions listed in table 1.2.

Figure 1.5 A sample of the graphs created with the demo() function

www.it-ebooks.info

http://www.it-ebooks.info/

11Working with R

The function help.start() opens a browser window with access to introductory and

advanced manuals, FAQs, and reference materials. The RSiteSearch() function

searches for a given topic in online help manuals and archives of the R-Help discus-

sion list and returns the results in a browser window. The vignettes returned by the

vignette() function are practical introductory articles provided in PDF format. Not

all packages have vignettes.

 As you can see, R provides extensive help facilities, and learning to navigate them

will definitely aid your programming efforts. It’s a rare session that I don’t use ? to

look up the features (such as options or return values) of some function.

1.3.3 The workspace

The workspace is your current R working environment and includes any user-defined

objects (vectors, matrices, functions, data frames, and lists). At the end of an R ses-

sion, you can save an image of the current workspace that’s automatically reloaded the

next time R starts. Commands are entered interactively at the R user prompt. You can

use the up and down arrow keys to scroll through your command history. Doing so

allows you to select a previous command, edit it if desired, and resubmit it using the

Enter key.

 The current working directory is the directory from which R will read files and to

which it will save results by default. You can find out what the current working direc-

tory is by using the getwd() function. You can set the current working directory by

using the setwd() function. If you need to input a file that isn’t in the current working

directory, use the full pathname in the call. Always enclose the names of files and

Table 1.2 R help functions

Function Action

help.start() General help

help("foo") or ?foo Help on function foo (quotation marks optional)

help.search("foo") or ??foo Searches the help system for instances of the string

foo

example("foo") Examples of function foo (quotation marks optional)

RSiteSearch("foo") Searches for the string foo in online help manuals and

archived mailing lists

apropos("foo", mode="function") Lists all available functions with foo in their name

data() Lists all available example datasets contained in cur-

rently loaded packages

vignette() Lists all available vignettes for currently installed pack-

ages

vignette("foo") Displays specific vignettes for topic foo

www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 Introduction to R

directories from the operating system in quotation marks. Some standard commands

for managing your workspace are listed in table 1.3.

To see these commands in action, look at the following listing.

setwd("C:/myprojects/project1")
options()
options(digits=3)
x <- runif(20)
summary(x)
hist(x)
q()

First, the current working directory is set to C:/myprojects/project1, the current

option settings are displayed, and numbers are formatted to print with three digits

after the decimal place. Next, a vector with 20 uniform random variates is created, and

summary statistics and a histogram based on this data are generated. When the q()

function is executed, the user is prompted to save their workspace. If they type y, the

session history is saved to the file .Rhistory, and the workspace (including vector x) is

saved to the file .RData in the current directory. The session is ended, and R closes.

 Note the forward slashes in the pathname of the setwd() command. R treats the

backslash (\) as an escape character. Even when you’re using R on a Windows

Table 1.3 Functions for managing the R workspace

Function Action

getwd() Lists the current working directory.

setwd("mydirectory") Changes the current working directory to mydirectory.

ls() Lists the objects in the current workspace.

rm(objectlist) Removes (deletes) one or more objects.

help(options) Provides information about available options.

options() Lets you view or set current options.

history(#) Displays your last # commands (default = 25).

savehistory("myfile") Saves the commands history to myfile (default =

.Rhistory).

loadhistory("myfile") Reloads a command’s history (default = .Rhistory).

save.image("myfile") Saves the workspace to myfile (default = .RData).

save(objectlist, file="myfile") Saves specific objects to a file.

load("myfile") Loads a workspace into the current session.

q() Quits R. You’ll be prompted to save the workspace.

Listing 1.2 An example of commands used to manage the R workspace

www.it-ebooks.info

http://www.it-ebooks.info/

13Working with R

platform, use forward slashes in pathnames. Also note that the setwd() function

won’t create a directory that doesn’t exist. If necessary, you can use the dir.create()

function to create a directory and then use setwd() to change to its location.

 It’s a good idea to keep your projects in separate directories. You may want to start

an R session by issuing the setwd() command with the appropriate path to a project,

followed by the load(".RData") command. This lets you start up where you left off in

your last session and keeps both your objects and history separate between projects.

On Windows and Mac OS X platforms, it’s even easier. Just navigate to the project

directory and double-click the saved image file. Doing so starts R, loads the saved

workspace, and sets the current working directory to this location.

1.3.4 Input and output

By default, launching R starts an interactive session with input from the keyboard and

output to the screen. But you can also process commands from a script file (a file con-

taining R statements) and direct output to a variety of destinations.

INPUT

The source("filename") function submits a script to the current session. If the file-

name doesn’t include a path, the file is assumed to be in the current working direc-

tory. For example, source("myscript.R") runs a set of R statements contained in the

file myscript.R. By convention, script filenames end with an .R extension, but this isn’t

required.

TEXT OUTPUT

The sink("filename") function redirects output to the file filename. By default, if the

file already exists, its contents are overwritten. Include the option append=TRUE to

append text to the file rather than overwriting it. Including the option split=TRUE

will send output to both the screen and the output file. Issuing the command sink()

without options will return output to the screen alone.

GRAPHIC OUTPUT

Although sink()redirects text output, it has no effect on graphic output. To redirect

graphic output, use one of the functions listed in table 1.4. Use dev.off() to return

output to the terminal.

Table 1.4 Functions for saving graphic output

Function Output

bmp("filename.bmp") BMP file

jpeg("filename.jpg") JPEG file

pdf("filename.pdf") PDF file

png("filename.png") PNG file

postscript("filename.ps") PostScript file

www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 Introduction to R

Let’s put it all together with an example. Assume that you have three script files con-

taining R code (script1.R, script2.R, and script3.R). Issuing the statement

source("script1.R")

submits the R code from script1.R to the current session, and the results appear on

the screen.

 If you then issue the statements

sink("myoutput", append=TRUE, split=TRUE)
pdf("mygraphs.pdf")
source("script2.R")

the R code from file script2.R is submitted, and the results again appear on the

screen. In addition, the text output is appended to the file myoutput, and the graphic

output is saved to the file mygraphs.pdf.

 Finally, if you issue the statements

sink()
dev.off()
source("script3.R")

the R code from script3.R is

submitted, and the results

appear on the screen. This

time, no text or graphic output

is saved to files. The sequence is

outlined in figure 1.6.

 R provides quite a bit of

flexibility and control over

where input comes from and

where it goes. In section 1.5,

you’ll learn how to run a pro-

gram in batch mode.

Figure 1.6 Input with the

source() function and

output with the

sink() function

svg("filename.svg") SVG file

win.metafile("filename.wmf") Windows metafile

Table 1.4 Functions for saving graphic output (continued)

Function Output

myoutput
Output added

to the ile

Current
session

Current
session

Current
session

script3.R

script2.R

source("script3.R")

source("script1.R")

source("script2.R")

pdf("mygraphs.pdf")

sink(), dev.off()

sink("myoutput", append=TRUE, split=TRUE)

script1.R

www.it-ebooks.info

http://www.it-ebooks.info/

15Packages

1.4 Packages

R comes with extensive capabilities right out of the box. But some of its most exciting
features are available as optional modules that you can download and install. There

are more than 5,500 user-contributed modules called packages that you can download

from http://cran.r-project.org/web/packages. They provide a tremendous range of
new capabilities, from the analysis of geospatial data to protein mass spectra process-

ing to the analysis of psychological tests! You’ll use many of these optional packages in

this book.

1.4.1 What are packages?

Packages are collections of R functions, data, and compiled code in a well-defined for-

mat. The directory where packages are stored on your computer is called the library.
The function .libPaths() shows you where your library is located, and the function

library() shows you what packages you’ve saved in your library.

 R comes with a standard set of packages (including base, datasets, utils,
grDevices, graphics, stats, and methods). They provide a wide range of functions

and datasets that are available by default. Other packages are available for download

and installation. Once installed, they must be loaded into the session in order to be
used. The command search() tells you which packages are loaded and ready to use.

1.4.2 Installing a package

A number of R functions let you manipulate packages. To install a package for the first

time, use the install.packages() command. For example, install.packages()
without options brings up a list of CRAN mirror sites. Once you select a site, you’re

presented with a list of all available packages. Selecting one downloads and installs it.

If you know what package you want to install, you can do so directly by providing it as
an argument to the function. For example, the gclus package contains functions for

creating enhanced scatter plots. You can download and install the package with the

command install.packages("gclus").
 You only need to install a package once. But like any software, packages are often

updated by their authors. Use the command update.packages() to update any pack-

ages that you’ve installed. To see details on your packages, you can use the
installed.packages() command. It lists the packages you have, along with their ver-

sion numbers, dependencies, and other information.

1.4.3 Loading a package

Installing a package downloads it from a CRAN mirror site and places it in your library.

To use it in an R session, you need to load the package using the library() com-
mand. For example, to use the package gclus, issue the command library(gclus).

 Of course, you must have installed a package before you can load it. You’ll only

have to load the package once in a given session. If desired, you can customize your

startup environment to automatically load the packages you use most often. Customiz-
ing your startup is covered in appendix B.

www.it-ebooks.info

http://cran.r-project.org/web/packages
http://www.it-ebooks.info/

16 CHAPTER 1 Introduction to R

1.4.4 Learning about a package

When you load a package, a new set of functions and datasets becomes available.
Small illustrative datasets are provided along with sample code, allowing you to try out

the new functionalities. The help system contains a description of each function

(along with examples) and information about each dataset included. Entering
help(package="package_name") provides a brief description of the package and an

index of the functions and datasets included. Using help() with any of these function

or dataset names provides further details. The same information can be downloaded
as a PDF manual from CRAN.

1.5 Batch processing

Most of the time, you’ll be running R interactively, entering commands at the com-
mand prompt and seeing the results of each statement as it’s processed. Occasionally,
you may want to run an R program in a repeated, standard, and possibly unattended
fashion. For example, you may need to generate the same report once a month. You
can write your program in R and run it in batch mode.

 How you run R in batch mode depends on your operating system. On Linux or
Mac OS X systems, you can use the following command in a terminal window

R CMD BATCH options infile outfile

where infile is the name of the file containing R code to be executed, outfile is the
name of the file receiving the output, and options lists options that control execu-
tion. By convention, infile is given the extension .R, and outfile is given the exten-
sion .Rout.

Common mistakes in R programming

Some common mistakes are made frequently by both beginning and experienced R
programmers. If your program generates an error, be sure to check for the following:

■ Using the wrong case—help(), Help(), and HELP() are three different func-
tions (only the first will work).

■ Forgetting to use quotation marks when they’re needed—install.packages-
("gclus") works, whereas install.packages(gclus) generates an error.

■ Forgetting to include the parentheses in a function call—For example, help()
works, but help doesn’t. Even if there are no options, you still need the ().

■ Using the \ in a pathname on Windows—R sees the backslash character as an
escape character. setwd("c:\mydata") generates an error. Use setwd("c:/
mydata") or setwd("c:\\mydata") instead.

■ Using a function from a package that’s not loaded—The function order.clus-
ters() is contained in the gclus package. If you try to use it before loading
the package, you’ll get an error.

The error messages in R can be cryptic, but if you’re careful to follow these points,
you should avoid seeing many of them.

www.it-ebooks.info

http://www.it-ebooks.info/

17Working with large datasets

 For Windows, use

"C:\Program Files\R\R-3.1.0\bin\R.exe" CMD BATCH

➥ --vanilla --slave "c:\my projects\myscript.R"

adjusting the paths to match the location of your R.exe binary and your script file.

For additional details on how to invoke R, including the use of command-line

options, see the “Introduction to R” documentation available from CRAN (http://

cran.r-project.org).

1.6 Using output as input: reusing results

One of the most useful design features of R is that the output of analyses can easily be

saved and used as input to additional analyses. Let’s walk through an example, using
one of the datasets that comes preinstalled with R. If you don’t understand the statis-

tics involved, don’t worry. We’re focusing on the general principle here.

 First, run a simple linear regression predicting miles per gallon (mpg) from car
weight (wt), using the automotive dataset mtcars. This is accomplished with the fol-

lowing function call:

lm(mpg~wt, data=mtcars)

The results are displayed on the screen, and no information is saved.

 Next, run the regression, but store the results in an object:

lmfit <- lm(mpg~wt, data=mtcars)

The assignment creates a list object called lmfit that contains extensive information

from the analysis (including the predicted values, residuals, regression coefficients,

and more). Although no output is sent to the screen, the results can be both displayed

and manipulated further.

 Typing summary(lmfit) displays a summary of the results, and plot(lmfit) pro-

duces diagnostic plots. The statement cook<-cooks.distance(lmfit) generates and

stores influence statistics, and plot(cook) graphs them. To predict miles per gallon

from car weight in a new set of data, you’d use predict(lmfit, mynewdata).

 To see what a function returns, look at the Value section of the R help page for that

function. Here you’d look at help(lm) or ?lm. This tells you what’s saved when you

assign the results of that function to an object.

1.7 Working with large datasets

Programmers frequently ask me if R can handle large data problems. Typically, they

work with massive amounts of data gathered from web research, climatology, or genet-

ics. Because R holds objects in memory, you’re generally limited by the amount of RAM

available. For example, on my 5-year-old Windows PC with 2 GB of RAM, I can easily han-

dle datasets with 10 million elements (100 variables by 100,000 observations). On an

iMac with 4 GB of RAM, I can usually handle 100 million elements without difficulty.

 But there are two issues to consider: the size of the dataset and the statistical meth-

ods that will be applied. R can handle data analysis problems in the gigabyte to

www.it-ebooks.info

http://cran.r-project.org
http://cran.r-project.org
http://www.it-ebooks.info/

18 CHAPTER 1 Introduction to R

terabyte range, but specialized procedures are required. The management and analy-

sis of very large datasets is discussed in appendix F.

1.8 Working through an example

We’ll finish this chapter with an example that ties together many of these ideas. Here’s

the task:

1 Open the general help, and look at the “Introduction to R” section.

2 Install the vcd package (a package for visualizing categorical data that you’ll be

using in chapter 11).

3 List the functions and datasets available in this package.

4 Load the package, and read the description of the dataset Arthritis.

5 Print out the Arthritis dataset (entering the name of an object will list it).

6 Run the example that comes with the Arthritis dataset. Don’t worry if you

don’t understand the results; it basically shows that arthritis patients receiving

treatment improved much more than patients receiving a placebo.

7 Quit.

Figure 1.7 Output from listing 1.3, including (left to right) output from the arthritis example, general

help, information about the vcd package, information about the Arthritis dataset, and a graph

displaying the relationship between arthritis treatment and outcome

www.it-ebooks.info

http://www.it-ebooks.info/

19Summary

The code required is provided in the following listing, with a sample of the results dis-

played in figure 1.7. As this short exercise demonstrates, you can accomplish a great

deal with a small amount of code.

help.start()
install.packages("vcd")
help(package="vcd")
library(vcd)
help(Arthritis)
Arthritis
example(Arthritis)
q()

1.9 Summary

In this chapter, we looked at some of the strengths that make R an attractive option

for students, researchers, statisticians, and data analysts trying to understand the

meaning of their data. We walked through the program’s installation and talked about

how to enhance R’s capabilities by downloading additional packages. We explored the

basic interface, running programs interactively and in a batch, and produced a few

sample graphs. You also learned how to save your work to both text and graphic files.

Because R can be a complex program, we spent some time looking at how to access

the extensive help that’s available. Hopefully you’re getting a sense of how powerful

this freely available software can be.

 Now that you have R up and running, it’s time to get your data into the mix. In the

next chapter, we’ll look at the types of data R can handle and how to import them into

R from text files, other programs, and database management systems.

Listing 1.3 Working with a new package

www.it-ebooks.info

http://www.it-ebooks.info/

20

Creating a dataset

The first step in any data analysis is the creation of a dataset containing the infor-

mation to be studied, in a format that meets your needs. In R, this task involves the

following:

■ Selecting a data structure to hold your data
■ Entering or importing your data into the data structure

The first part of this chapter (sections 2.1–2.2) describes the wealth of structures that

R can use to hold data. In particular, section 2.2 describes vectors, factors, matrices,

data frames, and lists. Familiarizing yourself with these structures (and the notation

used to access elements within them) will help you tremendously in understanding

how R works. You might want to take your time working through this section.

 The second part of this chapter (section 2.3) covers the many methods available

for importing data into R. Data can be entered manually or imported from an

This chapter covers

■ Exploring R data structures

■ Using data entry

■ Importing data

■ Annotating datasets

www.it-ebooks.info

http://www.it-ebooks.info/

21Understanding datasets

external source. These data sources can include text files, spreadsheets, statistical

packages, and database-management systems. For example, the data that I work with
typically comes from SQL databases. On occasion, though, I receive data from legacy

DOS systems and from current SAS and SPSS databases. It’s likely that you’ll only have

to use one or two of the methods described in this section, so feel free to choose those
that fit your situation.

 Once a dataset is created, you’ll typically annotate it, adding descriptive labels for

variables and variable codes. The third portion of this chapter (section 2.4) looks at
annotating datasets and reviews some useful functions for working with datasets (sec-

tion 2.5). Let’s start with the basics.

2.1 Understanding datasets

A dataset is usually a rectangular array of data with rows representing observations
and columns representing variables. Table 2.1 provides an example of a hypothetical
patient dataset.

Different traditions have different names for the rows and columns of a dataset. Statis-
ticians refer to them as observations and variables, database analysts call them records

and fields, and those from the data-mining and machine-learning disciplines call

them examples and attributes. We’ll use the terms observations and variables through-
out this book.

 You can distinguish between the structure of the dataset (in this case, a rectangular

array) and the contents or data types included. In the dataset shown in table 2.1,
PatientID is a row or case identifier, AdmDate is a date variable, Age is a continuous

variable, Diabetes is a nominal variable, and Status is an ordinal variable.

 R contains a wide variety of structures for holding data, including scalars, vectors,
arrays, data frames, and lists. Table 2.1 corresponds to a data frame in R. This diversity

of structures provides the R language with a great deal of flexibility in dealing with data.

 The data types or modes that R can handle include numeric, character, logical
(TRUE/FALSE), complex (imaginary numbers), and raw (bytes). In R, PatientID,

AdmDate, and Age are numeric variables, whereas Diabetes and Status are character

variables. Additionally, you need to tell R that PatientID is a case identifier, that

AdmDate contains dates, and that Diabetes and Status are nominal and ordinal

Table 2.1 A patient dataset

PatientID AdmDate Age Diabetes Status

1 10/15/2014 25 Type1 Poor

2 11/01/2014 34 Type2 Improved

3 10/21/2014 28 Type1 Excellent

4 10/28/2014 52 Type1 Poor

www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 2 Creating a dataset

variables, respectively. R refers to case identifiers as rownames and categorical variables

(nominal, ordinal) as factors. We’ll cover each of these in the next section. You’ll
learn about dates in chapter 3.

2.2 Data structures

R has a wide variety of objects for

holding data, including scalars, vec-

tors, matrices, arrays, data frames,

and lists. They differ in terms of the

type of data they can hold, how

they’re created, their structural

complexity, and the notation used

to identify and access individual ele-

ments. Figure 2.1 shows a diagram

of these data structures. Let’s look

at each structure in turn, starting

with vectors.

2.2.1 Vectors

Vectors are one-dimensional arrays that can hold numeric data, character data, or logi-

cal data. The combine function c() is used to form the vector. Here are examples of

each type of vector:

a <- c(1, 2, 5, 3, 6, -2, 4)
b <- c("one", "two", "three")
c <- c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE)

Some definitions

Several terms are idiosyncratic to R and thus confusing to new users.

In R, an object is anything that can be assigned to a variable. This includes constants,
data structures, functions, and even graphs. An object has a mode (which describes
how the object is stored) and a class (which tells generic functions like print how to
handle it).

A data frame is a structure in R that holds data and is similar to the datasets found
in standard statistical packages (for example, SAS, SPSS, and Stata). The columns
are variables, and the rows are observations. You can have variables of different types
(for example, numeric or character) in the same data frame. Data frames are the main
structures you use to store datasets.

Factors are nominal or ordinal variables. They’re stored and treated specially in R.
You’ll learn about factors in section 2.2.5.

Most other terms used in R should be familiar to you and follow the terminology used
in statistics and computing in general.

(a) Vector
(b) Matrix (c) Array

(d) Data frame

Columns can be different modes

(e) List

Vectors

Arrays

Data frames

Lists

Figure 2.1 R data structures

www.it-ebooks.info

http://www.it-ebooks.info/

23Data structures

Here, a is a numeric vector, b is a character vector, and c is a logical vector. Note that

the data in a vector must be only one type or mode (numeric, character, or logical).

You can’t mix modes in the same vector.

NOTE Scalars are one-element vectors. Examples include f <- 3, g <- "US",
and h <- TRUE. They’re used to hold constants.

You can refer to elements of a vector using a numeric vector of positions within brack-

ets. For example, a[c(2, 4)] refers to the second and fourth elements of vector a.

Here are additional examples:

> a <- c("k", "j", "h", "a", "c", "m")
> a[3]
[1] "h"
> a[c(1, 3, 5)]
[1] "k" "h" "c"
> a[2:6]
[1] "j" "h" "a" "c" "m"

The colon operator used in the last statement generates a sequence of numbers. For

example, a <- c(2:6) is equivalent to a <- c(2, 3, 4, 5, 6).

2.2.2 Matrices

A matrix is a two-dimensional array in which each element has the same mode
(numeric, character, or logical). Matrices are created with the matrix() function. The

general format is

myymatrix <- matrix(vector, nrow=number_of_rows, ncol=number_of_columns,
 byrow=logical_value, dimnames=list(
 char_vector_rownames, char_vector_colnames))

where vector contains the elements for the matrix, nrow and ncol specify the row and
column dimensions, and dimnames contains optional row and column labels stored in

character vectors. The option byrow indicates whether the matrix should be filled in

by row (byrow=TRUE) or by column (byrow=FALSE). The default is by column. The fol-
lowing listing demonstrates the matrix function.

> y <- matrix(1:20, nrow=5, ncol=4)
> y
 [,1] [,2] [,3] [,4]
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20
> cells <- c(1,26,24,68)
> rnames <- c("R1", "R2")
> cnames <- c("C1", "C2")
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE,
 dimnames=list(rnames, cnames))

Listing 2.1 Creating matrices

Creates a 5 × 4 matrixb

2 × 2 matrix
filled by rows

c

www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2 Creating a dataset

> mymatrix
 C1 C2
R1 1 26
R2 24 68
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=FALSE,
 dimnames=list(rnames, cnames))
> mymatrix
 C1 C2
R1 1 24
R2 26 68

First you create a 5 × 4 matrix b. Then you create a 2 × 2 matrix with labels and fill the

matrix by rows c. Finally, you create a 2 × 2 matrix and fill the matrix by columns d.

 You can identify rows, columns, or elements of a matrix by using subscripts and

brackets. X[i,] refers to the ith row of matrix X, X[,j] refers to the j th column, and

X[i, j] refers to the ij th element, respectively. The subscripts i and j can be numeric

vectors in order to select multiple rows or columns, as shown in the following listing.

> x <- matrix(1:10, nrow=2)
> x
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> x[2,]
 [1] 2 4 6 8 10
> x[,2]
[1] 3 4
> x[1,4]
[1] 7
> x[1, c(4,5)]
[1] 7 9

First a 2 × 5 matrix is created containing the numbers 1 to 10. By default, the matrix is

filled by column. Then the elements in the second row are selected, followed by the

elements in the second column. Next, the element in the first row and fourth column

is selected. Finally, the elements in the first row and the fourth and fifth columns are

selected.

 Matrices are two-dimensional and, like vectors, can contain only one data type.

When there are more than two dimensions, you use arrays (section 2.2.3). When there

are multiple modes of data, you use data frames (section 2.2.4).

2.2.3 Arrays

Arrays are similar to matrices but can have more than two dimensions. They’re created

with an array function of the following form

myarray <- array(vector, dimensions, dimnames)

where vector contains the data for the array, dimensions is a numeric vector giving

the maximal index for each dimension, and dimnames is an optional list of dimension

Listing 2.2 Using matrix subscripts

2 × 2 matrix
filled by columns

d

www.it-ebooks.info

http://www.it-ebooks.info/

25Data structures

labels. The following listing gives an example of creating a three-dimensional (2 × 3 ×
4) array of numbers.

> dim1 <- c("A1", "A2")

> dim2 <- c("B1", "B2", "B3")

> dim3 <- c("C1", "C2", "C3", "C4")

> z <- array(1:24, c(2, 3, 4), dimnames=list(dim1, dim2, dim3))

> z

, , C1

 B1 B2 B3

A1 1 3 5

A2 2 4 6

, , C2

 B1 B2 B3

A1 7 9 11

A2 8 10 12

, , C3

 B1 B2 B3

A1 13 15 17

A2 14 16 18

, , C4

 B1 B2 B3

A1 19 21 23

A2 20 22 24

As you can see, arrays are a natural extension of matrices. They can be useful in pro-

gramming new statistical methods. Like matrices, they must be a single mode. Identi-

fying elements follows what you’ve seen for matrices. In the previous example, the

z[1,2,3] element is 15.

2.2.4 Data frames

A data frame is more general than a matrix in that different columns can contain dif-

ferent modes of data (numeric, character, and so on). It’s similar to the dataset you’d

typically see in SAS, SPSS, and Stata. Data frames are the most common data structure

you’ll deal with in R.

 The patient dataset in table 2.1 consists of numeric and character data. Because

there are multiple modes of data, you can’t contain the data in a matrix. In this case, a

data frame is the structure of choice.

 A data frame is created with the data.frame() function

mydata <- data.frame(col1, col2, col3,...)

where col1, col2, col3, and so on are column vectors of any type (such as character,

numeric, or logical). Names for each column can be provided with the names func-

tion. The following listing makes this clear.

Listing 2.3 Creating an array

www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2 Creating a dataset

> patientID <- c(1, 2, 3, 4)
> age <- c(25, 34, 28, 52)
> diabetes <- c("Type1", "Type2", "Type1", "Type1")
> status <- c("Poor", "Improved", "Excellent", "Poor")
> patientdata <- data.frame(patientID, age, diabetes, status)
> patientdata
 patientID age diabetes status
1 1 25 Type1 Poor
2 2 34 Type2 Improved
3 3 28 Type1 Excellent
4 4 52 Type1 Poor

Each column must have only one mode, but you can put columns of different modes

together to form the data frame. Because data frames are close to what analysts typi-

cally think of as datasets, we’ll use the terms columns and variables interchangeably

when discussing data frames.

 There are several ways to identify the elements of a data frame. You can use the

subscript notation you used before (for example, with matrices), or you can specify

column names. Using the patientdata data frame created earlier, the following list-

ing demonstrates these approaches.

> patientdata[1:2]
 patientID age
1 1 25
2 2 34
3 3 28
4 4 52
> patientdata[c("diabetes", "status")]
 diabetes status
1 Type1 Poor
2 Type2 Improved
3 Type1 Excellent
4 Type1 Poor
 > patientdata$age
[1] 25 34 28 52

The $ notation in the third example is new b. It’s used to indicate a particular vari-

able from a given data frame. For example, if you want to cross-tabulate diabetes type

by status, you can use the following code:

> table(patientdata$diabetes, patientdata$status)

 Excellent Improved Poor
 Type1 1 0 2
 Type2 0 1 0

It can get tiresome typing patientdata$ at the beginning of every variable name, so

shortcuts are available. You can use either the attach() and detach() or with()

functions to simplify your code.

Listing 2.4 Creating a data frame

Listing 2.5 Specifying elements of a data frame

Indicates the age variable
in the patient data frame

b

www.it-ebooks.info

http://www.it-ebooks.info/

27Data structures

ATTACH, DETACH, AND WITH

The attach() function adds the data frame to the R search path. When a variable
name is encountered, data frames in the search path are checked for the variable in
order. Using the mtcars data frame from chapter 1 as an example, you could use the
following code to obtain summary statistics for automobile mileage (mpg) and plot this
variable against engine displacement (disp) and weight (wt):

summary(mtcars$mpg)
plot(mtcars$mpg, mtcars$disp)
plot(mtcars$mpg, mtcars$wt)

This can also be written as follows:

attach(mtcars)
 summary(mpg)
 plot(mpg, disp)
 plot(mpg, wt)
detach(mtcars)

The detach() function removes the data frame from the search path. Note that
detach() does nothing to the data frame itself. The statement is optional but is good
programming practice and should be included routinely. (I’ll sometimes ignore this
sage advice in later chapters in order to keep code fragments simple and short.)

 The limitations with this approach are evident when more than one object can
have the same name. Consider the following code:

> mpg <- c(25, 36, 47)
> attach(mtcars)
The following object(s) are masked _by_ '.GlobalEnv': mpg
> plot(mpg, wt)
Error in xy.coords(x, y, xlabel, ylabel, log) :
 'x' and 'y' lengths differ
> mpg
[1] 25 36 47

Here you already have an object named mpg in your environment when the mtcars
data frame is attached. In such cases, the original object takes precedence, which isn’t
what you want. The plot statement fails because mpg has 3 elements and disp has 32
elements. The attach() and detach() functions are best used when you’re analyzing
a single data frame and you’re unlikely to have multiple objects with the same name.
In any case, be vigilant for warnings that say that objects are being masked.

 An alternative approach is to use the with() function. You can write the previous
example as

with(mtcars, {
 print(summary(mpg))
 plot(mpg, disp)
 plot(mpg, wt)
})

In this case, the statements within the {} brackets are evaluated with reference to the
mtcars data frame. You don’t have to worry about name conflicts. If there’s only one
statement (for example, summary(mpg)), the {} brackets are optional.

www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2 Creating a dataset

 The limitation of the with() function is that assignments exist only within the

function brackets. Consider the following:

> with(mtcars, {
 stats <- summary(mpg)
 stats
 })
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 10.40 15.43 19.20 20.09 22.80 33.90
> stats
Error: object 'stats' not found

If you need to create objects that will exist outside of the with() construct, use the

special assignment operator <<- instead of the standard one (<-). It saves the object to

the global environment outside of the with() call. This can be demonstrated with the

following code:

> with(mtcars, {
 nokeepstats <- summary(mpg)
 keepstats <<- summary(mpg)
})
> nokeepstats
Error: object 'nokeepstats' not found
> keepstats
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 10.40 15.43 19.20 20.09 22.80 33.90

Most books on R recommend using with() instead of attach(). I think that ulti-

mately the choice is a matter of preference and should be based on what you’re trying

to achieve and your understanding of the implications. You’ll use both in this book.

CASE IDENTIFIERS

In the patient data example, patientID is used to identify individuals in the dataset.

In R, case identifiers can be specified with a rowname option in the data-frame func-

tion. For example, the statement

patientdata <- data.frame(patientID, age, diabetes,
 status, row.names=patientID)

specifies patientID as the variable to use in labeling cases on various printouts and

graphs produced by R.

2.2.5 Factors

As you’ve seen, variables can be described as nominal, ordinal, or continuous. Nominal

variables are categorical, without an implied order. Diabetes (Type1, Type2) is an

example of a nominal variable. Even if Type1 is coded as a 1 and Type2 is coded as a 2

in the data, no order is implied. Ordinal variables imply order but not amount. Status

(poor, improved, excellent) is a good example of an ordinal variable. You know

that a patient with a poor status isn’t doing as well as a patient with an improved status,

but not by how much. Continuous variables can take on any value within some range,

and both order and amount are implied. Age in years is a continuous variable and can

www.it-ebooks.info

http://www.it-ebooks.info/

29Data structures

take on values such as 14.5 or 22.8 and any value in between. You know that someone

who is 15 is one year older than someone who is 14.

 Categorical (nominal) and ordered categorical (ordinal) variables in R are called

factors. Factors are crucial in R because they determine how data is analyzed and pre-

sented visually. You’ll see examples of this throughout the book.

 The function factor() stores the categorical values as a vector of integers in the

range [1… k], (where k is the number of unique values in the nominal variable) and

an internal vector of character strings (the original values) mapped to these integers.

 For example, assume that you have this vector:

diabetes <- c("Type1", "Type2", "Type1", "Type1")

The statement diabetes <- factor(diabetes) stores this vector as (1, 2, 1, 1) and

associates it with 1 = Type1 and 2 = Type2 internally (the assignment is alphabetical).

Any analyses performed on the vector diabetes will treat the variable as nominal and

select the statistical methods appropriate for this level of measurement.

 For vectors representing ordinal variables, you add the parameter ordered=TRUE to

the factor() function. Given the vector

status <- c("Poor", "Improved", "Excellent", "Poor")

the statement status <- factor(status, ordered=TRUE) will encode the vector as

(3, 2, 1, 3) and associate these values internally as 1 = Excellent, 2 = Improved, and 3 =

Poor. Additionally, any analyses performed on this vector will treat the variable as ordi-

nal and select the statistical methods appropriately.

 By default, factor levels for character vectors are created in alphabetical order. This

worked for the status factor, because the order “Excellent,” “Improved,” “Poor”

made sense. There would have been a problem if “Poor” had been coded as “Ailing”

instead, because the order would have been “Ailing,” “Excellent,” “Improved.” A simi-

lar problem would exist if the desired order was “Poor,” “Improved,” “Excellent.” For

ordered factors, the alphabetical default is rarely sufficient.

 You can override the default by specifying a levels option. For example,

status <- factor(status, order=TRUE,
 levels=c("Poor", "Improved", "Excellent"))

assigns the levels as 1 = Poor, 2 = Improved, 3 = Excellent. Be sure the specified levels

match your actual data values. Any data values not in the list will be set to missing.

 Numeric variables can be coded as factors using the levels and labels options. If

sex was coded as 1 for male and 2 for female in the original data, then

sex <- factor(sex, levels=c(1, 2), labels=c("Male", "Female"))

would convert the variable to an unordered factor. Note that the order of the labels

must match the order of the levels. In this example, sex would be treated as categori-

cal, the labels “Male” and “Female” would appear in the output instead of 1 and 2, and

any sex value that wasn’t initially coded as a 1 or 2 would be set to missing.

www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2 Creating a dataset

 The following listing demonstrates how specifying factors and ordered factors

impacts data analyses.

> patientID <- c(1, 2, 3, 4)

> age <- c(25, 34, 28, 52)

> diabetes <- c("Type1", "Type2", "Type1", "Type1")

> status <- c("Poor", "Improved", "Excellent", "Poor")

> diabetes <- factor(diabetes)

> status <- factor(status, order=TRUE)

> patientdata <- data.frame(patientID, age, diabetes, status)

> str(patientdata)

‘data.frame’: 4 obs. of 4 variables:

 $ patientID: num 1 2 3 4

 $ age : num 25 34 28 52

 $ diabetes : Factor w/ 2 levels "Type1","Type2": 1 2 1 1

 $ status : Ord.factor w/ 3 levels "Excellent"<"Improved"<..: 3 2 1 3

> summary(patientdata)

 patientID age diabetes status

 Min. :1.00 Min. :25.00 Type1:3 Excellent:1

 1st Qu.:1.75 1st Qu.:27.25 Type2:1 Improved :1

 Median :2.50 Median :31.00 Poor :2

 Mean :2.50 Mean :34.75

 3rd Qu.:3.25 3rd Qu.:38.50

 Max. :4.00 Max. :52.00

First you enter the data as vectors b. Then you specify that diabetes is a factor and

status is an ordered factor. Finally, you combine the data into a data frame. The func-

tion str(object) provides information about an object in R (the data frame, in this

case) c. It clearly shows that diabetes is a factor and status is an ordered factor,

along with how they’re coded internally. Note that the summary() function treats the

variables differently d. It provides the minimum, maximum, mean, and quartiles for

the continuous variable age, and frequency counts for the categorical variables

diabetes and status.

2.2.6 Lists

Lists are the most complex of the R data types. Basically, a list is an ordered collection

of objects (components). A list allows you to gather a variety of (possibly unrelated)

objects under one name. For example, a list may contain a combination of vectors,

matrices, data frames, and even other lists. You create a list using the list() function

mylist <- list(object1, object2, ...)

where the objects are any of the structures seen so far. Optionally, you can name the

objects in a list:

mylist <- list(name1=object1, name2=object2, ...)

The following listing shows an example.

Listing 2.6 Using factors

Enter data
as vectors.

b

Displays
the object
structurec

Displays
the object
summaryd

www.it-ebooks.info

http://www.it-ebooks.info/

31Data structures

> g <- "My First List"
> h <- c(25, 26, 18, 39)
> j <- matrix(1:10, nrow=5)
> k <- c("one", "two", "three")
> mylist <- list(title=g, ages=h, j, k)
> mylist
$title
[1] "My First List"

$ages
[1] 25 26 18 39

[[3]]
 [,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10

[[4]]
[1] "one" "two" "three"

> mylist[[2]]
[1] 25 26 18 39
> mylist[["ages"]]
[[1] 25 26 18 39

In this example, you create a list with four components: a string, a numeric vector, a

matrix, and a character vector. You can combine any number of objects and save them

as a list.

 You can also specify elements of the list by indicating a component number or a

name within double brackets. In this example, mylist[[2]] and mylist[["ages"]]

both refer to the same four-element numeric vector. For named components,

mylist$ages would also work. Lists are important R structures for two reasons. First,

they allow you to organize and recall disparate information in a simple way. Second,

the results of many R functions return lists. It’s up to the analyst to pull out the com-

ponents that are needed. You’ll see numerous examples of functions that return lists

in later chapters.

Listing 2.7 Creating a list

A note for programmers

Experienced programmers typically find several aspects of the R language unusual.
Here are some features of the language you should be aware of:

■ The period (.) has no special significance in object names. The dollar sign ($)
has a somewhat analogous meaning to the period in other object-oriented lan-
guages and can be used to identify the parts of a data frame or list. For exam-
ple, A$x refers to variable x in data frame A.

Creates a list

Prints the entire list

Prints the second component

www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2 Creating a dataset

2.3 Data input

Now that you have data structures, you need to put some data in them! As a data ana-
lyst, you’re typically faced with data that comes from a variety of sources and in a vari-

ety of formats. Your task is to import the data into your tools, analyze the data, and

report on the results. R provides a wide range of tools for importing data. The defini-
tive guide for importing data in R is the R Data Import/Export manual available at

http://mng.bz/urwn.

 As you can see in figure 2.2, R can import data from the keyboard, from text files,
from Microsoft Excel and Access, from popular statistical packages, from a variety of

(continued)

■ R doesn’t provide multiline or block comments. You must start each line of a
multiline comment with #. For debugging purposes, you can also surround code
that you want the interpreter to ignore with the statement if(FALSE){...}.
Changing the FALSE to TRUE allows the code to be executed.

■ Assigning a value to a nonexistent element of a vector, matrix, array, or list
expands that structure to accommodate the new value. For example, consider
the following:

> x <- c(8, 6, 4)
> x[7] <- 10
> x
[1] 8 6 4 NA NA NA 10

The vector x has expanded from three to seven elements through the assignment. x
<- x[1:3] would shrink it back to three elements.

■ R doesn’t have scalar values. Scalars are represented as one-element vectors.
■ Indices in R start at 1, not at 0. In the vector earlier, x[1] is 8.
■ Variables can’t be declared. They come into existence on first assignment.

To learn more, see John Cook’s excellent blog post, “R Language for Programmers”
(http://mng.bz/6NwQ). Programmers looking for stylistic guidance may also want to
check out “Google’s R Style Guide” (http://mng.bz/i775).

R

Statistical packages

Database management systems

Keyboard

Other
Text files

SAS SPSS Stata

Excel

netCFD

SQL MySQL Oracle Access

ASCII

XML

HDF5Webscraping

Figure 2.2 Sources of data that

can be imported into R

www.it-ebooks.info

http://mng.bz/6NwQ
http://mng.bz/i775
http://mng.bz/urwn
http://www.it-ebooks.info/

33Data input

relational database management systems, from specialty databases, and from web sites

and online services. Because you never know where your data will come from, we’ll
cover each of them here. You only need to read about the ones you’re going to be

using.

2.3.1 Entering data from the keyboard

Perhaps the simplest way to enter data is from the keyboard. There are two common

methods: entering data through R’s built-in text editor and embedding data directly

into your code. We’ll consider the editor first.

 The edit() function in R invokes a text editor that lets you enter data manually.

Here are the steps:

1 Create an empty data frame (or matrix) with the variable names and modes you

want to have in the final dataset.

2 Invoke the text editor on this data object, enter your data, and save the results

to the data object.

The following example creates a data frame named mydata with three variables: age

(numeric), gender (character), and weight (numeric). You then invoke the text edi-

tor, add your data, and save the results:

mydata <- data.frame(age=numeric(0),
 gender=character(0), weight=numeric(0))
mydata <- edit(mydata)

Assignments like age=numeric(0) create a variable of a specific mode, but without

actual data. Note that the result of the editing is assigned back to the object itself. The

edit() function operates on a copy of the object. If you don’t assign it a destination,

all of your edits will be lost!

 The results of invoking the edit() function on a Windows platform are shown in

figure 2.3. In this figure, I’ve added some data. If you click a column title, the editor

Figure 2.3 Entering data

via the built-in editor on a

Windows platform

www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 Creating a dataset

gives you the option of changing the variable name and type (numeric or character).

You can add variables by clicking the titles of unused columns. When the text editor is
closed, the results are saved to the object assigned (mydata, in this case). Invoking

mydata <- edit(mydata) again allows you to edit the data you’ve entered and to add

new data. A shortcut for mydata <- edit(mydata) is fix(mydata).
 Alternatively, you can embed the data directly in your program. For example, the

code

mydatatxt <- "
age gender weight
25 m 166
30 f 115
18 f 120
"
mydata <- read.table(header=TRUE, text=mydatatxt)

creates the same data frame as that created with the edit() function. A character

string is created containing the raw data, and the read.table() function is used to

process the string and return a data frame. The read.table() function is described

more fully in the next section.

 Keyboard data entry can be convenient when you’re working with small datasets.

For larger datasets, you’ll want to use the methods described next: importing

data from existing text files, Excel spreadsheets, statistical packages, or database-

management systems.

2.3.2 Importing data from a delimited text file

You can import data from delimited text files using read.table(), a function that

reads a file in table format and saves it as a data frame. Each row of the table appears

as one line in the file. The syntax is

mydataframe <- read.table(file, options)

where file is a delimited ASCII file and the options are parameters controlling how

data is processed. The most common options are listed in table 2.2.

Table 2.2 read.table() options

Option Description

header A logical value indicating whether the file contains the variable names in the first line.

sep The delimiter separating data values. The default is sep="", which denotes one or

more spaces, tabs, new lines, or carriage returns. Use sep="," to read comma-

delimited files, and sep="\t" to read tab-delimited files.

row.names An optional parameter specifying one or more variables to represent row identifiers.

col.names If the first row of the data file doesn’t contain variable names (header=FALSE), you

can use col.names to specify a character vector containing the variable names. If

header=FALSE and the col.names option is omitted, variables will be named V1,

V2, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

35Data input

Consider a text file named studentgrades.csv containing students’ grades in math, sci-

ence, and social studies. Each line of the file represents a student. The first line con-

tains the variable names, separated with commas. Each subsequent line contains a

student’s information, also separated with commas. The first few lines of the file are as

follows:

StudentID,First,Last,Math,Science,Social Studies

011,Bob,Smith,90,80,67

012,Jane,Weary,75,,80

010,Dan,"Thornton, III",65,75,70

040,Mary,"O'Leary",90,95,92

The file can be imported into a data frame using the following code:

grades <- read.table("studentgrades.csv", header=TRUE,
 row.names="StudentID", sep=",")

The results are as follows:

> grades

 First Last Math Science Social.Studies

11 Bob Smith 90 80 67

12 Jane Weary 75 NA 80

10 Dan Thornton, III 65 75 70

40 Mary O'Leary 90 95 92

> str(grades)

na.strings Optional character vector indicating missing-values codes. For example, na.strings

=c("-9", "?") converts each -9 and ? value to NA as the data is read.

colClasses Optional vector of classes to be assign to the columns. For example, colClasses
=c("numeric", "numeric", "character", "NULL", "numeric") reads the

first two columns as numeric, reads the third column as character, skips the fourth col-

umn, and reads the fifth column as numeric. If there are more than five columns in the

data, the values in colClasses are recycled. When you’re reading large text files,

including the colClasses option can speed up processing considerably.

quote Character(s) used to delimit strings that contain special characters. By default this is

either double (") or single (') quotes.

skip The number of lines in the data file to skip before beginning to read the data. This

option is useful for skipping header comments in the file.

strings-
AsFactors

A logical value indicating whether character variables should be converted to factors.

The default is TRUE unless this is overridden by colClasses. When you’re processing

large text files, setting stringsAsFactors=FALSE can speed up processing.

text A character string specifying a text string to process. If text is specified, leave file

blank. An example is given in section 2.3.1.

Table 2.2 read.table() options

Option Description

www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Creating a dataset

'data.frame': 4 obs. of 5 variables:
 $ First : Factor w/ 4 levels "Bob","Dan","Jane",..: 1 3 2 4
 $ Last : Factor w/ 4 levels "O'Leary","Smith",..: 2 4 3 1
 $ Math : int 90 75 65 90
 $ Science : int 80 NA 75 95
 $ Social.Studies: int 67 80 70 92

There are several interesting things to note about how the data is imported. The vari-

able name Social Studies is automatically renamed to follow R conventions. The

StudentID column is now the row name, no longer has a label, and has lost its leading

zero. The missing science grade for Jane is correctly read as missing. I had to put quo-

tation marks around Dan's last name in order to escape the comma between Thornton

and III. Otherwise, R would have seen seven values on that line, rather than six. I also

had to put quotation marks around O'Leary. Otherwise, R would have read the single

quote as a string delimiter (which isn’t what I want). Finally, the first and last names

are converted to factors.

 By default, read.table() converts character variables to factors, which may not

always be desirable. For example, there would be little reason to convert a character

variable containing a respondent’s comments into a factor. You can suppress this

behavior in a number of ways. Including the option stringsAsFactors=FALSE turns

off this behavior for all character variables. Alternatively, you can use the colClasses

option to specify a class (for example, logical, numeric, character, or factor) for each

column.

 Importing the same data with

grades <- read.table("studentgrades.csv", header=TRUE,
 row.names="StudentID", sep=",",
 colClasses=c("character", "character", "character",
 "numeric", "numeric", "numeric"))

produces the following data frame:

> grades

 First Last Math Science Social.Studies
011 Bob Smith 90 80 67
012 Jane Weary 75 NA 80
010 Dan Thornton, III 65 75 70
040 Mary O'Leary 90 95 92

> str(grades)

'data.frame': 4 obs. of 5 variables:
 $ First : chr "Bob" "Jane" "Dan" "Mary"
 $ Last : chr "Smith" "Weary" "Thornton, III" "O'Leary"
 $ Math : num 90 75 65 90
 $ Science : num 80 NA 75 95
 $ Social.Studies: num 67 80 70 92

Note that the row names retain their leading zero and First and Last are no longer

factors. Additionally, the grades are stored as real values rather than integers.

www.it-ebooks.info

http://www.it-ebooks.info/

37Data input

 The read.table() function has many options for fine-tuning data imports. See

help(read.table) for details.

2.3.3 Importing data from Excel

The best way to read an Excel file is to export it to a comma-delimited file from Excel

and import it into R using the method described earlier. Alternatively, you can import

Excel worksheets directly using the xlsx package. Be sure to download and install it

before you first use it. You’ll also need the xlsxjars and rJava packages and a work-

ing installation of Java (http://java.com).

 The xlsx package can be used to read, write, and format Excel 97/2000/XP/

2003/2007 files. The read.xlsx() function imports a worksheet into a data frame.

The simplest format is read.xlsx(file, n) where file is the path to an Excel work-

book, n is the number of the worksheet to be imported, and the first line of the work-

sheet contains the variable names. For example, on a Windows platform, the code

library(xlsx)
workbook <- "c:/myworkbook.xlsx"
mydataframe <- read.xlsx(workbook, 1)

imports the first worksheet from the workbook myworkbook.xlsx stored on the C:

drive and saves it as the data frame mydataframe.

 The read.xlsx() function has options that allow you to specify specific rows (row-

Index) and columns (colIndex) of the worksheet, along with the class of each col-

umn (colClasses). For large worksheets (say, 100,000+ cells), you can also use

read.xlsx2(). It performs more of the processing work in Java, resulting in signifi-

cant performance gains. See help(read.xlsx) for details.

 There are other packages that can help you work with Excel files. Alternatives

include the XLConnect and openxlsx packages; XLConnect depends on Java, but

openxlsx doesn’t. All of these package can do more than import worksheets—they

can create and manipulate Excel files as well. Programmers who need to develop an

interface between R and Excel should check out one or more of these packages.

Importing data via connections

Many of the examples in this chapter import data from files that exist on your computer.
R provides several mechanisms for accessing data via connections as well. For ex-
ample, the functions file(), gzfile(), bzfile(), xzfile(), unz(), and url()
can be used in place of the filename. The file() function allows you to access files,
the clipboard, and C-level standard input. The gzfile(), bzfile(), xzfile(), and
unz() functions let you read compressed files.

The url() function lets you access internet files through a complete URL that includes
http://, ftp://, or file://. For HTTP and FTP, proxies can be specified. For convenience,
complete URLs (surrounded by double quotation marks) can usually be used directly
in place of filenames as well. See help(file) for details.

www.it-ebooks.info

http://java.com
http://www.it-ebooks.info/

38 CHAPTER 2 Creating a dataset

2.3.4 Importing data from XML

Increasingly, data is provided in the form of files encoded in XML. R has several pack-

ages for handling XML files. For example, the XML package written by Duncan Temple

Lang allows you to read, write, and manipulate XML files. Coverage of XML is beyond

the scope of this text; if you’re interested in accessing XML documents from within R,

see the excellent package documentation at www.omegahat.org/RSXML.

2.3.5 Importing data from the web

Data can be obtained from the web via webscraping or the use of application programming

interfaces (APIs). Webscraping is used to extract the information embedded in specific web

pages, whereas APIs allow you to interact with web services and online data stores.

 Typically, webscraping is used to extract data from a web page and save it into an R

structure for further analysis. For example, the text on a web page can be downloaded

into an R character vector using the readLines() function and manipulated with

functions such as grep() and gsub(). For complex web pages, the RCurl and XML

packages can be used to extract the information desired. For more information,

including examples, see “Webscraping Using readLines and RCurl,” available from

the website Programming with R (www.programmingr.com).

 APIs specify how software components should interact with each other. A number

of R packages use this approach to extract data from web-accessible resources. These

include data sources in biology, medicine, Earth sciences, physical science, economics

and business, finance, literature, marketing, news, and sports.

 For example, if you’re interested in social media, you can access Twitter data via

twitteR, Facebook data via Rfacebook, and Flickr data via Rflickr. Other packages

allow you to access popular web services provided by Google, Amazon, Dropbox,

Salesforce, and others. For a comprehensive list of R packages that can help you

access web-based resources, see the CRAN Task view on Web Technologies and Services

(http://mng.bz/370r).

2.3.6 Importing data from SPSS

IBM SPSS datasets can be imported into R via the read.spss() function in the for-

eign package. Alternatively, you can use the spss.get() function in the Hmisc pack-

age. spss.get() is a wrapper function that automatically sets many parameters of

read.spss() for you, making the transfer easier and more consistent with what data

analysts expect as a result.

 First, download and install the Hmisc package (the foreign package is already

installed by default):

install.packages("Hmisc")

Then use the following code to import the data:

library(Hmisc)
mydataframe <- spss.get("mydata.sav", use.value.labels=TRUE)

www.it-ebooks.info

http://mng.bz/370r
www.omegahat.org/RSXML
www.programmingr.com
http://www.it-ebooks.info/

39Data input

In this code, mydata.sav is the SPSS data file to be imported, use.value.labels=TRUE

tells the function to convert variables with value labels into R factors with those same
levels, and mydataframe is the resulting R data frame.

2.3.7 Importing data from SAS

A number of functions in R are designed to import SAS datasets, including
read.ssd() in the foreign package, sas.get() in the Hmisc package, and

read.sas7bdat() in the sas7bdat package. If you have SAS installed, sas.get() can

be a good option.
 Let’s say that you want to import an SAS dataset named clients.sas7bdat that resides

in the C:/mydata directory on a Windows machine. The following code imports the

data and saves it as an R data frame:

library(Hmisc)
datadir <- "C:/mydata"
sasexe <- "C:/Program Files/SASHome/SASFoundation/9.4/sas.exe"
mydata <- sas.get(libraryName=datadir, member="clients", sasprog=sasexe)

libraryName is a directory containing the SAS dataset, member is the dataset name

(excluding the sas7bdat extension), and sasprog is the full path to the SAS execut-

able. Many additional options are available; see help(sas.get) for details.

 You can also save the SAS dataset as a comma-delimited text file from within SAS

using PROC EXPORT, and you can read the resulting file into R using the method

described in section 2.3.2. Here’s an example:

SAS program:

libname datadir "C:\mydata";
proc export data=datadir.clients
 outfile="clients.csv"
 dbms=csv;
run;

R program:

mydata <- read.table("clients.csv", header=TRUE, sep=",")

The previous two approaches require that you have a fully functional version of SAS

installed. If you don’t have access to SAS, the read.sas7bdat() function may be a

good alternative. The function can read an SAS dataset in sas7bdat format directly.
The code for this example would be

library(sas7bdat)
mydata <- read.sas7bdat("C:/mydata/clients.sas7bdat")

Unlike sas.get(), the read.sas7bdat() function ignores SAS user-defined formats.

Additionally, it takes significantly longer to run. Although I’ve had good luck with this
package, it’s still considered experimental.

 Finally, a commercial product named Stat/Transfer (described in section 2.3.12)

does an excellent job of saving SAS datasets (including any existing variable formats)

as R data frames. As with read.sas7dbat(), access to an SAS installation isn’t required.

www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 Creating a dataset

2.3.8 Importing data from Stata

Importing data from Stata to R is straightforward. The necessary code looks like this:

library(foreign)
mydataframe <- read.dta("mydata.dta")

Here, mydata.dta is the Stata dataset, and mydataframe is the resulting R data frame.

2.3.9 Importing data from NetCDF

Unidata’s Network Common Data Form (NetCDF) open source software contains

machine-independent data formats for the creation and distribution of array-oriented

scientific data. NetCDF is commonly used to store geophysical data. The ncdf and

ncdf4 packages provide high-level R interfaces to NetCDF data files.

 The ncdf package provides support for data files created with Unidata’s NetCDF

library (version 3 or earlier) and is available for Windows, Mac OS X, and Linux plat-

forms. The ncdf4 package supports version 4 or earlier but isn’t yet available for

Windows.

 Consider this code:

library(ncdf)
nc <- nc_open("mynetCDFfile")
myarray <- get.var.ncdf(nc, myvar)

In this example, all the data from the variable myvar, contained in the NetCDF file

mynetCDFfile, is read and saved into an R array called myarray.

 Note that both the ncdf and ncdf4 packages have received major recent upgrades

and may operate differently than previous versions. Additionally, function names in

the two packages differ. Read the online help for details.

2.3.10 Importing data from HDF5

Hierarchical Data Format (HDF5) is a software technology suite for the management

of extremely large and complex data collections. The rhdf5 package provides an R

interface for HDF5. The package is available on the Bioconductor website rather than

CRAN. You can install it with the following code:

source("http://bioconductor.org/biocLite.R")
biocLite("rhdf5")

Like XML, HDF5 is beyond the scope of this book. To learn more, visit the HDF Group

website (www.hdfgroup.org). There is an excellent tutorial for the rhdf5 package by

Bernd Fischer at http://mng.bz/eg6j.

2.3.11 Accessing database management systems (DBMSs)

R can interface with a wide variety of relational database management systems

(DBMSs), including Microsoft SQL Server, Microsoft Access, MySQL, Oracle, Post-

greSQL, DB2, Sybase, Teradata, and SQLite. Some packages provide access through

native database drivers, whereas others offer access via ODBC or JDBC. Using R to

www.it-ebooks.info

http://mng.bz/eg6j
www.hdfgroup.org
http://www.it-ebooks.info/

41Data input

access data stored in external DMBSs can be an efficient way to analyze large datasets

(see appendix F) and takes advantage of the power of both SQL and R.

THE ODBC INTERFACE

Perhaps the most popular method of accessing a DBMS in R is through the RODBC

package, which allows R to connect to any DBMS that has an ODBC driver. This

includes all the DBMSs listed earlier.

 The first step is to install and configure the appropriate ODBC driver for your plat-

form and database (these drivers aren’t part of R). If the requisite drivers aren’t already

installed on your machine, an internet search should provide you with options.

 Once the drivers are installed and configured for the database(s) of your choice,

install the RODBC package. You can do so by using the install.packages("RODBC")

command. The primary functions included with RODBC are listed in table 2.3.

The RODBC package allows two-way communication between R and an ODBC-

connected SQL database. This means you can not only read data from a connected

database into R, but also use R to alter the contents of the database itself. Assume that
you want to import two tables (Crime and Punishment) from a DBMS into two R data

frames called crimedat and pundat, respectively. You can accomplish this with code

similar to the following:

library(RODBC)
myconn <-odbcConnect("mydsn", uid="Rob", pwd="aardvark")
crimedat <- sqlFetch(myconn, Crime)
pundat <- sqlQuery(myconn, "select * from Punishment")
close(myconn)

Here, you load the RODBC package and open a connection to the ODBC database

through a registered data source name (mydsn) with a security UID (rob) and pass-

word (aardvark). The connection string is passed to sqlFetch(), which copies the
table Crime into the R data frame crimedat. You then run the SQL select statement

Table 2.3 RODBC functions

Function Description

odbcConnect(dsn,uid="",pwd="") Opens a connection to an ODBC database

sqlFetch(channel,sqltable) Reads a table from an ODBC database into a data frame

sqlQuery(channel,query) Submits a query to an ODBC database and returns the

results

sqlSave(channel,mydf,tablename
= sqltable,append=FALSE)

Writes or updates (append=TRUE) a data frame to a

table in the ODBC database

sqlDrop(channel,sqltable) Removes a table from the ODBC database

close(channel) Closes the connection

www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 2 Creating a dataset

against the table Punishment and save the results to the data frame pundat. Finally,

you close the connection.
 The sqlQuery() function is powerful because any valid SQL statement can be

inserted. This flexibility allows you to select specific variables, subset the data, create

new variables, and recode and rename existing variables.

DBI-RELATED PACKAGES

The DBI package provides a general and consistent client-side interface to a DBMS.

Building on this framework, the RJDBC package provides access to a DBMS via a JDBC

driver. Be sure to install the necessary JDBC drivers for your platform and database.

Other useful DBI-based packages include RMySQL, ROracle, RPostgreSQL, and RSQLite.

These packages provide native database drivers for their respective databases but may

not be available on all platforms. Check the documentation on CRAN (http://cran

.r-project.org) for details.

2.3.12 Importing data via Stat/Transfer

Before we end our discussion of importing data, it’s worth mentioning a commercial

product that can make the task significantly easier. Stat/Transfer (www.stattransfer

.com) is a standalone application that can transfer data among 34 data formats,

including R (see figure 2.4).

 Stat/Transfer is available for Windows, Mac, and Unix platforms. It supports the

latest versions of the statistical packages we’ve discussed so far, as well as ODBC-

accessed DBMSs such as Oracle, Sybase, Informix, and DB/2.

Figure 2.4 Stat/Transfer’s main dialog on Windows

www.it-ebooks.info

http://cran.r-project.org
http://cran.r-project.org
www.stattransfer.com
www.stattransfer.com
http://www.it-ebooks.info/

43Useful functions for working with data objects

2.4 Annotating datasets

Data analysts typically annotate datasets to make the results easier to interpret. Anno-

tating generally includes adding descriptive labels to variable names and value labels to

the codes used for categorical variables. For example, for the variable age, you might

want to attach the more descriptive label “Age at hospitalization (in years).” For the vari-

able gender, coded 1 or 2, you might want to associate the labels “male” and “female.”

2.4.1 Variable labels

Unfortunately, R’s ability to handle variable labels is limited. One approach is to use

the variable label as the variable’s name and then refer to the variable by its position

index. Consider the earlier example, where you have a data frame containing patient

data. The second column, age, contains the ages at which individuals were first hospi-

talized. The code

names(patientdata)[2] <- "Age at hospitalization (in years)"

renames age to "Age at hospitalization (in years)". Clearly this new name is too

long to type repeatedly. Instead, you can refer to this variable as patientdata[2], and

the string "Age at hospitalization (in years)" will print wherever age would

have originally. Obviously, this isn’t an ideal approach, and you may be better off try-

ing to come up with better variable names (for example, admissionAge).

2.4.2 Value labels

The factor() function can be used to create value labels for categorical variables.

Continuing the example, suppose you have a variable named gender, which is coded 1

for male and 2 for female. You can create value labels with the code

patientdata$gender <- factor(patientdata$gender,
 levels = c(1,2),
 labels = c("male", "female"))

Here levels indicates the actual values of the variable, and labels refers to a charac-

ter vector containing the desired labels.

2.5 Useful functions for working with data objects

We’ll end this chapter with a brief summary of useful functions for working with data

objects (see table 2.4).

Table 2.4 Useful functions for working with data objects

Function Purpose

length(object) Gives the number of elements/components.

dim(object) Gives the dimensions of an object.

str(object) Gives the structure of an object.

www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 2 Creating a dataset

We’ve already discussed most of these functions. head() and tail() are useful for

quickly scanning large datasets. For example, head(patientdata) lists the first six

rows of the data frame, whereas tail(patientdata) lists the last six. We’ll cover func-

tions such as length(), cbind(), and rbind() in the next chapter; they’re gathered

here as a reference.

2.6 Summary

One of the most challenging tasks in data analysis is data preparation. We’ve made a

good start in this chapter by outlining the various structures that R provides for hold-

ing data and the many methods available for importing data from both keyboard and

external sources. In particular, we’ll use the definitions of vector, matrix, data frame, and

list again and again in later chapters. Your ability to specify elements of these struc-

tures via the bracket notation will be particularly important in selecting, subsetting,

and transforming data.

 As you’ve seen, R offers a wealth of functions for accessing external data. This

includes data from flat files, web files, statistical packages, spreadsheets, and data-

bases. Although the focus of this chapter has been on importing data into R, you can

also export data from R into these external formats. Exporting data is covered in

appendix C, and methods of working with large datasets (in the gigabyte to terabyte

range) are covered in appendix F.

class(object) Gives the class of an object.

mode(object) Determines how an object is stored.

names(object) Gives the names of components in an object.

c(object, object,...) Combines objects into a vector.

cbind(object, object, ...) Combines objects as columns.

rbind(object, object, ...) Combines objects as rows.

object Prints an object.

head(object) Lists the first part of an object.

tail(object) Lists the last part of an object.

ls() Lists current objects.

rm(object, object, ...) Deletes one or more objects. The statement rm(list =
ls()) removes most objects from the working environment.

newobject <- edit(object) Edits object and saves it as newobject.

fix(object) Edits an object in place.

Table 2.4 Useful functions for working with data objects (continued)

Function Purpose

www.it-ebooks.info

http://www.it-ebooks.info/

45Summary

 Once you import your datasets into R, it’s likely that you’ll have to manipulate

them into a more conducive format (actually, I find guilt works well). In chapter 4,

we’ll explore ways to create new variables, transform and recode existing variables,

merge datasets, and select observations.

 But before turning to data-management tasks, let’s spend some time with R graph-

ics. Many readers have turned to R out of an interest in its graphing capabilities, and I

don’t want to make you wait any longer. In the next chapter, we’ll jump directly into

the creation of graphs. The emphasis will be on general methods for managing and

customizing graphs that can be applied throughout the remainder of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

46

Getting started with graphs

On many occasions, I’ve presented clients with carefully crafted statistical results in

the form of numbers and text, only to have their eyes glaze over while the chirping

of crickets permeated the room. Yet those same clients had enthusiastic “Ah-ha!”

moments when I presented the same information to them in the form of graphs.

Often I can see patterns in data or detect anomalies in data values by looking at

graphs—patterns or anomalies that I completely missed when conducting more

formal statistical analyses.

 Human beings are remarkably adept at discerning relationships from visual rep-

resentations. A well-crafted graph can help you make meaningful comparisons

among thousands of pieces of information, extracting patterns not easily found

through other methods. This is one reason why advances in the field of statistical

This chapter covers

■ Creating and saving graphs

■ Customizing symbols, lines, colors, and axes

■ Annotating with text and titles

■ Controlling a graph’s dimensions

■ Combining multiple graphs into one

www.it-ebooks.info

http://www.it-ebooks.info/

47Working with graphs

graphics have had such a major impact on data analysis. Data analysts need to look at

their data, and this is one area where R shines.

 In this chapter, we’ll review general methods for working with graphs. We’ll start

with how to create and save graphs. Then we’ll look at how to modify the features that

are found in any graph. These features include graph titles, axes, labels, colors, lines,

symbols, and text annotations. Our focus will be on generic techniques that apply

across graphs. (In later chapters, we’ll focus on specific types of graphs.) Finally, we’ll

investigate ways to combine multiple graphs into one overall graph.

3.1 Working with graphs

R is an amazing platform for building graphs. I’m using the term building intention-

ally. In a typical interactive session, you build a graph one statement at a time, adding

features, until you have what you want.

 Consider the following five lines:

attach(mtcars)
plot(wt, mpg)
abline(lm(mpg~wt))
title("Regression of MPG on Weight")
detach(mtcars)

The first statement attaches the data frame mtcars. The second statement opens a

graphics window and generates a scatter plot between automobile weight on the hori-

zontal axis and miles per gallon on the vertical axis. The third statement adds a line of

best fit. The fourth statement adds a title. The final statement detaches the data

frame. In R, graphs are typically created in this interactive fashion (see figure 3.1).

 You can save your graphs via code or through GUI menus. To save a graph via code,

sandwich the statements that produce the graph between a statement that sets a desti-

nation and a statement that closes that destination. For example, the following will

Figure 3.1 Creating a graph

www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 3 Getting started with graphs

save the graph as a PDF document named mygraph.pdf in the current working

directory:

pdf("mygraph.pdf")

 attach(mtcars)
 plot(wt, mpg)
 abline(lm(mpg~wt))
 title("Regression of MPG on Weight")
 detach(mtcars)
dev.off()

In addition to pdf(), you can use the functions win.metafile(), png(), jpeg(),

bmp(), tiff(), xfig(), and postscript() to save graphs in other formats. (Note: The
Windows metafile format is only available on Windows platforms.) See chapter 1, sec-

tion 1.3.4 for more details on sending graphic output to files.

 Saving graphs via the GUI is platform specific. On a Windows platform, select File >
Save As from the graphics window, and choose the format and location desired in the

resulting dialog. On a Mac, choose File > Save As from the menu bar when the Quartz

graphics window is highlighted. The only output format provided is PDF. On a Unix
platform, graphs must be saved via code. In appendix A, we’ll consider alternative

GUIs for each platform that will give you more options.

 Creating a new graph by issuing a high-level plotting command such as plot(),

hist() (for histograms), or boxplot() typically overwrites a previous graph. How can
you create more than one graph and still have access to each? There are several

methods.

 First, you can open a new graph window before creating a new graph:

dev.new()
 statements to create graph 1

dev.new()
 statements to create a graph 2

etc.

Each new graph will appear in the most recently opened window.

 Second, you can access multiple graphs via the GUI. On a Mac platform, you can

step through the graphs at any time using Back and Forward on the Quartz menu. On
a Windows platform, you must use a two-step process. After opening the first graph

window, choose History > Recording. Then use the Previous and Next menu items to

step through the graphs that are created.
 Finally, you can use the functions dev.new(), dev.next(), dev.prev(), dev.set(),

and dev.off() to have multiple graph windows open at one time and choose which

output is sent to which windows. This approach works on any platform. See
help(dev.cur) for details on this approach.

 R creates attractive graphs with a minimum of input on your part. But you can also

use graphical parameters to specify fonts, colors, line styles, axes, reference lines, and

annotations. This flexibility allows for a wide degree of customization.
 In this chapter, we’ll start with a simple graph and explore the ways you can modify

and enhance it to meet your needs. Then we’ll look at more complex examples that

www.it-ebooks.info

http://www.it-ebooks.info/

49A simple example

illustrate additional customization methods. The focus will be on techniques that you

can apply to a wide range of the graphs you’ll create in R. The methods discussed here
will work on all the graphs described in this book, with the exception of those created

with the ggplot2 package in chapter 19. (The ggplot2 package has its own methods

for customizing a graph’s appearance.) In other chapters, we’ll explore each specific
type of graph and discuss where and when each is most useful.

3.2 A simple example

Let’s begin with the simple fictitious dataset given in table 3.1. It describes patient

responses to two drugs at five dosage levels.

You can input this data using the following code:

dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)

A simple line graph relating dose to response for drug A can be created using

plot(dose, drugA, type="b")

plot() is a generic function that plots objects in R (its output varies according to the

type of object being plotted). In this case, plot(x, y, type="b") places x on the hori-

zontal axis and y on the vertical

axis, plots the (x, y) data points, and

connects them with line segments.

The option type="b" indicates that

both points and lines should be

plotted. Use help(plot) to view

other options. The graph is dis-

played in figure 3.2.

Figure 3.2 Line plot of dose vs.

response for drug A

Table 3.1 Patient responses to two drugs at five dosage levels

Dosage Response to Drug A Response to Drug B

20 16 15

30 20 18

40 27 25

45 40 31

60 60 40

20 30 40 50 60

2
0

3
0

4
0

5
0

6
0

dose

d
ru

g
A

www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3 Getting started with graphs

Line plots are covered in detail in chapter 11. Now let’s modify the appearance of this

graph.

3.3 Graphical parameters

You can customize many features of a graph (fonts, colors, axes, and labels) through

options called graphical parameters. One way is to specify these options through the

par() function. Values set in this manner will be in effect for the rest of the session or

until they’re changed. The format is par(optionname=value, optionname=value,

...). Specifying par() without parameters produces a list of the current graphical set-

tings. Adding the no.readonly=TRUE option produces a list of current graphical set-

tings that can be modified.

 Continuing the example, let’s say that you’d like to use a solid triangle rather than

an open circle as your plotting symbol, and connect points using a dashed line rather

than a solid line. You can do so with the following code:

opar <- par(no.readonly=TRUE)
par(lty=2, pch=17)
plot(dose, drugA, type="b")
par(opar)

The resulting graph is shown in

figure 3.3.

 The first statement makes a

copy of the current settings. The

second statement changes the

default line type to dashed

(lty=2) and the default symbol

for plotting points to a solid trian-

gle (pch=17). You then generate

the plot and restore the original

settings. Line types and symbols

are covered in section 3.3.1.

 You can have as many par()

functions as desired, so

par(lty=2, pch=17) could also

be written as

par(lty=2)
par(pch=17)

A second way to specify graphical parameters is by providing the optionname=value

pairs directly to a high-level plotting function. In this case, the options are only in

effect for that specific graph. You could generate the same graph with this code:

plot(dose, drugA, type="b", lty=2, pch=17)

20 30 40 50 60

2
0

3
0

4
0

5
0

6
0

dose

d
ru

g
A

Figure 3.3 Line plot of dose vs. response for drug A with

modified line type and symbol

www.it-ebooks.info

http://www.it-ebooks.info/

51Graphical parameters

Not all high-level plotting functions allow you to specify all possible graphical parame-

ters. See the help for a specific plotting function (such as ?plot, ?hist, or ?boxplot)

to determine which graphical parameters can be set in this way. The remainder of sec-

tion 3.3 describes many of the important graphical parameters that you can set.

3.3.1 Symbols and lines

As you’ve seen, you can use graphical parameters to specify the plotting symbols and

lines used in your graphs. The relevant parameters are shown in table 3.2.

The pch= option specifies the symbols to use when plotting points. Possible values are

shown in figure 3.4. For symbols 21 through 25, you can also specify the border (col=)

and fill (bg=) colors.

 Use lty= to specify the type of line desired. The option values are shown in

figure 3.5.

 Taking these options together, the code

plot(dose, drugA, type="b", lty=3, lwd=3, pch=15, cex=2)

Table 3.2 Parameters for specifying symbols and lines

Parameter Description

pch Specifies the symbol to use when plotting points (see figure 3.4).

cex Specifies the symbol size. cex is a number indicating the amount by which plotting

symbols should be scaled relative to the default. 1 = default, 1.5 is 50% larger, 0.5 is

50% smaller, and so forth.

lty Specifies the line type (see figure 3.5).

lwd Specifies the line width. lwd is expressed relative to the default (1 = default). For

example, lwd=2 generates a line twice as wide as the default.

line types: lty=

1

2

3

4

5

6

Figure 3.5 Line types specified with

the lty parameter

plot symbols: pch=

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 3.4 Plotting symbols

specified with the pch parameter

www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 3 Getting started with graphs

would produce a plot with a dot-

ted line that was three times wider

than the default width, connect-

ing points displayed as filled

squares that are twice as large as

the default symbol size. The

results are shown in figure 3.6.

 Next, let’s look at specifying

colors.

Figure 3.6 Line plot of dose vs. response

for drug A with modified line type,

line width, symbol, and symbol width

3.3.2 Colors

There are several color-related parameters in R. Table 3.3 shows some of the common

ones.

You can specify colors in R by index, name, hexadecimal, RGB, or HSV. For example,

col=1, col="white", col="#FFFFFF", col=rgb(1,1,1), and col=hsv(0,0,1) are

equivalent ways of specifying the color white. The function rgb()creates colors based

on red-green-blue values, whereas hsv() creates colors based on hue-saturation val-

ues. See the help feature on these functions for more details.

 The function colors() returns all available color names. Earl F. Glynn has created

an excellent online chart of R colors, available at http://mng.bz/9C5p. R also has a
number of functions that can be used to create vectors of contiguous colors. These

Table 3.3 Parameters for specifying colors

Parameter Description

col Default plotting color. Some functions (such as lines and pie) accept a vector of

values that are recycled. For example, if col=c("red", "blue") and three

lines are plotted, the first line will be red, the second blue, and the third red.

col.axis Color for axis text.

col.lab Color for axis labels.

col.main Color for titles.

col.sub Color for subtitles.

fg Color for the plot’s foreground.

bg Color for the plot’s background.

20 30 40 50 60

2
0

3
0

4
0

5
0

6
0

dose

d
ru

g
A

www.it-ebooks.info

http://mng.bz/9C5p
http://www.it-ebooks.info/

53Graphical parameters

include rainbow(), heat.colors(), terrain.colors(), topo.colors(), and

cm.colors(). For example, rainbow(10) produces 10 contiguous “rainbow” colors.
 The RColorBrewer package is particularly popular for creating attractive color pal-

ettes. Be sure to download it (install.packages("RColorBrewer")) before first use.

Once it’s installed, use the brewer.pal(n, name) function to generate a vector of col-
ors. For example, the code

library(RColorBrewer)
n <- 7
mycolors <- brewer.pal(n, "Set1")
barplot(rep(1,n), col=mycolors)

returns a vector of seven colors in hexadecimal format from the Set1 palette. To get a

list of the available palettes, type brewer.pal.info; or type display.brewer.all() to

produces a plot of each palette in a single display. See help(RColorBrewer) for more
details.

 Finally, gray levels are generated with the gray() function in the base installation.

In this case, you specify gray levels as a vector of numbers between 0 and 1.
gray(0:10/10) produces 10 gray levels. Try the following code to see how this works:

n <- 10
mycolors <- rainbow(n)
pie(rep(1, n), labels=mycolors, col=mycolors)
mygrays <- gray(0:n/n)
pie(rep(1, n), labels=mygrays, col=mygrays)

As you can see, R provides numerous methods for generating color vectors. You’ll see

examples that use color parameters throughout this chapter.

3.3.3 Text characteristics

Graphic parameters are also used to specify text size, font, and style. Parameters con-

trolling text size are explained in table 3.4. Font family and style can be controlled
with font options (see table 3.5).

For example, all graphs created after the statement

par(font.lab=3, cex.lab=1.5, font.main=4, cex.main=2)

Table 3.4 Parameters specifying text size

Parameter Description

cex Number indicating the amount by which plotted text should be scaled relative to

the default. 1 = default, 1.5 is 50% larger, 0.5 is 50% smaller, and so on.

cex.axis Magnification of axis text relative to cex.

cex.lab Magnification of axis labels relative to cex.

cex.main Magnification of titles relative to cex.

cex.sub Magnification of subtitles relative to cex.

www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 3 Getting started with graphs

will have italic axis labels that are 1.5 times the default text size and bold italic titles

that are twice the default text size.

Whereas font size and style are easily set, font family is a bit more complicated. This is

because the mappings of serif, sans, and mono are device dependent. For example,

on Windows platforms, mono is mapped to TT Courier New, serif is mapped to TT

Times New Roman, and sans is mapped to TT Arial (TT stands for TrueType). If you’re

satisfied with this mapping, you can use parameters like family="serif" to get the

results you want. If not, you need to create a new mapping. On Windows, you can cre-

ate this mapping via the windowsFont() function. For example, after issuing this state-

ment, you can use A, B, and C as family values:

windowsFonts(
 A=windowsFont("Arial Black"),
 B=windowsFont("Bookman Old Style"),
 C=windowsFont("Comic Sans MS")
)

In this case, par(family="A") specifies an Arial Black font. (Listing 3.2 in section

3.4.2 provides an example of modifying text parameters.) Note that the windows-

Font() function only works for Windows. On a Mac, use quartzFonts() instead.

 If graphs will be output in PDF or PostScript format, changing the font family is rel-

atively straightforward. For PDFs, use names(pdfFonts())to find out which fonts are

available on your system and pdf(file="myplot.pdf", family="fontname") to gen-

erate the plots. For graphs that are output in PostScript format, use names(post-

scriptFonts()) and postscript(file="myplot.ps", family="fontname"). See the

online help for more information.

3.3.4 Graph and margin dimensions

Finally, you can control the plot dimensions and margin sizes using the parameters

listed in table 3.6.

Table 3.5 Parameters specifying font family, size, and style

Parameter Description

font Integer specifying the font to use for plotted text. 1 = plain, 2 = bold, 3 = italic,

4 = bold italic, and 5=symbol (in Adobe symbol encoding).

font.axis Font for axis text.

font.lab Font for axis labels.

font.main Font for titles.

font.sub Font for subtitles.

ps Font point size (roughly 1/72 inch). The text size = ps*cex.

family Font family for drawing text. Standard values are serif, sans, and mono.

www.it-ebooks.info

http://www.it-ebooks.info/

55Graphical parameters

The code

par(pin=c(4,3), mai=c(1,.5, 1, .2))

produces graphs that are 4 inches wide by 3 inches tall, with a 1-inch margin on the

bottom and top, a 0.5-inch margin on the left, and a 0.2-inch margin on the right. For

more on margins, see Earl F. Glynn’s comprehensive online tutorial (http://mng.bz/

6aMp).

 Let’s use the options we’ve covered so far to enhance the simple example. The

code in the following listing produces the graphs in figure 3.7.

dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)

opar <- par(no.readonly=TRUE)
par(pin=c(2, 3))
par(lwd=2, cex=1.5)
par(cex.axis=.75, font.axis=3)
plot(dose, drugA, type="b", pch=19, lty=2, col="red")
plot(dose, drugB, type="b", pch=23, lty=6, col="blue", bg="green")
par(opar)

First you enter your data as vectors, and then you save the current graphical parame-

ter settings (so that you can restore them later). You modify the default graphical

parameters so that graphs will be 2 inches wide by 3 inches tall. Additionally, lines will

be twice the default width and symbols will be 1.5 times the default size. Axis text will

be set to italic and scaled to 75% of the default. The first plot is then created using

filled red circles and dashed lines. The second plot is created using filled green dia-

monds and a blue border and blue dashed lines. Finally, you restore the original

graphical parameter settings. Note that parameters set with the par() function apply

to both graphs, whereas parameters specified in the plot() functions only apply to

that specific graph.

 Looking at figure 3.7, you can see some limitations in the presentation. The graphs

lack titles, and the vertical axes aren’t on the same scale, limiting your ability to com-

pare the two drugs directly. The axis labels could also be more informative.

Table 3.6 Parameters for graph and margin dimensions

Parameter Description

pin Plot dimensions (width, height) in inches.

mai Numerical vector indicating margin size, where c(bottom, left, top,
right) is expressed in inches.

mar Numerical vector indicating margin size, where c(bottom, left, top,
right) is expressed in lines. The default is c(5, 4, 4, 2) + 0.1.

Listing 3.1 Using graphical parameters to control graph appearance

www.it-ebooks.info

http://mng.bz/6aMp
http://mng.bz/6aMp
http://www.it-ebooks.info/

56 CHAPTER 3 Getting started with graphs

In the next section, we’ll turn to the customization of text annotations (such as titles

and labels) and axes. For more information on the graphical parameters that are

available, take a look at help(par).

3.4 Adding text, customized axes, and legends

Many high-level plotting functions (for example, plot, hist, and boxplot) allow you

to include axis and text options, as well as graphical parameters. For example, the
following adds a title (main), a subtitle (sub), axis labels (xlab, ylab), and axis ranges

(xlim, ylim). The results are presented in figure 3.8:

plot(dose, drugA, type="b",
 col="red", lty=2, pch=2, lwd=2,
 main="Clinical Trials for Drug A",
 sub="This is hypothetical data",
 xlab="Dosage", ylab="Drug Response",
 xlim=c(0, 60), ylim=c(0, 70))

Again, not all functions allow you to add these options. See the help for the function

of interest to see what options are accepted. For finer control and for modularization,

you can use the functions described in the remainder of this section to control titles,

axes, legends, and text annotations.

NOTE Some high-level plotting functions include default titles and labels.
You can remove them by adding ann=FALSE in the plot() statement or in a
separate par() statement.

3.4.1 Titles

Use the title() function to add a title and axis labels to a plot. The format is

title(main="main title", sub="subtitle",
 xlab="x-axis label", ylab="y-axis label")

20 30 40 50 60

2
0

3
0

4
0

5
0

6
0

dose

d
ru

g
A

20 30 40 50 60

1
5

2
0

2
5

3
0

3
5

4
0

dose

d
ru

g
B

Figure 3.7 Line plot of dose vs. response for both drug A and drug B

www.it-ebooks.info

http://www.it-ebooks.info/

57Adding text, customized axes, and legends

Graphical parameters (such as text size, font, rotation, and color) can also be speci-

fied in title(). For example, the following code produces a red title and a blue subti-

tle, and creates green x and y labels that are 25% smaller than the default text size:

title(main="My Title", col.main="red",

 sub="My Subtitle", col.sub="blue",

 xlab="My X label", ylab="My Y label",

 col.lab="green", cex.lab=0.75)

The title() function is typically used to add information to a plot in which the

default title and axis labels have been suppressed via the ann=FALSE option.

3.4.2 Axes

Rather than use R’s default axes, you can create custom axes with the axis() function.

The format is

axis(side, at=, labels=, pos=, lty=, col=, las=, tck=, ...)

where each parameter is described in table 3.7.

Table 3.7 Axis options

Option Description

side Integer indicating the side of the graph on which to draw the axis (1 = bottom, 2 =

left, 3 = top, and 4 = right).

at Numeric vector indicating where tick marks should be drawn.

0 10 20 30 40 50 60

0
1

0
2

0
3
0

4
0

5
0

6
0

7
0

Clinical Trials for Drug A

This is hypothetical data
Dosage

D
ru

g
 R

e
s
p

o
n

s
e

Figure 3.8 Line plot of dose vs.

response for drug A with title, subtitle,

and modified axes

www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 3 Getting started with graphs

When creating a custom axis, you should suppress the axis that’s automatically gener-

ated by the high-level plotting function. The option axes=FALSE suppresses all axes

(including all axis frame lines, unless you add the option frame.plot=TRUE). The

options xaxt="n" and yaxt="n" suppress the x-axis and y-axis, respectively (leaving

the frame lines, without ticks). Listing 3.2 is a somewhat silly and overblown example

that demonstrates each of the features we’ve discussed so far. The resulting graph is

presented in figure 3.9.

labels Character vector of labels to be placed at the tick marks (if NULL, the at values

are used).

pos Coordinate at which the axis line is to be drawn (that is, the value on the other axis

where it crosses).

lty Line type.

col Line and tick mark color.

las Specifies that labels are parallel (= 0) or perpendicular (= 2) to the axis.

tck Length of each tick mark as a fraction of the plotting region (a negative number is

outside the graph, a positive number is inside, 0 suppresses ticks, and 1 creates

gridlines). The default is –0.01.

(...) Other graphical parameters.

Table 3.7 Axis options (continued)

Option Description

y=1/x

An Example of Creative Axes

X values

Y
=

X

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

1
1.11
1.25
1.43
1.67

2

2.5

3.33

5

10

Figure 3.9 A demonstration

of axis options

www.it-ebooks.info

http://www.it-ebooks.info/

59Adding text, customized axes, and legends

x <- c(1:10)
y <- x
z <- 10/x
opar <- par(no.readonly=TRUE)

par(mar=c(5, 4, 4, 8) + 0.1)
plot(x, y, type="b",
 pch=21, col="red",
 yaxt="n", lty=3, ann=FALSE)
lines(x, z, type="b", pch=22, col="blue", lty=2)

axis(2, at=x, labels=x, col.axis="red", las=2)

axis(4, at=z, labels=round(z, digits=2),
 col.axis="blue", las=2, cex.axis=0.7, tck=-.01)

mtext("y=1/x", side=4, line=3, cex.lab=1, las=2, col="blue")

title("An Example of Creative Axes",
 xlab="X values",
 ylab="Y=X")

par(opar)

At this point, we’ve covered everything in listing 3.2 except the line() and mtext()

statements. A plot() statement starts a new graph. By using line() instead, you can

add new graph elements to an existing graph. You’ll use it again when you plot the

response of drug A and drug B on the same graph in section 3.4.4. The mtext() func-

tion is used to add text to the margins of the plot. mtext() is covered in section 3.4.5,

and line() is covered more fully in chapter 11.

Listing 3.2 An example of custom axes

Minor tick marks

Notice that each of the graphs you’ve created so far has major tick marks but not
minor tick marks. To create minor tick marks, you need the minor.tick() function
in the Hmisc package. If you don’t already have Hmisc installed, be sure to install it
first (see chapter 1, section 1.4.2). You can add minor tick marks with the code

library(Hmisc)
minor.tick(nx=n, ny=n, tick.ratio=n)

where nx and ny specify the number of intervals into which to divide the area between
major tick marks on the x-axis and y-axis, respectively. tick.ratio is the size of the
minor tick mark relative to the major tick mark. The current length of the major tick
mark can be retrieved using par("tck"). For example, the following statement adds
one tick mark between each major tick mark on the x-axis and two tick marks between
each major tick mark on the y-axis:

minor.tick(nx=2, ny=3, tick.ratio=0.5)

These tick marks will be 50% as long as the major tick marks. An example of minor
tick marks is given in section 3.4.4 (listing 3.3 and figure 3.10).

Specifies data

Increases margins

Plots x vs. y, suppressing annotations

Adds an x versus 1/x line

Draws the axes

Adds titles and text

www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 3 Getting started with graphs

3.4.3 Reference lines

The abline() function is used to add reference lines to a graph. The format is

abline(h=yvalues, v=xvalues)

Other graphical parameters (such as line type, color, and width) can also be specified

in the abline() function. For example

abline(h=c(1,5,7))

adds solid horizontal lines at y = 1, 5, and 7, whereas the code

abline(v=seq(1, 10, 2), lty=2, col="blue")

adds dashed blue vertical lines at x = 1, 3, 5, 7, and 9. Listing 3.3, in the next section,

creates a reference line for the drug example at y = 30. The resulting graph is dis-

played in figure 3.10 (also in the next section).

3.4.4 Legend

When more than one set of data or group is incorporated into a graph, a legend can

help you to identify what’s being represented by each bar, pie slice, or line. A legend

can be added (not surprisingly) with the legend() function. The format is

legend(location, title, legend, ...)

The common options are described in table 3.8.

Other common legend options include bty for box type, bg for background color, cex

for size, and text.col for text color. Specifying horiz=TRUE sets the legend horizon-

tally rather than vertically. For more on legends, see help(legend). The examples in

the help file are particularly informative.

Table 3.8 Legend options

Option Description

location There are several ways to indicate the location of the legend. You can give an x,y coor-

dinate for its upper-left corner. You can use locator(1), in which case you use the

mouse to indicate the legend’s location. You can also use the keyword bottom,

bottomleft, left, topleft, top, topright, right, bottomright, or

center to place the legend in the graph. If you use one of these keywords, you can

also use inset= to specify an amount to move the legend into the graph (as a frac-

tion of the plot region).

title Character string for the legend title (optional).

legend Character vector with the labels.

... Other options. If the legend labels colored lines, specify col= and a vector of colors.

If the legend labels point symbols, specify pch= and a vector of point symbols. If the

legend labels line width or line style, use lwd= or lty= and a vector of widths or

styles. To create colored boxes for the legend (common in bar, box, and pie charts),

use fill= and a vector of colors.

www.it-ebooks.info

http://www.it-ebooks.info/

61Adding text, customized axes, and legends

 Let’s take a look at an example using the drug data (listing 3.3). Again, you’ll use a

number of the features that we’ve covered up to this point. The resulting graph is pre-

sented in figure 3.10.

dose <- c(20, 30, 40, 45, 60)

drugA <- c(16, 20, 27, 40, 60)

drugB <- c(15, 18, 25, 31, 40)

opar <- par(no.readonly=TRUE)

par(lwd=2, cex=1.5, font.lab=2)

plot(dose, drugA, type="b",

 pch=15, lty=1, col="red", ylim=c(0, 60),

 main="Drug A vs. Drug B",

 xlab="Drug Dosage", ylab="Drug Response")

lines(dose, drugB, type="b",

 pch=17, lty=2, col="blue")

abline(h=c(30), lwd=1.5, lty=2, col="gray")

library(Hmisc)

minor.tick(nx=3, ny=3, tick.ratio=0.5)

legend("topleft", inset=.05, title="Drug Type", c("A","B")

 lty=c(1, 2), pch=c(15, 17), col=c("red", "blue"))

par(opar)

Almost all aspects of the graph in fig-

ure 3.10 can be modified using the

options discussed in this chapter. Addi-

tionally, there are many ways to specify

the options desired. The final annota-

tion to consider is the addition of text

to the plot itself. This topic is covered

in the next section.

3.4.5 Text annotations

Text can be added to graphs using the

text() and mtext() functions. text()

places text within the graph, whereas

mtext() places text in one of the four

margins. The formats are

Listing 3.3 Comparing drug A and drug B response by dose

Increases line, text, symbol, and label size

Generates the graph

Adds minor tick marks

Adds a legend

20 30 40 50 60

0
1

0
2

0
3

0
4

0
5

0
6

0

Drug A vs. Drug B

Drug Dosage

Drug Type

A
B

D
ru

g
 R

e
s
p

o
n

s
e

Figure 3.10 An annotated comparison of drug A

and drug B

www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 3 Getting started with graphs

text(location, "text to place", pos, ...)
mtext("text to place", side, line=n, ...)

and the common options are described in table 3.9. Other common options are cex,

col, and font (for size, color, and font style, respectively).

The text() function is typically used for labeling points as well as for adding other

text annotations. Specify location as a set of x,y coordinates, and specify the text to

place as a vector of labels. The x, y, and label vectors should all be the same length. An

example is given next, and the resulting graph is shown in figure 3.11:

Table 3.9 Options for the text() and mtext() functions

Option Description

location Location can be an x,y coordinate. Alternatively, you can place the text interactively

via mouse by specifying location as locator(1).

pos Position relative to location. 1 = below, 2 = left, 3 = above, and 4 = right. If you

specify pos, you can specify offset= as a percentage of character width.

side Which margin to place text in, where 1 = bottom, 2 = left, 3 = top, and 4 = right.

You can specify line= to indicate the line in the margin, starting with 0 (closest to

the plot area) and moving out. You can also specify adj=0 for left/bottom align-

ment or adj=1 for top/right alignment.

2 3 4 5

1
0

1
5

2
0

2
5

3
0

Mileage vs. Car Weight

Weight

M
ile

a
g

e

Mazda RX4Mazda RX4 Wag

Datsun 710

Hornet 4 Drive

Hornet Sportabout

Valiant

Duster 360

Merc 240D

Merc 230

Merc 280

Merc 280C

Merc 450SE

Merc 450SL

Merc 450SLC

Cadillac Lin

Chrys

Fiat 128

Honda Civic

Toyota Corolla

Toyota Corona

Dodge Challenger
AMC Javelin

Camaro Z28

Pontiac Firebird

Fiat X1−9

Porsche 914−2

Lotus Europa

Ford Pantera L

Ferrari Dino

Maserati Bora

Volvo 142E

Figure 3.11 Example

of a scatter plot (car

weight vs. mileage)

with labeled points (car

make and model)

www.it-ebooks.info

http://www.it-ebooks.info/

63Adding text, customized axes, and legends

attach(mtcars)
plot(wt, mpg,
 main="Mileage vs. Car Weight",
 xlab="Weight", ylab="Mileage",
 pch=18, col="blue")
text(wt, mpg,
 row.names(mtcars),
 cex=0.6, pos=4, col="red")
detach(mtcars)

This example plots car mileage versus car weight for the 32 automobile makes pro-

vided in the mtcars data frame. The text() function is used to add the car make to

the right of each data point. The point labels are shrunk by 40% and presented in red.

 As a second example, the following code can be used to display font families:

opar <- par(no.readonly=TRUE)
par(cex=1.5)
plot(1:7,1:7,type="n")
text(3,3,"Example of default text")
text(4,4,family="mono","Example of mono-spaced text")
text(5,5,family="serif","Example of serif text")
par(opar)

The results, produced on a Windows platform, are shown in figure 3.12. Here the

par() function was used to increase the font size to produce a better display.

 The resulting plot will differ from platform to platform, because plain, mono, and

serif text are mapped to different font families on different systems. What does it look

like on yours?

3.4.6 Math annotations

Finally, you can add mathematical symbols and formulas to a graph using TeX-like

rules. See help(plotmath) for details and examples. You can also try demo(plotmath)

1 2 3 4 5 6 7

1
2

3
4

5
6

7

1:7

1
:7

Example of default text

Figure 3.12 Examples of font

families on a Windows platform

www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 3 Getting started with graphs

to see this in action. A portion of the results is presented in figure 3.13. The

plotmath() function can be used to add mathematical symbols to titles, axis labels, or

text annotations in the body or margins of a graph.

 You can often gain greater insight into your data by comparing several graphs at

one time. So, we’ll end this chapter by looking at ways to combine more than one

graph into a single image.

3.5 Combining graphs

R makes it easy to combine several graphs into one overall graph, using either the par()

or layout() function. At this point, don’t worry about the specific types of graphs being

combined; our focus here is on the general methods used to combine them. The cre-

ation and interpretation of each graph type are covered in later chapters.

 With the par() function, you can include the graphical parameter

mfrow=c(nrows, ncols) to create a matrix of nrows × ncols plots that are filled in by

row. Alternatively, you can use mfcol=c(nrows, ncols) to fill the matrix by columns.

 For example, the following code creates four plots and arranges them into two

rows and two columns:

Figure 3.13 Partial results

from demo(plotmath)

www.it-ebooks.info

http://www.it-ebooks.info/

65Combining graphs

attach(mtcars)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
plot(wt,mpg, main="Scatterplot of wt vs. mpg")
plot(wt,disp, main="Scatterplot of wt vs. disp")
hist(wt, main="Histogram of wt")
boxplot(wt, main="Boxplot of wt")
par(opar)
detach(mtcars)

The results are presented in figure 3.14.

 As a second example, let’s arrange three plots in three rows and one column.

Here’s the code:

attach(mtcars)
opar <- par(no.readonly=TRUE)
par(mfrow=c(3,1))
hist(wt)
hist(mpg)
hist(disp)
par(opar)
detach(mtcars)

2 3 4 5

1
0

1
5

2
0

2
5

3
0

Scatterplot of wt vs. mpg

wt

m
p

g

2 3 4 5

1
0

0
2

0
0

3
0

0
4

0
0

Scatterplot of wt vs. disp

wt

d
is

p

Histogram of wt

wt

F
re

q
u

e
n

c
y

2 3 4 5

0
2

4
6

8

2
3

4
5

Boxplot of wt

Figure 3.14 Graph combining four figures through par(mfrow=c(2,2))

www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 3 Getting started with graphs

The graph is displayed in figure 3.15. Note that the high-level function hist()

includes a default title (use main="" to suppress it, or ann=FALSE to suppress all titles

and labels).

 The layout() function has the form layout(mat), where mat is a matrix object

specifying the location of the multiple plots to combine. In the following code, one

figure is placed in row 1 and two figures are placed in row 2:

attach(mtcars)
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE))
hist(wt)
hist(mpg)
hist(disp)
detach(mtcars)

The resulting graph is presented in figure 3.16.

Histogram of wt

wt

F
re

q
u

e
n

c
y

2 3 4 5

0
2

4
6

8

Histogram of mpg

mpg

F
re

q
u

e
n

c
y

10 15 20 25 30 35

0
2

4
6

8
1

2

Histogram of disp

disp

F
re

q
u

e
n

c
y

100 200 300 400 500

0
2

4
6

Figure 3.15 Graph combining three figures through par(mfrow=c(3,1))

www.it-ebooks.info

http://www.it-ebooks.info/

67Combining graphs

Optionally, you can include widths= and heights= options in the layout() function

to control the size of each figure more precisely. These options have the following form:

■ widths—A vector of values for the widths of columns
■ heights—A vector of values for the heights of rows

Relative widths are specified with numeric values. Absolute widths (in centimeters)

are specified with the lcm() function.

 In the following code, one figure is again placed in row 1 and two figures are

placed in row 2. But the figure in row 1 is one-third the height of the figures in row 2.

Additionally, the figure in the bottom-right cell is one-fourth the width of the figure in

the bottom-left cell:

attach(mtcars)
layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE),
 widths=c(3, 1), heights=c(1, 2))
hist(wt)
hist(mpg)
hist(disp)
detach(mtcars)

Histogram of wt

wt

F
re

q
u

e
n

c
y

2 3 4 5

0
2

4
6

8

Histogram of mpg

mpg

F
re

q
u

e
n

c
y

10 15 20 25 30 35

0
2

4
6

8
1
0

1
2

Histogram of disp

disp

F
re

q
u
e
n
c
y

100 200 300 400 500

0
1

2
3

4
5

6
7

Figure 3.16 Graph combining three figures using the layout() function with default widths

www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 3 Getting started with graphs

The graph is presented in figure 3.17.

 As you can see, layout() gives you easy control over both the number and place-

ment of graphs in a final image and the relative sizes of these graphs. See

help(layout) for more details.

3.5.1 Creating a figure arrangement with fine control

There are times when you want to arrange or superimpose several figures to create a

single meaningful plot. Doing so requires fine control over the placement of the fig-

ures. You can accomplish this with the fig= graphical parameter. In the following list-

ing, two box plots are added to a scatter plot to create a single enhanced graph. The

resulting graph is shown in figure 3.18.

opar <- par(no.readonly=TRUE)
par(fig=c(0, 0.8, 0, 0.8))
plot(mtcars$wt, mtcars$mpg,
 xlab="Miles Per Gallon",
 ylab="Car Weight")

Listing 3.4 Fine placement of figures in a graph

Histogram of wt

wt

F
re

q
u

e
n

c
y

2 3 4 5
0

4
8

Histogram of mpg

mpg

F
re

q
u

e
n

c
y

10 15 20 25 30 35

0
2

4
6

8
1

0
1

2

Histogram of disp

disp
F

re
q

u
e

n
c
y

100 400

0
1

2
3

4
5

6
7

Figure 3.17 Graph combining three figures using the layout() function with specified widths

Sets up the scatter plot

www.it-ebooks.info

http://www.it-ebooks.info/

69Combining graphs

par(fig=c(0, 0.8, 0.55, 1), new=TRUE)
boxplot(mtcars$wt, horizontal=TRUE, axes=FALSE)

par(fig=c(0.65, 1, 0, 0.8), new=TRUE)
boxplot(mtcars$mpg, axes=FALSE)

mtext("Enhanced Scatterplot", side=3, outer=TRUE, line=-3)

par(opar)

To understand how this graph is cre-

ated, think of the full graph area as

going from (0,0) in the lower-left cor-

ner to (1,1) in the upper-right corner.

Figure 3.19 will help you visualize this.

The format of the fig= parameter is a

numerical vector of the form c(x1,

x2, y1, y2).

 The first fig= sets up the scatter

plot going from 0 to 0.8 on the x-axis

and 0 to 0.8 on the y-axis. The top box

Adds a box plot above

Adds a box plot to the right

2 3 4 5

1
0

1
5

2
0

2
5

3
0

Miles Per Gallon

C
a

r
W

e
ig

h
t

Enhanced Scatterplot

Figure 3.18

A scatter plot

with two box

plots added to

the margins

(0,0)

(1,1)

x1 x2
y1

y2

Figure 3.19 Specifying locations using

the fig= graphical parameter

www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 3 Getting started with graphs

plot goes from 0 to 0.8 on the x-axis and 0.55 to 1 on the y-axis. The box plot on the

right goes from 0.65 to 1 on the x-axis and 0 to 0.8 on the y-axis. fig= starts a new plot,

so when you add a figure to an existing graph, include the new=TRUE option.

 I chose 0.55 rather than 0.8 so that the top figure would be pulled closer to the

scatter plot. Similarly, I chose 0.65 to pull the box plot on the right closer to the scat-

ter plot. You have to experiment to get the placement correct.

NOTE The amount of space needed for individual subplots can be device
dependent. If you get “Error in plot.new(): figure margins too large,” try vary-
ing the area given for each portion of the overall graph.

You can use the fig= graphical parameter to combine several plots into any arrange-

ment within a single graph. With a little practice, this approach gives you a great deal

of flexibility when creating complex visual presentations.

3.6 Summary

In this chapter, we reviewed methods for creating graphs and saving them in a variety

of formats. The majority of the chapter was concerned with modifying the default

graphs produced by R, in order to arrive at more useful or attractive plots. You

learned how to modify a graph’s axes, fonts, symbols, lines, and colors, as well as how

to add titles, subtitles, labels, plotted text, legends, and reference lines. You saw how to

specify the size of the graph and margins, and how to combine multiple graphs into a

single useful image.

 Our focus in this chapter was on general techniques that you can apply to all

graphs (with the exception of ggplot2 graphs, discussed in chapter 19). Later chap-

ters look at specific types of graphs. For example, chapter 6 covers methods for graph-

ing a single variable. Graphing relationships between variables will be described in

chapter 11. In chapter 19, we discuss advanced graphic methods, including innovative

methods for displaying multivariate data.

 In other chapters, we’ll discuss methods of visualizing data that are particularly

useful for the statistical approaches under consideration. Graphs are a central part of

modern data analysis, and I’ll endeavor to incorporate them into each of the statistical

approaches we discuss.

 In the previous chapter, we discussed a range of methods for inputting or import-

ing data into R. Unfortunately, in the real world, your data is rarely usable in the for-

mat in which you first get it. The next chapter looks at ways to transform and massage

your data into a state that’s more useful and conducive to analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

71

Basic data management

In chapter 2, we covered a variety of methods for importing data into R. Unfortu-

nately, getting your data in the rectangular arrangement of a matrix or data frame

is only the first step in preparing it for analysis. To paraphrase Captain Kirk in the

Star Trek episode “A Taste of Armageddon” (and proving my geekiness once and for

all), “Data is a messy business—a very, very messy business.” In my own work, as

much as 60% of the time I spend on data analysis is focused on preparing the data

for analysis. I’ll go out a limb and say that the same is probably true in one form or

another for most real-world data analysts. Let’s take a look at an example.

4.1 A working example

One of the topics that I study in my current job is how men and women differ in

the ways they lead their organizations. Typical questions might be

This chapter covers

■ Manipulating dates and missing values

■ Understanding data type conversions

■ Creating and recoding variables

■ Sorting, merging, and subsetting datasets

■ Selecting and dropping variables

www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 4 Basic data management

■ Do men and women in management positions differ in the degree to which

they defer to superiors?
■ Does this vary from country to country, or are these gender differences universal?

One way to address these questions is to have bosses in multiple countries rate their

managers on deferential behavior, using questions like the following:

The resulting data might resemble that in table 4.1. Each row represents the ratings

given to a manager by his or her boss.

Here, each manager is rated by their boss on five statements (q1 to q5) related to def-

erence to authority. For example, manager 1 is a 32-year-old male working in the US

and is rated deferential by his boss, whereas manager 5 is a female of unknown age

(99 probably indicates that the information is missing) working in the UK and is rated

low on deferential behavior. The Date column captures when the ratings were made.

 Although a dataset might have dozens of variables and thousands of observations,

we’ve included only 10 columns and 5 rows to simplify the examples. Additionally,

we’ve limited the number of items pertaining to the managers’ deferential behavior to

five. In a real-world study, you’d probably use 10–20 such items to improve the reliabil-

ity and validity of the results. You can create a data frame containing the data in table

4.1 using the following code.

manager <- c(1, 2, 3, 4, 5)
date <- c("10/24/08", "10/28/08", "10/1/08", "10/12/08", "5/1/09")
country <- c("US", "US", "UK", "UK", "UK")
gender <- c("M", "F", "F", "M", "F")

This manager asks my opinion before making personnel decisions.

1 2 3 4 5

strongly disagree disagree neither agree

nor disagree

agree strongly agree

Table 4.1 Gender differences in leadership behavior

Manager Date Country Gender Age q1 q2 q3 q4 q5

1 10/24/14 US M 32 5 4 5 5 5

2 10/28/14 US F 45 3 5 2 5 5

3 10/01/14 UK F 25 3 5 5 5 2

4 10/12/14 UK M 39 3 3 4

5 05/01/14 UK F 99 2 2 1 2 1

Listing 4.1 Creating the leadership data frame

www.it-ebooks.info

http://www.it-ebooks.info/

73Creating new variables

age <- c(32, 45, 25, 39, 99)
q1 <- c(5, 3, 3, 3, 2)
q2 <- c(4, 5, 5, 3, 2)
q3 <- c(5, 2, 5, 4, 1)
q4 <- c(5, 5, 5, NA, 2)
q5 <- c(5, 5, 2, NA, 1)
leadership <- data.frame(manager, date, country, gender, age,
 q1, q2, q3, q4, q5, stringsAsFactors=FALSE)

In order to address the questions of interest, you must first deal with several data-
management issues. Here’s a partial list:

■ The five ratings (q1 to q5) need to be combined, yielding a single mean defer-

ential score from each manager.
■ In surveys, respondents often skip questions. For example, the boss rating man-

ager 4 skipped questions 4 and 5. You need a method of handling incomplete
data. You also need to recode values like 99 for age to missing.

■ There may be hundreds of variables in a dataset, but you may only be interested

in a few. To simplify matters, you’ll want to create a new dataset with only the

variables of interest.
■ Past research suggests that leadership behavior may change as a function of the

manager’s age. To examine this, you may want to recode the current values of age

into a new categorical age grouping (for example, young, middle-aged, elder).
■ Leadership behavior may change over time. You might want to focus on defer-

ential behavior during the recent global financial crisis. To do so, you may want

to limit the study to data gathered during a specific period of time (say, January
1, 2009 to December 31, 2009).

We’ll work through each of these issues in this chapter, as well as other basic data-
management tasks such as combining and sorting datasets. Then, in chapter 5, we’ll

look at some advanced topics.

4.2 Creating new variables

In a typical research project, you’ll need to create new variables and transform exist-

ing ones. This is accomplished with statements of the form

variable <- expression

A wide array of operators and functions can be included in the expression portion of

the statement. Table 4.2 lists R’s arithmetic operators. Arithmetic operators are used

when developing formulas.

Table 4.2 Arithmetic operators

Operator Description

+ Addition.

- Subtraction.

www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 4 Basic data management

Let’s say you have a data frame named mydata, with variables x1 and x2, and you want

to create a new variable sumx that adds these two variables and a new variable called

meanx that averages the two variables. If you use the code

sumx <- x1 + x2
meanx <- (x1 + x2)/2

you’ll get an error, because R doesn’t know that x1 and x2 are from the data frame

mydata. If you use this code instead

sumx <- mydata$x1 + mydata$x2
meanx <- (mydata$x1 + mydata$x2)/2

the statements will succeed but you’ll end up with a data frame (mydata) and two sep-

arate vectors (sumx and meanx). This probably isn’t the result you want. Ultimately, you

want to incorporate new variables into the original data frame. The following listing

provides three separate ways to accomplish this goal. The one you choose is up to you;

the results will be the same.

mydata<-data.frame(x1 = c(2, 2, 6, 4),
 x2 = c(3, 4, 2, 8))

mydata$sumx <- mydata$x1 + mydata$x2
mydata$meanx <- (mydata$x1 + mydata$x2)/2

attach(mydata)
mydata$sumx <- x1 + x2
mydata$meanx <- (x1 + x2)/2
detach(mydata)

mydata <- transform(mydata,
 sumx = x1 + x2,
 meanx = (x1 + x2)/2)

Personally, I prefer the third method, exemplified by the use of the transform() func-

tion. It simplifies inclusion of as many new variables as desired and saves the results to

the data frame.

* Multiplication.

/ Division.

^ or ** Exponentiation.

x%%y Modulus (x mod y): for example, 5%%2 is 1.

x%/%y Integer division: for example, 5%/%2 is 2.

Listing 4.2 Creating new variables

Table 4.2 Arithmetic operators (continued)

Operator Description

www.it-ebooks.info

http://www.it-ebooks.info/

75Recoding variables

4.3 Recoding variables

Recoding involves creating new values of a variable conditional on the existing values of

the same and/or other variables. For example, you may want to

■ Change a continuous variable into a set of categories
■ Replace miscoded values with correct values
■ Create a pass/fail variable based on a set of cutoff scores

To recode data, you can use one or more of R’s logical operators (see table 4.3). Logi-

cal operators are expressions that return TRUE or FALSE.

Let’s say you want to recode the ages of the managers in the leadership dataset from

the continuous variable age to the categorical variable agecat (Young, Middle Aged,

Elder). First, you must recode the value 99 for age to indicate that the value is missing

using code such as

leadership$age[leadership$age == 99] <- NA

The statement variable[condition] <- expression will only make the assignment

when condition is TRUE.

 Once missing values for age have been specified, you can then use the following

code to create the agecat variable:

leadership$agecat[leadership$age > 75] <- "Elder"
leadership$agecat[leadership$age >= 55 &
 leadership$age <= 75] <- "Middle Aged"
leadership$agecat[leadership$age < 55] <- "Young"

You include the data-frame names in leadership$agecat to ensure that the new vari-

able is saved back to the data frame. (I defined middle aged as 55 to 75 so I won’t feel

Table 4.3 Logical operators

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Exactly equal to

!= Not equal to

!x Not x

x | y x or y

x & y x and y

isTRUE(x) Tests whether x is TRUE

www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 4 Basic data management

so old.) Note that if you hadn’t recoded 99 as missing for age first, manager 5 would’ve

erroneously been given the value “Elder” for agecat.

 This code can be written more compactly as follows:

leadership <- within(leadership,{
 agecat <- NA
 agecat[age > 75] <- "Elder"
 agecat[age >= 55 & age <= 75] <- "Middle Aged"
 agecat[age < 55] <- "Young" })

The within() function is similar to the with() function (section 2.2.4), but it allows

you to modify the data frame. First the variable agecat is created and set to missing for

each row of the data frame. Then the remaining statements within the braces are exe-
cuted in order. Remember that agecat is a character variable; you’re likely to want to

turn it into an ordered factor, as explained in section 2.2.5.

 Several packages offer useful recoding functions; in particular, the car package’s
recode() function recodes numeric and character vectors and factors very simply.

The package doBy offers recodeVar(), another popular function. Finally, R ships with

cut(), which allows you to divide the range of a numeric variable into intervals,
returning a factor.

4.4 Renaming variables

If you’re not happy with your variable names, you can change them interactively or

programmatically. Let’s say you want to change the variable manager to managerID and
date to testDate. You can use the following statement to invoke an interactive editor:

fix(leadership)

Then you click the variable names and rename them in the dialogs that are presented

(see figure 4.1).

Figure 4.1 Renaming variables interactively using the fix() function

www.it-ebooks.info

http://www.it-ebooks.info/

77Missing values

Programmatically, you can rename variables via the names() function. For example,

this statement

names(leadership)[2] <- "testDate"

renames date to testDate as demonstrated in the following code:

> names(leadership)
 [1] "manager" "date" "country" "gender" "age" "q1" "q2"
 [8] "q3" "q4" "q5"
> names(leadership)[2] <- "testDate"
> leadership
 manager testDate country gender age q1 q2 q3 q4 q5
1 1 10/24/08 US M 32 5 4 5 5 5
2 2 10/28/08 US F 45 3 5 2 5 5
3 3 10/1/08 UK F 25 3 5 5 5 2
4 4 10/12/08 UK M 39 3 3 4 NA NA
5 5 5/1/09 UK F 99 2 2 1 2 1

In a similar fashion, the statement

names(leadership)[6:10] <- c("item1", "item2", "item3", "item4", "item5")

renames q1 through q5 to item1 through item5.

 Finally, the plyr package has a rename() function that’s useful for altering the

names of variables. The plyr package isn’t installed by default, so you’ll need to install

it on first use using the install.packages("plyr") command.

 The format of the rename() function is

rename(dataframe, c(oldname="newname", oldname="newname",...))

Here’s an example with the leadership data:

library(plyr)
leadership <- rename(leadership,
 c(manager="managerID", date="testDate"))

The plyr package has a powerful set of functions for manipulating datasets. You can

learn more about it at http://had.co.nz/plyr.

4.5 Missing values

In a project of any size, data is likely to be incomplete because of missed questions,

faulty equipment, or improperly coded data. In R, missing values are represented by

the symbol NA (not available). Unlike programs such as SAS, R uses the same missing-

value symbol for character and numeric data.

 R provides a number of functions for identifying observations that contain missing

values. The function is.na() allows you to test for the presence of missing values.

Assume that you have this vector:

y <- c(1, 2, 3, NA)

Then the following function returns c(FALSE, FALSE, FALSE, TRUE):

is.na(y)

www.it-ebooks.info

http://had.co.nz/plyr
http://www.it-ebooks.info/

78 CHAPTER 4 Basic data management

Notice how the is.na() function works on an object. It returns an object of the same

size, with the entries replaced by TRUE if the element is a missing value or FALSE if the

element isn’t a missing value. The following listing applies this to the leadership

example.

> is.na(leadership[,6:10])
 q1 q2 q3 q4 q5
[1,] FALSE FALSE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE FALSE
[4,] FALSE FALSE FALSE TRUE TRUE
[5,] FALSE FALSE FALSE FALSE FALSE

Here, leadership[,6:10] limits the data frame to columns 6 to 10, and is.na() iden-

tifies which values are missing.

 There are two important things to keep in mind when you’re working with missing
values in R. First, missing values are considered noncomparable, even to themselves.

This means you can’t use comparison operators to test for the presence of missing val-

ues. For example, the logical test myvar == NA is never TRUE. Instead, you have to use
missing-value functions like is.na() to identify the missing values in R data objects.

 Second, R doesn’t represent infinite or impossible values as missing values. Again,

this is different than the way other programs like SAS handle such data. Positive and

negative infinity are represented by the symbols Inf and –Inf, respectively. Thus 5/0
returns Inf. Impossible values (for example, sin(Inf)) are represented by the symbol

NaN (not a number). To identify these values, you need to use is.infinite() or

is.nan().

4.5.1 Recoding values to missing

As demonstrated in section 4.3, you can use assignments to recode values to missing. In

the leadership example, missing age values are coded as 99. Before analyzing this

dataset, you must let R know that the value 99 means missing in this case (otherwise,
the mean age for this sample of bosses will be way off!). You can accomplish this by

recoding the variable:

leadership$age[leadership$age == 99] <- NA

Any value of age that’s equal to 99 is changed to NA. Be sure that any missing data is prop-
erly coded as missing before you analyze the data, or the results will be meaningless.

4.5.2 Excluding missing values from analyses

Once you’ve identified missing values, you need to eliminate them in some way before
analyzing your data further. The reason is that arithmetic expressions and functions that
contain missing values yield missing values. For example, consider the following code:

x <- c(1, 2, NA, 3)
y <- x[1] + x[2] + x[3] + x[4]
z <- sum(x)

Listing 4.3 Applying the is.na() function

www.it-ebooks.info

http://www.it-ebooks.info/

79Date values

Both y and z will be NA (missing) because the third element of x is missing.

 Luckily, most numeric functions have an na.rm=TRUE option that removes missing
values prior to calculations and applies the function to the remaining values:

x <- c(1, 2, NA, 3)
y <- sum(x, na.rm=TRUE)

Here, y is equal to 6.

 When using a function with incomplete data, be sure to check how that function

handles missing data by looking at its online help (for example, help(sum)). The
sum() function is only one of many functions we’ll consider in chapter 5. Functions

allow you to transform data with flexibility and ease.

 You can remove any observation with missing data by using the na.omit() func-
tion. na.omit() deletes any rows with missing data. Let’s apply this to the leadership

dataset in the following listing.

> leadership
 manager date country gender age q1 q2 q3 q4 q5
1 1 10/24/08 US M 32 5 4 5 5 5
2 2 10/28/08 US F 40 3 5 2 5 5
3 3 10/01/08 UK F 25 3 5 5 5 2
4 4 10/12/08 UK M 39 3 3 4 NA NA
5 5 05/01/09 UK F NA 2 2 1 2 1

> newdata <- na.omit(leadership)
> newdata
 manager date country gender age q1 q2 q3 q4 q5
1 1 10/24/08 US M 32 5 4 5 5 5
2 2 10/28/08 US F 40 3 5 2 5 5
3 3 10/01/08 UK F 25 3 5 5 5 2

Any rows containing missing data are deleted from leadership before the results are

saved to newdata.
 Deleting all observations with missing data (called listwise deletion) is one of several

methods of handling incomplete datasets. If there are only a few missing values or

they’re concentrated in a small number of observations, listwise deletion can provide
a good solution to the missing-values problem. But if missing values are spread

throughout the data or there’s a great deal of missing data in a small number of vari-

ables, listwise deletion can exclude a substantial percentage of your data. We’ll
explore several more sophisticated methods of dealing with missing values in chapter

18. Next, let’s look at dates.

4.6 Date values

Dates are typically entered into R as character strings and then translated into date

variables that are stored numerically. The function as.Date() is used to make this

translation. The syntax is as.Date(x, "input_format"), where x is the character data

and input_format gives the appropriate format for reading the date (see table 4.4).

Listing 4.4 Using na.omit() to delete incomplete observations

Data frame with
missing data

Data frame with
complete cases only

www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 4 Basic data management

The default format for inputting dates is yyyy-mm-dd. The statement

mydates <- as.Date(c("2007-06-22", "2004-02-13"))

converts the character data to dates using this default format. In contrast,

strDates <- c("01/05/1965", "08/16/1975")
dates <- as.Date(strDates, "%m/%d/%Y")

reads the data using a mm/dd/yyyy format.
 In the leadership dataset, date is coded as a character variable in mm/dd/yy for-

mat. Therefore:

myformat <- "%m/%d/%y"
leadership$date <- as.Date(leadership$date, myformat)

uses the specified format to read the character variable and replace it in the data
frame as a date variable. Once the variable is in date format, you can analyze and plot
the dates using the wide range of analytic techniques covered in later chapters.

 Two functions are especially useful for time-stamping data. Sys.Date() returns
today’s date, and date() returns the current date and time. As I write this, it’s Novem-
ber 27, 2014 at 1:21 pm. So executing those functions produces

> Sys.Date()
[1] "2014-11-27"
> date()
[1] "Fri Nov 27 13:21:54 2014"

You can use the format(x, format="output_format") function to output dates in a
specified format and to extract portions of dates:

> today <- Sys.Date()
> format(today, format="%B %d %Y")
[1] "November 27 2014"
> format(today, format="%A")
[1] "Thursday"

The format() function takes an argument (a date in this case) and applies an output
format (in this case, assembled from the symbols in table 4.4). The important result
here is that there are only two more days until the weekend!

Table 4.4 Date formats

Symbol Meaning Example

%d Day as a number (0–31) 01–31

%a
%A

Abbreviated weekday

Unabbreviated weekday

Mon

Monday

%m Month (00–12) 00–12

%b
%B

Abbreviated month

Unabbreviated month

Jan

January

%y
%Y

Two-digit year

Four-digit year

07

2007

www.it-ebooks.info

http://www.it-ebooks.info/

81Type conversions

 When R stores dates internally, they’re represented as the number of days since

January 1, 1970, with negative values for earlier dates. That means you can perform

arithmetic operations on them. For example,

> startdate <- as.Date("2004-02-13")
> enddate <- as.Date("2011-01-22")
> days <- enddate - startdate
> days
Time difference of 2535 days

displays the number of days between February 13, 2004 and January 22, 2011.

 Finally, you can also use the function difftime() to calculate a time interval and

express it as seconds, minutes, hours, days, or weeks. Let’s assume that I was born on

October 12, 1956. How old am I?

> today <- Sys.Date()
> dob <- as.Date("1956-10-12")
> difftime(today, dob, units="weeks")
Time difference of 3033 weeks

Apparently I am 3,033 weeks old. Who knew? Final test: On which day of the week was

I born?

4.6.1 Converting dates to character variables

You can also convert date variables to character variables. Date values can be con-

verted to character values using the as.character() function:

strDates <- as.character(dates)

The conversion allows you to apply a range of character functions to the data values

(subsetting, replacement, concatenation, and so on). We’ll cover character functions

in detail in chapter 5.

4.6.2 Going further

To learn more about converting character data to dates, look at help(as.Date) and

help(strftime). To learn more about formatting dates and times, see help(ISOdate-

time). The lubridate package contains a number of functions that simplify working

with dates, including functions to identify and parse date-time data, extract date-time

components (for example, years, months, days, and so on), and perform arithmetic

calculations on date-times. If you need to do complex calculations with dates, the

timeDate package can also help. It provides a myriad of functions for dealing with

dates, can handle multiple time zones at once, and provides sophisticated calendar

manipulations that recognize business days, weekends, and holidays.

4.7 Type conversions

In the previous section, we discussed how to convert character data to date values, and

vice versa. R provides a set of functions to identify an object’s data type and convert it

to a different data type.

www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 4 Basic data management

 Type conversions in R work in a similar fashion to those in other statistical pro-

gramming languages. For example, adding a character string to a numeric vector con-
verts all the elements in the vector to character values. You can use the functions listed

in table 4.5 to test for a data type and to convert it to a given type.

Functions of the form is.datatype() return TRUE or FALSE, whereas as.datatype()

converts the argument to that type. The following listing provides an example.

> a <- c(1,2,3)
> a
[1] 1 2 3
> is.numeric(a)
[1] TRUE
> is.vector(a)
[1] TRUE
> a <- as.character(a)
> a
[1] "1" "2" "3"
> is.numeric(a)
[1] FALSE
> is.vector(a)
[1] TRUE
> is.character(a)
[1] TRUE

When combined with the flow controls (such as if-then) that we’ll discuss in chapter

5, the is.datatype() function can be a powerful tool, allowing you to handle data in
different ways depending on its type. Additionally, some R functions require data of a

specific type (character or numeric, matrix or data frame), and as.datatype() lets

you transform your data into the format required prior to analyses.

4.8 Sorting data

Sometimes, viewing a dataset in a sorted order can tell you quite a bit about the data.

For example, which managers are most deferential? To sort a data frame in R, you use

Table 4.5 Type-conversion functions

Test Convert

is.numeric() as.numeric()

is.character() as.character()

is.vector() as.vector()

is.matrix() as.matrix()

is.data.frame() as.data.frame()

is.factor() as.factor()

is.logical() as.logical()

Listing 4.5 Converting from one data type to another

www.it-ebooks.info

http://www.it-ebooks.info/

83Merging datasets

the order() function. By default, the sorting order is ascending. Prepend the sorting

variable with a minus sign to indicate descending order. The following examples illus-

trate sorting with the leadership data frame.

 The statement

newdata <- leadership[order(leadership$age),]

creates a new dataset containing rows sorted from youngest manager to oldest man-

ager. The statement

attach(leadership)
newdata <- leadership[order(gender, age),]
detach(leadership)

sorts the rows into female followed by male, and youngest to oldest within each gender.

 Finally,

attach(leadership)
newdata <-leadership[order(gender, -age),]
detach(leadership)

sorts the rows by gender, and then from oldest to youngest manager within each gender.

4.9 Merging datasets

If your data exists in multiple locations, you’ll need to combine it before moving for-

ward. This section shows you how to add columns (variables) and rows (observations)

to a data frame.

4.9.1 Adding columns to a data frame

To merge two data frames (datasets) horizontally, you use the merge() function. In

most cases, two data frames are joined by one or more common key variables (that is,

an inner join). For example,

total <- merge(dataframeA, dataframeB, by="ID")

merges dataframeA and dataframeB by ID. Similarly,

total <- merge(dataframeA, dataframeB, by=c("ID","Country"))

merges the two data frames by ID and Country. Horizontal joins like this are typically

used to add variables to a data frame.

Horizontal concatenation with cbind()

If you’re joining two matrices or data frames horizontally and don’t need to specify a
common key, you can use the cbind() function:

total <- cbind(A, B)

This function horizontally concatenates objects A and B. For the function to work prop-
erly, each object must have the same number of rows and be sorted in the same order.

www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 4 Basic data management

4.9.2 Adding rows to a data frame

To join two data frames (datasets) vertically, use the rbind() function:

total <- rbind(dataframeA, dataframeB)

The two data frames must have the same variables, but they don’t have to be in the

same order. If dataframeA has variables that dataframeB doesn’t, then before joining

them, do one of the following:

■ Delete the extra variables in dataframeA.
■ Create the additional variables in dataframeB, and set them to NA (missing).

Vertical concatenation is typically used to add observations to a data frame.

4.10 Subsetting datasets

R has powerful indexing features for accessing the elements of an object. These features

can be used to select and exclude variables, observations, or both. The following sec-

tions demonstrate several methods for keeping or deleting variables and observations.

4.10.1 Selecting (keeping) variables

It’s a common practice to create a new dataset from a limited number of variables cho-

sen from a larger dataset. In chapter 2, you saw that the elements of a data frame are

accessed using the notation dataframe[row indices, column indices]. You can use

this to select variables. For example,

newdata <- leadership[, c(6:10)]

selects variables q1, q2, q3, q4, and q5 from the leadership data frame and saves them

to the data frame newdata. Leaving the row indices blank (,) selects all the rows by

default.

 The statements

myvars <- c("q1", "q2", "q3", "q4", "q5")
newdata <-leadership[myvars]

accomplish the same variable selection. Here, variable names (in quotes) are entered

as column indices, thereby selecting the same columns.

 Finally, you could use

myvars <- paste("q", 1:5, sep="")
newdata <- leadership[myvars]

This example uses the paste() function to create the same character vector as in the

previous example. paste() will be covered in chapter 5.

4.10.2 Excluding (dropping) variables

There are many reasons to exclude variables. For example, if a variable has many miss-

ing values, you may want to drop it prior to further analyses. Let’s look at some meth-

ods of excluding variables.

www.it-ebooks.info

http://www.it-ebooks.info/

85Subsetting datasets

 You can exclude variables q3 and q4 with these statements:

myvars <- names(leadership) %in% c("q3", "q4")
newdata <- leadership[!myvars]

In order to understand why this works, you need to break it down:

1 names(leadership) produces a character vector containing the variable names:

c("managerID","testDate","country","gender","age","q1","q2","q3","q4","q5")

2 names(leadership) %in% c("q3", "q4") returns a logical vector with TRUE for each

element in names(leadership)that matches q3 or q4 and FALSE otherwise:

c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE)

3 The not (!) operator reverses the logical values:

c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE)

4 leadership[c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE,

TRUE)] selects columns with TRUE logical values, so q3 and q4 are excluded.

Knowing that q3 and q4 are the eighth and ninth variables, you can exclude them with

the following statement:

newdata <- leadership[c(-8,-9)]

This works because prepending a column index with a minus sign (-) excludes that

column.

 Finally, the same deletion can be accomplished via

leadership$q3 <- leadership$q4 <- NULL

Here you set columns q3 and q4 to undefined (NULL). Note that NULL isn’t the same as

NA (missing).

 Dropping variables is the converse of keeping variables. The choice depends on

which is easier to code. If there are many variables to drop, it may be easier to keep

the ones that remain, or vice versa.

4.10.3 Selecting observations

Selecting or excluding observations (rows) is typically a key aspect of successful data

preparation and analysis. Several examples are given in the following listing.

newdata <- leadership[1:3,]

newdata <- leadership[leadership$gender=="M" &
 leadership$age > 30,]

attach(leadership)
newdata <- leadership[gender=='M' & age > 30,]
detach(leadership)

Listing 4.6 Selecting observations

Asks for rows
1 through 3
(the first three
observations)

Selects all
men over 30

b

Uses attach() so you don’t have
to prepend variable names with
data-frame names

www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 4 Basic data management

Each of these examples provides the row indices and leaves the column indices blank

(therefore choosing all columns). Let’s break down the line of code at B in order to

understand it:

1 The logical comparison leadership$gender=="M" produces the vector

c(TRUE, FALSE, FALSE, TRUE, FALSE).

2 The logical comparison leadership$age > 30 produces the vector c(TRUE,

TRUE, FALSE, TRUE, TRUE).

3 The logical comparison c(TRUE, FALSE, FALSE, TRUE, FALSE) & c(TRUE,

TRUE, FALSE, TRUE, TRUE) produces the vector c(TRUE, FALSE, FALSE,

TRUE, FALSE).

4 leadership[c(TRUE, FALSE, FALSE, TRUE, FALSE),] selects the first and

fourth observations from the data frame (when the row index is TRUE, the row is

included; when it’s FALSE, the row is excluded). This meets the selection crite-

ria (men over 30).

At the beginning of this chapter, I suggested that you might want to limit your analyses

to observations collected between January 1, 2009 and December 31, 2009. How can

you do this? Here’s one solution:

leadership$date <- as.Date(leadership$date, "%m/%d/%y")

startdate <- as.Date("2009-01-01")
enddate <- as.Date("2009-10-31")

newdata <- leadership[which(leadership$date >= startdate &
 leadership$date <= enddate),]

Note that the default for the as.Date() function is yyyy-mm-dd, so you don’t have to

supply it here.

4.10.4 The subset() function

The examples in the previous two sections are important because they help describe

the ways in which logical vectors and comparison operators are interpreted in R.

Understanding how these examples work will help you to interpret R code in general.

Now that you’ve done things the hard way, let’s look at a shortcut.

 The subset() function is probably the easiest way to select variables and observa-

tions. Here are two examples:

newdata <- subset(leadership, age >= 35 | age < 24,
 select=c(q1, q2, q3, q4))

newdata <- subset(leadership, gender=="M" & age > 25,
 select=gender:q4)

Converts the date values read in originally
as character values to date values
using the format mm/dd/yy

Creates
starting date

Creates ending date

Selects cases meeting
your desired criteria, as
in the previous example

Selects all rows that have a value of
age greater than or equal to 35 or less
than 24. Keeps variables q1 through q4.

Selects all men over the age of 25, and keeps variables gender
through q4 (gender, q4, and all columns between them)

www.it-ebooks.info

http://www.it-ebooks.info/

87Using SQL statements to manipulate data frames

You saw the colon operator from:to in chapter 2. Here, it provides all variables in a

data frame between the from variable and the to variable, inclusive.

4.10.5 Random samples

Sampling from larger datasets is a common practice in data mining and machine
learning. For example, you may want to select two random samples, creating a predic-

tive model from one and validating its effectiveness on the other. The sample() func-

tion enables you to take a random sample (with or without replacement) of size n
from a dataset.

 You could take a random sample of size 3 from the leadership dataset using the fol-

lowing statement:

mysample <- leadership[sample(1:nrow(leadership), 3, replace=FALSE),]

The first argument to sample() is a vector of elements to choose from. Here, the vec-
tor is 1 to the number of observations in the data frame. The second argument is the

number of elements to be selected, and the third argument indicates sampling with-

out replacement. sample() returns the randomly sampled elements, which are then
used to select rows from the data frame.

 R has extensive facilities for sampling, including drawing and calibrating survey

samples (see the sampling package) and analyzing complex survey data (see the sur-

vey package). Other methods that rely on sampling, including bootstrapping and
resampling statistics, are described in chapter 12.

4.11 Using SQL statements to manipulate data frames

Until now, you’ve been using R statements to manipulate data. But many data analysts
come to R well versed in Structured Query Language (SQL). It would be a shame to

lose all that accumulated knowledge. Therefore, before we end, let me briefly men-

tion the existence of the sqldf package. (If you’re unfamiliar with SQL, please feel
free to skip this section.)

 After downloading and installing the package (install.packages("sqldf")), you

can use the sqldf() function to apply SQL SELECT statements to data frames. Two
examples are given in the following listing.

> library(sqldf)
> newdf <- sqldf("select * from mtcars where carb=1 order by mpg",
 row.names=TRUE)
> newdf
 mpg cyl disp hp drat wt qsec vs am gear carb
Valiant 18.1 6 225.0 105 2.76 3.46 20.2 1 0 3 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.21 19.4 1 0 3 1

Listing 4.7 Using SQL statements to manipulate data frames

Selects all variables (columns) from data frame mtcars, keeps only automobiles
(rows) with one carburetor (carb), sorts in ascending order by mpg, and saves
the results as the data frame newdf. The option row.names=TRUE carries the
row names from the original data frame over to the new one.

www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 4 Basic data management

Toyota Corona 21.5 4 120.1 97 3.70 2.46 20.0 1 0 3 1
Datsun 710 22.8 4 108.0 93 3.85 2.32 18.6 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.94 18.9 1 1 4 1
Fiat 128 32.4 4 78.7 66 4.08 2.20 19.5 1 1 4 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.83 19.9 1 1 4 1

> sqldf("select avg(mpg) as avg_mpg, avg(disp) as avg_disp, gear
 from mtcars where cyl in (4, 6) group by gear")
 avg_mpg avg_disp gear
1 20.3 201 3
2 24.5 123 4
3 25.4 120 5

Experienced SQL users will find the sqldf package a useful adjunct to data manage-

ment in R. See the project home page (http://code.google.com/p/sqldf/) for more

details.

4.12 Summary

This chapter covered a lot of ground. First we examined how R stores missing and

date values and explored various ways of handling them. Next, you learned how to

determine the data type of an object and how to convert it to other types. Simple for-

mulas were used to create new variables and recode existing variables. You learned

how to sort data, rename variables, and merge data with other datasets both horizon-

tally (adding variables) and vertically (adding observations). Finally, we discussed how

to keep or drop variables and how to select observations based on a variety of criteria.

 In the next chapter, we’ll look at the myriad of arithmetic, character, and statistical

functions that R makes available for creating and transforming variables. After explor-

ing ways of controlling program flow, you’ll see how to write your own functions. We’ll

also explore how you can use these functions to aggregate and summarize your data.

 By the end of chapter 5, you’ll have most of the tools necessary to manage complex

datasets. (And you’ll be the envy of data analysts everywhere!)

Prints the mean mpg and disp within
each level of gear for automobiles
with four or six cylinders (cyl)

www.it-ebooks.info

http://code.google.com/p/sqldf/
http://www.it-ebooks.info/

89

Advanced data management

In chapter 4, we reviewed the basic techniques used for managing datasets in R. In

this chapter, we’ll focus on advanced topics. The chapter is divided into three basic

parts. In the first part, we’ll take a whirlwind tour of R’s many functions for mathe-

matical, statistical, and character manipulation. To give this section relevance, we

begin with a data-management problem that can be solved using these functions.

After covering the functions themselves, we’ll look at one possible solution to the

data-management problem.

 Next, we cover how to write your own functions to accomplish data-manage-

ment and -analysis tasks. First, we’ll explore ways of controlling program flow,

including looping and conditional statement execution. Then we’ll investigate the

structure of user-written functions and how to invoke them once created.

This chapter covers

■ Mathematical and statistical functions

■ Character functions

■ Looping and conditional execution

■ User-written functions

■ Ways to aggregate and reshape data

www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 5 Advanced data management

 Then, we’ll look at ways of aggregating and summarizing data, along with methods

of reshaping and restructuring datasets. When aggregating data, you can specify the use

of any appropriate built-in or user-written function to accomplish the summarization,

so the topics you learn in the first two parts of the chapter will provide a real benefit.

5.1 A data-management challenge

To begin our discussion of numerical and character functions, let’s consider a data-

management problem. A group of students have taken exams in math, science, and

English. You want to combine these scores in order to determine a single perfor-

mance indicator for each student. Additionally, you want to assign an A to the top

20% of students, a B to the next 20%, and so on. Finally, you want to sort the students

alphabetically. The data are presented in table 5.1.

Looking at this dataset, several obstacles are immediately evident. First, scores on the

three exams aren’t comparable. They have widely different means and standard devia-

tions, so averaging them doesn’t make sense. You must transform the exam scores into

comparable units before combining them. Second, you’ll need a method of determin-

ing a student’s percentile rank on this score in order to assign a grade. Third, there’s a

single field for names, complicating the task of sorting students. You’ll need to split

their names into first name and last name in order to sort them properly.

 Each of these tasks can be accomplished through the judicious use of R’s numeri-

cal and character functions. After working through the functions described in the

next section, we’ll consider a possible solution to this data-management challenge.

Table 5.1 Student exam data

Student Math Science English

John Davis 502 95 25

Angela Williams 600 99 22

Bullwinkle Moose 412 80 18

David Jones 358 82 15

Janice Markhammer 495 75 20

Cheryl Cushing 512 85 28

Reuven Ytzrhak 410 80 15

Greg Knox 625 95 30

Joel England 573 89 27

Mary Rayburn 522 86 18

www.it-ebooks.info

http://www.it-ebooks.info/

91Numerical and character functions

5.2 Numerical and character functions

In this section, we’ll review functions in R that can be used as the basic building blocks

for manipulating data. They can be divided into numerical (mathematical, statistical,

probability) and character functions. After we review each type, I’ll show you how to

apply functions to the columns (variables) and rows (observations) of matrices and

data frames (see section 5.2.6).

5.2.1 Mathematical functions

Table 5.2 lists common mathematical functions along with short examples.

Table 5.2 Mathematical functions

Function Description

abs(x) Absolute value

abs(-4) returns 4.

sqrt(x) Square root

sqrt(25) returns 5. This is the same as 25^(0.5).

ceiling(x) Smallest integer not less than x

ceiling(3.475) returns 4.

floor(x) Largest integer not greater than x

floor(3.475) returns 3.

trunc(x) Integer formed by truncating values in x toward 0

trunc(5.99) returns 5.

round(x, digits=n) Rounds x to the specified number of decimal places

round(3.475, digits=2) returns 3.48.

signif(x, digits=n) Rounds x to the specified number of significant digits

signif(3.475, digits=2) returns 3.5.

cos(x), sin(x), tan(x) Cosine, sine, and tangent

cos(2) returns –0.416.

acos(x), asin(x), atan(x) Arc-cosine, arc-sine, and arc-tangent

acos(-0.416) returns 2.

cosh(x), sinh(x), tanh(x) Hyperbolic cosine, sine, and tangent

sinh(2) returns 3.627.

acosh(x), asinh(x), atanh(x) Hyperbolic arc-cosine, arc-sine, and arc-tangent

asinh(3.627) returns 2.

log(x,base=n)
log(x)
log10(x)

Logarithm of x to the base n

For convenience:
■ log(x) is the natural logarithm.
■ log10(x) is the common logarithm.
■ log(10) returns 2.3026.
■ log10(10) returns 1.

exp(x) Exponential function

exp(2.3026) returns 10.

www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 5 Advanced data management

Data transformation is one of the primary uses for these functions. For example, you

often transform positively skewed variables such as income to a log scale before fur-
ther analyses. Mathematical functions are also used as components in formulas, in

plotting functions (for example, x versus sin(x)), and in formatting numerical val-

ues prior to printing.
 The examples in table 5.2 apply mathematical functions to scalars (individual num-

bers). When these functions are applied to numeric vectors, matrices, or data frames,

they operate on each individual value. For example, sqrt(c(4, 16, 25)) returns
c(2, 4, 5).

5.2.2 Statistical functions

Common statistical functions are presented in table 5.3. Many of these functions have

optional parameters that affect the outcome. For example,

y <- mean(x)

provides the arithmetic mean of the elements in object x, and

z <- mean(x, trim = 0.05, na.rm=TRUE)

provides the trimmed mean, dropping the highest and lowest 5% of scores and any
missing values. Use the help() function to learn more about each function and its

arguments.

Table 5.3 Statistical functions

Function Description

mean(x) Mean

mean(c(1,2,3,4)) returns 2.5.

median(x) Median

median(c(1,2,3,4)) returns 2.5.

sd(x) Standard deviation

sd(c(1,2,3,4)) returns 1.29.

var(x) Variance

var(c(1,2,3,4)) returns 1.67.

mad(x) Median absolute deviation

mad(c(1,2,3,4)) returns 1.48.

quantile(x,
probs)

Quantiles where x is the numeric vector, where quantiles are desired and

probs is a numeric vector with probabilities in [0,1]

30th and 84th percentiles of x
y <- quantile(x, c(.3,.84))

range(x) Range

x <- c(1,2,3,4)
range(x) returns c(1,4).

diff(range(x)) returns 3.

sum(x) Sum

sum(c(1,2,3,4)) returns 10.

www.it-ebooks.info

http://www.it-ebooks.info/

93Numerical and character functions

To see these functions in action, look at the next listing. This example demonstrates
two ways to calculate the mean and standard deviation of a vector of numbers.

> x <- c(1,2,3,4,5,6,7,8)

> mean(x)
[1] 4.5
> sd(x)
[1] 2.449490

> n <- length(x)
> meanx <- sum(x)/n
> css <- sum((x - meanx)^2)
> sdx <- sqrt(css / (n-1))
> meanx
[1] 4.5
> sdx
[1] 2.449490

It’s instructive to view how the corrected sum of squares (css) is calculated in the sec-

ond approach:

1 x equals c(1, 2, 3, 4, 5, 6, 7, 8), and mean x equals 4.5 (length(x)

returns the number of elements in x).

2 (x – meanx) subtracts 4.5 from each element of x, resulting in

c(-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5)

3 (x – meanx)^2 squares each element of (x - meanx), resulting in

c(12.25, 6.25, 2.25, 0.25, 0.25, 2.25, 6.25, 12.25)

4 sum((x - meanx)^2) sums each of the elements of (x - meanx)^2), resulting in 42.

Writing formulas in R has much in common with matrix-manipulation languages

such as MATLAB (we’ll look more specifically at solving matrix algebra problems in

appendix D).

diff(x, lag=n) Lagged differences, with lag indicating which lag to use. The default lag is 1.

x<- c(1, 5, 23, 29)
diff(x) returns c(4, 18, 6).

min(x) Minimum

min(c(1,2,3,4)) returns 1.

max(x) Maximum

max(c(1,2,3,4)) returns 4.

scale(x,
 center=TRUE,
 scale=TRUE)

Column center (center=TRUE) or standardize (center=TRUE,
scale=TRUE) data object x. An example is given in listing 5.6.

Listing 5.1 Calculating the mean and standard deviation

Table 5.3 Statistical functions

Function Description

Short way

Long way

www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 5 Advanced data management

5.2.3 Probability functions

You may wonder why probability functions aren’t listed with the statistical functions (it

was really bothering you, wasn’t it?). Although probability functions are statistical by

definition, they’re unique enough to deserve their own section. Probability functions

are often used to generate simulated data with known characteristics and to calculate
probability values within user-written statistical functions.

 In R, probability functions take the form

[dpqr]distribution_abbreviation()

where the first letter refers to the aspect of the distribution returned:

d = density

p = distribution function

q = quantile function

r = random generation (random deviates)

The common probability functions are listed in table 5.4.

Standardizing data

By default, the scale() function standardizes the specified columns of a matrix or
data frame to a mean of 0 and a standard deviation of 1:

newdata <- scale(mydata)

To standardize each column to an arbitrary mean and standard deviation, you can use
code similar to the following

newdata <- scale(mydata)*SD + M

where M is the desired mean and SD is the desired standard deviation. Using the
scale() function on non-numeric columns produces an error. To standardize a specific
column rather than an entire matrix or data frame, you can use code such as this:

newdata <- transform(mydata, myvar = scale(myvar)*10+50)

This code standardizes the variable myvar to a mean of 50 and standard deviation
of 10. You’ll use the scale() function in the solution to the data-management chal-
lenge in section 5.3.

Table 5.4 Probability distributions

Distribution Abbreviation Distribution Abbreviation

Beta beta Logistic logis

Binomial binom Multinomial multinom

Cauchy cauchy Negative binomial nbinom

Chi-squared (noncentral) chisq Normal norm

Exponential exp Poisson pois

www.it-ebooks.info

http://www.it-ebooks.info/

95Numerical and character functions

To see how these work, let’s look at functions related to the normal distribution. If you

don’t specify a mean and a standard deviation, the standard normal distribution is

assumed (mean=0, sd=1). Examples of the density (dnorm), distribution (pnorm), quan-

tile (qnorm), and random deviate generation (rnorm) functions are given in table 5.5.

Don’t worry if the plot() function options are unfamiliar. They’re covered in detail in

chapter 11; pretty() is explained in table 5.7 later in this chapter.

F f Wilcoxon signed rank signrank

Gamma gamma T t

Geometric geom Uniform unif

Hypergeometric hyper Weibull weibull

Lognormal lnorm Wilcoxon rank sum wilcox

Table 5.5 Normal distribution functions

Problem Solution

Plot the standard normal curve on the interval

[–3,3] (see figure).

x <- pretty(c(-3,3), 30)
y <- dnorm(x)
plot(x, y,
 type = "l",
 xlab = "Normal Deviate",
 ylab = "Density",
 yaxs = "i"
)

What is the area under the standard normal

curve to the left of z=1.96?

pnorm(1.96)equals 0.975.

What is the value of the 90th percentile of a

normal distribution with a mean of 500 and a

standard deviation of 100?

qnorm(.9, mean=500, sd=100) equals 628.16.

Generate 50 random normal deviates with a

mean of 50 and a standard deviation of 10.

rnorm(50, mean=50, sd=10)

Table 5.4 Probability distributions

Distribution Abbreviation Distribution Abbreviation

−3 −2 −1 10 2 3

0
.1

0
.2

0
.3

Normal Deviate

D
e
n
s
it
y

www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 5 Advanced data management

SETTING THE SEED FOR RANDOM NUMBER GENERATION

Each time you generate pseudo-random deviates, a different seed, and therefore dif-

ferent results, are produced. To make your results reproducible, you can specify the

seed explicitly, using the set.seed() function. An example is given in the next listing.

Here, the runif() function is used to generate pseudo-random numbers from a uni-

form distribution on the interval 0 to 1.

> runif(5)
[1] 0.8725344 0.3962501 0.6826534 0.3667821 0.9255909
> runif(5)
[1] 0.4273903 0.2641101 0.3550058 0.3233044 0.6584988
> set.seed(1234)
> runif(5)
[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.8609154
> set.seed(1234)
> runif(5)
[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.8609154

By setting the seed manually, you’re able to reproduce your results. This ability can be

helpful in creating examples you can access in the future and share with others.

GENERATING MULTIVARIATE NORMAL DATA

In simulation research and Monte Carlo studies, you often want to draw data from a

multivariate normal distribution with a given mean vector and covariance matrix. The

mvrnorm() function in the MASS package makes this easy. The function call is

mvrnorm(n, mean, sigma)

where n is the desired sample size, mean is the vector of means, and sigma is the vari-

ance-covariance (or correlation) matrix. Listing 5.3 samples 500 observations from a

three-variable multivariate normal distribution for which the following are true:

> library(MASS)
> options(digits=3)
> set.seed(1234)

> mean <- c(230.7, 146.7, 3.6)
> sigma <- matrix(c(15360.8, 6721.2, -47.1,
 6721.2, 4700.9, -16.5,
 -47.1, -16.5, 0.3), nrow=3, ncol=3)

Listing 5.2 Generating pseudo-random numbers from a uniform distribution

Mean vector 230.7 146.7 3.6

Covariance matrix 15360.8 6721.2 -47.1

 6721.2 4700.9 -16.5

 -47.1 -16.5 0.3

Listing 5.3 Generating data from a multivariate normal distribution

Sets the random number seedb

Specifies the mean
vector and
covariance matrix

c

www.it-ebooks.info

http://www.it-ebooks.info/

97Numerical and character functions

> mydata <- mvrnorm(500, mean, sigma)
> mydata <- as.data.frame(mydata)
> names(mydata) <- c("y","x1","x2")

> dim(mydata)
[1] 500 3
> head(mydata, n=10)
 y x1 x2
1 98.8 41.3 4.35
2 244.5 205.2 3.57
3 375.7 186.7 3.69
4 -59.2 11.2 4.23
5 313.0 111.0 2.91
6 288.8 185.1 4.18
7 134.8 165.0 3.68
8 171.7 97.4 3.81
9 167.3 101.0 4.01
10 121.1 94.5 3.76

In listing 5.3, you set a random number seed so that you can reproduce the results at a
later time b. You specify the desired mean vector and variance-covariance matrix c
and generate 500 pseudo-random observations d. For convenience, the results are
converted from a matrix to a data frame, and the variables are given names. Finally,
you confirm that you have 500 observations and 3 variables, and you print out the first
10 observations e. Note that because a correlation matrix is also a covariance matrix,
you could have specified the correlation structure directly.

 The probability functions in R allow you to generate simulated data, sampled from
distributions with known characteristics. Statistical methods that rely on simulated
data have grown exponentially in recent years, and you’ll see several examples of
these in later chapters.

5.2.4 Character functions

Whereas mathematical and statistical functions operate on numerical data, character
functions extract information from textual data or reformat textual data for printing
and reporting. For example, you may want to concatenate a person’s first name and
last name, ensuring that the first letter of each is capitalized. Or you may want to
count the instances of obscenities in open-ended feedback. Some of the most useful
character functions are listed in table 5.6.

Table 5.6 Character functions

Function Description

nchar(x) Counts the number of characters of x.

x <- c("ab", "cde", "fghij")
length(x) returns 3 (see table 5.7).

nchar(x[3]) returns 5.

substr(x, start, stop) Extracts or replaces substrings in a character vector.

x <- "abcdef"
substr(x, 2, 4) returns bcd.

substr(x, 2, 4) <- "22222" (x is now "a222ef").

Generates datad

Views the resultse

www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 5 Advanced data management

Note that the functions grep(), sub(), and strsplit() can search for a text string

(fixed=TRUE) or a regular expression (fixed=FALSE); FALSE is the default. Regular

expressions provide a clear and concise syntax for matching a pattern of text. For

example, the regular expression

^[hc]?at

matches any string that starts with 0 or one occurrences of h or c, followed by at. The

expression therefore matches hat, cat, and at, but not bat. To learn more, see the regu-

lar expression entry in Wikipedia.

5.2.5 Other useful functions

The functions in table 5.7 are also quite useful for data-management and manipula-

tion, but they don’t fit cleanly into the other categories.

grep(pattern, x,
ignore.case=FALSE,
fixed=FALSE)

Searches for pattern in x. If fixed=FALSE, then pattern is a

regular expression. If fixed=TRUE, then pattern is a text string.

Returns the matching indices.

grep("A", c("b","A","c"), fixed=TRUE) returns 2.

sub(pattern, replacement,
x, ignore.case=FALSE,
fixed=FALSE)

Finds pattern in x and substitutes the replacement text. If

fixed=FALSE, then pattern is a regular expression. If

fixed=TRUE, then pattern is a text string.

sub("\\s",".","Hello There") returns Hello.There. Note

that "\s" is a regular expression for finding whitespace; use

"\\s" instead, because "\" is R’s escape character (see section

1.3.3).

strsplit(x, split,
fixed=FALSE)

Splits the elements of character vector x at split. If

fixed=FALSE, then pattern is a regular expression. If

fixed=TRUE, then pattern is a text string.

y <- strsplit("abc", "") returns a one-component,

three-element list containing

"a" "b" "c"
unlist(y)[2] and sapply(y, "[", 2) both return “b”.

paste(..., sep="") Concatenates strings after using the sep string to separate them.

paste("x", 1:3, sep="") returns c("x1", "x2", "x3").

paste("x",1:3,sep="M") returns c("xM1","xM2" "xM3").

paste("Today is", date()) returns

Today is Mon Dec 28 14:17:32 2015
(I changed the date to appear more current.)

toupper(x) Uppercase.

toupper("abc") returns “ABC”.

tolower(x) Lowercase.

tolower("ABC") returns “abc”.

Table 5.6 Character functions (continued)

Function Description

www.it-ebooks.info

http://regexlib.com/CheatSheet.aspx
http://www.it-ebooks.info/

99Numerical and character functions

The last example in the table demonstrates the use of escape characters in printing.

Use \n for new lines, \t for tabs, \' for a single quote, \b for backspace, and so forth

(type ?Quotes for more information). For example, the code

name <- "Bob"
cat("Hello", name, "\b.\n", "Isn\'t R", "\t", "GREAT?\n")

produces

Hello Bob.
 Isn't R GREAT?

Note that the second line is indented one space. When cat concatenates objects for

output, it separates each by a space. That’s why you include the backspace (\b) escape
character before the period. Otherwise it would produce “Hello Bob .”

 How you apply the functions covered so far to numbers, strings, and vectors is intu-

itive and straightforward, but how do you apply them to matrices and data frames?
That’s the subject of the next section.

5.2.6 Applying functions to matrices and data frames

One of the interesting features of R functions is that they can be applied to a variety of

data objects (scalars, vectors, matrices, arrays, and data frames). The following listing

provides an example.

Table 5.7 Other useful functions

Function Description

length(x) Returns the length of object x.

x <- c(2, 5, 6, 9)
length(x) returns 4.

seq(from, to, by) Generates a sequence.

indices <- seq(1,10,2)
indices is c(1, 3, 5, 7, 9).

rep(x, n) Repeats x n times.

y <- rep(1:3, 2)
y is c(1, 2, 3, 1, 2, 3).

cut(x, n) Divides the continuous variable x into a factor with n levels. To cre-

ate an ordered factor, include the option ordered_result =
TRUE.

pretty(x, n) Creates pretty breakpoints. Divides a continuous variable x into n

intervals by selecting n + 1 equally spaced rounded values. Often

used in plotting.

cat(... , file = "myfile",
append = FALSE)

Concatenates the objects in … and outputs them to the screen or

to a file (if one is declared).

name <- c("Jane")
cat("Hello" , name, "\n")

www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 5 Advanced data management

> a <- 5
> sqrt(a)
[1] 2.236068
> b <- c(1.243, 5.654, 2.99)
> round(b)
[1] 1 6 3
> c <- matrix(runif(12), nrow=3)
> c
 [,1] [,2] [,3] [,4]
[1,] 0.4205 0.355 0.699 0.323
[2,] 0.0270 0.601 0.181 0.926
[3,] 0.6682 0.319 0.599 0.215
> log(c)
 [,1] [,2] [,3] [,4]
[1,] -0.866 -1.036 -0.358 -1.130
[2,] -3.614 -0.508 -1.711 -0.077
[3,] -0.403 -1.144 -0.513 -1.538
> mean(c)
[1] 0.444

Notice that the mean of matrix c in listing 5.4 results in a scalar (0.444). The mean()
function takes the average of all 12 elements in the matrix. But what if you want the

three row means or the four column means?

 R provides a function, apply(), that allows you to apply an arbitrary function to any

dimension of a matrix, array, or data frame. The format for the apply() function is

apply(x, MARGIN, FUN, ...)

where x is the data object, MARGIN is the dimension index, FUN is a function you specify,
and ... are any parameters you want to pass to FUN. In a matrix or data frame, MARGIN=1

indicates rows and MARGIN=2 indicates columns. Look at the following examples.

 > mydata <- matrix(rnorm(30), nrow=6)
> mydata
 [,1] [,2] [,3] [,4] [,5]
[1,] 0.71298 1.368 -0.8320 -1.234 -0.790
[2,] -0.15096 -1.149 -1.0001 -0.725 0.506
[3,] -1.77770 0.519 -0.6675 0.721 -1.350
[4,] -0.00132 -0.308 0.9117 -1.391 1.558
[5,] -0.00543 0.378 -0.0906 -1.485 -0.350
[6,] -0.52178 -0.539 -1.7347 2.050 1.569
> apply(mydata, 1, mean)
[1] -0.155 -0.504 -0.511 0.154 -0.310 0.165
> apply(mydata, 2, mean)
[1] -0.2907 0.0449 -0.5688 -0.3442 0.1906
> apply(mydata, 2, mean, trim=0.2)
[1] -0.1699 0.0127 -0.6475 -0.6575 0.2312

You start by generating a 6 × 5 matrix containing random normal variates b. Then

you calculate the six row means c and five column means d. Finally, you calculate

Listing 5.4 Applying functions to data objects

Listing 5.5 Applying a function to the rows (columns) of a matrix

Generates datab

Calculates the row meansc

Calculates the column meansd

Calculates
the trimmed

column
means

e

www.it-ebooks.info

http://www.it-ebooks.info/

101A solution for the data-management challenge

the trimmed column means (in this case, means based on the middle 60% of the data,

with the bottom 20% and top 20% of the values discarded) e.

 Because FUN can be any R function, including a function that you write yourself

(see section 5.4), apply() is a powerful mechanism. Whereas apply() applies a func-

tion over the margins of an array, lapply() and sapply() apply a function over a list.

You’ll see an example of sapply() (which is a user-friendly version of lapply()) in

the next section.

 You now have all the tools you need to solve the data challenge presented in sec-

tion 5.1, so let’s give it a try.

5.3 A solution for the data-management challenge

Your challenge from section 5.1 is to combine subject test scores into a single perfor-

mance indicator for each student, grade each student from A to F based on their rela-

tive standing (top 20%, next 20%, and so on), and sort the roster by last name

followed by first name. A solution is given in the following listing.

> options(digits=2)

> Student <- c("John Davis", "Angela Williams", "Bullwinkle Moose",
 "David Jones", "Janice Markhammer", "Cheryl Cushing",
 "Reuven Ytzrhak", "Greg Knox", "Joel England",
 "Mary Rayburn")
> Math <- c(502, 600, 412, 358, 495, 512, 410, 625, 573, 522)
> Science <- c(95, 99, 80, 82, 75, 85, 80, 95, 89, 86)
> English <- c(25, 22, 18, 15, 20, 28, 15, 30, 27, 18)
> roster <- data.frame(Student, Math, Science, English,
 stringsAsFactors=FALSE)

> z <- scale(roster[,2:4])
> score <- apply(z, 1, mean)
> roster <- cbind(roster, score)

> y <- quantile(score, c(.8,.6,.4,.2))
> roster$grade[score >= y[1]] <- "A"
> roster$grade[score < y[1] & score >= y[2]] <- "B"
> roster$grade[score < y[2] & score >= y[3]] <- "C"
> roster$grade[score < y[3] & score >= y[4]] <- "D"
> roster$grade[score < y[4]] <- "F"

> name <- strsplit((roster$Student), " ")
> Lastname <- sapply(name, "[", 2)
> Firstname <- sapply(name, "[", 1)
> roster <- cbind(Firstname,Lastname, roster[,-1])

> roster <- roster[order(Lastname,Firstname),]

> roster

Listing 5.6 A solution to the learning example

Step 1 b

Step 2 c

Step 3 d
Obtains the
performance scores

Step 4 e

Step 5 f Grades the students

Step 6 g

Step 7 h
Extracts the last
and first names

Step 8 i
Sorts by last and first names

www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 5 Advanced data management

 Firstname Lastname Math Science English score grade

6 Cheryl Cushing 512 85 28 0.35 C

1 John Davis 502 95 25 0.56 B

9 Joel England 573 89 27 0.70 B

4 David Jones 358 82 15 -1.16 F

8 Greg Knox 625 95 30 1.34 A

5 Janice Markhammer 495 75 20 -0.63 D

3 Bullwinkle Moose 412 80 18 -0.86 D

10 Mary Rayburn 522 86 18 -0.18 C

2 Angela Williams 600 99 22 0.92 A

7 Reuven Ytzrhak 410 80 15 -1.05 F

The code is dense, so let’s walk through the solution step by step.

 b The original student roster is given. options(digits=2) limits the number of

digits printed after the decimal place and makes the printouts easier to read:

> options(digits=2)

> roster

Student Math Science English

1 John Davis 502 95 25

2 Angela Williams 600 99 22

3 Bullwinkle Moose 412 80 18

4 David Jones 358 82 15

5 Janice Markhammer 495 75 20

6 Cheryl Cushing 512 85 28

7 Reuven Ytzrhak 410 80 15

8 Greg Knox 625 95 30

9 Joel England 573 89 27

10 Mary Rayburn 522 86 18

c Because the math, science, and English tests are reported on different scales (with

widely differing means and standard deviations), you need to make them comparable

before combining them. One way to do this is to standardize the variables so that each

test is reported in standard-deviation units, rather than in their original scales. You

can do this with the scale() function:

> z <- scale(roster[,2:4])

> z

 Math Science English

 [1,] 0.013 1.078 0.587

 [2,] 1.143 1.591 0.037

 [3,] -1.026 -0.847 -0.697

 [4,] -1.649 -0.590 -1.247

 [5,] -0.068 -1.489 -0.330

 [6,] 0.128 -0.205 1.137

 [7,] -1.049 -0.847 -1.247

 [8,] 1.432 1.078 1.504

 [9,] 0.832 0.308 0.954

[10,] 0.243 -0.077 -0.697

www.it-ebooks.info

http://www.it-ebooks.info/

103A solution for the data-management challenge

d You can then get a performance score for each student by calculating the row

means using the mean() function and adding them to the roster using the cbind()

function:

> score <- apply(z, 1, mean)
> roster <- cbind(roster, score)
> roster
 Student Math Science English score

1 John Davis 502 95 25 0.559

2 Angela Williams 600 99 22 0.924

3 Bullwinkle Moose 412 80 18 -0.857

4 David Jones 358 82 15 -1.162

5 Janice Markhammer 495 75 20 -0.629

6 Cheryl Cushing 512 85 28 0.353

7 Reuven Ytzrhak 410 80 15 -1.048

8 Greg Knox 625 95 30 1.338

9 Joel England 573 89 27 0.698

10 Mary Rayburn 522 86 18 -0.177

e The quantile() function gives you the percentile rank of each student’s perfor-

mance score. You see that the cutoff for an A is 0.74, for a B is 0.44, and so on:

> y <- quantile(roster$score, c(.8,.6,.4,.2))
> y
 80% 60% 40% 20%
 0.74 0.44 -0.36 -0.89

f Using logical operators, you can recode students’ percentile ranks into a new cate-

gorical grade variable. This code creates the variable grade in the roster data frame:

> roster$grade[score >= y[1]] <- "A"
> roster$grade[score < y[1] & score >= y[2]] <- "B"
> roster$grade[score < y[2] & score >= y[3]] <- "C"
> roster$grade[score < y[3] & score >= y[4]] <- "D"
> roster$grade[score < y[4]] <- "F"
> roster
 Student Math Science English score grade

1 John Davis 502 95 25 0.559 B

2 Angela Williams 600 99 22 0.924 A

3 Bullwinkle Moose 412 80 18 -0.857 D

4 David Jones 358 82 15 -1.162 F

5 Janice Markhammer 495 75 20 -0.629 D

6 Cheryl Cushing 512 85 28 0.353 C

7 Reuven Ytzrhak 410 80 15 -1.048 F

8 Greg Knox 625 95 30 1.338 A

9 Joel England 573 89 27 0.698 B

10 Mary Rayburn 522 86 18 -0.177 C

g You use the strsplit() function to break the student names into first name and last

name at the space character. Applying strsplit() to a vector of strings returns a list:

> name <- strsplit((roster$Student), " ")
> name

www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 5 Advanced data management

[[1]]

[1] "John" "Davis"

[[2]]

[1] "Angela" "Williams"

[[3]]

[1] "Bullwinkle" "Moose"

[[4]]

[1] "David" "Jones"

[[5]]

[1] "Janice" "Markhammer"

[[6]]

[1] "Cheryl" "Cushing"

[[7]]

[1] "Reuven" "Ytzrhak"

[[8]]

[1] "Greg" "Knox"

[[9]]

[1] "Joel" "England"

[[10]]

[1] "Mary" "Rayburn"

h You use the sapply() function to take the first element of each component and

put it in a Firstname vector, and the second element of each component and put it in

a Lastname vector. "[" is a function that extracts part of an object—here the first or

second component of the list name. You use cbind() to add these elements to the ros-

ter. Because you no longer need the student variable, you drop it (with the –1 in the

roster index):

> Firstname <- sapply(name, "[", 1)

> Lastname <- sapply(name, "[", 2)

> roster <- cbind(Firstname, Lastname, roster[,-1])

> roster

 Firstname Lastname Math Science English score grade

1 John Davis 502 95 25 0.559 B

2 Angela Williams 600 99 22 0.924 A

3 Bullwinkle Moose 412 80 18 -0.857 D

4 David Jones 358 82 15 -1.162 F

5 Janice Markhammer 495 75 20 -0.629 D

6 Cheryl Cushing 512 85 28 0.353 C

7 Reuven Ytzrhak 410 80 15 -1.048 F

8 Greg Knox 625 95 30 1.338 A

9 Joel England 573 89 27 0.698 B

10 Mary Rayburn 522 86 18 -0.177 C

www.it-ebooks.info

http://www.it-ebooks.info/

105Control flow

i Finally, you sort the dataset by first and last name using the order() function:

> roster[order(Lastname,Firstname),]

 Firstname Lastname Math Science English score grade

6 Cheryl Cushing 512 85 28 0.35 C

1 John Davis 502 95 25 0.56 B

9 Joel England 573 89 27 0.70 B

4 David Jones 358 82 15 -1.16 F

8 Greg Knox 625 95 30 1.34 A

5 Janice Markhammer 495 75 20 -0.63 D

3 Bullwinkle Moose 412 80 18 -0.86 D

10 Mary Rayburn 522 86 18 -0.18 C

2 Angela Williams 600 99 22 0.92 A

7 Reuven Ytzrhak 410 80 15 -1.05 F

Voilà! Piece of cake!

 There are many other ways to accomplish these tasks, but this code helps capture

the flavor of these functions. Now it’s time to look at control structures and user-

written functions.

5.4 Control flow

In the normal course of events, the statements in an R program are executed sequen-

tially from the top of the program to the bottom. But there are times that you’ll want

to execute some statements repetitively while executing other statements only if cer-

tain conditions are met. This is where control-flow constructs come in.

 R has the standard control structures you’d expect to see in a modern program-

ming language. First we’ll go through the constructs used for conditional execution,

followed by the constructs used for looping.

 For the syntax examples throughout this section, keep the following in mind:

■ statement is a single R statement or a compound statement (a group of R state-

ments enclosed in curly braces {} and separated by semicolons).
■ cond is an expression that resolves to TRUE or FALSE.
■ expr is a statement that evaluates to a number or character string.
■ seq is a sequence of numbers or character strings.

After we discuss control-flow constructs, you’ll learn how to write your own functions.

5.4.1 Repetition and looping

Looping constructs repetitively execute a statement or series of statements until a con-

dition isn’t true. These include the for and while structures.

FOR

The for loop executes a statement repetitively until a variable’s value is no longer con-

tained in the sequence seq. The syntax is

for (var in seq) statement

www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 5 Advanced data management

In this example

for (i in 1:10) print("Hello")

the word Hello is printed 10 times.

WHILE

A while loop executes a statement repetitively until the condition is no longer true.

The syntax is

while (cond) statement

In a second example, the code

i <- 10
while (i > 0) {print("Hello"); i <- i - 1}

once again prints the word Hello 10 times. Make sure the statements inside the brack-

ets modify the while condition so that sooner or later it’s no longer true—otherwise

the loop will never end! In the previous example, the statement

i <- i – 1

subtracts 1 from object i on each loop, so that after the tenth loop it’s no longer

larger than 0. If you instead added 1 on each loop, R would never stop saying hello.

This is why while loops can be more dangerous than other looping constructs.

 Looping in R can be inefficient and time consuming when you’re processing the

rows or columns of large datasets. Whenever possible, it’s better to use R’s built-in

numerical and character functions in conjunction with the apply family of functions.

5.4.2 Conditional execution

In conditional execution, a statement or statements are executed only if a specified

condition is met. These constructs include if-else, ifelse, and switch.

IF-ELSE

The if-else control structure executes a statement if a given condition is true.

Optionally, a different statement is executed if the condition is false. The syntax is

if (cond) statement
if (cond) statement1 else statement2

Here are some examples:

if (is.character(grade)) grade <- as.factor(grade)
if (!is.factor(grade)) grade <- as.factor(grade) else print("Grade already
 is a factor")

In the first instance, if grade is a character vector, it’s converted into a factor. In the

second instance, one of two statements is executed. If grade isn’t a factor (note the !

symbol), it’s turned into one. If it’s a factor, then the message is printed.

www.it-ebooks.info

http://www.it-ebooks.info/

107User-written functions

IFELSE

The ifelse construct is a compact and vectorized version of the if-else construct.

The syntax is

ifelse(cond, statement1, statement2)

The first statement is executed if cond is TRUE. If cond is FALSE, the second statement is

executed. Here are some examples:

ifelse(score > 0.5, print("Passed"), print("Failed"))
outcome <- ifelse (score > 0.5, "Passed", "Failed")

Use ifelse when you want to take a binary action or when you want to input and out-

put vectors from the construct.

SWITCH

switch chooses statements based on the value of an expression. The syntax is

switch(expr, ...)

where ... represents statements tied to the possible outcome values of expr. It’s easi-

est to understand how switch works by looking at the example in the following listing.

> feelings <- c("sad", "afraid")
> for (i in feelings)
 print(
 switch(i,
 happy = "I am glad you are happy",
 afraid = "There is nothing to fear",
 sad = "Cheer up",
 angry = "Calm down now"
)
)

[1] "Cheer up"
[1] "There is nothing to fear"

This is a silly example, but it shows the main features. You’ll learn how to use switch

in user-written functions in the next section.

5.5 User-written functions

One of R’s greatest strengths is the user’s ability to add functions. In fact, many of the

functions in R are functions of existing functions. The structure of a function looks

like this:

myfunction <- function(arg1, arg2, ...){
 statements

 return(object)
}

Objects in the function are local to the function. The object returned can be any data

type, from scalar to list. Let’s look at an example.

Listing 5.7 A switch example

www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 5 Advanced data management

 Say you’d like to have a function that calculates the central tendency and spread of

data objects. The function should give you a choice between parametric (mean and

standard deviation) and nonparametric (median and median absolute deviation) sta-

tistics. The results should be returned as a named list. Additionally, the user should

have the choice of automatically printing the results or not. Unless otherwise speci-

fied, the function’s default behavior should be to calculate parametric statistics and

not print the results. One solution is given in the following listing.

mystats <- function(x, parametric=TRUE, print=FALSE) {
 if (parametric) {
 center <- mean(x); spread <- sd(x)
 } else {
 center <- median(x); spread <- mad(x)
 }
 if (print & parametric) {
 cat("Mean=", center, "\n", "SD=", spread, "\n")
 } else if (print & !parametric) {
 cat("Median=", center, "\n", "MAD=", spread, "\n")
 }
 result <- list(center=center, spread=spread)
 return(result)
}

To see this function in action, first generate some data (a random sample of size 500

from a normal distribution):

set.seed(1234)
x <- rnorm(500)

After executing the statement

y <- mystats(x)

y$center contains the mean (0.00184) and y$spread contains the standard deviation

(1.03). No output is produced. If you execute the statement

y <- mystats(x, parametric=FALSE, print=TRUE)

y$center contains the median (–0.0207) and y$spread contains the median absolute

deviation (1.001). In addition, the following output is produced:

Median= -0.0207
MAD= 1

Next, let’s look at a user-written function that uses the switch construct. This function

gives the user a choice regarding the format of today’s date. Values that are assigned

to parameters in the function declaration are taken as defaults. In the mydate() func-

tion, long is the default format for dates if type isn’t specified:

mydate <- function(type="long") {
 switch(type,
 long = format(Sys.time(), "%A %B %d %Y"),

Listing 5.8 mystats(): a user-written function for summary statistics

www.it-ebooks.info

http://www.it-ebooks.info/

109Aggregation and reshaping

 short = format(Sys.time(), "%m-%d-%y"),
 cat(type, "is not a recognized type\n")
)
}

Here’s the function in action:

> mydate("long")
[1] "Monday July 14 2014"
> mydate("short")
[1] "07-14-14"
> mydate()
[1] "Monday July 14 2014"
> mydate("medium")
medium is not a recognized type

Note that the cat() function is executed only if the entered type doesn’t match

"long" or "short". It’s usually a good idea to have an expression that catches user-

supplied arguments that have been entered incorrectly.

 Several functions are available that can help add error trapping and correction to

your functions. You can use the function warning() to generate a warning message,

message() to generate a diagnostic message, and stop() to stop execution of the cur-

rent expression and carry out an error action. Error trapping and debugging are dis-

cussed more fully in section 20.5.

 After creating your own functions, you may want to make them available in every

session. Appendix B describes how to customize the R environment so that user-

written functions are loaded automatically at startup. We’ll look at additional exam-

ples of user-written functions in chapters 6 and 8.

 You can accomplish a great deal using the basic techniques provided in this sec-

tion. Control flow and other programming topics are covered in greater detail in

chapter 20. Creating a package is covered in chapter 21. If you’d like to explore the

subtleties of function writing, or you want to write professional-level code that you can

distribute to others, I recommend reading these two chapters and then reviewing two

excellent books that you’ll find in the References section at the end of this book: Ven-

ables & Ripley (2000) and Chambers (2008). Together, they provide a significant level

of detail and breadth of examples.

 Now that we’ve covered user-written functions, we’ll end this chapter with a discus-

sion of data aggregation and reshaping.

5.6 Aggregation and reshaping

R provides a number of powerful methods for aggregating and reshaping data. When

you aggregate data, you replace groups of observations with summary statistics based on

those observations. When you reshape data, you alter the structure (rows and columns)

determining how the data is organized. This section describes a variety of methods for

accomplishing these tasks.

 In the next two subsections, we’ll use the mtcars data frame that’s included with

the base installation of R. This dataset, extracted from Motor Trend magazine (1974),

www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 5 Advanced data management

describes the design and performance characteristics (number of cylinders, displace-

ment, horsepower, mpg, and so on) for 34 automobiles. To learn more about the data-

set, see help(mtcars).

5.6.1 Transpose

Transposing (reversing rows and columns) is perhaps the simplest method of reshap-

ing a dataset. Use the t() function to transpose a matrix or a data frame. In the latter

case, row names become variable (column) names. An example is presented in the

next listing.

> cars <- mtcars[1:5,1:4]

> cars

 mpg cyl disp hp

Mazda RX4 21.0 6 160 110

Mazda RX4 Wag 21.0 6 160 110

Datsun 710 22.8 4 108 93

Hornet 4 Drive 21.4 6 258 110

Hornet Sportabout 18.7 8 360 175

> t(cars)

 Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout

mpg 21 21 22.8 21.4 18.7

cyl 6 6 4.0 6.0 8.0

disp 160 160 108.0 258.0 360.0

hp 110 110 93.0 110.0 175.0

Listing 5.9 uses a subset of the mtcars dataset in order to conserve space on the page.

You’ll see a more flexible way of transposing data when we look at the reshape2 pack-

age later in this section.

5.6.2 Aggregating data

It’s relatively easy to collapse data in R using one or more by variables and a defined

function. The format is

aggregate(x, by, FUN)

where x is the data object to be collapsed, by is a list of variables that will be crossed to

form the new observations, and FUN is the scalar function used to calculate summary

statistics that will make up the new observation values.

 As an example, let’s aggregate the mtcars data by number of cylinders and gears,

returning means for each of the numeric variables.

> options(digits=3)
> attach(mtcars)
> aggdata <-aggregate(mtcars, by=list(cyl,gear), FUN=mean, na.rm=TRUE)
> aggdata

Listing 5.9 Transposing a dataset

Listing 5.10 Aggregating data

www.it-ebooks.info

http://www.it-ebooks.info/

111Aggregation and reshaping

 Group.1 Group.2 mpg cyl disp hp drat wt qsec vs am gear carb
1 4 3 21.5 4 120 97 3.70 2.46 20.0 1.0 0.00 3 1.00
2 6 3 19.8 6 242 108 2.92 3.34 19.8 1.0 0.00 3 1.00
3 8 3 15.1 8 358 194 3.12 4.10 17.1 0.0 0.00 3 3.08
4 4 4 26.9 4 103 76 4.11 2.38 19.6 1.0 0.75 4 1.50
5 6 4 19.8 6 164 116 3.91 3.09 17.7 0.5 0.50 4 4.00
6 4 5 28.2 4 108 102 4.10 1.83 16.8 0.5 1.00 5 2.00
7 6 5 19.7 6 145 175 3.62 2.77 15.5 0.0 1.00 5 6.00
8 8 5 15.4 8 326 300 3.88 3.37 14.6 0.0 1.00 5 6.00

In these results, Group.1 represents the number of cylinders (4, 6, or 8), and Group.2

represents the number of gears (3, 4, or 5). For example, cars with 4 cylinders and 3

gears have a mean of 21.5 miles per gallon (mpg).

 When you’re using the aggregate() function, the by variables must be in a list

(even if there’s only one). You can declare a custom name for the groups from within

the list, for instance, using by=list(Group.cyl=cyl, Group.gears=gear). The func-

tion specified can be any built-in or user-provided function. This gives the aggregate

command a great deal of power. But when it comes to power, nothing beats the

reshape2 package.

5.6.3 The reshape2 package

The reshape2 package is a tremendously versatile approach to both restructuring and

aggregating datasets. Because of this versatility, it can be a bit challenging to learn.

We’ll go through the process slowly and use a small dataset so it’s clear what’s happen-

ing. Because reshape2 isn’t included in the standard installation of R, you’ll need to

install it one time, using install.packages("reshape2").

 Basically, you melt data so that each row is a unique ID-variable combination. Then

you cast the melted data into any shape you desire. During the cast, you can aggregate

the data with any function you wish. The dataset you’ll be working with is shown in

table 5.8.

In this dataset, the measurements are the values in the last two columns (5, 6, 3, 5, 6, 1,

2, and 4). Each measurement is uniquely identified by a combination of ID variables

(in this case ID, Time, and whether the measurement is on X1 or X2). For example,

the measured value 5 in the first row is uniquely identified by knowing that it’s from

observation (ID) 1, at Time 1, and on variable X1.

Table 5.8 The original dataset (mydata)

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 5 Advanced data management

MELTING

When you melt a dataset, you restructure it into a format in which each measured vari-

able is in its own row along with the ID variables needed to uniquely identify it. If you

melt the data from table 5.8 using the following code, you end up with the structure

shown in table 5.9.

library(reshape2)
md <- melt(mydata, id=c("ID", "Time"))

Note that you must specify the variables needed to uniquely identify each measure-

ment (ID and Time) and that the variable indicating the measurement variable names

(X1 or X2) is created for you automatically.

 Now that you have your data in a melted form, you can recast it into any shape,

using the dcast() function.

CASTING

The dcast() function starts with a melted data frame and reshapes it into a new data

frame using a formula that you provide and an (optional) function used to aggregate

the data. The format is

newdata <- dcast(md, formula, fun.aggregate)

where md is the melted data, formula describes the desired end result, and

fun.aggregate is the (optional) aggregating function. The formula takes the form

rowvar1 + rowvar2 + ... ~ colvar1 + colvar2 + ...

In this formula, rowvar1 + rowvar2 + ... defines the set of crossed variables that

defines the rows, and colvar1 + colvar2 + ... defines the set of crossed variables

that defines the columns. See the examples in figure 5.1.

 Because the formulas on the right side (d, e, and f) don’t include a function, the

data is reshaped. In contrast, the examples on the left side (a, b, and c) specify the

Table 5.9 The melted dataset

ID Time variable value

1 1 X1 5

1 2 X1 3

2 1 X1 6

2 2 X1 2

1 1 X2 6

1 2 X2 5

2 1 X2 1

2 2 X2 4

www.it-ebooks.info

http://www.it-ebooks.info/

113Summary

mean as an aggregating function. Thus the data is not only reshaped but aggregated

as well. For example, example a gives the means on X1 and X2 averaged over time for

each observation. Example b gives the mean scores of X1 and X2 at Time 1 and Time

2, averaged over observations. In example c, you have the mean score for each obser-

vation at Time 1 and Time 2, averaged over X1 and X2.

 As you can see, the flexibility provided by the melt() and dcast() functions is

amazing. There are many times when you’ll have to reshape or aggregate data prior to

analysis. For example, you’ll typically need to place your data in what’s called long for-

mat, resembling table 5.9, when analyzing repeated-measures data (data where multi-

ple measures are recorded for each observation). See section 9.6 for an example.

5.7 Summary

This chapter reviewed dozens of mathematical, statistical, and probability functions

that are useful for manipulating data. You saw how to apply these functions to a wide

range of data objects including vectors, matrices, and data frames. You learned to use

control-flow constructs for looping and branching to execute some statements repeti-

tively and execute other statements only when certain conditions are met. You then

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

ID Time variable value

1 1 X1 5

1 2 X1 3

2 1 X1 6

2 2 X1 2

1 1 X2 6

1 2 X2 5

2 1 X2 1

2 2 X2 4

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

ID variable Time1 Time 2

1 X1 5 3

1 X2 6 5

2 X1 6 2

2 X2 1 4

ID X1
Time1

X1
Time2

X2
Time1

X2
Time2

1 5 3 6 5

2 6 2 1 4

ID X1 X2

1 4 5.5

2 4 2.5

Time X1 X2

1 5.5 3.5

2 2.5 4.5

ID Time1 Time2

1 5.5 4

2 3.5 3

With aggregation Without aggregation

dcast(md, ID+Time~variable)

dcast(md, ID+variable~Time)

dcast(md, ID~variable+Time)

dcast(md, ID~variable, mean)

dcast(md, Time~variable, mean)

dcast(md, ID~Time, mean)

md <- melt(mydata, ID=c("ID", "Time"))

Reshaping a dataset

(c)

(b)

(a)

(e)

(f)

mydata

(d)

Figure 5.1 Reshaping data with the melt() and dcast() functions

www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 5 Advanced data management

had a chance to write your own functions and apply them to data. Finally, we explored

ways of collapsing, aggregating, and restructuring data.

 Now that you’ve gathered the tools you need to get your data into shape (no pun

intended), you’re ready to bid part 1 goodbye and enter the exciting world of data

analysis! In upcoming chapters, we’ll begin to explore the many statistical and graphi-

cal methods available for turning data into information.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Basic methods

In part 1, we explored the R environment and discussed how to input data

from a wide variety of sources, combine and transform it, and prepare it for fur-

ther analyses. Once your data has been input and cleaned up, the next step is

typically to explore the variables one at a time. This provides you with informa-

tion about the distribution of each variable, which is useful in understanding the

characteristics of the sample, identifying unexpected or problematic values, and

selecting appropriate statistical methods. Next, variables are typically studied two

at a time. This can help you to uncover basic relationships among variables and

is a useful first step in developing more complex models.

 Part 2 focuses on graphical and statistical techniques for obtaining basic infor-

mation about data. Chapter 6 describes methods for visualizing the distribution of

individual variables. For categorical variables, this includes bar plots, pie charts,

and the newer fan plot. For numeric variables, this includes histograms, density

plots, box plots, dot plots, and the less well-known violin plot. Each type of graph

is useful for understanding the distribution of a single variable.

 Chapter 7 describes statistical methods for summarizing individual variables

and bivariate relationships. The chapter starts with coverage of descriptive statis-

tics for numerical data based on the dataset as a whole and on subgroups of inter-

est. Next, the use of frequency tables and cross-tabulations for summarizing

categorical data is described. The chapter ends by discussing basic inferential

methods for understanding relationships between two variables at a time, includ-

ing bivariate correlations, chi-square tests, t-tests, and nonparametric methods.

 When you have finished this part of the book, you’ll be able to use basic

graphical and statistical methods available in R to describe your data, explore

group differences, and identify significant relationships among variables.

www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER

www.it-ebooks.info

http://www.it-ebooks.info/

117

Basic graphs

Whenever we analyze data, the first thing we should do is look at it. For each vari-

able, what are the most common values? How much variability is present? Are there

any unusual observations? R provides a wealth of functions for visualizing data. In

this chapter, we’ll look at graphs that help you understand a single categorical or

continuous variable. This topic includes

■ Visualizing the distribution of a variable
■ Comparing groups on an outcome variable

In both cases, the variable can be continuous (for example, car mileage as miles

per gallon) or categorical (for example, treatment outcome as none, some, or

marked). In later chapters, we’ll explore graphs that display bivariate and multivar-

iate relationships among variables.

 The following sections explore the use of bar plots, pie charts, fan charts, histo-

grams, kernel density plots, box plots, violin plots, and dot plots. Some of these may

This chapter covers

■ Bar, box, and dot plots

■ Pie and fan charts

■ Histograms and kernel density plots

www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 6 Basic graphs

be familiar to you, whereas others (such as fan plots or violin plots) may be new to

you. The goal, as always, is to understand your data better and to communicate this

understanding to others. Let’s start with bar plots.

6.1 Bar plots

A bar plot displays the distribution (frequency) of a categorical variable through verti-

cal or horizontal bars. In its simplest form, the format of the barplot() function is

barplot(height)

where height is a vector or matrix.

 In the following examples, you’ll plot the outcome of a study investigating a new

treatment for rheumatoid arthritis. The data are contained in the Arthritis data

frame distributed with the vcd package. This package isn’t included in the default R

installation, so install it before first use (install.packages("vcd")).

 Note that the vcd package isn’t needed to create bar plots. You’re loading it in

order to gain access to the Arthritis dataset. But you’ll need the vcd package when

creating spinograms, which are described in section 6.1.5.

6.1.1 Simple bar plots

If height is a vector, the values determine the heights of the bars in the plot, and a ver-

tical bar plot is produced. Including the option horiz=TRUE produces a horizontal bar

chart instead. You can also add annotating options. The main option adds a plot title,

whereas the xlab and ylab options add x-axis and y-axis labels, respectively.

 In the Arthritis study, the variable Improved records the patient outcomes for indi-

viduals receiving a placebo or drug:

> library(vcd)
> counts <- table(Arthritis$Improved)
> counts
 None Some Marked
 42 14 28

Here, you see that 28 patients showed marked improvement, 14 showed some

improvement, and 42 showed no improvement. We’ll discuss the use of the table()

function to obtain cell counts more fully in chapter 7.

 You can graph the variable counts using a vertical or horizontal bar plot. The code

is provided in the following listing, and the resulting graphs are displayed in figure 6.1.

barplot(counts,
 main="Simple Bar Plot",
 xlab="Improvement", ylab="Frequency")
barplot(counts,
 main="Horizontal Bar Plot",
 xlab="Frequency", ylab="Improvement",
 horiz=TRUE)

Listing 6.1 Simple bar plots

Simple bar plot

Horizontal bar plot

www.it-ebooks.info

http://www.it-ebooks.info/

119Bar plots

What happens if you have long labels? In section 6.1.4, you’ll see how to tweak labels

so that they don’t overlap.

6.1.2 Stacked and grouped bar plots

If height is a matrix rather than a vector, the resulting graph will be a stacked or

grouped bar plot. If beside=FALSE (the default), then each column of the matrix pro-

duces a bar in the plot, with the values in the column giving the heights of stacked

“sub-bars.” If beside=TRUE, each column of the matrix represents a group, and the val-

ues in each column are juxtaposed rather than stacked.

 Consider the cross-tabulation of treatment type and improvement status:

> library(vcd)
> counts <- table(Arthritis$Improved, Arthritis$Treatment)
> counts
 Treatment
Improved Placebo Treated
 None 29 13
 Some 7 7
 Marked 7 21

Creating bar plots with factor variables

If the categorical variable to be plotted is a factor or ordered factor, you can create a
vertical bar plot quickly with the plot() function. Because Arthritis$Improved is
a factor, the code

plot(Arthritis$Improved, main="Simple Bar Plot",
 xlab="Improved", ylab="Frequency")
plot(Arthritis$Improved, horiz=TRUE, main="Horizontal Bar Plot",
 xlab="Frequency", ylab="Improved")

will generate the same bar plots as those in listing 6.1, but without the need to tabulate
values with the table() function.

None Some Marked

Simple Bar Plot

Improvement

F
re

q
u

e
n

c
y

0
1
0

2
0

3
0

4
0

N
o
n
e

S
o
m

e
M

a
rk

e
d

Horizontal Bar Plot

Frequency

Im
p

ro
v
e

m
e

n
t

0 10 20 30 40

Figure 6.1 Simple

vertical and horizontal

bar charts

www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 6 Basic graphs

You can graph the results as either a stacked or a grouped bar plot (see the next list-

ing). The resulting graphs are displayed in figure 6.2.

barplot(counts,
 main="Stacked Bar Plot",
 xlab="Treatment", ylab="Frequency",
 col=c("red", "yellow","green"),
 legend=rownames(counts))
barplot(counts,
 main="Grouped Bar Plot",
 xlab="Treatment", ylab="Frequency",
 col=c("red", "yellow", "green"),
 legend=rownames(counts), beside=TRUE)

The first barplot() function produces a stacked bar plot, whereas the second pro-
duces a grouped bar plot. We’ve also added the col option to add color to the bars
plotted. The legend.text parameter provides bar labels for the legend (which are
only useful when height is a matrix).

 In chapter 3, we covered ways to format and place the legend to maximum benefit.
See if you can rearrange the legend to avoid overlap with the bars.

6.1.3 Mean bar plots

Bar plots needn’t be based on counts or frequencies. You can create bar plots that rep-
resent means, medians, standard deviations, and so forth by using the aggregate func-
tion and passing the results to the barplot() function. The following listing shows an
example, which is displayed in figure 6.3.

> states <- data.frame(state.region, state.x77)
> means <- aggregate(states$Illiteracy, by=list(state.region), FUN=mean)
> means

Listing 6.2 Stacked and grouped bar plots

Listing 6.3 Bar plot for sorted mean values

Stacked bar plot

Grouped bar plot

Placebo Treated

Marked
Some
None

Stacked Bar Plot

Treatment

F
re

q
u

e
n

c
y

0
1

0
2
0

3
0

4
0

Placebo Treated

None
Some
Marked

Grouped Bar Plot

Treatment

F
re

q
u

e
n

c
y

0
5

1
0

1
5

2
0

2
5

Figure 6.2

Stacked and

grouped bar plots

www.it-ebooks.info

http://www.it-ebooks.info/

121Bar plots

 Group.1 x
1 Northeast 1.00
2 South 1.74
3 North Central 0.70
4 West 1.02
> means <- means[order(means$x),]
> means
 Group.1 x
3 North Central 0.70
1 Northeast 1.00
4 West 1.02
2 South 1.74
> barplot(means$x, names.arg=means$Group.1)
> title("Mean Illiteracy Rate")

Listing 6.3 sorts the means from smallest to

largest b. Also note that using the

title() function c is equivalent to add-
ing the main option in the plot call.

means$x is the vector containing the

heights of the bars, and the option
names.arg=means$Group.1 is added to

provide labels.

 You can take this example further. The

bars can be connected with straight-line
segments using the lines() function. You

can also create mean bar plots with super-

imposed confidence intervals using the
barplot2() function in the gplots pack-

age. See help(barplot2) for examples.

6.1.4 Tweaking bar plots

There are several ways to tweak the appearance of a bar plot. For example, with many
bars, bar labels may start to overlap. You can decrease the font size using the
cex.names option. Specifying values smaller than 1 will shrink the size of the labels.
Optionally, the names.arg argument allows you to specify a character vector of names
used to label the bars. You can also use graphical parameters to help text spacing. An
example is given in the following listing, with the output displayed in figure 6.4.

par(mar=c(5,8,4,2))
par(las=2)
counts <- table(Arthritis$Improved)
barplot(counts,
 main="Treatment Outcome",
 horiz=TRUE,
 cex.names=0.8,
 names.arg=c("No Improvement", "Some Improvement",
 "Marked Improvement"))

Listing 6.4 Fitting labels in a bar plot

Sorts means, smallest to largestb

Adds titlec

North Central Northeast West South

0
.0

0
.5

1
.0

1
.5

Mean Illiteracy Rate

Figure 6.3 Bar plot of mean illiteracy rates for

US regions sorted by rate

Increases the size of the y margin
Rotates the
FL bar labels

Decreases the font size in order
to fit the labels comfortably

Changes the label text

www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 6 Basic graphs

The par() function allows you to make extensive modifications to the graphs that R

produces by default. See chapter 3 for more details.

6.1.5 Spinograms

Before finishing our discussion of bar plots, let’s take a look at a specialized version

called a spinogram. In a spinogram, a stacked bar plot is rescaled so that the height of

each bar is 1 and the segment heights represent proportions. Spinograms are created

through the spine() function of the vcd package. The following code produces a sim-

ple spinogram:

library(vcd)
attach(Arthritis)
counts <- table(Treatment, Improved)
spine(counts, main="Spinogram Example")
detach(Arthritis)

The output is provided in

figure 6.5. The larger per-

centage of patients with

marked improvement in

the Treated condition is

quite evident when com-

pared with the Placebo

condition.

 In addition to bar plots,

pie charts are a popular

vehicle for displaying the

distribution of a categori-

cal variable. We’ll consider

them next.

Figure 6.5 Spinogram of arthritis

treatment outcome

Marked Improvement

Some Improvement

No Improvement

Treatment Outcome

0

1
0

2
0

3
0

4
0

Figure 6.4 Horizontal

bar plot with tweaked

labels

Placebo Treated

N
o

n
e

S
o

m
e

M
a
rk

e
d

0

0.2

0.4

0.6

0.8

1

Treatment

Im
p

ro
v
e

d

Spinogram Example

www.it-ebooks.info

http://www.it-ebooks.info/

123Pie charts

6.2 Pie charts

Whereas pie charts are ubiquitous in the business world, they’re denigrated by most
statisticians, including the authors of the R documentation. They recommend bar or

dot plots over pie charts because people are able to judge length more accurately than

volume. Perhaps for this reason, the pie chart options in R are limited when com-
pared with other statistical software.

 Pie charts are created with the function

pie(x, labels)

where x is a non-negative numeric vector indicating the area of each slice and labels

provides a character vector of slice labels. Four examples are given in the next listing;

the resulting plots are provided in figure 6.6.

par(mfrow=c(2, 2))
slices <- c(10, 12,4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pie(slices, labels = lbls,
 main="Simple Pie Chart")

pct <- round(slices/sum(slices)*100)
lbls2 <- paste(lbls, " ", pct, "%", sep="")
pie(slices, labels=lbls2, col=rainbow(length(lbls2)),
 main="Pie Chart with Percentages")

Listing 6.5 Pie charts

US

UK

Australia

Germany

France

Simple Pie Chart

US 20%

UK 24%

Australia 8%

Germany 32%

France 16%

Pie Chart with Percentages

3D Pie Chart

US
UK

Australia

Germany
France

Northeast
9

South
16

North Central
12

West
13

Pie Chart from a Table
 (with sample sizes)

Figure 6.6 Pie chart examples

Combines four
graphs into oneb

Adds percentages
to the pie chart

c

www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 6 Basic graphs

library(plotrix)
pie3D(slices, labels=lbls,explode=0.1,
 main="3D Pie Chart ")
mytable <- table(state.region)
lbls3 <- paste(names(mytable), "\n", mytable, sep="")
pie(mytable, labels = lbls3,
 main="Pie Chart from a Table\n (with sample sizes)")

First you set up the plot so that four graphs are combined into one b. (Combining

multiple graphs is covered in chapter 3.) Then you input the data that will be used for

the first three graphs.

 For the second pie chart c, you convert the sample sizes to percentages and add

the information to the slice labels. The second pie chart also defines the colors of the

slices using the rainbow() function, described in chapter 3. Here rain-

bow(length(lbls2)) resolves to rainbow(5), providing five colors for the graph.

 The third pie chart is a 3D chart created using the pie3D() function from the

plotrix package. Be sure to download and install this package before using it for the

first time. If statisticians dislike pie charts, they positively despise 3D pie charts

(although they may secretly find them pretty). This is because the 3D effect adds no

additional insight into the data and is considered distracting eye candy.

 The fourth pie chart demonstrates how to create a chart from a table d. In this

case, you count the number of states by US region and append the information to the

labels before producing the plot.

 Pie charts make it difficult to compare the values of the slices (unless the values are

appended to the labels). For example, looking at the simple pie chart, can you tell

how the US compares to Germany? (If you can, you’re more perceptive than I am.) In

an attempt to improve on this situation, a variation of the pie chart, called a fan plot,

has been developed. The fan plot (Lemon & Tyagi, 2009) provides you with a way to

display both relative quantities and differences. In R, it’s implemented through the

fan.plot() function in the plotrix package.

 Consider the following code and the resulting graph (figure 6.7):

library(plotrix)
slices <- c(10, 12,4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
fan.plot(slices, labels = lbls, main="Fan Plot")

In a fan plot, the slices are rearranged to over-

lap each other, and the radii are modified so

that each slice is visible. Here you can see that

Germany is the largest slice and that the US

slice is roughly 60% as large. France appears

to be half as large as Germany and twice as

large as Australia. Remember that the width of

the slice and not the radius is what’s impor-

tant here.

Creates a chart
from the table

d

Fan Plot

Germany

UK
USFrance

Australia

Figure 6.7 A fan plot of the country data

www.it-ebooks.info

http://www.it-ebooks.info/

125Histograms

 As you can see, it’s much easier to determine the relative sizes of the slice in a fan

plot than in a pie chart. Fan plots haven’t caught on yet, but they’re new.

 Now that we’ve covered pie and fan charts, let’s move on to histograms. Unlike bar

plots and pie charts, histograms describe the distribution of a continuous variable.

6.3 Histograms

Histograms display the distribution of a continuous variable by dividing the range of

scores into a specified number of bins on the x-axis and displaying the frequency of

scores in each bin on the y-axis. You can create histograms with the function

hist(x)

where x is a numeric vector of values. The option freq=FALSE creates a plot based on

probability densities rather than frequencies. The breaks option controls the number

of bins. The default produces equally spaced breaks when defining the cells of the his-

togram. The following listing provides the code for four variations of a histogram; the

results are plotted in figure 6.8.

par(mfrow=c(2,2))

hist(mtcars$mpg)

hist(mtcars$mpg,
 breaks=12,
 col="red",
 xlab="Miles Per Gallon",
 main="Colored histogram with 12 bins")

hist(mtcars$mpg,
 freq=FALSE,
 breaks=12,
 col="red",
 xlab="Miles Per Gallon",
 main="Histogram, rug plot, density curve")
rug(jitter(mtcars$mpg))
lines(density(mtcars$mpg), col="blue", lwd=2)

x <- mtcars$mpg
h<-hist(x,
 breaks=12,
 col="red",
 xlab="Miles Per Gallon",
 main="Histogram with normal curve and box")
xfit<-seq(min(x), max(x), length=40)
yfit<-dnorm(xfit, mean=mean(x), sd=sd(x))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)
box()

Listing 6.6 Histograms

Simple histogramb

With specified
bins and color

c

With a rug plotd

With a normal
curve and frame

e

www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 6 Basic graphs

The first histogram b demonstrates the default plot when no options are specified. In

this case, five bins are created, and the default axis labels and titles are printed. For

the second histogram c, you specified 12 bins, a red fill for the bars, and more attrac-

tive and informative labels and title.

 The third histogram d maintains the same colors, bins, labels, and titles as the

previous plot but adds a density curve and rug-plot overlay. The density curve is a ker-

nel density estimate and is described in the next section. It provides a smoother

description of the distribution of scores. You use the lines() function to overlay this

curve in a blue color and a width that’s twice the default thickness for lines. Finally, a

rug plot is a one-dimensional representation of the actual data values. If there are

many tied values, you can jitter the data on the rug plot using code like the following:

rug(jitter(mtcars$mpag, amount=0.01))

This adds a small random value to each data point (a uniform random variate

between ±amount), in order to avoid overlapping points.

 The fourth histogram e is similar to the second but has a superimposed normal

curve and a box around the figure. The code for superimposing the normal curve

Histogram of mtcars$mpg

mtcars$mpg

F
re

q
u

e
n

c
y

10 15 20 25 30 35

0
2

4
6

8
1
0

1
2

Colored histogram with 12 bins

Miles Per Gallon

F
re

q
u
e
n
c
y

10 15 20 25 30

0
1

2
3

4
5

6
7

Histogram, rug plot, density curve

Miles Per Gallon

D
e

n
s
it
y

10 15 20 25 30

0
.0

0
0

.0
4

0
.0

8

Histogram with normal curve and box

Miles Per Gallon

F
re

q
u

e
n

c
y

10 15 20 25 30

0
1

2
3

4
5

6
7

Figure 6.8 Histogram examples

www.it-ebooks.info

http://www.it-ebooks.info/

127Kernel density plots

comes from a suggestion posted to the R-help mailing list by Peter Dalgaard. The sur-

rounding box is produced by the box() function.

6.4 Kernel density plots

In the previous section, you saw a kernel density plot superimposed on a histogram.

Technically, kernel density estimation is a nonparametric method for estimating the

probability density function of a random variable. Although the mathematics are

beyond the scope of this text, in general, kernel density plots can be an effective way

to view the distribution of a continuous variable. The format for a density plot (that’s

not being superimposed on another graph) is

plot(density(x))

where x is a numeric vector. Because the plot() function begins a new graph, use the

lines() function (listing 6.6) when superimposing a density curve on an existing

graph. Two kernel density examples are given in the next listing, and the results are

plotted in figure 6.9.

par(mfrow=c(2,1))
d <- density(mtcars$mpg)

plot(d)

d <- density(mtcars$mpg)
plot(d, main="Kernel Density of Miles Per Gallon")
polygon(d, col="red", border="blue")
rug(mtcars$mpg, col="brown")

The polygon() function

draws a polygon whose ver-

tices are given by x and y.

These values are provided

by the density() function

in this case.

 Kernel density plots can

be used to compare groups.

This is a highly underuti-

lized approach, probably

due to a general lack of eas-

ily accessible software. For-

tunately, the sm package

fills this gap nicely.

Figure 6.9 Kernel density plots

Listing 6.7 Kernel density plots

Creates the minimal graph
with all the defaults in place

Adds a title

Colors the curve blue and fills the
area under the curve with solid red

Adds a
brown rug

10 20 30 40

0
.0

0
0

.0
3

0
.0

6

density.default(x = mtcars$mpg)

N = 32 Bandwidth = 2.477

D
e

n
s
it
y

D
e

n
s
it
y

10 20 30 40

0
.0

0
0
.0

3
0

.0
6

Kernel Density of Miles Per Gallon

N = 32 Bandwidth = 2.477

www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 6 Basic graphs

 The sm.density.compare() function in the sm package allows you to superimpose

the kernel density plots of two or more groups. The format is

sm.density.compare(x, factor)

where x is a numeric vector and factor is a grouping variable. Be sure to install the sm

package before first use. An example comparing the mpg of cars with four, six, and

eight cylinders is provided in the following listing.

library(sm)
attach(mtcars)

cyl.f <- factor(cyl, levels= c(4,6,8),
 labels = c("4 cylinder", "6 cylinder",
 "8 cylinder"))

sm.density.compare(mpg, cyl, xlab="Miles Per Gallon")
title(main="MPG Distribution by Car Cylinders")

colfill<-c(2:(1+length(levels(cyl.f))))
legend(locator(1), levels(cyl.f), fill=colfill)

detach(mtcars)

First, the sm package is loaded and the mtcars data frame is attached. In the mtcars data

frame b, the variable cyl is a numeric variable coded 4, 6, or 8. cyl is transformed into

a factor named cyl.f, in order

to provide value labels for the

plot. The sm.density.compare()

function creates the plot c, and

a title() statement adds a main

title.

 Finally, you add a legend to

improve interpretability d.

(Legends are covered in chapter

3.) A vector of colors is created;

here, colfill is c(2,3,4).

Then the legend is added to the

plot via the legend() function.

The locator(1) option indi-

cates that you’ll place the legend

interactively by clicking in the

graph where you want the leg-

end to appear. The second

option provides a character vec-

Listing 6.8 Comparative kernel density plots

Creates a
grouping factor

b

Plots the densitiesc

Adds a legend
via mouse click

d

5 10 15 20 25 30 35 40

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Miles Per Gallon

D
e

n
s
it
y

MPG Distribution by Car Cylinders

4 cylinder
6 cylinder
8 cylinder

Figure 6.10 Kernel density plots of mpg by number of

cylinders

www.it-ebooks.info

http://www.it-ebooks.info/

129Box plots

tor of the labels. The third option assigns a color from the vector colfill to each

level of cyl.f. The results are displayed in figure 6.10.

 Overlapping kernel density plots can be a powerful way to compare groups of

observations on an outcome variable. Here you can see both the shapes of the distri-

bution of scores for each group and the amount of overlap between groups. (The

moral of the story is that my next car will have four cylinders—or a battery.)

 Box plots are also a wonderful (and more commonly used) graphical approach to

visualizing distributions and differences among groups. We’ll discuss them next.

6.5 Box plots

A box-and-whiskers plot describes

the distribution of a continuous

variable by plotting its five-num-
ber summary: the minimum,

lower quartile (25th percentile),

median (50th percentile), upper
quartile (75th percentile), and

maximum. It can also display

observations that may be outliers

(values outside the range of
± 1.5*IQR, where IQR is the inter-

quartile range defined as the

upper quartile minus the lower
quartile). For example, this state-

ment produces the plot shown in

figure 6.11:

boxplot(mtcars$mpg, main="Box plot", ylab="Miles per Gallon")

I added annotations by hand to illustrate the components.

 By default, each whisker extends to the most extreme data point, which is no more

than 1.5 times the interquartile range for the box. Values outside this range are
depicted as dots (not shown here).

 For example, in the sample of cars, the median mpg is 19.2, 50% of the scores fall

between 15.3 and 22.8, the smallest value is 10.4, and the largest value is 33.9. How did
I read this so precisely from the graph? Issuing boxplot.stats(mtcars$mpg) prints

the statistics used to build the graph (in other words, I cheated). There don’t appear

to be any outliers, and there is a mild positive skew (the upper whisker is longer than
the lower whisker).

6.5.1 Using parallel box plots to compare groups

Box plots can be created for individual variables or for variables by group. The

format is

boxplot(formula, data=dataframe)

Box plot

M
ile

s
 P

e
r

G
a

llo
n

Figure 6.11 Box plot with annotations added by hand

www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 6 Basic graphs

where formula is a formula and dataframe denotes the data frame (or list) providing

the data. An example of a formula is y ~ A, where a separate box plot for numeric

variable y is generated for each value of categorical variable A. The formula y ~ A*B

would produce a box plot of numeric variable y, for each combination of levels in cat-

egorical variables A and B.

 Adding the option varwidth=TRUE makes the box-plot widths proportional to the

square root of their sample sizes. Add horizontal=TRUE to reverse the axis orientation.

 The following code revisits the impact of four, six, and eight cylinders on auto mpg

with parallel box plots. The plot is provided in figure 6.12:

boxplot(mpg ~ cyl, data=mtcars,
 main="Car Mileage Data",
 xlab="Number of Cylinders",
 ylab="Miles Per Gallon")

You can see in figure 6.12 that

there’s a good separation of

groups based on gas mileage.

You can also see that the distri-

bution of mpg for six-cylinder

cars is more symmetrical than

for the other two car types.

Cars with four cylinders show

the greatest spread (and posi-

tive skew) of mpg scores, when

compared with six- and eight-

cylinder cars. There’s also an

outlier in the eight-cylinder

group.

 Box plots are very versatile.

By adding notch=TRUE, you get

notched box plots. If two boxes’

notches don’t overlap, there’s

strong evidence that their

medians differ (Chambers et al., 1983, p. 62). The following code creates notched box

plots for the mpg example:

boxplot(mpg ~ cyl, data=mtcars,
 notch=TRUE,
 varwidth=TRUE,
 col="red",
 main="Car Mileage Data",
 xlab="Number of Cylinders",
 ylab="Miles Per Gallon")

The col option fills the box plots with a red color, and varwidth=TRUE produces box

plots with widths that are proportional to their sample sizes.

4 6 8

1
0

1
5

2
0

2
5

3
0

Car Mileage Data

Number of Cylinders

M
ile

s
 P

e
r

G
a

llo
n

Figure 6.12 Box plots of car mileage vs. number of cylinders

www.it-ebooks.info

http://www.it-ebooks.info/

131Box plots

You can see in figure 6.13 that the median car mileage for four-, six-, and eight-cylin-

der cars differs. Mileage clearly decreases with number of cylinders.

 Finally, you can produce box plots for more than one grouping factor. Listing 6.9

provides box plots for mpg versus the number of cylinders and transmission type in an

automobile (see figure 6.14). Again, you use the col option to fill the box plots with

color. Note that colors recycle; in this case, there are six box plots and only two speci-

fied colors, so the colors repeat three times.

 mtcars$cyl.f <- factor(mtcars$cyl,
 levels=c(4,6,8),
 labels=c("4","6","8"))

 mtcars$am.f <- factor(mtcars$am,
 levels=c(0,1),
 labels=c("auto", "standard"))

 boxplot(mpg ~ am.f *cyl.f,
 data=mtcars,
 varwidth=TRUE,
 col=c("gold","darkgreen"),
 main="MPG Distribution by Auto Type",
 xlab="Auto Type", ylab="Miles Per Gallon")

From figure 6.14, it’s again clear that median mileage decreases with number of cylin-

ders. For four- and six-cylinder cars, mileage is higher for standard transmissions. But

Listing 6.9 Box plots for two crossed factors

4 6 8

1
0

1
5

2
0

2
5

3
0

Car Mileage Data

Number of Cylinders

M
ile

s
 P

e
r

G
a

llo
n

Figure 6.13 Notched box

plots for car mileage vs.

number of cylinders

Creates a factor for the
number of cylinders

Creates a factor for
transmission type

Generates the box plot

www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 6 Basic graphs

for eight-cylinder cars, there doesn’t appear to be a difference. You can also see from

the widths of the box plots that standard four-cylinder and automatic eight-cylinder

cars are the most common in this dataset.

6.5.2 Violin plots

Before we end our discussion of box plots, it’s worth examining a variation called a

violin plot. A violin plot is a combination of a box plot and a kernel density plot. You

can create one using the vioplot() function from the vioplot package. Be sure to

install the vioplot package before first use.

 The format for the vioplot() function is

vioplot(x1, x2, ... , names=, col=)

where x1, x2, ... represent one or more numeric vectors to be plotted (one violin plot

is produced for each vector). The names parameter provides a character vector of

labels for the violin plots, and col is a vector specifying the colors for each violin plot.

An example is given in the following listing.

library(vioplot)
x1 <- mtcars$mpg[mtcars$cyl==4]
x2 <- mtcars$mpg[mtcars$cyl==6]
x3 <- mtcars$mpg[mtcars$cyl==8]
vioplot(x1, x2, x3,
 names=c("4 cyl", "6 cyl", "8 cyl"),
 col="gold")

Listing 6.10 Violin plots

auto.4 standard.4 auto.6 standard.6 auto.8 standard.8

1
0

1
5

2
0

2
5

3
0

MPG Distribution by Auto Type

Auto Type

M
ile

s
 P

e
r

G
a
llo

n

Figure 6.14 Box plots for car

mileage vs. transmission type

and number of cylinders

www.it-ebooks.info

http://www.it-ebooks.info/

133Dot plots

title("Violin Plots of Miles Per Gallon", ylab="Miles Per Gallon",
 xlab="Number of Cylinders")

Note that the vioplot() function requires you to separate the groups to be plotted

into separate variables. The results are displayed in figure 6.15.

 Violin plots are basically kernel density plots superimposed in a mirror-image fash-

ion over box plots. Here, the white dot is the median, the black boxes range from the

lower to the upper quartile, and the thin black lines represent the whiskers. The outer

shape provides the kernel density plot. Violin plots haven’t really caught on yet.

Again, this may be due to a lack of easily accessible software; time will tell.

 We’ll end this chapter with a look at dot plots. Unlike the graphs you’ve seen previ-

ously, dot plots plot every value for a variable.

6.6 Dot plots

Dot plots provide a method of plotting a large number of labeled values on a simple

horizontal scale. You create them with the dotchart() function, using the format

dotchart(x, labels=)

where x is a numeric vector and labels specifies a vector that labels each point. You

can add a groups option to designate a factor specifying how the elements of x are

grouped. If so, the option gcolor controls the color of the groups label, and cex con-

trols the size of the labels. Here’s an example with the mtcars dataset:

dotchart(mtcars$mpg, labels=row.names(mtcars), cex=.7,
 main="Gas Mileage for Car Models",
 xlab="Miles Per Gallon")

1
0

1
5

2
0

2
5

3
0

4 cyl 6 cyl 8 cyl

Violin Plots of Miles Per Gallon

Number of Cylinders

M
ile

s
 P

e
r

G
a

llo
n

Figure 6.15 Violin plots of mpg

vs. number of cylinders

www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 6 Basic graphs

The resulting plot is given in figure 6.16. This graph allows you to see the mpg for

each make of car on the same horizontal axis. Dot plots typically become most inter-

esting when they’re sorted and grouping factors are distinguished by symbol and

color. An example is given in the following listing and shown in figure 6.17.

x <- mtcars[order(mtcars$mpg),]

x$cyl <- factor(x$cyl)

x$color[x$cyl==4] <- "red"
x$color[x$cyl==6] <- "blue"
x$color[x$cyl==8] <- "darkgreen"

Listing 6.11 Dot plot grouped, sorted, and colored

Mazda RX4

Mazda RX4 Wag

Datsun 710

Hornet 4 Drive

Hornet Sportabout

Valiant

Duster 360

Merc 240D

Merc 230

Merc 280

Merc 280C

Merc 450SE

Merc 450SL

Merc 450SLC

Cadillac Fleetwood

Lincoln Continental

Chrysler Imperial

Fiat 128

Honda Civic

Toyota Corolla

Toyota Corona

Dodge Challenger

AMC Javelin

Camaro Z28

Pontiac Firebird

Fiat X1−9

Porsche 914−2

Lotus Europa

Ford Pantera L

Ferrari Dino

Maserati Bora

Volvo 142E

10 15 20 25 30

Gas Mileage for Car Models

Miles Per Gallon

Figure 6.16 Dot plot of mpg for each car model

Sorts the data frame mtcars
by mpg (lowest to highest) and
saves it as data frame x

Transforms
the numeric
vector cyl
into a factor

Adds a character vector (color) to data frame
x containing the value "red", "blue", or
"darkgreen" depending on the value of cyl

www.it-ebooks.info

http://www.it-ebooks.info/

135Dot plots

dotchart(x$mpg,
 labels = row.names(x),
 cex=.7,
 groups = x$cyl,
 gcolor = "black",
 color = x$color,
 pch=19,
 main = "Gas Mileage for Car Models\ngrouped by cylinder",
 xlab = "Miles Per Gallon")

In figure 6.17, a number of features become evident for the first time. Again, you see

an increase in gas mileage as the number of cylinders decreases. But you also see

exceptions. For example, the Pontiac Firebird, with eight cylinders, gets higher gas

mileage than the Mercury 280C and the Valiant, each with six cylinders. The Hornet 4

Drive, with six cylinders, gets the same miles per gallon as the Volvo 142E, which has

The labels for the data
points are taken from
the row names of the
data frame (car makes).Groups data points by

number of cylinders

Prints the numbers
4, 6, and 8 in black

The colors of the
points and labels
are derived from
the color vector.

Cadillac Fleetwood

Lincoln Continental

Camaro Z28

Duster 360

Chrysler Imperial

Maserati Bora

Merc 450SLC

AMC Javelin

Dodge Challenger

Ford Pantera L

Merc 450SE

Merc 450SL

Hornet Sportabout

Pontiac Firebird

Merc 280C

Valiant

Merc 280

Ferrari Dino

Mazda RX4

Mazda RX4 Wag

Hornet 4 Drive

Volvo 142E

Toyota Corona

Datsun 710

Merc 230

Merc 240D

Porsche 914−2

Fiat X1−9

Honda Civic

Lotus Europa

Fiat 128

Toyota Corolla

4

6

8

10 15 20 25 30

Gas Mileage for Car Models
grouped by cylinder

Miles Per Gallon

Figure 6.17 Dot plot of mpg for car models grouped by number of cylinders

www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 6 Basic graphs

four cylinders. It’s also clear that the Toyota Corolla gets the best gas mileage by far,

whereas the Lincoln Continental and Cadillac Fleetwood are outliers on the low end.

 You can gain significant insight from a dot plot in this example because each point

is labeled, the value of each point is inherently meaningful, and the points are

arranged in a manner that promotes comparisons. But as the number of data points

increases, the utility of the dot plot decreases.

NOTE There are many variations of the dot plot. Jacoby (2006) provides a
very informative discussion of the dot plot and includes R code for innovative
applications. Additionally, the Hmisc package offers a dot-plot function (aptly
named dotchart2()) with a number of additional features.

6.7 Summary

In this chapter, you learned how to describe continuous and categorical variables. You

saw how bar plots and (to a lesser extent) pie charts can be used to gain insight into

the distribution of a categorical variable, and how stacked and grouped bar charts can

help you understand how groups differ on a categorical outcome. We also explored

how histograms, plots, box plots, rug plots, and dot plots can help you visualize the

distribution of continuous variables. Finally, we explored how overlapping kernel den-

sity plots, parallel box plots, and grouped dot plots can help you visualize group differ-

ences on a continuous outcome variable.

 In later chapters, we’ll extend this univariate focus to include bivariate and multi-

variate graphical methods. You’ll see how to visually depict relationships among many

variables at once using such methods as scatter plots, multigroup line plots, mosaic

plots, correlograms, lattice graphs, and more.

 In the next chapter, we’ll look at basic statistical methods for describing distribu-

tions and bivariate relationships numerically, as well as inferential methods for evalu-

ating whether relationships among variables exist or are due to sampling error.

www.it-ebooks.info

http://www.it-ebooks.info/

137

Basic statistics

In previous chapters, you learned how to import data into R and use a variety of

functions to organize and transform the data into a useful format. We then

reviewed basic methods for visualizing data.

 Once your data is properly organized and you’ve begun to explore the data visu-

ally, the next step is typically to describe the distribution of each variable numeri-

cally, followed by an exploration of the relationships among selected variables two

at a time. The goal is to answer questions like these:

■ What kind of mileage are cars getting these days? Specifically, what’s the dis-

tribution of miles per gallon (mean, standard deviation, median, range, and

so on) in a survey of automobile makes and models?

This chapter covers

■ Descriptive statistics

■ Frequency and contingency tables

■ Correlations and covariances

■ t-tests

■ Nonparametric statistics

www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 7 Basic statistics

■ After a new drug trial, what’s the outcome (no improvement, some improve-

ment, marked improvement) for drug versus placebo groups? Does the gender
of the participants have an impact on the outcome?

■ What’s the correlation between income and life expectancy? Is it significantly

different from zero?
■ Are you more likely to receive imprisonment for a crime in different regions of

the United States? Are the differences between regions statistically significant?

In this chapter, we’ll review R functions for generating basic descriptive and inferen-

tial statistics. First we’ll look at measures of location and scale for quantitative vari-
ables. Then you’ll learn how to generate frequency and contingency tables (and

associated chi-square tests) for categorical variables. Next, we’ll examine the various

forms of correlation coefficients available for continuous and ordinal variables.
Finally, we’ll turn to the study of group differences through parametric (t-tests) and

nonparametric (Mann–Whitney U test, Kruskal–Wallis test) methods. Although our

focus is on numerical results, we’ll refer to graphical methods for visualizing these
results throughout.

 The statistical methods covered in this chapter are typically taught in a first-year

undergraduate statistics course. If these methodologies are unfamiliar to you, two
excellent references are McCall (2000) and Kirk (2007). Alternatively, many informa-

tive online resources are available (such as Wikipedia) for each of the topics covered.

7.1 Descriptive statistics

In this section, we’ll look at measures of central tendency, variability, and distribution

shape for continuous variables. For illustrative purposes, we’ll use several of the vari-

ables from the Motor Trend Car Road Tests (mtcars) dataset you first saw in chapter
1. Our focus will be on miles per gallon (mpg), horsepower (hp), and weight (wt):

> myvars <- c("mpg", "hp", "wt")
> head(mtcars[myvars])
 mpg hp wt
Mazda RX4 21.0 110 2.62
Mazda RX4 Wag 21.0 110 2.88
Datsun 710 22.8 93 2.32
Hornet 4 Drive 21.4 110 3.21
Hornet Sportabout 18.7 175 3.44
Valiant 18.1 105 3.46

First we’ll look at descriptive statistics for all 32 cars. Then we’ll examine descriptive

statistics by transmission type (am) and number of cylinders (cyl). Transmission type
is a dichotomous variable coded 0=automatic, 1=manual, and the number of cylinders

can be 4, 5, or 6.

7.1.1 A menagerie of methods

When it comes to calculating descriptive statistics, R has an embarrassment of riches.

Let’s start with functions that are included in the base installation. Then we’ll look at

extensions that are available through the use of user-contributed packages.

www.it-ebooks.info

http://www.it-ebooks.info/

139Descriptive statistics

 In the base installation, you can use the summary() function to obtain descriptive

statistics. An example is presented in the following listing.

> myvars <- c("mpg", "hp", "wt")
> summary(mtcars[myvars])
 mpg hp wt
 Min. :10.4 Min. : 52.0 Min. :1.51
 1st Qu.:15.4 1st Qu.: 96.5 1st Qu.:2.58
 Median :19.2 Median :123.0 Median :3.33
 Mean :20.1 Mean :146.7 Mean :3.22
 3rd Qu.:22.8 3rd Qu.:180.0 3rd Qu.:3.61
 Max. :33.9 Max. :335.0 Max. :5.42

The summary() function provides the minimum, maximum, quartiles, and mean for

numerical variables and frequencies for factors and logical vectors. You can use the

apply() or sapply() function from chapter 5 to provide any descriptive statistics you

choose. For the sapply() function, the format is

sapply(x, FUN, options)

where x is the data frame (or matrix) and FUN is an arbitrary function. If options are

present, they’re passed to FUN. Typical functions that you can plug in here are mean(),

sd(), var(), min(), max(), median(), length(), range(), and quantile(). The

function fivenum() returns Tukey’s five-number summary (minimum, lower-hinge,

median, upper-hinge, and maximum).

 Surprisingly, the base installation doesn’t provide functions for skew and kurtosis,

but you can add your own. The example in the next listing provides several descriptive

statistics, including skew and kurtosis.

> mystats <- function(x, na.omit=FALSE){
 if (na.omit)
 x <- x[!is.na(x)]
 m <- mean(x)
 n <- length(x)
 s <- sd(x)
 skew <- sum((x-m)^3/s^3)/n
 kurt <- sum((x-m)^4/s^4)/n - 3
 return(c(n=n, mean=m, stdev=s, skew=skew, kurtosis=kurt))
 }

> myvars <- c("mpg", "hp", "wt")
> sapply(mtcars[myvars], mystats)
 mpg hp wt
n 32.000 32.000 32.0000
mean 20.091 146.688 3.2172
stdev 6.027 68.563 0.9785
skew 0.611 0.726 0.4231
kurtosis -0.373 -0.136 -0.0227

Listing 7.1 Descriptive statistics via summary()

Listing 7.2 Descriptive statistics via sapply()

www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 7 Basic statistics

For cars in this sample, the mean mpg is 20.1, with a standard deviation of 6.0. The dis-

tribution is skewed to the right (+0.61) and is somewhat flatter than a normal distribu-

tion (–0.37). This is most evident if you graph the data. Note that if you wanted to omit

missing values, you could use sapply(mtcars[myvars], mystats, na.omit=TRUE).

7.1.2 Even more methods

Several user-contributed packages offer functions for descriptive statistics, including

Hmisc, pastecs, and psych. Because these packages aren’t included in the base distri-

bution, you’ll need to install them on first use (see section 1.4).

 The describe() function in the Hmisc package returns the number of variables

and observations, the number of missing and unique values, the mean, quantiles, and

the five highest and lowest values. An example is provided in the following listing.

> library(Hmisc)
> myvars <- c("mpg", "hp", "wt")
> describe(mtcars[myvars])

 3 Variables 32 Observations

mpg
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
32 0 25 20.09 12.00 14.34 15.43 19.20 22.80 30.09 31.30

lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27.3 30.4 32.4 33.9

hp
n missing unique Mean .05 .10 .2 .50 .75 .90 .95
32 0 22 146.7 63.65 66.00 96.50 123.00 180.00 243.50 253.55

lowest : 52 62 65 66 91, highest: 215 230 245 264 335

wt
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
32 0 29 3.217 1.736 1.956 2.581 3.325 3.610 4.048 5.293

lowest : 1.513 1.615 1.835 1.935 2.140, highest: 3.845 4.070 5.250 5.345 5.424

The pastecs package includes a function named stat.desc() that provides a wide

range of descriptive statistics. The format is

stat.desc(x, basic=TRUE, desc=TRUE, norm=FALSE, p=0.95)

where x is a data frame or time series. If basic=TRUE (the default), the number of val-

ues, null values, missing values, minimum, maximum, range, and sum are provided. If

desc=TRUE (also the default), the median, mean, standard error of the mean, 95% con-

fidence interval for the mean, variance, standard deviation, and coefficient of variation

are also provided. Finally, if norm=TRUE (not the default), normal distribution statistics

are returned, including skewness and kurtosis (and their statistical significance) and

Listing 7.3 Descriptive statistics via describe() in the Hmisc package

www.it-ebooks.info

http://www.it-ebooks.info/

141Descriptive statistics

the Shapiro–Wilk test of normality. A p-value option is used to calculate the confidence

interval for the mean (.95 by default). The next listing gives an example.

> library(pastecs)
> myvars <- c("mpg", "hp", "wt")
> stat.desc(mtcars[myvars])
 mpg hp wt
nbr.val 32.00 32.000 32.000
nbr.null 0.00 0.000 0.000
nbr.na 0.00 0.000 0.000
min 10.40 52.000 1.513
max 33.90 335.000 5.424
range 23.50 283.000 3.911
sum 642.90 4694.000 102.952
median 19.20 123.000 3.325
mean 20.09 146.688 3.217
SE.mean 1.07 12.120 0.173
CI.mean.0.95 2.17 24.720 0.353
var 36.32 4700.867 0.957
std.dev 6.03 68.563 0.978
coef.var 0.30 0.467 0.304

As if this isn’t enough, the psych package also has a function called describe() that

provides the number of nonmissing observations, mean, standard deviation, median,

trimmed mean, median absolute deviation, minimum, maximum, range, skew, kurto-

sis, and standard error of the mean. You can see an example in the following listing.

> library(psych)
Attaching package: 'psych'
 The following object(s) are masked from package:Hmisc :
 describe
> myvars <- c("mpg", "hp", "wt")
> describe(mtcars[myvars])
 var n mean sd median trimmed mad min max
mpg 1 32 20.09 6.03 19.20 19.70 5.41 10.40 33.90
hp 2 32 146.69 68.56 123.00 141.19 77.10 52.00 335.00
wt 3 32 3.22 0.98 3.33 3.15 0.77 1.51 5.42
 range skew kurtosis se
mpg 23.50 0.61 -0.37 1.07
hp 283.00 0.73 -0.14 12.12
wt 3.91 0.42 -0.02 0.17

I told you that it was an embarrassment of riches!

NOTE In the previous examples, the packages psych and Hmisc both provide
a function named describe(). How does R know which one to use? Simply
put, the package last loaded takes precedence, as shown in listing 7.5. Here,
psych is loaded after Hmisc, and a message is printed indicating that the
describe() function in Hmisc is masked by the function in psych. When you

Listing 7.4 Descriptive statistics via stat.desc() in the pastecs package

Listing 7.5 Descriptive statistics via describe() in the psych package

www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 7 Basic statistics

type in the describe() function and R searches for it, R comes to the psych
package first and executes it. If you want the Hmisc version instead, you can
type Hmisc::describe(mt). The function is still there. You have to give R
more information to find it.

Now that you know how to generate descriptive statistics for the data as a whole, let’s

review how to obtain statistics for subgroups of the data.

7.1.3 Descriptive statistics by group

When comparing groups of individuals or observations, the focus is usually on the

descriptive statistics of each group, rather than the total sample. Again, there are sev-

eral ways to accomplish this in R. We’ll start by getting descriptive statistics for each

level of transmission type. In chapter 5, we discussed methods of aggregating data.

You can use the aggregate() function (section 5.6.2) to obtain descriptive statistics

by group, as shown in the following listing.

> myvars <- c("mpg", "hp", "wt")

> aggregate(mtcars[myvars], by=list(am=mtcars$am), mean)
 am mpg hp wt
1 0 17.1 160 3.77
2 1 24.4 127 2.41

> aggregate(mtcars[myvars], by=list(am=mtcars$am), sd)
 am mpg hp wt
1 0 3.83 53.9 0.777
2 1 6.17 84.1 0.617

Note the use of list(am=mtcars$am). If you used list(mtcars$am), the am column

would be labeled Group.1 rather than am. You use the assignment to provide a more

useful column label. If you have more than one grouping variable, you can use code

like by=list(name1=groupvar1, name2=groupvar2, ... , nameN=groupvarN).

 Unfortunately, aggregate() only allows you to use single-value functions such as

mean, standard deviation, and the like in each call. It won’t return several statistics at

once. For that task, you can use the by() function. The format is

by(data, INDICES, FUN)

where data is a data frame or matrix, INDICES is a factor or list of factors that defines

the groups, and FUN is an arbitrary function that operates on all the columns of a data

frame. The next listing provides an example.

> dstats <- function(x)sapply(x, mystats)
> myvars <- c("mpg", "hp", "wt")
> by(mtcars[myvars], mtcars$am, dstats)

Listing 7.6 Descriptive statistics by group using aggregate()

Listing 7.7 Descriptive statistics by group using by()

www.it-ebooks.info

http://www.it-ebooks.info/

143Descriptive statistics

mtcars$am: 0

 mpg hp wt

n 19.000 19.0000 19.000

mean 17.147 160.2632 3.769

stdev 3.834 53.9082 0.777

skew 0.014 -0.0142 0.976

kurtosis -0.803 -1.2097 0.142

--

mtcars$am: 1

 mpg hp wt

n 13.0000 13.000 13.000

mean 24.3923 126.846 2.411

stdev 6.1665 84.062 0.617

skew 0.0526 1.360 0.210

kurtosis -1.4554 0.563 -1.174

In this case, dstats() applies the mystats() function from listing 7.2 to each column

of the data frame. Placing it in the by() function gives you summary statistics for each

level of am.

7.1.4 Additional methods by group

The doBy package and the psych package also provide functions for descriptive statis-

tics by group. Again, they aren’t distributed in the base installation and must be

installed before first use. The summaryBy() function in the doBy package has the

format

summaryBy(formula, data=dataframe, FUN=function)

where the formula takes the form

var1 + var2 + var3 + ... + varN ~ groupvar1 + groupvar2 + ... + groupvarN

Variables on the left of the ~ are the numeric variables to be analyzed, and variables

on the right are categorical grouping variables. The function can be any built-in or

user-created R function. An example using the mystats() function created in section

7.2.1 is shown in the following listing.

> library(doBy)

> summaryBy(mpg+hp+wt~am, data=mtcars, FUN=mystats)

 am mpg.n mpg.mean mpg.stdev mpg.skew mpg.kurtosis hp.n hp.mean hp.stdev

1 0 19 17.1 3.83 0.0140 -0.803 19 160 53.9

2 1 13 24.4 6.17 0.0526 -1.455 13 127 84.1

 hp.skew hp.kurtosis wt.n wt.mean wt.stdev wt.skew wt.kurtosis

1 -0.0142 -1.210 19 3.77 0.777 0.976 0.142

2 1.3599 0.563 13 2.41 0.617 0.210 -1.174

The describeBy() function contained in the psych package provides the same

descriptive statistics as describe(), stratified by one or more grouping variables, as

you can see in the following listing.

Listing 7.8 Summary statistics by group using summaryBy() in the doBy package

www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 7 Basic statistics

> library(psych)
> myvars <- c("mpg", "hp", "wt")
> describeBy(mtcars[myvars], list(am=mtcars$am))

am: 0
 var n mean sd median trimmed mad min max
mpg 1 19 17.15 3.83 17.30 17.12 3.11 10.40 24.40
hp 2 19 160.26 53.91 175.00 161.06 77.10 62.00 245.00
wt 3 19 3.77 0.78 3.52 3.75 0.45 2.46 5.42
 range skew kurtosis se
mpg 14.00 0.01 -0.80 0.88
hp 183.00 -0.01 -1.21 12.37
wt 2.96 0.98 0.14 0.18
--
am: 1
 var n mean sd median trimmed mad min max
mpg 1 13 24.39 6.17 22.80 24.38 6.67 15.00 33.90
hp 2 13 126.85 84.06 109.00 114.73 63.75 52.00 335.00
wt 3 13 2.41 0.62 2.32 2.39 0.68 1.51 3.57
 range skew kurtosis se
mpg 18.90 0.05 -1.46 1.71
hp 283.00 1.36 0.56 23.31
wt 2.06 0.21 -1.17 0.17

Unlike the previous example, the describeBy() function doesn’t allow you to specify

an arbitrary function, so it’s less generally applicable. If there’s more than one grouping

variable, you can write them as list(name1=groupvar1, name2=groupvar2, ... ,

nameN=groupvarN). But this will work only if there are no empty cells when the group-

ing variables are crossed.

 Data analysts have their own preferences for which descriptive statistics to display

and how they like to see them formatted. This is probably why there are many varia-

tions available. Choose the one that works best for you, or create your own!

7.1.5 Visualizing results

Numerical summaries of a distribution’s characteristics are important, but they’re no

substitute for a visual representation. For quantitative variables, you have histograms

(section 6.3), density plots (section 6.4), box plots (section 6.5), and dot plots (sec-

tion 6.6). They can provide insights that are easily missed by reliance on a small set of

descriptive statistics.

 The functions considered so far provide summaries of quantitative variables. The

functions in the next section allow you to examine the distributions of categorical

variables.

7.2 Frequency and contingency tables

In this section, we’ll look at frequency and contingency tables from categorical vari-

ables, along with tests of independence, measures of association, and methods for

Listing 7.9 Summary statistics by group using describe.by() in the psych package

www.it-ebooks.info

http://www.it-ebooks.info/

145Frequency and contingency tables

graphically displaying results. We’ll be using functions in the basic installation, along

with functions from the vcd and gmodels packages. In the following examples, assume

that A, B, and C represent categorical variables.

 The data for this section come from the Arthritis dataset included with the vcd

package. The data are from Kock & Edward (1988) and represent a double-blind

clinical trial of new treatments for rheumatoid arthritis. Here are the first few

observations:

> library(vcd)

> head(Arthritis)

 ID Treatment Sex Age Improved

1 57 Treated Male 27 Some

2 46 Treated Male 29 None

3 77 Treated Male 30 None

4 17 Treated Male 32 Marked

5 36 Treated Male 46 Marked

6 23 Treated Male 58 Marked

Treatment (Placebo, Treated), Sex (Male, Female), and Improved (None, Some,

Marked) are all categorical factors. In the next section, you’ll create frequency and

contingency tables (cross-classifications) from the data.

7.2.1 Generating frequency tables

R provides several methods for creating frequency and contingency tables. The most

important functions are listed in table 7.1.

In the following sections, we’ll use each of these functions to explore categorical vari-

ables. We’ll begin with simple frequencies, followed by two-way contingency tables, and

end with multiway contingency tables. The first step is to create a table using either the

table() or xtabs() function and then manipulate it using the other functions.

Table 7.1 Functions for creating and manipulating contingency tables

Function Description

table(var1, var2, ..., varN) Creates an N-way contingency table from N categorical vari-

ables (factors)

xtabs(formula, data) Creates an N-way contingency table based on a formula and a

matrix or data frame

prop.table(table, margins) Expresses table entries as fractions of the marginal table

defined by the margins

margin.table(table, margins) Computes the sum of table entries for a marginal table

defined by the margins

addmargins(table, margins) Puts summary margins (sums by default) on a table

ftable(table) Creates a compact, “flat” contingency table

www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 7 Basic statistics

ONE-WAY TABLES

You can generate simple frequency counts using the table() function. Here’s an

example:

> mytable <- with(Arthritis, table(Improved))
> mytable
Improved
 None Some Marked
 42 14 28

You can turn these frequencies into proportions with prop.table()

> prop.table(mytable)
Improved
 None Some Marked
 0.500 0.167 0.333

or into percentages using prop.table()*100:

> prop.table(mytable)*100
Improved
 None Some Marked
 50.0 16.7 33.3

Here you can see that 50% of study participants had some or marked improvement

(16.7 + 33.3).

TWO-WAY TABLES

For two-way tables, the format for the table() function is

mytable <- table(A, B)

where A is the row variable and B is the column variable. Alternatively, the xtabs() func-

tion allows you to create a contingency table using formula-style input. The format is

mytable <- xtabs(~ A + B, data=mydata)

where mydata is a matrix or data frame. In general, the variables to be cross-classified

appear on the right of the formula (that is, to the right of the ~) separated by + signs.

If a variable is included on the left side of the formula, it’s assumed to be a vector of

frequencies (useful if the data have already been tabulated).

 For the Arthritis data, you have

> mytable <- xtabs(~ Treatment+Improved, data=Arthritis)
> mytable
 Improved
Treatment None Some Marked
 Placebo 29 7 7
 Treated 13 7 21

You can generate marginal frequencies and proportions using the margin.table() and

prop.table() functions, respectively. For row sums and row proportions, you have

> margin.table(mytable, 1)
Treatment
Placebo Treated
 3 41

www.it-ebooks.info

http://www.it-ebooks.info/

147Frequency and contingency tables

> prop.table(mytable, 1)

 Improved

Treatment None Some Marked

 Placebo 0.674 0.163 0.163

 Treated 0.317 0.171 0.512

The index (1) refers to the first variable in the table() statement. Looking at the

table, you can see that 51% of treated individuals had marked improvement, com-

pared to 16% of those receiving a placebo.

 For column sums and column proportions, you have

> margin.table(mytable, 2)

Improved

 None Some Marked

 42 14 28

> prop.table(mytable, 2)

 Improved

Treatment None Some Marked

 Placebo 0.690 0.500 0.250

 Treated 0.310 0.500 0.750

Here, the index (2) refers to the second variable in the table() statement.

 Cell proportions are obtained with this statement:

> prop.table(mytable)

 Improved

Treatment None Some Marked

 Placebo 0.3452 0.0833 0.0833

 Treated 0.1548 0.0833 0.2500

You can use the addmargins() function to add marginal sums to these tables. For

example, the following code adds a Sum row and column:

> addmargins(mytable)

 Improved

Treatment None Some Marked Sum

 Placebo 29 7 7 43

 Treated 13 7 21 41

 Sum 42 14 28 84

> addmargins(prop.table(mytable))

 Improved

Treatment None Some Marked Sum

 Placebo 0.3452 0.0833 0.0833 0.5119

 Treated 0.1548 0.0833 0.2500 0.4881

 Sum 0.5000 0.1667 0.3333 1.0000

When using addmargins(), the default is to create sum margins for all variables in a

table. In contrast, the following code adds a Sum column alone:

> addmargins(prop.table(mytable, 1), 2)

 Improved

Treatment None Some Marked Sum

 Placebo 0.674 0.163 0.163 1.000

 Treated 0.317 0.171 0.512 1.000

www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 7 Basic statistics

Similarly, this code adds a Sum row:

> addmargins(prop.table(mytable, 2), 1)
 Improved
Treatment None Some Marked
 Placebo 0.690 0.500 0.250
 Treated 0.310 0.500 0.750
 Sum 1.000 1.000 1.000

In the table, you see that 25% of those patients with marked improvement received a

placebo.

NOTE The table() function ignores missing values (NAs) by default. To
include NA as a valid category in the frequency counts, include the table
option useNA="ifany".

A third method for creating two-way tables is the CrossTable() function in the

gmodels package. The CrossTable() function produces two-way tables modeled after

PROC FREQ in SAS or CROSSTABS in SPSS. The following listing shows an example.

> library(gmodels)
> CrossTable(Arthritis$Treatment, Arthritis$Improved)

 Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
N / Table Total

Total Observations in Table: 84

 | Arthritis$Improved
Arthritis$Treatment	None	Some	Marked	Row Total
 Placebo | 29 | 7 | 7 | 43 |
 | 2.616 | 0.004 | 3.752 | |
 | 0.674 | 0.163 | 0.163 | 0.512 |
 | 0.690 | 0.500 | 0.250 | |
 | 0.345 | 0.083 | 0.083 | |
--------------------|-----------|-----------|-----------|-----------|
 Treated | 13 | 7 | 21 | 41 |
 | 2.744 | 0.004 | 3.935 | |
 | 0.317 | 0.171 | 0.512 | 0.488 |
 | 0.310 | 0.500 | 0.750 | |
 | 0.155 | 0.083 | 0.250 | |
--------------------|-----------|-----------|-----------|-----------|
 Column Total | 42 | 14 | 28 | 84 |
 | 0.500 | 0.167 | 0.333 | |
--------------------|-----------|-----------|-----------|-----------|

Listing 7.10 Two-way table using CrossTable

www.it-ebooks.info

http://www.it-ebooks.info/

149Frequency and contingency tables

The CrossTable() function has options to report percentages (row, column, and

cell); specify decimal places; produce chi-square, Fisher, and McNemar tests of inde-

pendence; report expected and residual values (Pearson, standardized, and adjusted

standardized); include missing values as valid; annotate with row and column titles;

and format as SAS or SPSS style output. See help(CrossTable) for details.

 If you have more than two categorical variables, you’re dealing with multidimen-

sional tables. We’ll consider these next.

MULTIDIMENSIONAL TABLES

Both table() and xtabs() can be used to generate multidimensional tables based on

three or more categorical variables. The margin.table(), prop.table(), and add-

margins() functions extend naturally to more than two dimensions. Additionally, the

ftable() function can be used to print multidimensional tables in a compact and

attractive manner. An example is given in the next listing.

> mytable <- xtabs(~ Treatment+Sex+Improved, data=Arthritis)
> mytable
, , Improved = None

 Sex
Treatment Female Male
 Placebo 19 10
 Treated 6 7

, , Improved = Some

 Sex
Treatment Female Male
 Placebo 7 0
 Treated 5 2

, , Improved = Marked

 Sex
Treatment Female Male
 Placebo 6 1
 Treated 16 5

> ftable(mytable)
 Sex Female Male
Treatment Improved
Placebo None 19 10
 Some 7 0
 Marked 6 1
Treated None 6 7
 Some 5 2
 Marked 16 5

> margin.table(mytable, 1)

Listing 7.11 Three-way contingency table

Cell frequenciesb

Marginal frequenciesc

www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 7 Basic statistics

Treatment
Placebo Treated
 43 41
> margin.table(mytable, 2)
Sex
Female Male
 59 25
> margin.table(mytable, 3)
Improved
 None Some Marked
 42 14 28
> margin.table(mytable, c(1, 3))
 Improved
Treatment None Some Marked
 Placebo 29 7 7
 Treated 13 7 21
 > ftable(prop.table(mytable, c(1, 2)))
 Improved None Some Marked
Treatment Sex
Placebo Female 0.594 0.219 0.188
 Male 0.909 0.000 0.091
Treated Female 0.222 0.185 0.593
 Male 0.500 0.143 0.357

> ftable(addmargins(prop.table(mytable, c(1, 2)), 3))
 Improved None Some Marked Sum
Treatment Sex
Placebo Female 0.594 0.219 0.188 1.000
 Male 0.909 0.000 0.091 1.000
Treated Female 0.222 0.185 0.593 1.000
 Male 0.500 0.143 0.357 1.000

The code at b produces cell frequencies for the three-way classification. The code

also demonstrates how the ftable() function can be used to print a more compact

and attractive version of the table.

 The code at c produces the marginal frequencies for Treatment, Sex, and

Improved. Because you created the table with the formula ~Treatment+Sex+

Improved, Treatment is referred to by index 1, Sex is referred to by index 2, and

Improved is referred to by index 3.

 The code at d produces the marginal frequencies for the Treatment x Improved

classification, summed over Sex. The proportion of patients with None, Some, and

Marked improvement for each Treatment × Sex combination is provided in e. Here

you see that 36% of treated males had marked improvement, compared to 59% of

treated females. In general, the proportions will add to 1 over the indices not

included in the prop.table() call (the third index, or Improved in this case). You can

see this in the last example, where you add a sum margin over the third index.

 If you want percentages instead of proportions, you can multiply the resulting

table by 100. For example, this statement

ftable(addmargins(prop.table(mytable, c(1, 2)), 3)) * 100

Treatment × Improved
marginal frequencies

d

Improved proportions
for Treatment × Sex

e

www.it-ebooks.info

http://www.it-ebooks.info/

151Frequency and contingency tables

produces this table:
 Sex Female Male Sum
Treatment Improved
Placebo None 65.5 34.5 100.0
 Some 100.0 0.0 100.0
 Marked 85.7 14.3 100.0
Treated None 46.2 53.8 100.0
 Some 71.4 28.6 100.0
 Marked 76.2 23.8 100.0

Contingency tables tell you the frequency or proportions of cases for each combina-

tion of the variables that make up the table, but you’re probably also interested in

whether the variables in the table are related or independent. Tests of independence

are covered in the next section.

7.2.2 Tests of independence

R provides several methods of testing the independence of categorical variables. The

three tests described in this section are the chi-square test of independence, the

Fisher exact test, and the Cochran-Mantel–Haenszel test.

CHI-SQUARE TEST OF INDEPENDENCE

You can apply the function chisq.test() to a two-way table in order to produce a chi-

square test of independence of the row and column variables. See the next listing for

an example.

> library(vcd)
> mytable <- xtabs(~Treatment+Improved, data=Arthritis)
> chisq.test(mytable)
 Pearson’s Chi-squared test
data: mytable
 X-squared = 13.1, df = 2, p-value = 0.001463

> mytable <- xtabs(~Improved+Sex, data=Arthritis)
> chisq.test(mytable)
 Pearson's Chi-squared test
data: mytable
 X-squared = 4.84, df = 2, p-value = 0.0889

Warning message:
In chisq.test(mytable) : Chi-squared approximation may be incorrect

From the results b, there appears to be a relationship between treatment received

and level of improvement (p < .01). But there doesn’t appear to be a relationship c
between patient sex and improvement (p > .05). The p-values are the probability of

obtaining the sampled results, assuming independence of the row and column vari-

ables in the population. Because the probability is small for b, you reject the hypoth-

esis that treatment type and outcome are independent. Because the probability for c
isn’t small, it’s not unreasonable to assume that outcome and gender are indepen-

Listing 7.12 Chi-square test of independence

Treatment and Improved
aren’t independent.

b

Gender and Improved
are independent.

c

www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 7 Basic statistics

dent. The warning message in listing 7.13 is produced because one of the six cells in

the table (male-some improvement) has an expected value less than five, which may

invalidate the chi-square approximation.

FISHER’S EXACT TEST

You can produce a Fisher’s exact test via the fisher.test() function. Fisher’s exact

test evaluates the null hypothesis of independence of rows and columns in a contin-

gency table with fixed marginals. The format is fisher.test(mytable), where

mytable is a two-way table. Here’s an example:

> mytable <- xtabs(~Treatment+Improved, data=Arthritis)
> fisher.test(mytable)
 Fisher's Exact Test for Count Data
data: mytable
p-value = 0.001393
alternative hypothesis: two.sided

In contrast to many statistical packages, the fisher.test() function can be applied to

any two-way table with two or more rows and columns, not a 2 × 2 table.

COCHRAN–MANTEL–HAENSZEL TEST

The mantelhaen.test() function provides a Cochran–Mantel–Haenszel chi-square

test of the null hypothesis that two nominal variables are conditionally independent in

each stratum of a third variable. The following code tests the hypothesis that the

Treatment and Improved variables are independent within each level for Sex. The test

assumes that there’s no three-way (Treatment × Improved × Sex) interaction:

> mytable <- xtabs(~Treatment+Improved+Sex, data=Arthritis)
> mantelhaen.test(mytable)
 Cochran-Mantel-Haenszel test
data: mytable
Cochran-Mantel-Haenszel M^2 = 14.6, df = 2, p-value = 0.0006647

The results suggest that the treatment received and the improvement reported aren’t

independent within each level of Sex (that is, treated individuals improved more than

those receiving placebos when controlling for sex).

7.2.3 Measures of association

The significance tests in the previous section evaluate whether sufficient evidence

exists to reject a null hypothesis of independence between variables. If you can reject

the null hypothesis, your interest turns naturally to measures of association in order to

gauge the strength of the relationships present. The assocstats() function in the

vcd package can be used to calculate the phi coefficient, contingency coefficient, and

Cramer’s V for a two-way table. An example is given in the following listing.

> library(vcd)
> mytable <- xtabs(~Treatment+Improved, data=Arthritis)
> assocstats(mytable)

Listing 7.13 Measures of association for a two-way table

www.it-ebooks.info

http://www.it-ebooks.info/

153Correlations

 X^2 df P(> X^2)
Likelihood Ratio 13.530 2 0.0011536
Pearson 13.055 2 0.0014626

Phi-Coefficient : 0.394
Contingency Coeff.: 0.367
Cramer's V : 0.394

In general, larger magnitudes indicate stronger associations. The vcd package also

provides a kappa() function that can calculate Cohen’s kappa and weighted kappa for

a confusion matrix (for example, the degree of agreement between two judges classi-

fying a set of objects into categories).

7.2.4 Visualizing results

R has mechanisms for visually exploring the relationships among categorical variables

that go well beyond those found in most other statistical platforms. You typically use

bar charts to visualize frequencies in one dimension (see section 6.1). The vcd pack-

age has excellent functions for visualizing relationships among categorical variables in

multidimensional datasets using mosaic and association plots (see section 11.4).

Finally, correspondence-analysis functions in the ca package allow you to visually

explore relationships between rows and columns in contingency tables using various

geometric representations (Nenadic and Greenacre, 2007).

 This ends the discussion of contingency tables, until we take up more advanced top-

ics in chapters 11 and 15. Next, let’s look at various types of correlation coefficients.

7.3 Correlations

Correlation coefficients are used to describe relationships among quantitative vari-

ables. The sign ± indicates the direction of the relationship (positive or inverse), and

the magnitude indicates the strength of the relationship (ranging from 0 for no rela-

tionship to 1 for a perfectly predictable relationship).

 In this section, we’ll look at a variety of correlation coefficients, as well as tests of

significance. We’ll use the state.x77 dataset available in the base R installation. It

provides data on the population, income, illiteracy rate, life expectancy, murder rate,

and high school graduation rate for the 50 US states in 1977. There are also tempera-

ture and land-area measures, but we’ll drop them to save space. Use help(state.x77)

to learn more about the file. In addition to the base installation, we’ll be using the

psych and ggm packages.

7.3.1 Types of correlations

R can produce a variety of correlation coefficients, including Pearson, Spearman,

Kendall, partial, polychoric, and polyserial. Let’s look at each in turn.

PEARSON, SPEARMAN, AND KENDALL CORRELATIONS

The Pearson product-moment correlation assesses the degree of linear relationship

between two quantitative variables. Spearman’s rank-order correlation coefficient

www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 7 Basic statistics

assesses the degree of relationship between two rank-ordered variables. Kendall’s tau

is also a nonparametric measure of rank correlation.

 The cor() function produces all three correlation coefficients, whereas the cov()

function provides covariances. There are many options, but a simplified format for

producing correlations is

cor(x, use= , method=)

The options are described in table 7.2.

The default options are use="everything" and method="pearson". You can see an

example in the following listing.

> states<- state.x77[,1:6]
> cov(states)
 Population Income Illiteracy Life Exp Murder HS Grad
Population 19931684 571230 292.868 -407.842 5663.52 -3551.51
Income 571230 377573 -163.702 280.663 -521.89 3076.77
Illiteracy 293 -164 0.372 -0.482 1.58 -3.24
Life Exp -408 281 -0.482 1.802 -3.87 6.31
Murder 5664 -522 1.582 -3.869 13.63 -14.55
HS Grad -3552 3077 -3.235 6.313 -14.55 65.24

> cor(states)
 Population Income Illiteracy Life Exp Murder HS Grad
Population 1.0000 0.208 0.108 -0.068 0.344 -0.0985
Income 0.2082 1.000 -0.437 0.340 -0.230 0.6199
Illiteracy 0.1076 -0.437 1.000 -0.588 0.703 -0.6572
Life Exp -0.0681 0.340 -0.588 1.000 -0.781 0.5822
Murder 0.3436 -0.230 0.703 -0.781 1.000 -0.4880
HS Grad -0.0985 0.620 -0.657 0.582 -0.488 1.0000
> cor(states, method="spearman")
 Population Income Illiteracy Life Exp Murder HS Grad
Population 1.000 0.125 0.313 -0.104 0.346 -0.383
Income 0.125 1.000 -0.315 0.324 -0.217 0.510
Illiteracy 0.313 -0.315 1.000 -0.555 0.672 -0.655
Life Exp -0.104 0.324 -0.555 1.000 -0.780 0.524
Murder 0.346 -0.217 0.672 -0.780 1.000 -0.437
HS Grad -0.383 0.510 -0.655 0.524 -0.437 1.000

Table 7.2 cor/cov options

Option Description

x Matrix or data frame.

use Specifies the handling of missing data. The options are all.obs (assumes no missing

data—missing data will produce an error), everything (any correlation involving a

case with missing values will be set to missing), complete.obs (listwise deletion),

and pairwise.complete.obs (pairwise deletion).

method Specifies the type of correlation. The options are pearson, spearman, and kendall.

Listing 7.14 Covariances and correlations

www.it-ebooks.info

http://www.it-ebooks.info/

155Correlations

The first call produces the variances and covariances. The second provides Pearson

product-moment correlation coefficients, and the third produces Spearman rank-
order correlation coefficients. You can see, for example, that a strong positive correla-

tion exists between income and high school graduation rate and that a strong negative

correlation exists between illiteracy rates and life expectancy.
 Notice that you get square matrices by default (all variables crossed with all other vari-

ables). You can also produce nonsquare matrices, as shown in the following example:

> x <- states[,c("Population", "Income", "Illiteracy", "HS Grad")]
> y <- states[,c("Life Exp", "Murder")]
> cor(x,y)
 Life Exp Murder
Population -0.068 0.344
Income 0.340 -0.230
Illiteracy -0.588 0.703
HS Grad 0.582 -0.488

This version of the function is particularly useful when you’re interested in the rela-

tionships between one set of variables and another. Notice that the results don’t tell

you if the correlations differ significantly from 0 (that is, whether there’s sufficient evi-

dence based on the sample data to conclude that the population correlations differ

from 0). For that, you need tests of significance (described in section 7.3.2).

PARTIAL CORRELATIONS

A partial correlation is a correlation between two quantitative variables, controlling for

one or more other quantitative variables. You can use the pcor() function in the ggm

package to provide partial correlation coefficients. The ggm package isn’t installed by

default, so be sure to install it on first use. The format is

pcor(u, S)

where u is a vector of numbers, with the first two numbers being the indices of the

variables to be correlated, and the remaining numbers being the indices of the condi-
tioning variables (that is, the variables being partialed out). S is the covariance matrix

among the variables. An example will help clarify this:

> library(ggm)
> colnames(states)
[1] "Population" "Income" "Illiteracy" "Life Exp" "Murder" "HS Grad"
> pcor(c(1,5,2,3,6), cov(states))
[1] 0.346

In this case, 0.346 is the correlation between population (variable 1) and murder rate

(variable 5), controlling for the influence of income, illiteracy rate, and high school

graduation rate (variables 2, 3, and 6 respectively). The use of partial correlations is
common in the social sciences.

OTHER TYPES OF CORRELATIONS

The hetcor() function in the polycor package can compute a heterogeneous corre-

lation matrix containing Pearson product-moment correlations between numeric vari-

ables, polyserial correlations between numeric and ordinal variables, polychoric

www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 7 Basic statistics

correlations between ordinal variables, and tetrachoric correlations between two

dichotomous variables. Polyserial, polychoric, and tetrachoric correlations assume

that the ordinal or dichotomous variables are derived from underlying normal distri-

butions. See the documentation that accompanies this package for more information.

7.3.2 Testing correlations for significance

Once you’ve generated correlation coefficients, how do you test them for statistical

significance? The typical null hypothesis is no relationship (that is, the correlation in

the population is 0). You can use the cor.test() function to test an individual Pear-

son, Spearman, and Kendall correlation coefficient. A simplified format is

cor.test(x, y, alternative = , method =)

where x and y are the variables to be correlated, alternative specifies a two-tailed or

one-tailed test ("two.side", "less", or "greater"), and method specifies the type of

correlation ("pearson", "kendall", or "spearman") to compute. Use alternative

="less" when the research hypothesis is that the population correlation is less than 0.

Use alternative="greater" when the research hypothesis is that the population cor-

relation is greater than 0. By default, alternative="two.side" (population correla-

tion isn’t equal to 0) is assumed. See the following listing for an example.

> cor.test(states[,3], states[,5])

 Pearson's product-moment correlation

data: states[, 3] and states[, 5]

t = 6.85, df = 48, p-value = 1.258e-08

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

 0.528 0.821

sample estimates:

 cor

0.703

This code tests the null hypothesis that the Pearson correlation between life expec-

tancy and murder rate is 0. Assuming that the population correlation is 0, you’d

expect to see a sample correlation as large as 0.703 less than 1 time out of 10 million

(that is, p = 1.258e-08). Given how unlikely this is, you reject the null hypothesis in

favor of the research hypothesis, that the population correlation between life expec-

tancy and murder rate is not 0.

 Unfortunately, you can test only one correlation at a time using cor.test(). Luck-

ily, the corr.test() function provided in the psych package allows you to go further.

The corr.test() function produces correlations and significance levels for matrices

of Pearson, Spearman, and Kendall correlations. An example is given in the following

listing.

Listing 7.15 Testing a correlation coefficient for significance

www.it-ebooks.info

http://www.it-ebooks.info/

157Correlations

> library(psych)
> corr.test(states, use="complete")

Call:corr.test(x = states, use = "complete")
Correlation matrix
 Population Income Illiteracy Life Exp Murder HS Grad
Population 1.00 0.21 0.11 -0.07 0.34 -0.10
Income 0.21 1.00 -0.44 0.34 -0.23 0.62
Illiteracy 0.11 -0.44 1.00 -0.59 0.70 -0.66
Life Exp -0.07 0.34 -0.59 1.00 -0.78 0.58
Murder 0.34 -0.23 0.70 -0.78 1.00 -0.49
HS Grad -0.10 0.62 -0.66 0.58 -0.49 1.00

Sample Size
[1] 50

Probability value
 Population Income Illiteracy Life Exp Murder HS Grad
Population 0.00 0.15 0.46 0.64 0.01 0.5
Income 0.15 0.00 0.00 0.02 0.11 0.0
Illiteracy 0.46 0.00 0.00 0.00 0.00 0.0
Life Exp 0.64 0.02 0.00 0.00 0.00 0.0
Murder 0.01 0.11 0.00 0.00 0.00 0.0
HS Grad 0.50 0.00 0.00 0.00 0.00 0.0

The use= options can be "pairwise" or "complete" (for pairwise or listwise deletion

of missing values, respectively). The method= option is "pearson" (the default),

"spearman", or "kendall". Here you see that the correlation between population size

and high school graduation rate (–0.10) is not significantly different from 0 (p = 0.5).

OTHER TESTS OF SIGNIFICANCE

In section 7.4.1, we looked at partial correlations. The pcor.test() function in the

psych package can be used to test the conditional independence of two variables con-

trolling for one or more additional variables, assuming multivariate normality. The

format is

pcor.test(r, q, n)

where r is the partial correlation produced by the pcor() function, q is the number of

variables being controlled, and n is the sample size.

 Before leaving this topic, it should be mentioned that the r.test() function in the

psych package also provides a number of useful significance tests. The function can

be used to test the following:

■ The significance of a correlation coefficient
■ The difference between two independent correlations
■ The difference between two dependent correlations sharing a single variable
■ The difference between two dependent correlations based on completely dif-

ferent variables

See help(r.test) for details.

Listing 7.16 Correlation matrix and tests of significance via corr.test()

www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 7 Basic statistics

7.3.3 Visualizing correlations

The bivariate relationships underlying correlations can be visualized through scatter

plots and scatter plot matrices, whereas correlograms provide a unique and powerful

method for comparing a large number of correlation coefficients in a meaningful way.

Each is covered in chapter 11.

7.4 T-tests

The most common activity in research is the comparison of two groups. Do patients

receiving a new drug show greater improvement than patients using an existing medi-

cation? Does one manufacturing process produce fewer defects than another? Which

of two teaching methods is most cost-effective? If your outcome variable is categorical,

you can use the methods described in section 7.3. Here, we’ll focus on group compar-

isons, where the outcome variable is continuous and assumed to be distributed

normally.

 For this illustration, we’ll use the UScrime dataset distributed with the MASS pack-

age. It contains information about the effect of punishment regimes on crime rates in

47 US states in 1960. The outcome variables of interest will be Prob (the probability of

imprisonment), U1 (the unemployment rate for urban males ages 14–24), and U2 (the

unemployment rate for urban males ages 35–39). The categorical variable So (an indi-

cator variable for Southern states) will serve as the grouping variable. The data have

been rescaled by the original authors. (Note: I considered naming this section “Crime

and Punishment in the Old South,” but cooler heads prevailed.)

7.4.1 Independent t-test

Are you more likely to be imprisoned if you commit a crime in the South? The com-

parison of interest is Southern versus non-Southern states, and the dependent vari-

able is the probability of incarceration. A two-group independent t-test can be used to

test the hypothesis that the two population means are equal. Here, you assume that

the two groups are independent and that the data is sampled from normal popula-

tions. The format is either

t.test(y ~ x, data)

where y is numeric and x is a dichotomous variable, or

t.test(y1, y2)

where y1 and y2 are numeric vectors (the outcome variable for each group). The

optional data argument refers to a matrix or data frame containing the variables. In

contrast to most statistical packages, the default test assumes unequal variance and

applies the Welsh degrees-of-freedom modification. You can add a var.equal=TRUE

option to specify equal variances and a pooled variance estimate. By default, a two-

tailed alternative is assumed (that is, the means differ but the direction isn’t speci-

fied). You can add the option alternative="less" or alternative="greater" to

specify a directional test.

www.it-ebooks.info

http://www.it-ebooks.info/

159T-tests

 The following code compares Southern (group 1) and non-Southern (group 0)

states on the probability of imprisonment using a two-tailed test without the assump-

tion of equal variances:

> library(MASS)
> t.test(Prob ~ So, data=UScrime)

 Welch Two Sample t-test

data: Prob by So
t = -3.8954, df = 24.925, p-value = 0.0006506
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.03852569 -0.01187439
sample estimates:
mean in group 0 mean in group 1
 0.03851265 0.06371269

You can reject the hypothesis that Southern states and non-Southern states have equal

probabilities of imprisonment (p < .001).

NOTE Because the outcome variable is a proportion, you might try to trans-
form it to normality before carrying out the t-test. In the current case, all rea-
sonable transformations of the outcome variable (Y/1-Y, log(Y/1-Y),
arcsin(Y), and arcsin(sqrt(Y)) would lead to the same conclusions. Trans-
formations are covered in detail in chapter 8.

7.4.2 Dependent t-test

As a second example, you might ask if the unemployment rate for younger males (14–

24) is greater than for older males (35–39). In this case, the two groups aren’t inde-

pendent. You wouldn’t expect the unemployment rate for younger and older males in

Alabama to be unrelated. When observations in the two groups are related, you have a

dependent-groups design. Pre-post or repeated-measures designs also produce depen-

dent groups.

 A dependent t-test assumes that the difference between groups is normally distrib-

uted. In this case, the format is

t.test(y1, y2, paired=TRUE)

where y1 and y2 are the numeric vectors for the two dependent groups. The results

are as follows:

> library(MASS)
> sapply(UScrime[c("U1","U2")], function(x)(c(mean=mean(x),sd=sd(x))))
 U1 U2
mean 95.5 33.98
sd 18.0 8.45

> with(UScrime, t.test(U1, U2, paired=TRUE))

 Paired t-test

data: U1 and U2

www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 7 Basic statistics

t = 32.4066, df = 46, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 57.67003 65.30870
sample estimates:
mean of the differences
 61.48936

The mean difference (61.5) is large enough to warrant rejection of the hypothesis
that the mean unemployment rate for older and younger males is the same. Younger
males have a higher rate. In fact, the probability of obtaining a sample difference this
large if the population means are equal is less than 0.00000000000000022 (that is,
2.2e–16).

7.4.3 When there are more than two groups

What do you do if you want to compare more than two groups? If you can assume that
the data are independently sampled from normal populations, you can use analysis of
variance (ANOVA). ANOVA is a comprehensive methodology that covers many experi-
mental and quasi-experimental designs. As such, it has earned its own chapter. Feel
free to abandon this section and jump to chapter 9 at any time.

7.5 Nonparametric tests of group differences

If you’re unable to meet the parametric assumptions of a t-test or ANOVA, you can
turn to nonparametric approaches. For example, if the outcome variables are severely
skewed or ordinal in nature, you may wish to use the techniques in this section.

7.5.1 Comparing two groups

If the two groups are independent, you can use the Wilcoxon rank sum test (more
popularly known as the Mann–Whitney U test) to assess whether the observations are
sampled from the same probability distribution (that is, whether the probability of
obtaining higher scores is greater in one population than the other). The format is
either

wilcox.test(y ~ x, data)

where y is numeric and x is a dichotomous variable, or

wilcox.test(y1, y2)

where y1 and y2 are the outcome variables for each group. The optional data
argument refers to a matrix or data frame containing the variables. The default is
a two-tailed test. You can add the option exact to produce an exact test, and
alternative="less" or alternative="greater" to specify a directional test.

 If you apply the Mann–Whitney U test to the question of incarceration rates from
the previous section, you’ll get these results:

> with(UScrime, by(Prob, So, median))

So: 0
[1] 0.0382

www.it-ebooks.info

http://www.it-ebooks.info/

161Nonparametric tests of group differences

So: 1
[1] 0.0556

> wilcox.test(Prob ~ So, data=UScrime)

 Wilcoxon rank sum test

data: Prob by So
W = 81, p-value = 8.488e-05
alternative hypothesis: true location shift is not equal to 0

Again, you can reject the hypothesis that incarceration rates are the same in Southern

and non-Southern states (p < .001).

 The Wilcoxon signed rank test provides a nonparametric alternative to the depen-

dent sample t-test. It’s appropriate in situations where the groups are paired and the

assumption of normality is unwarranted. The format is identical to the Mann–Whitney

U test, but you add the paired=TRUE option. Let’s apply it to the unemployment ques-

tion from the previous section:

> sapply(UScrime[c("U1","U2")], median)
U1 U2
92 34

> with(UScrime, wilcox.test(U1, U2, paired=TRUE))

 Wilcoxon signed rank test with continuity correction

data: U1 and U2
V = 1128, p-value = 2.464e-09
alternative hypothesis: true location shift is not equal to 0

Again, you reach the same conclusion reached with the paired t-test.

 In this case, the parametric t-tests and their nonparametric equivalents reach the
same conclusions. When the assumptions for the t-tests are reasonable, the paramet-

ric tests are more powerful (more likely to find a difference if it exists). The nonpara-

metric tests are more appropriate when the assumptions are grossly unreasonable (for
example, rank-ordered data).

7.5.2 Comparing more than two groups

When there are more than two groups to be compared, you must turn to other meth-

ods. Consider the state.x77 dataset from section 7.4. It contains population, income,

illiteracy rate, life expectancy, murder rate, and high school graduation rate data for US

states. What if you want to compare the illiteracy rates in four regions of the country

(Northeast, South, North Central, and West)? This is called a one-way design, and there

are both parametric and nonparametric approaches available to address the question.

 If you can’t meet the assumptions of ANOVA designs, you can use nonparametric

methods to evaluate group differences. If the groups are independent, a Kruskal–Wallis

test provides a useful approach. If the groups are dependent (for example, repeated

measures or randomized block design), the Friedman test is more appropriate.

www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 7 Basic statistics

 The format for the Kruskal–Wallis test is

kruskal.test(y ~ A, data)

where y is a numeric outcome variable and A is a grouping variable with two or more

levels (if there are two levels, it’s equivalent to the Mann–Whitney U test). For the

Friedman test, the format is

friedman.test(y ~ A | B, data)

where y is the numeric outcome variable, A is a grouping variable, and B is a blocking

variable that identifies matched observations. In both cases, data is an option argu-

ment specifying a matrix or data frame containing the variables.

 Let’s apply the Kruskal–Wallis test to the illiteracy question. First, you’ll have to

add the region designations to the dataset. These are contained in the dataset

state.region distributed with the base installation of R:

states <- data.frame(state.region, state.x77)

Now you can apply the test:

> kruskal.test(Illiteracy ~ state.region, data=states)
 Kruskal-Wallis rank sum test
data: states$Illiteracy by states$state.region
Kruskal-Wallis chi-squared = 22.7, df = 3, p-value = 4.726e-05

The significance test suggests that the illiteracy rate isn’t the same in each of the four

regions of the country (p <.001).

 Although you can reject the null hypothesis of no difference, the test doesn’t tell

you which regions differ significantly from each other. To answer this question, you

could compare groups two at a time using the Wilcoxon test. A more elegant

approach is to apply a multiple-comparisons procedure that computes all pairwise

comparisons, while controlling the type I error rate (the probability of finding a dif-

ference that isn’t there). I have created a function called wmc() that can be used for

this purpose. It compares groups two at a time using the Wilcoxon test and adjusts the

probability values using the p.adj() function.

 To be honest, I’m stretching the definition of basic in the chapter title quite a bit,

but because the function fits well here, I hope you’ll bear with me. You can download

a text file containing wmc() from www.statmethods.net/RiA/wmc.txt. The following

listing uses this function to compare the illiteracy rates in the four US regions.

> source("http://www.statmethods.net/RiA/wmc.txt")
> states <- data.frame(state.region, state.x77)
> wmc(Illiteracy ~ state.region, data=states, method="holm")

Descriptive Statistics

 West North Central Northeast South
n 13.00 12.00 9.0 16.00

Listing 7.17 Nonparametric multiple comparisons

Accesses
the functionb

Basic statisticsc

www.it-ebooks.info

www.statmethods.net/RiA/wmc.txt
http://www.it-ebooks.info/

163Visualizing group differences

median 0.60 0.70 1.1 1.75
mad 0.15 0.15 0.3 0.59

Multiple Comparisons (Wilcoxon Rank Sum Tests)
Probability Adjustment = holm

 Group.1 Group.2 W p
1 West North Central 88 8.7e-01
2 West Northeast 46 8.7e-01
3 West South 39 1.8e-02 *
4 North Central Northeast 20 5.4e-02 .
5 North Central South 2 8.1e-05 ***
6 Northeast South 18 1.2e-02 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The source() function downloads and executes the R script defining the wmc() func-

tion b. The function’s format is wmc(y ~ A, data, method), where y is a numeric

outcome variable, A is a grouping variable, data is the data frame containing these

variables, and method is the approach used to limit Type I errors. Listing 7.17 uses an

adjustment method developed by Holm (1979). It provides strong control of the fam-

ily-wise error rate (the probability of making one or more Type I errors in a set of com-

parisons). See help(p.adjust) for a description of the other methods available.

 The wmc() function first provides the sample sizes, medians, and median absolute

deviations for each group c. The West has the lowest illiteracy rate, and the South

has the highest. The function then generates six statistical comparisons (West versus

North Central, West versus Northeast, West versus South, North Central versus North-

east, North Central versus South, and Northeast versus South) d. You can see from

the two-sided p-values (p) that the South differs significantly from the other three

regions and that the other three regions don’t differ from each other at a p < .05 level.

 Nonparametric multiple comparisons are a useful set of techniques that aren’t eas-

ily accessible in R. In chapter 21, you’ll have an opportunity to expand the wmc() func-

tion into a fully developed package that includes error checking and informative

graphics.

7.6 Visualizing group differences

In sections 7.4 and 7.5, we looked at statistical methods for comparing groups. Exam-

ining group differences visually is also a crucial part of a comprehensive data-analysis

strategy. It allows you to assess the magnitude of the differences, identify any distribu-

tional characteristics that influence the results (such as skew, bimodality, or outliers),

and evaluate the appropriateness of the test assumptions. R provides a wide range of

graphical methods for comparing groups, including box plots (simple, notched, and

violin), covered in section 6.5; overlapping kernel density plots, covered in section

6.4.1; and graphical methods for visualizing outcomes in an ANOVA framework, dis-

cussed in chapter 9. Advanced methods for visualizing group differences, including

grouping and faceting, are discussed in chapter 19.

Pairwise comparisonsd

www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 7 Basic statistics

7.7 Summary

In this chapter, we reviewed the functions in R that provide basic statistical summaries

and tests. We looked at sample statistics and frequency tables, tests of independence

and measures of association for categorical variables, correlations between quantita-

tive variables (and their associated significance tests), and comparisons of two or more

groups on a quantitative outcome variable.

 In the next chapter, we’ll explore simple and multiple regression, where the focus

is on understanding relationships between one (simple) or more than one (multiple)

predictor variables and a predicted or criterion variable. Graphical methods will help

you diagnose potential problems, evaluate and improve the fit of your models, and

uncover unexpected gems of information in your data.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Intermediate methods

Whereas part 2 of this book covered basic graphical and statistical meth-

ods, part 3 discusses intermediate methods. We move from describing the rela-

tionship between two variables to, in chapter 8, using regression models to

model the relationship between a numerical outcome variable and a set of

numeric and/or categorical predictor variables. Modeling data is typically a

complex, multistep, interactive process. Chapter 8 provides step-by-step cover-

age of the methods available for fitting linear models, evaluating their appropri-

ateness, and interpreting their meaning.

 Chapter 9 considers the analysis of basic experimental and quasi-experimen-

tal designs through the analysis of variance and its variants. Here we’re inter-

ested in how treatment combinations or conditions affect a numerical outcome

variable. The chapter introduces the functions in R that are used to perform an

analysis of variance, analysis of covariance, repeated measures analysis of vari-

ance, multifactor analysis of variance, and multivariate analysis of variance.

Methods for assessing the appropriateness of these analyses and visualizing the

results are also discussed.

 In designing experimental and quasi-experimental studies, it’s important to

determine whether the sample size is adequate for detecting the effects of inter-

est (power analysis). Otherwise, why conduct the study? A detailed treatment of

power analysis is provided in chapter 10. Starting with a discussion of hypothesis

testing, the presentation focuses on how to use R functions to determine the

sample size necessary to detect a treatment effect of a given size with a given

degree of confidence. This can help you to plan studies that are likely to yield

useful results.

www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER

 Chapter 11 expands on the material in chapter 5 by covering the creation of

graphs that help you to visualize relationships among two or more variables. This

includes the various types of 2D and 3D scatter plots, scatter-plot matrices, line plots,

and bubble plots. It also introduces the very useful, but less well-known, corrgrams,

and mosaic plots.

 The linear models described in chapters 8 and 9 assume that the outcome or

response variable is not only numeric, but also randomly sampled from a normal dis-

tribution. There are situations where this distributional assumption is untenable.

Chapter 12 presents analytic methods that work well in cases where data is sampled

from unknown or mixed distributions, where sample sizes are small, where outliers

are a problem, or where devising an appropriate test based on a theoretical distribu-

tion is mathematically intractable. They include both resampling and bootstrapping

approaches—computer-intensive methods that are powerfully implemented in R. The

methods described in this chapter will allow you to devise hypothesis tests for data that

don’t fit traditional parametric assumptions.

 After completing part 3, you’ll have the tools to analyze most common data-

analytic problems encountered in practice. And you’ll be able to create some gor-

geous graphs!

Intermediate methods

www.it-ebooks.info

http://www.it-ebooks.info/

167

Regression

In many ways, regression analysis lives at the heart of statistics. It’s a broad term for

a set of methodologies used to predict a response variable (also called a dependent,

criterion, or outcome variable) from one or more predictor variables (also called inde-

pendent or explanatory variables). In general, regression analysis can be used to iden-

tify the explanatory variables that are related to a response variable, to describe the

form of the relationships involved, and to provide an equation for predicting the

response variable from the explanatory variables.

 For example, an exercise physiologist might use regression analysis to develop

an equation for predicting the expected number of calories a person will burn

while exercising on a treadmill. The response variable is the number of calories

burned (calculated from the amount of oxygen consumed), and the predictor vari-

ables might include duration of exercise (minutes), percentage of time spent at

their target heart rate, average speed (mph), age (years), gender, and body mass

index (BMI).

This chapter covers

■ Fitting and interpreting linear models

■ Evaluating model assumptions

■ Selecting among competing models

www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 8 Regression

 From a theoretical point of view, the analysis will help answer such questions as

these:

■ What’s the relationship between exercise duration and calories burned? Is it lin-

ear or curvilinear? For example, does exercise have less impact on the number

of calories burned after a certain point?

■ How does effort (the percentage of time at the target heart rate, the average

walking speed) factor in?

■ Are these relationships the same for young and old, male and female, heavy

and slim?

From a practical point of view, the analysis will help answer such questions as the

following:

■ How many calories can a 30-year-old man with a BMI of 28.7 expect to burn if he

walks for 45 minutes at an average speed of 4 miles per hour and stays within his

target heart rate 80% of the time?

■ What’s the minimum number of variables you need to collect in order to accu-

rately predict the number of calories a person will burn when walking?

■ How accurate will your prediction tend to be?

Because regression analysis plays such a central role in modern statistics, we’ll cover it

in some depth in this chapter. First, we’ll look at how to fit and interpret regression

models. Next, we’ll review a set of techniques for identifying potential problems with

these models and how to deal with them. Third, we’ll explore the issue of variable

selection. Of all the potential predictor variables available, how do you decide which

ones to include in your final model? Fourth, we’ll address the question of generaliz-

ability. How well will your model work when you apply it in the real world? Finally,

we’ll consider relative importance. Of all the predictors in your model, which one is

the most important, the second most important, and the least important?

 As you can see, we’re covering a lot of ground. Effective regression analysis is an

interactive, holistic process with many steps, and it involves more than a little skill.

Rather than break it up into multiple chapters, I’ve opted to present this topic in a sin-

gle chapter in order to capture this flavor. As a result, this will be the longest and most

involved chapter in the book. Stick with it to the end, and you’ll have all the tools you

need to tackle a wide variety of research questions. Promise!

8.1 The many faces of regression

The term regression can be confusing because there are so many specialized varieties

(see table 8.1). In addition, R has powerful and comprehensive features for fitting

regression models, and the abundance of options can be confusing as well. For exam-

ple, in 2005, Vito Ricci created a list of more than 205 functions in R that are used to

generate regression analyses (http://mng.bz/NJhu).

www.it-ebooks.info

http://mng.bz/NJhu
http://www.it-ebooks.info/

169The many faces of regression

In this chapter, we’ll focus on regression methods that fall under the rubric of ordinary

least squares (OLS) regression, including simple linear regression, polynomial regression,

and multiple linear regression. OLS regression is the most common variety of statisti-

cal analysis today. Other types of regression models (including logistic regression and

Poisson regression) will be covered in chapter 13.

8.1.1 Scenarios for using OLS regression

In OLS regression, a quantitative dependent variable is predicted from a weighted

sum of predictor variables, where the weights are parameters estimated from the data.

Let’s take a look at a concrete example (no pun intended), loosely adapted from Fwa

(2006).

Table 8.1 Varieties of regression analysis

Type of regression Typical use

Simple linear Predicting a quantitative response variable from a quantitative explanatory

variable.

Polynomial Predicting a quantitative response variable from a quantitative explanatory

variable, where the relationship is modeled as an nth order polynomial.

Multiple linear Predicting a quantitative response variable from two or more explanatory

variables.

Multilevel Predicting a response variable from data that have a hierarchical structure

(for example, students within classrooms within schools). Also called hier-

archical, nested, or mixed models.

Multivariate Predicting more than one response variable from one or more explanatory

variables.

Logistic Predicting a categorical response variable from one or more explanatory

variables.

Poisson Predicting a response variable representing counts from one or more

explanatory variables.

Cox proportional hazards Predicting time to an event (death, failure, relapse) from one or more

explanatory variables.

Time-series Modeling time-series data with correlated errors.

Nonlinear Predicting a quantitative response variable from one or more explanatory

variables, where the form of the model is nonlinear.

Nonparametric Predicting a quantitative response variable from one or more explanatory

variables, where the form of the model is derived from the data and not

specified a priori.

Robust Predicting a quantitative response variable from one or more explanatory

variables using an approach that’s resistant to the effect of influential

observations.

www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 8 Regression

 An engineer wants to identify the most important factors related to bridge deterio-

ration (such as age, traffic volume, bridge design, construction materials and meth-

ods, construction quality, and weather conditions) and determine the mathematical

form of these relationships. She collects data on each of these variables from a repre-

sentative sample of bridges and models the data using OLS regression.

 The approach is highly interactive. She fits a series of models, checks their compli-

ance with underlying statistical assumptions, explores any unexpected or aberrant

findings, and finally chooses the “best” model from among many possible models. If

successful, the results will help her to

■ Focus on important variables, by determining which of the many collected vari-

ables are useful in predicting bridge deterioration, along with their relative

importance.
■ Look for bridges that are likely to be in trouble, by providing an equation that

can be used to predict bridge deterioration for new cases (where the values of

the predictor variables are known, but the degree of bridge deterioration isn’t).
■ Take advantage of serendipity, by identifying unusual bridges. If she finds that

some bridges deteriorate much faster or slower than predicted by the model, a

study of these outliers may yield important findings that could help her to

understand the mechanisms involved in bridge deterioration.

Bridges may hold no interest for you. I’m a clinical psychologist and statistician, and I

know next to nothing about civil engineering. But the general principles apply to an

amazingly wide selection of problems in the physical, biological, and social sciences.

Each of the following questions could also be addressed using an OLS approach:

■ What’s the relationship between surface stream salinity and paved road surface

area (Montgomery, 2007)?
■ What aspects of a user’s experience contribute to the overuse of massively multi-

player online role playing games (MMORPGs) (Hsu, Wen, & Wu, 2009)?
■ Which qualities of an educational environment are most strongly related to

higher student achievement scores?
■ What’s the form of the relationship between blood pressure, salt intake, and

age? Is it the same for men and women?
■ What’s the impact of stadiums and professional sports on metropolitan area

development (Baade & Dye, 1990)?
■ What factors account for interstate differences in the price of beer (Culbertson

& Bradford, 1991)? (That one got your attention!)

Our primary limitation is our ability to formulate an interesting question, devise a use-

ful response variable to measure, and gather appropriate data.

8.1.2 What you need to know

For the remainder of this chapter, I’ll describe how to use R functions to fit OLS

regression models, evaluate the fit, test assumptions, and select among competing

www.it-ebooks.info

http://www.it-ebooks.info/

171OLS regression

models. I assume you’ve had exposure to least squares regression as typically taught in

a second-semester undergraduate statistics course. But I’ve made efforts to keep the

mathematical notation to a minimum and focus on practical rather than theoretical

issues. A number of excellent texts are available that cover the statistical material out-

lined in this chapter. My favorites are John Fox’s Applied Regression Analysis and General-

ized Linear Models (for theory) and An R and S-Plus Companion to Applied Regression (for

application). They both served as major sources for this chapter. A good nontechnical

overview is provided by Licht (1995).

8.2 OLS regression

For most of this chapter, we’ll be predicting the response variable from a set of predic-

tor variables (also called regressing the response variable on the predictor variables—

hence the name) using OLS. OLS regression fits models of the form

where n is the number of observations and k is the number of predictor variables.

(Although I’ve tried to keep equations out of these discussions, this is one of the few

places where it simplifies things.) In this equation:

is the predicted value of the dependent variable for observation i (specifi-

cally, it’s the estimated mean of the Y distribution, conditional on the set of pre-

dictor values).

Xji is the jth predictor value for the ith observation.

is the intercept (the predicted value of Y when all the predictor variables

equal zero).

is the regression coefficient for the jth predictor (slope representing the

change in Y for a unit change in Xj).

Our goal is to select model parameters (intercept and slopes) that minimize the dif-

ference between actual response values and those predicted by the model. Specifi-

cally, model parameters are selected to minimize the sum of squared residuals:

To properly interpret the coefficients of the OLS model, you must satisfy a number of

statistical assumptions:

■ Normality—For fixed values of the independent variables, the dependent vari-

able is normally distributed.
■ Independence—The Yi values are independent of each other.
■ Linearity—The dependent variable is linearly related to the independent

variables.

Yi = β0 + β1X1i + ... + βkXki i = 1 ... n

Yi

β0

βj

ε∑
n

i=1
∑

n

i=1
∑

n

i=1
i(Yi − Yi)

2 = (Yi − β0 + β1X1i + ... + βkXki)
2 = 2

www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 8 Regression

■ Homoscedasticity—The variance of the dependent variable doesn’t vary with the

levels of the independent variables. (I could call this constant variance, but say-

ing homoscedasticity makes me feel smarter.)

If you violate these assumptions, your statistical significance tests and confidence

intervals may not be accurate. Note that OLS regression also assumes that the inde-

pendent variables are fixed and measured without error, but this assumption is typi-

cally relaxed in practice.

8.2.1 Fitting regression models with lm()

In R, the basic function for fitting a linear model is lm(). The format is

myfit <- lm(formula, data)

where formula describes the model to be fit and data is the data frame containing the

data to be used in fitting the model. The resulting object (myfit, in this case) is a list

that contains extensive information about the fitted model. The formula is typically

written as

Y ~ X1 + X2 + ... + Xk

where the ~ separates the response variable on the left from the predictor variables on

the right, and the predictor variables are separated by + signs. Other symbols can be

used to modify the formula in various ways (see table 8.2).

Table 8.2 Symbols commonly used in R formulas

Symbol Usage

~ Separates response variables on the left from the explanatory variables on the right. For

example, a prediction of y from x, z, and w would be coded y ~ x + z + w.

+ Separates predictor variables.

: Denotes an interaction between predictor variables. A prediction of y from x, z, and the

interaction between x and z would be coded y ~ x + z + x:z.

* A shortcut for denoting all possible interactions. The code y ~ x * z * w expands to

y ~ x + z + w + x:z + x:w + z:w + x:z:w.

^ Denotes interactions up to a specified degree. The code y ~ (x + z + w)^2 expands

to y ~ x + z + w + x:z + x:w + z:w.

. A placeholder for all other variables in the data frame except the dependent variable. For

example, if a data frame contained the variables x, y, z, and w, then the code y ~ .
would expand to y ~ x + z + w.

- A minus sign removes a variable from the equation. For example, y ~ (x + z + w)^2
– x:w expands to y ~ x + z + w + x:z + z:w.

-1 Suppresses the intercept. For example, the formula y ~ x -1 fits a regression of y on

x, and forces the line through the origin at x=0.

www.it-ebooks.info

http://www.it-ebooks.info/

173OLS regression

In addition to lm(), table 8.3 lists several functions that are useful when generating a

simple or multiple regression analysis. Each of these functions is applied to the object
returned by lm() in order to generate additional information based on that fitted

model.

When the regression model contains one dependent variable and one independent

variable, the approach is called simple linear regression. When there’s one predictor vari-

able but powers of the variable are included (for example, X, X2, X3), it’s called polyno-

mial regression. When there’s more than one predictor variable, it’s called multiple linear

regression. We’ll start with an example of simple linear regression, then progress to

examples of polynomial and multiple linear regression, and end with an example of
multiple regression that includes an interaction among the predictors.

8.2.2 Simple linear regression

Let’s look at the functions in table 8.3 through a simple regression example. The data-

set women in the base installation provides the height and weight for a set of 15 women

I() Elements within the parentheses are interpreted arithmetically. For example, y ~ x +
(z + w)^2 would expand to y ~ x + z + w + z:w. In contrast, the code y ~ x +
I((z + w)^2) would expand to y ~ x + h, where h is a new variable created by

squaring the sum of z and w.

function Mathematical functions can be used in formulas. For example, log(y) ~ x + z + w

would predict log(y) from x, z, and w.

Table 8.3 Other functions that are useful when fitting linear models

Function Action

summary() Displays detailed results for the fitted model

coefficients() Lists the model parameters (intercept and slopes) for the fitted model

confint() Provides confidence intervals for the model parameters (95% by default)

fitted() Lists the predicted values in a fitted model

residuals() Lists the residual values in a fitted model

anova() Generates an ANOVA table for a fitted model, or an ANOVA table comparing

two or more fitted models

vcov() Lists the covariance matrix for model parameters

AIC() Prints Akaike’s Information Criterion

plot() Generates diagnostic plots for evaluating the fit of a model

predict() Uses a fitted model to predict response values for a new dataset

Table 8.2 Symbols commonly used in R formulas

Symbol Usage

www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 8 Regression

ages 30 to 39. Suppose you want

to predict weight from height.

Having an equation for predict-

ing weight from height can help

you to identify overweight or

underweight individuals. The

analysis is provided in the follow-

ing listing, and the resulting

graph is shown in figure 8.1.

Figure 8.1 Scatter plot with

regression line for weight

predicted from height

> fit <- lm(weight ~ height, data=women)
> summary(fit)

Call:
lm(formula=weight ~ height, data=women)

Residuals:
 Min 1Q Median 3Q Max
-1.733 -1.133 -0.383 0.742 3.117

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -87.5167 5.9369 -14.7 1.7e-09 ***
height 3.4500 0.0911 37.9 1.1e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 1.53 on 13 degrees of freedom
Multiple R-squared: 0.991, Adjusted R-squared: 0.99
F-statistic: 1.43e+03 on 1 and 13 DF, p-value: 1.09e-14

> women$weight

 [1] 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

> fitted(fit)

 1 2 3 4 5 6 7 8 9
112.58 116.03 119.48 122.93 126.38 129.83 133.28 136.73 140.18
 10 11 12 13 14 15
143.63 147.08 150.53 153.98 157.43 160.88

> residuals(fit)

Listing 8.1 Simple linear regression

58 60 62 64 66 68 70 72

1
2

0
1

3
0

1
4

0
1

5
0

1
6

0

Height (in inches)

W
e

ig
h

t
(i
n

 p
o

u
n

d
s
)

www.it-ebooks.info

http://www.it-ebooks.info/

175OLS regression

 1 2 3 4 5 6 7 8 9 10 11
 2.42 0.97 0.52 0.07 -0.38 -0.83 -1.28 -1.73 -1.18 -1.63 -1.08
 12 13 14 15
-0.53 0.02 1.57 3.12

> plot(women$height,women$weight,
 xlab="Height (in inches)",
 ylab="Weight (in pounds)")
> abline(fit)

From the output, you see that the prediction equation is

Because a height of 0 is impossible, you wouldn’t try to give a physical interpretation

to the intercept. It merely becomes an adjustment constant. From the Pr(>|t|) col-

umn, you see that the regression coefficient (3.45) is significantly different from zero

(p < 0.001) and indicates that there’s an expected increase of 3.45 pounds of weight

for every 1 inch increase in height. The multiple R-squared (0.991) indicates that the

model accounts for 99.1% of the variance in weights. The multiple R-squared is also

the squared correlation between the actual and predicted value (that is,). The

residual standard error (1.53 pounds) can be thought of as the average error in pre-

dicting weight from height using this model. The F statistic tests whether the predic-

tor variables, taken together, predict the response variable above chance levels.

Because there’s only one predictor variable in simple regression, in this example the F

test is equivalent to the t-test for the regression coefficient for height.

 For demonstration purposes, we’ve printed out the actual, predicted, and residual

values. Evidently, the largest residuals occur for low and high heights, which can also

be seen in the plot (figure 8.1).

 The plot suggests that you might be able to improve on the prediction by using a

line with one bend. For example, a model of the form may pro-

vide a better fit to the data. Polynomial regression allows you to predict a response

variable from an explanatory variable, where the form of the relationship is an nth-

degree polynomial.

8.2.3 Polynomial regression

The plot in figure 8.1 suggests that you might be able to improve your prediction

using a regression with a quadratic term (that is, X 2). You can fit a quadratic equation

using the statement

fit2 <- lm(weight ~ height + I(height^2), data=women)

The new term I(height^2) requires explanation. height^2 adds a height-squared

term to the prediction equation. The I function treats the contents within the paren-

theses as an R regular expression. You need this because the ^ operator has a special

meaning in formulas that you don’t want to invoke here (see table 8.2).

Weight
^

Height. ×= − +87.52 3 45

R
2 = ryy

Yi = β0 + β1X + β2X
2

www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 8 Regression

 The following listing shows the results of fitting the quadratic equation.

> fit2 <- lm(weight ~ height + I(height^2), data=women)
> summary(fit2)

Call:
lm(formula=weight ~ height + I(height^2), data=women)

Residuals:
 Min 1Q Median 3Q Max
-0.5094 -0.2961 -0.0094 0.2862 0.5971

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 261.87818 25.19677 10.39 2.4e-07 ***
height -7.34832 0.77769 -9.45 6.6e-07 ***
I(height^2) 0.08306 0.00598 13.89 9.3e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.384 on 12 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.999
F-statistic: 1.14e+04 on 2 and 12 DF, p-value: <2e-16

> plot(women$height,women$weight,
 xlab="Height (in inches)",
 ylab="Weight (in lbs)")
> lines(women$height,fitted(fit2))

From this new analysis, the prediction equation is

and both regression coefficients

are significant at the p < 0.0001

level. The amount of variance

accounted for has increased to

99.9%. The significance of the

squared term (t = 13.89, p < .001)

suggests that inclusion of the

quadratic term improves the

model fit. If you look at the plot

of fit2 (figure 8.2) you can see

that the curve does indeed pro-

vide a better fit.

Figure 8.2 Quadratic regression

for weight predicted by height

Listing 8.2 Polynomial regression

Weight
^

Height + 0.083 Height2× ×= −261.88 7 . 3 5

58 60 62 64 66 68 70 72

1
2

0
1

3
0

1
4

0
1

5
0

1
6

0

Height (in inches)

W
e

ig
h

t
(i
n

 l
b

s
)

www.it-ebooks.info

http://www.it-ebooks.info/

177OLS regression

In general, an nth-degree polynomial produces a curve with n-1 bends. To fit a cubic

polynomial, you’d use

fit3 <- lm(weight ~ height + I(height^2) +I(height^3), data=women)

Although higher polynomials are possible, I’ve rarely found that terms higher than
cubic are necessary.

 Before we move on, I should mention that the scatterplot() function in the car
package provides a simple and convenient method of plotting a bivariate relationship.
The code

library(car)
scatterplot(weight ~ height, data=women,
 spread=FALSE, smoother.args=list(lty=2), pch=19,
 main="Women Age 30-39",
 xlab="Height (inches)",
 ylab="Weight (lbs.)")

produces the graph in figure 8.3.

Figure 8.3 Scatter plot of height

by weight, with linear and smoothed

fits, and marginal box plots

Linear vs. nonlinear models

Note that this polynomial equation still fits under the rubric of linear regression. It’s
linear because the equation involves a weighted sum of predictor variables (height
and height-squared in this case). Even a model such as

would be considered a linear model (linear in terms of the parameters) and fit with
the formula

Y ~ log(X1) + sin(X2)

In contrast, here’s an example of a truly nonlinear model:

Nonlinear models of this form can be fit with the nls() function.

Yi = β0 × logX1 + β2 × sinX2

Yi = β0 + β1 ex/β2

58 60 62 64 66 68 70 72

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

Women Age 30−39

Height (inches)

W
e

ig
h

t
(l
b

s
.)

www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 8 Regression

 This enhanced plot provides the scatter plot of weight with height, box plots for

each variable in their respective margins, the linear line of best fit, and a smoothed

(loess) fit line. The spread=FALSE options suppress spread and asymmetry informa-

tion. The smoother.args=list(lty=2)option specifies that the loess fit be rendered

as a dashed line. The pch=19 options display points as filled circles (the default is

open circles). You can tell at a glance that the two variables are roughly symmetrical

and that a curved line will fit the data points better than a straight line.

8.2.4 Multiple linear regression

When there’s more than one predictor variable, simple linear regression becomes

multiple linear regression, and the analysis grows more involved. Technically, polyno-

mial regression is a special case of multiple regression. Quadratic regression has two

predictors (X and X 2), and cubic regression has three predictors (X, X 2, and X 3).

Let’s look at a more general example.

 We’ll use the state.x77 dataset in the base package for this example. Suppose you

want to explore the relationship between a state’s murder rate and other characteris-

tics of the state, including population, illiteracy rate, average income, and frost levels

(mean number of days below freezing).

 Because the lm() function requires a data frame (and the state.x77 dataset is

contained in a matrix), you can simplify your life with the following code:

states <- as.data.frame(state.x77[,c("Murder", "Population",
 "Illiteracy", "Income", "Frost")])

This code creates a data frame called states, containing the variables you’re inter-

ested in. You’ll use this new data frame for the remainder of the chapter.

 A good first step in multiple regression is to examine the relationships among the

variables two at a time. The bivariate correlations are provided by the cor() function,

and scatter plots are generated from the scatterplotMatrix() function in the car

package (see the following listing and figure 8.4).

> states <- as.data.frame(state.x77[,c("Murder", "Population",
 "Illiteracy", "Income", "Frost")])

> cor(states)
 Murder Population Illiteracy Income Frost
Murder 1.00 0.34 0.70 -0.23 -0.54
Population 0.34 1.00 0.11 0.21 -0.33
Illiteracy 0.70 0.11 1.00 -0.44 -0.67
Income -0.23 0.21 -0.44 1.00 0.23
Frost -0.54 -0.33 -0.67 0.23 1.00

> library(car)
> scatterplotMatrix(states, spread=FALSE, smoother.args=list(lty=2),
 main="Scatter Plot Matrix")

Listing 8.3 Examining bivariate relationships

www.it-ebooks.info

http://www.it-ebooks.info/

179OLS regression

By default, the scatterplotMatrix() function provides scatter plots of the variables

with each other in the off-diagonals and superimposes smoothed (loess) and linear fit

lines on these plots. The principal diagonal contains density and rug plots for each

variable.

 You can see that murder rate may be bimodal and that each of the predictor vari-

ables is skewed to some extent. Murder rates rise with population and illiteracy, and

they fall with higher income levels and frost. At the same time, colder states have

lower illiteracy rates and population and higher incomes.

 Now let’s fit the multiple regression model with the lm() function (see the follow-

ing listing).

> states <- as.data.frame(state.x77[,c("Murder", "Population",
 "Illiteracy", "Income", "Frost")])

> fit <- lm(Murder ~ Population + Illiteracy + Income + Frost,
 data=states)
> summary(fit)

Listing 8.4 Multiple linear regression

Murder

0 10000 20000 3000 4500 6000

2
6

 1
0

1
4

0

1
0
0
0
0

2
0
0
0
0

P opulation

Illiteracy

0
.5

1
.5

2
.5

3
0
0
0

4
5
0
0

6
0
0
0

Income

2 6 10 14 0.5 1.5 2.5 0 5 0 100

0
5

0

1
0
0

Frost

Scatterplot matrix

Figure 8.4 Scatter plot matrix of dependent and independent variables for the states data,

including linear and smoothed fits, and marginal distributions (kernel-density plots and rug plots)

www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 8 Regression

Call:
lm(formula=Murder ~ Population + Illiteracy + Income + Frost,
 data=states)

Residuals:
 Min 1Q Median 3Q Max
-4.7960 -1.6495 -0.0811 1.4815 7.6210

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.23e+00 3.87e+00 0.32 0.751
Population 2.24e-04 9.05e-05 2.47 0.017 *
Illiteracy 4.14e+00 8.74e-01 4.74 2.2e-05 ***
Income 6.44e-05 6.84e-04 0.09 0.925
Frost 5.81e-04 1.01e-02 0.06 0.954

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.v 0.1 'v' 1

Residual standard error: 2.5 on 45 degrees of freedom
Multiple R-squared: 0.567, Adjusted R-squared: 0.528
F-statistic: 14.7 on 4 and 45 DF, p-value: 9.13e-08

When there’s more than one predictor variable, the regression coefficients indicate

the increase in the dependent variable for a unit change in a predictor variable, hold-

ing all other predictor variables constant. For example, the regression coefficient for

Illiteracy is 4.14, suggesting that an increase of 1% in illiteracy is associated with a

4.14% increase in the murder rate, controlling for population, income, and tempera-

ture. The coefficient is significantly different from zero at the p < .0001 level. On the

other hand, the coefficient for Frost isn’t significantly different from zero (p = 0.954)

suggesting that Frost and Murder aren’t linearly related when controlling for the

other predictor variables. Taken together, the predictor variables account for 57% of

the variance in murder rates across states.

 Up to this point, we’ve assumed that the predictor variables don’t interact. In the

next section, we’ll consider a case in which they do.

8.2.5 Multiple linear regression with interactions

Some of the most interesting research findings are those involving interactions among

predictor variables. Consider the automobile data in the mtcars data frame. Let’s say

that you’re interested in the impact of automobile weight and horsepower on mile-

age. You could fit a regression model that includes both predictors, along with their

interaction, as shown in the next listing.

> fit <- lm(mpg ~ hp + wt + hp:wt, data=mtcars)
> summary(fit)

Listing 8.5 Multiple linear regression with a significant interaction term

www.it-ebooks.info

http://www.it-ebooks.info/

181OLS regression

Call:
lm(formula=mpg ~ hp + wt + hp:wt, data=mtcars)

Residuals:
 Min 1Q Median 3Q Max
-3.063 -1.649 -0.736 1.421 4.551

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.80842 3.60516 13.82 5.0e-14 ***
hp -0.12010 0.02470 -4.86 4.0e-05 ***
wt -8.21662 1.26971 -6.47 5.2e-07 ***
hp:wt 0.02785 0.00742 3.75 0.00081 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.1 on 28 degrees of freedom
Multiple R-squared: 0.885, Adjusted R-squared: 0.872
F-statistic: 71.7 on 3 and 28 DF, p-value: 2.98e-13

You can see from the Pr(>|t|) column that the interaction between horsepower and

car weight is significant. What does this mean? A significant interaction between two

predictor variables tells you that the relationship between one predictor and the

response variable depends on the level of the other predictor. Here it means the rela-

tionship between miles per gallon and horsepower varies by car weight.

 The model for predicting mpg is = 49.81 – 0.12 × hp – 8.22 × wt + 0.03 × hp ×
wt. To interpret the interaction, you can plug in various values of wt and simplify the

equation. For example, you can try the mean of wt (3.2) and one standard deviation

below and above the mean (2.2 and 4.2, respectively). For wt=2.2, the equation simpli-

fies to = 49.81 – 0.12 × hp – 8.22 × (2.2) + 0.03 × hp × (2.2) = 31.41 – 0.06 × hp.

For wt=3.2, this becomes = 23.37 – 0.03 × hp. Finally, for wt=4.2 the equation

becomes = 15.33 – 0.003 × hp. You see that as weight increases (2.2, 3.2, 4.2), the

expected change in mpg from a unit increase in hp decreases (0.06, 0.03, 0.003).

 You can visualize interactions using the effect() function in the effects package.

The format is

plot(effect(term, mod,, xlevels), multiline=TRUE)

where term is the quoted model term to plot, mod is the fitted model returned by

lm(), and xlevels is a list specifying the variables to be set to constant values and the

values to employ. The multiline=TRUE option superimposes the lines being plotted.

For the previous model, this becomes

library(effects)
plot(effect("hp:wt", fit,, list(wt=c(2.2,3.2,4.2))), multiline=TRUE)

The resulting graph is displayed in figure 8.5.

mpg

mpg

mpg

mpg

www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 8 Regression

 You can see from this graph

that as the weight of the car

increases, the relationship

between horsepower and miles

per gallon weakens. For wt=4.2,

the line is almost horizontal,

indicating that as hp increases,

mpg doesn’t change.

 Unfortunately, fitting the

model is only the first step in the

analysis. Once you fit a regres-

sion model, you need to evaluate

whether you’ve met the statistical

assumptions underlying your

approach before you can have

confidence in the inferences you

draw. This is the topic of the next

section.

8.3 Regression diagnostics

In the previous section, you used the lm() function to fit an OLS regression model

and the summary() function to obtain the model parameters and summary statistics.

Unfortunately, nothing in this printout tells you whether the model you’ve fit is appro-

priate. Your confidence in inferences about regression parameters depends on the

degree to which you’ve met the statistical assumptions of the OLS model. Although

the summary() function in listing 8.4 describes the model, it provides no information

concerning the degree to which you’ve satisfied the statistical assumptions underlying

the model.

 Why is this important? Irregularities in the data or misspecifications of the rela-

tionships between the predictors and the response variable can lead you to settle on a

model that’s wildly inaccurate. On the one hand, you may conclude that a predictor

and a response variable are unrelated when, in fact, they are. On the other hand, you

may conclude that a predictor and a response variable are related when, in fact, they

aren’t! You may also end up with a model that makes poor predictions when applied

in real-world settings, with significant and unnecessary error.

 Let’s look at the output from the confint() function applied to the states multi-

ple regression problem in section 8.2.4:

> states <- as.data.frame(state.x77[,c("Murder", "Population",
 "Illiteracy", "Income", "Frost")])
> fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)
> confint(fit)
 2.5 % 97.5 %
(Intercept) -6.55e+00 9.021318

hp*wt effect plot

m
p
g

15

20

25

50 100 150 200 250 300

wt
2.2
3.2
4.2

Figure 8.5 Interaction plot for hp*wt. This plot displays

the relationship between mpg and hp at three values of wt.

www.it-ebooks.info

http://www.it-ebooks.info/

183Regression diagnostics

Population 4.14e-05 0.000406
Illiteracy 2.38e+00 5.903874
Income -1.31e-03 0.001441
Frost -1.97e-02 0.020830

The results suggest that you can be 95% confident that the interval [2.38, 5.90] con-

tains the true change in murder rate for a 1% change in illiteracy rate. Additionally,

because the confidence interval for Frost contains 0, you can conclude that a change

in temperature is unrelated to murder rate, holding the other variables constant. But

your faith in these results is only as strong as the evidence you have that your data sat-

isfies the statistical assumptions underlying the model.

 A set of techniques called regression diagnostics provides the necessary tools for eval-

uating the appropriateness of the regression model and can help you to uncover and

correct problems. We’ll start with a standard approach that uses functions that come

with R’s base installation. Then we’ll look at newer, improved methods available

through the car package.

8.3.1 A typical approach

R’s base installation provides numerous methods for evaluating the statistical assump-

tions in a regression analysis. The most common approach is to apply the plot() func-

tion to the object returned by the lm(). Doing so produces four graphs that are useful

for evaluating the model fit. Applying this approach to the simple linear regression

example

fit <- lm(weight ~ height, data=women)
par(mfrow=c(2,2))
plot(fit)

produces the graphs shown in figure 8.6. The par(mfrow=c(2,2)) statement is used

to combine the four plots produced by the plot() function into one large 2 × 2

graph. The par() function is described in chapter 3.

 To understand these graphs, consider the assumptions of OLS regression:

■ Normality—If the dependent variable is normally distributed for a fixed set of

predictor values, then the residual values should be normally distributed with a

mean of 0. The Normal Q-Q plot (upper right) is a probability plot of the stan-

dardized residuals against the values that would be expected under normality. If

you’ve met the normality assumption, the points on this graph should fall on

the straight 45-degree line. Because they don’t, you’ve clearly violated the nor-

mality assumption.

■ Independence—You can’t tell if the dependent variable values are independent

from these plots. You have to use your understanding of how the data was col-

lected. There’s no a priori reason to believe that one woman’s weight influences

another woman’s weight. If you found out that the data were sampled from fam-

ilies, you might have to adjust your assumption of independence.

www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 8 Regression

■ Linearity—If the dependent variable is linearly related to the independent vari-

ables, there should be no systematic relationship between the residuals and the

predicted (that is, fitted) values. In other words, the model should capture all

the systematic variance present in the data, leaving nothing but random noise.

In the Residuals vs. Fitted graph (upper left), you see clear evidence of a curved

relationship, which suggests that you may want to add a quadratic term to the

regression.
■ Homoscedasticity—If you’ve met the constant variance assumption, the points in

the Scale-Location graph (bottom left) should be a random band around a hor-

izontal line. You seem to meet this assumption.

Finally, the Residuals vs. Leverage graph (bottom right) provides information about

individual observations that you may wish to attend to. The graph identifies outliers,

high-leverage points, and influential observations. Specifically:

■ An outlier is an observation that isn’t predicted well by the fitted regression

model (that is, has a large positive or negative residual).

120 130 140 150 160

−
2

−
1

0
1

2
3

Fitted values

R
e

s
id

u
a

ls

15

1

8

−1 0 1

−
1

0
1

2

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

15

1

8

120 130 140 150 160

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Scale−Location
15

1

8

0.00 0.05 0.10 0.15 0.20 0.25

−
1

0
1

2

Leverage

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Cook’s distance

0.5

1

Residuals vs Leverage

15

1

14

Residuals vs Fitted Nor mal Q−Q

Figure 8.6 Diagnostic plots for the regression of weight on height

www.it-ebooks.info

http://www.it-ebooks.info/

185Regression diagnostics

■ An observation with a high leverage value has an unusual combination of predic-

tor values. That is, it’s an outlier in the predictor space. The dependent variable

value isn’t used to calculate an observation’s leverage.
■ An influential observation is an observation that has a disproportionate impact on

the determination of the model parameters. Influential observations are identi-

fied using a statistic called Cook’s distance, or Cook’s D.

To be honest, I find the Residuals vs. Leverage plot difficult to read and not useful.

You’ll see better representations of this information in later sections.

 To complete this section, let’s look at the diagnostic plots for the quadratic fit. The

necessary code is

fit2 <- lm(weight ~ height + I(height^2), data=women)
par(mfrow=c(2,2))
plot(fit2)

and the resulting graph is provided in figure 8.7.

 This second set of plots suggests that the polynomial regression provides a better fit

with regard to the linearity assumption, normality of residuals (except for observation

120 130 140 150 160

−
0

.6

−
0

. 2
0

.2

0

. 6

Fitted va lues

R
e

s
id

u
a

l s

Residuals vs Fitted

15

13
2

−1 0 1

−
1

0

1
 2

Theoretical Quantile s

S
ta

n
d

a
rd

iz
 e
d

 r
e

s
id

u
a

l s

Nor mal Q−Q

15

13 2

120 130 140 150 160

0
. 0

0

.5

1
. 0

1

.5

Fitted va lues

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Scale−Location
15

13 2

0. 0 0 .1 0. 2 0 .3 0. 4

−
1

0

1
2

Le ve rage

S
ta

n
d

a
rd

iz
 e
d

 r
e

s
id

u
a

l s

Cook’s distance
1

0.5

0.5

1

Residuals vs Le ve rage

15

2 13

Figure 8.7 Diagnostic plots for the regression of weight on height and height-squared

www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 8 Regression

13), and homoscedasticity (constant residual variance). Observation 15 appears to be

influential (based on a large Cook’s D value), and deleting it has an impact on the

parameter estimates. In fact, dropping both observations 13 and 15 produces a better

model fit. To see this, try

newfit <- lm(weight~ height + I(height^2), data=women[-c(13,15),])

for yourself. But you need to be careful when deleting data. Your models should fit

your data, not the other way around!

 Finally, let’s apply the basic approach to the states multiple regression problem:

states <- as.data.frame(state.x77[,c("Murder", "Population",
 "Illiteracy", "Income", "Frost")])
fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)
par(mfrow=c(2,2))
plot(fit)

The results are displayed in figure 8.8. As you can see from the graph, the model

assumptions appear to be well satisfied, with the exception that Nevada is an outlier.

 Although these standard diagnostic plots are helpful, better tools are now available

in R and I recommend their use over the plot(fit) approach.

4 6 8 1 0 1 2 1 4

−
5

0

5

Fitted

va

lues

R
e

s
id

u
a

l s

Residuals vs Fitted

Ne v ada

Rhode Island
Massachusetts

−2 −1 0 1 2

−
2

−

1

0
1

2
3

Theoretical Quantile s

S
ta

n
d

a
rd

iz
 e
d
 r

e
s
id

u
a
l s

Nor mal Q−Q

Ne v ada

Rhode Island

Alaska

4 6 8 1 0 1 2 1 4

0
. 0

0

.5

1
. 0

1

.5

Fitted va lues

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Scale−Location
Ne v ada

Rhode Island
Alaska

0. 0 0 .1 0. 2 0 .3 0. 4

−
2

−

1

0
1

2
 3

Le ve rage

S
ta

n
d
a
rd

iz
 e
d
 r

e
s
id

u
a
l s

Cook’s distance
1

0.5

0.5

1

Residuals vs Le ve rage

Alaska

Ne v ada

Ha w aii

Figure 8.8 Diagnostic plots for the regression of murder rate on state characteristics

www.it-ebooks.info

http://www.it-ebooks.info/

187Regression diagnostics

8.3.2 An enhanced approach

The car package provides a number of functions that significantly enhance your abil-

ity to fit and evaluate regression models (see table 8.4).

It’s important to note that there are many changes between version 1.x and version

2.x of the car package, including changes in function names and behavior. This chap-

ter is based on version 2.

 In addition, the gvlma package provides a global test for linear model assumptions.

Let’s look at each in turn, by applying them to our multiple regression example.

NORMALITY

The qqPlot() function provides a more accurate method of assessing the normality

assumption than that provided by the plot() function in the base package. It plots the

studentized residuals (also called studentized deleted residuals or jackknifed residuals) against

a t distribution with n – p – 1 degrees of freedom, where n is the sample size and p is the

number of regression parameters (including the intercept). The code follows:

library(car)
states <- as.data.frame(state.x77[,c("Murder", "Population",
 "Illiteracy", "Income", "Frost")])
fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)
qqPlot(fit, labels=row.names(states), id.method="identify",
 simulate=TRUE, main="Q-Q Plot")

Table 8.4 Useful functions for regression diagnostics (car package)

Function Purpose

qqPlot() Quantile comparisons plot

durbinWatsonTest() Durbin–Watson test for autocorrelated errors

crPlots() Component plus residual plots

ncvTest() Score test for nonconstant error variance

spreadLevelPlot() Spread-level plots

outlierTest() Bonferroni outlier test

avPlots() Added variable plots

influencePlot() Regression influence plots

scatterplot() Enhanced scatter plots

scatterplotMatrix() Enhanced scatter plot matrixes

vif() Variance inflation factors

www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 8 Regression

The qqPlot() function generates

the probability plot displayed in

figure 8.9. The option id.method

="identify" makes the plot inter-

active—after the graph is drawn,

mouse clicks on points in the

graph will label them with values

specified in the labels option of

the function. Pressing the Esc key,

selecting Stop from the graph’s

drop-down menu, or right-clicking

the graph turns off this interactive

mode. Here, I identified Nevada.

When simulate=TRUE, a 95% con-

fidence envelope is produced

using a parametric bootstrap.

(Bootstrap methods are consid-

ered in chapter 12.)

 With the exception of Nevada, all the points fall close to the line and are within the

confidence envelope, suggesting that you’ve met the normality assumption fairly well.

But you should definitely look at Nevada. It has a large positive residual (actual –

predicted), indicating that the model underestimates the murder rate in this state.

Specifically:

> states["Nevada",]

 Murder Population Illiteracy Income Frost
Nevada 11.5 590 0.5 5149 188

> fitted(fit)["Nevada"]

 Nevada
3.878958

> residuals(fit)["Nevada"]

 Nevada
7.621042

> rstudent(fit)["Nevada"]

 Nevada
3.542929

Here you see that the murder rate is 11.5%, but the model predicts a 3.9% murder rate.

 The question that you need to ask is, “Why does Nevada have a higher murder rate

than predicted from population, income, illiteracy, and temperature?” Anyone (who

hasn’t see Goodfellas) want to guess?

0 1 2

0
1

2
3

t Quantiles

Q-Q Plot

S
tu

d
e

n
ti
ze

d
 R

e
s
id

u
a

ls
(f

it
)

Nevada

Figure 8.9 Q-Q plot for studentized residuals

www.it-ebooks.info

http://www.it-ebooks.info/

189Regression diagnostics

 For completeness, here’s another way of visualizing errors. Take a look at the code

in the next listing. The residplot() function generates a histogram of the studen-

tized residuals and superimposes a normal curve, kernel-density curve, and rug plot. It

doesn’t require the car package.

residplot <- function(fit, nbreaks=10) {
 z <- rstudent(fit)
 hist(z, breaks=nbreaks, freq=FALSE,
 xlab="Studentized Residual",
 main="Distribution of Errors")
 rug(jitter(z), col="brown")
 curve(dnorm(x, mean=mean(z), sd=sd(z)),
 add=TRUE, col="blue", lwd=2)
 lines(density(z)$x, density(z)$y,
 col="red", lwd=2, lty=2)
 legend("topright",
 legend = c("Normal Curve", "Kernel Density Curve"),
 lty=1:2, col=c("blue","red"), cex=.7)
 }

residplot(fit)

The results are displayed in figure 8.10.

 As you can see, the errors follow a normal distribution quite well, with the excep-

tion of a large outlier. Although the Q-Q plot is probably more informative, I’ve always

Listing 8.6 Function for plotting studentized residuals

Distribution of Errors

Studentiz ed Residual

D
e

n
s
it
y

−2 −1 0 1 2 3 4

0
.0

0

.1

0
.2

0

.3

0
.4

No rm al Curve

Ke r nel Density Cur ve

Figure 8.10 Distribution of

studentized residuals using

the residplot() function

www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 8 Regression

found it easier to gauge the skew of a distribution from a histogram or density plot

than from a probability plot. Why not use both?

INDEPENDENCE OF ERRORS

As indicated earlier, the best way to assess whether the dependent variable values (and

thus the residuals) are independent is from your knowledge of how the data were col-

lected. For example, time series data often display autocorrelation—observations col-

lected closer in time are more correlated with each other than with observations

distant in time. The car package provides a function for the Durbin–Watson test to

detect such serially correlated errors. You can apply the Durbin–Watson test to the

multiple-regression problem with the following code:

> durbinWatsonTest(fit)
 lag Autocorrelation D-W Statistic p-value
 1 -0.201 2.32 0.282
 Alternative hypothesis: rho != 0

The nonsignificant p-value (p=0.282) suggests a lack of autocorrelation and, con-

versely, an independence of errors. The lag value (1 in this case) indicates that each

observation is being compared with the one next to it in the dataset. Although appro-

priate for time-dependent data, the test is less applicable for data that isn’t clustered

in this fashion. Note that the durbinWatsonTest() function uses bootstrapping (see

chapter 12) to derive p-values. Unless you add the option simulate=FALSE, you’ll get a

slightly different value each time you run the test.

LINEARITY

You can look for evidence of nonlinearity in the relationship between the dependent

variable and the independent variables by using component plus residual plots (also

known as partial residual plots). The plot is produced by the crPlots() function in the

car package. You’re looking for any systematic departure from the linear model that

you’ve specified.

 To create a component plus residual plot for variable X, you plot the points

where the residuals are based on the full model, and i =1 … n. The straight line in

each graph is given by vs. Xi . Loess fit lines are described

in chapter 11. The code to produce these plots is as follows:

> library(car)
> crPlots(fit)

The resulting plots are provided in figure 8.11. Nonlinearity in any of these plots sug-

gests that you may not have adequately modeled the functional form of that predictor

in the regression. If so, you may need to add curvilinear components such as polyno-

mial terms, transform one or more variables (for example, use log(X) instead of X),

or abandon linear regression in favor of some other regression variant. Transforma-

tions are discussed later in this chapter.

εi + (β0 + β1 × X1i + ... + βk × Xki) vs. Xi

(β0 + β1 × X1i + ... + βk × Xki)

www.it-ebooks.info

http://www.it-ebooks.info/

191Regression diagnostics

The component plus residual plots confirm that you’ve met the linearity assumption.

The form of the linear model seems to be appropriate for this dataset.

HOMOSCEDASTICITY

The car package also provides two useful functions for identifying non-constant error

variance. The ncvTest() function produces a score test of the hypothesis of constant

error variance against the alternative that the error variance changes with the level of

the fitted values. A significant result suggests heteroscedasticity (nonconstant error

variance).

 The spreadLevelPlot() function creates a scatter plot of the absolute standard-

ized residuals versus the fitted values and superimposes a line of best fit. Both func-

tions are demonstrated in the next listing.

0 5000 10000 15000 20000

−
6

−
4

−
2

0
2

4
6

P opulatio n

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
M

u
rd

e
r)

0. 5 1 .0 1. 5 2 .0 2. 5

−
4

−
2

0
2

4
6

8

Illiteracy

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
M

u
rd

e
r)

3000 4000 5000 6000

−
4

−

2

0
2

4
6

 8

Income

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
M

u
rd

e
r)

0 5 0 100 150

−
4

−

2

0
2

4
6

8

Frost

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
M

u
rd

e
r)

Component + Residual Plots

Figure 8.11 Component plus residual plots for the regression of murder rate on state

characteristics

www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 8 Regression

> library(car)
> ncvTest(fit)

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare=1.7 Df=1 p=0.19

> spreadLevelPlot(fit)

Suggested power transformation: 1.2

The score test is nonsignificant (p = 0.19), suggesting that you’ve met the constant

variance assumption. You can also see this in the spread-level plot (figure 8.12). The

points form a random horizontal band around a horizontal line of best fit. If you’d

violated the assumption, you’d expect to see a nonhorizontal line. The suggested

power transformation in listing 8.7 is the suggested power p (Yp) that would stabilize

the nonconstant error variance. For example, if the plot showed a nonhorizontal

trend and the suggested power transformation was 0.5, then using rather than Y in

the regression equation might lead to a model that satisfied homoscedasticity. If the

suggested power was 0, you’d use a log transformation. In the current example,

there’s no evidence of heteroscedasticity, and the suggested power is close to 1 (no

transformation required).

Listing 8.7 Assessing homoscedasticity

Y

4 6 8 1 0 1 2 1 4

0
.0

5

0
.1

0

0
.2

0

0
.5

0

1
.0

0

2
.0

0

Spread−Level Plot for fit

Fitted V alues

A
b

s
o

lu
te

 S
tu

d
e

n
ti
z
 e
d

 R
e

s
id

u
a

ls

Figure 8.12 Spread-level plot for assessing constant error variance

www.it-ebooks.info

http://www.it-ebooks.info/

193Regression diagnostics

8.3.3 Global validation of linear model assumption

Finally, let’s examine the gvlma() function in the gvlma package. Written by Pena and

Slate (2006), the gvlma() function performs a global validation of linear model

assumptions as well as separate evaluations of skewness, kurtosis, and heteroscedastic-

ity. In other words, it provides a single omnibus (go/no go) test of model assump-

tions. The following listing applies the test to the states data.

> library(gvlma)
> gvmodel <- gvlma(fit)
> summary(gvmodel)

ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance= 0.05

Call:
 gvlma(x=fit)

 Value p-value Decision
Global Stat 2.773 0.597 Assumptions acceptable.
Skewness 1.537 0.215 Assumptions acceptable.
Kurtosis 0.638 0.425 Assumptions acceptable.
Link Function 0.115 0.734 Assumptions acceptable.
Heteroscedasticity 0.482 0.487 Assumptions acceptable.

You can see from the printout (the Global Stat line) that the data meet all the statisti-

cal assumptions that go with the OLS regression model (p = 0.597). If the decision line

indicated that the assumptions were violated (say, p < 0.05), you’d have to explore the

data using the previous methods discussed in this section to determine which assump-

tions were the culprit.

8.3.4 Multicollinearity

Before leaving this section on regression diagnostics, let’s focus on a problem that’s

not directly related to statistical assumptions but is important in allowing you to inter-

pret multiple regression results. Imagine you’re conducting a study of grip strength.

Your independent variables include date of birth (DOB) and age. You regress grip

strength on DOB and age and find a significant overall F test at p < .001. But when you

look at the individual regression coefficients for DOB and age, you find that they’re

both nonsignificant (that is, there’s no evidence that either is related to grip

strength). What happened?

 The problem is that DOB and age are perfectly correlated within rounding error. A

regression coefficient measures the impact of one predictor variable on the response

variable, holding all other predictor variables constant. This amounts to looking at the

relationship of grip strength and age, holding age constant. The problem is called

multicollinearity. It leads to large confidence intervals for model parameters and makes

the interpretation of individual coefficients difficult.

Listing 8.8 Global test of linear model assumptions

www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 8 Regression

 Multicollinearity can be detected using a statistic called the variance inflation factor

(VIF). For any predictor variable, the square root of the VIF indicates the degree to

which the confidence interval for that variable’s regression parameter is expanded rel-

ative to a model with uncorrelated predictors (hence the name). VIF values are pro-

vided by the vif() function in the car package. As a general rule, indicates a

multicollinearity problem. The code is provided in the following listing. The results

indicate that multicollinearity isn’t a problem with these predictor variables.

> library(car)
> vif(fit)

Population Illiteracy Income Frost
 1.2 2.2 1.3 2.1

> sqrt(vif(fit)) > 2 # problem?

Population Illiteracy Income Frost
 FALSE FALSE FALSE FALSE

8.4 Unusual observations

A comprehensive regression analysis will also include a screening for unusual observa-

tions—namely outliers, high-leverage observations, and influential observations.

These are data points that warrant further investigation, either because they’re differ-

ent than other observations in some way, or because they exert a disproportionate

amount of influence on the results. Let’s look at each in turn.

8.4.1 Outliers

Outliers are observations that aren’t predicted well by the model. They have unusually

large positive or negative residuals (Yi
_). Positive residuals indicate that the model

is underestimating the response value, whereas negative residuals indicate an overesti-

mation.

 You’ve already seen one way to identify outliers. Points in the Q-Q plot of figure 8.9

that lie outside the confidence band are considered outliers. A rough rule of thumb is

that standardized residuals that are larger than 2 or less than –2 are worth attention.

 The car package also provides a statistical test for outliers. The outlierTest()

function reports the Bonferroni adjusted p-value for the largest absolute studentized

residual:

 > library(car)
 > outlierTest(fit)

 rstudent unadjusted p-value Bonferonni p
Nevada 3.5 0.00095 0.048

Here, you see that Nevada is identified as an outlier (p = 0.048). Note that this func-

tion tests the single largest (positive or negative) residual for significance as an outlier.

Listing 8.9 Evaluating multicollinearity

vif > 2

Yi

www.it-ebooks.info

http://www.it-ebooks.info/

195Unusual observations

If it isn’t significant, there are no outliers in the dataset. If it’s significant, you must

delete it and rerun the test to see if others are present.

8.4.2 High-leverage points

Observations that have high leverage are outliers with regard to the other predictors.

In other words, they have an unusual combination of predictor values. The response

value isn’t involved in determining leverage.

 Observations with high leverage are identified through the hat statistic. For a given

dataset, the average hat value is p/n, where p is the number of parameters estimated

in the model (including the intercept) and n is the sample size. Roughly speaking, an

observation with a hat value greater than 2 or 3 times the average hat value should be

examined. The code that follows plots the hat values:

hat.plot <- function(fit) {
 p <- length(coefficients(fit))
 n <- length(fitted(fit))
 plot(hatvalues(fit), main="Index Plot of Hat Values")
 abline(h=c(2,3)*p/n, col="red", lty=2)
 identify(1:n, hatvalues(fit), names(hatvalues(fit)))
 }
hat.plot(fit)

The resulting graph is shown in figure 8.13.

 Horizontal lines are drawn at 2 and 3 times the average hat value. The locator
function places the graph in interactive mode. Clicking points of interest labels them

0 1 0 2 0 3 0 4 0 50

0
.1

0
.2

0
.3

0
.4

Inde x Plot of Hat V alues

Index

h
a
tv

 a
lu

e
s
(f

it
)

Alaska

Calif or nia

Ha w aii
Ne w Yo rk

W ashington

Figure 8.13 Index plot

of hat values for

assessing observations

with high leverage

www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 8 Regression

until the user presses Esc, selects Stop from the graph drop-down menu, or right-
clicks the graph.

 Here you see that Alaska and California are particularly unusual when it comes to
their predictor values. Alaska has a much higher income than other states, while hav-
ing a lower population and temperature. California has a much higher population
than other states, while having a higher income and higher temperature. These states
are atypical compared with the other 48 observations.

 High-leverage observations may or may not be influential observations. That will
depend on whether they’re also outliers.

8.4.3 Influential observations

Influential observations have a disproportionate impact on the values of the model

parameters. Imagine finding that your model changes dramatically with the removal

of a single observation. It’s this concern that leads you to examine your data for influ-
ential points.

 There are two methods for identifying influential observations: Cook’s distance (or

D statistic) and added variable plots. Roughly speaking, Cook’s D values greater than
4/(n – k – 1), where n is the sample size and k is the number of predictor variables,

indicate influential observations. You can create a Cook’s D plot (figure 8.14) with the

following code:

cutoff <- 4/(nrow(states)-length(fit$coefficients)-2)
plot(fit, which=4, cook.levels=cutoff)
abline(h=cutoff, lty=2, col="red")

The graph identifies Alaska, Hawaii, and Nevada as influential observations. Deleting

these states will have a notable impact on the values of the intercept and slopes in the

0 1 0 2 0 3 0 4 0 50

0
.0

0

.1

0
.2

0

.3

0
.4

0

.5

Obs . number

C
o

o
k
’s

 d
is

ta
n

c
e

lm(Murder ~ P opulation + Illiteracy + Income + Frost)

Cook’s distance

Alaska

Ne v ada

Ha wa ii

Figure 8.14 Cook’s D plot for

identifying influential observations

www.it-ebooks.info

http://www.it-ebooks.info/

197Unusual observations

regression model. Note that although it’s useful to cast a wide net when searching

for influential observations, I tend to find a cutoff of 1 more generally useful than

4/(n – k – 1). Given a criterion of D=1, none of the observations in the dataset would

appear to be influential.

 Cook’s D plots can help identify influential observations, but they don’t provide

information about how these observations affect the model. Added-variable plots can

help in this regard. For one response variable and k predictor variables, you’d create k

added-variable plots as follows.

 For each predictor Xk, plot the residuals from regressing the response variable on

the other k – 1 predictors versus the residuals from regressing Xk on the other k – 1

predictors. Added-variable plots can be created using the avPlots() function in the

car package:

library(car)
avPlots(fit, ask=FALSE, id.method="identify")

The resulting graphs are provided in figure 8.15. The graphs are produced one at a

time, and users can click points to identify them. Press Esc, choose Stop from the

graph’s menu, or right-click to move to the next plot. Here, I’ve identified Alaska in

the bottom-left plot.

−5000 0 5000 10000

−
4

−
2

0
2

4
6

P opulation | other s

M
u
rd

e
r

 |
 o

th
e
r s

−1.0 −0. 5 0 .0 0. 5 1 .0

−
4

−
2

0

2
4

6
8

Illiteracy | other s

M
u
rd

e
r

 |
 o

th
e
r s

−500 0 500 1500

−
4

−
2

0
2

4
6

 8

Income | other s

M
u
rd

e
r

 |
 o

th
e
r s

Alask a

−100 −50 0 50

−
4

−

2

0
2

4
6

 8

Frost | other s

M
u
rd

e
r

 |
 o

th
e
r s

Added−V ar iab le Plots

Figure 8.15 Added-variable plots for assessing the impact of influential observations

www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 8 Regression

The straight line in each plot is the actual regression coefficient for that predictor

variable. You can see the impact of influential observations by imagining how the line

would change if the point representing that observation was deleted. For example,

look at the graph of Murder | Others versus Income | Others in the lower-left corner.

You can see that eliminating the point labeled Alaska would move the line in a nega-

tive direction. In fact, deleting Alaska changes the regression coefficient for Income

from positive (.00006) to negative (–.00085).

 You can combine the information from outlier, leverage, and influence plots into

one highly informative plot using the influencePlot() function from the car package:

library(car)
influencePlot(fit, id.method="identify", main="Influence Plot",
 sub="Circle size is proportional to Cook's distance")

The resulting plot (figure 8.16) shows that Nevada and Rhode Island are outliers; New

York, California, Hawaii, and Washington have high leverage; and Nevada, Alaska, and

Hawaii are influential observations.

8.5 Corrective measures

Having spent the last 20 pages learning about regression diagnostics, you may ask,

“What do you do if you identify problems?” There are four approaches to dealing with

violations of regression assumptions:

■ Deleting observations
■ Transforming variables

0.1 0.2 0.3 0.4

−
2

−
1

0
1

2
3

Influence Plot

Circle size is proportial to Cook’s Distance
Hat−Values

S
tu

d
e

n
ti
ze

d
 R

e
s
id

u
a

ls Alaska

California

Hawaii

Nevada

New York

Rhode Island

Washington

Figure 8.16 Influence plot. States

above +2 or below –2 on the vertical

axis are considered outliers. States

above 0.2 or 0.3 on the horizontal

axis have high leverage (unusual

combinations of predictor values).

Circle size is proportional to

influence. Observations depicted by

large circles may have

disproportionate influence on the

parameter estimates of the model.

www.it-ebooks.info

http://www.it-ebooks.info/

199Corrective measures

■ Adding or deleting variables
■ Using another regression approach

Let’s look at each in turn.

8.5.1 Deleting observations

Deleting outliers can often improve a dataset’s fit to the normality assumption. Influ-

ential observations are often deleted as well, because they have an inordinate impact

on the results. The largest outlier or influential observation is deleted, and the model

is refit. If there are still outliers or influential observations, the process is repeated

until an acceptable fit is obtained.

 Again, I urge caution when considering the deletion of observations. Sometimes

you can determine that the observation is an outlier because of data errors in record-

ing, or because a protocol wasn’t followed, or because a test subject misunderstood

instructions. In these cases, deleting the offending observation seems perfectly

reasonable.

 In other cases, the unusual observation may be the most interesting thing about

the data you’ve collected. Uncovering why an observation differs from the rest can

contribute great insight to the topic at hand and to other topics you might not have

thought of. Some of our greatest advances have come from the serendipity of noticing

that something doesn’t fit our preconceptions (pardon the hyperbole).

8.5.2 Transforming variables

When models don’t meet the normality, linearity, or homoscedasticity assumptions,

transforming one or more variables can often improve or correct the situation. Trans-

formations typically involve replacing a variable Y with Y λ. Common values of λ and

their interpretations are given in table 8.5. If Y is a proportion, a logit transformation

[ln (Y/1-Y)] is often used.

When the model violates the normality assumption, you typically attempt a transfor-

mation of the response variable. You can use the powerTransform() function in the

car package to generate a maximum-likelihood estimation of the power λ most likely

to normalize the variable Xλ. In the next listing, this is applied to the states data.

> library(car)
> summary(powerTransform(states$Murder))
bcPower Transformation to Normality

Table 8.5 Common transformations

λ -2 -1 -0.5 0 0.5 1 2

Transformation 1/Y2 1/Y 1/ log(Y) None Y2

Listing 8.10 Box–Cox transformation to normality

Y Y

www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 8 Regression

 Est.Power Std.Err. Wald Lower Bound Wald Upper Bound
states$Murder 0.6 0.26 0.088 1.1

Likelihood ratio tests about transformation parameters
 LRT df pval
LR test, lambda=(0) 5.7 1 0.017
LR test, lambda=(1) 2.1 1 0.145

The results suggest that you can normalize the variable Murder by replacing it with

Murder0.6. Because 0.6 is close to 0.5, you could try a square-root transformation to

improve the model’s fit to normality. But in this case, the hypothesis that λ=1 can’t be

rejected (p = 0.145), so there’s no strong evidence that a transformation is needed in

this case. This is consistent with the results of the Q-Q plot in figure 8.9.

 When the assumption of linearity is violated, a transformation of the predictor

variables can often help. The boxTidwell() function in the car package can be used

to generate maximum-likelihood estimates of predictor powers that can improve lin-

earity. An example of applying the Box–Tidwell transformations to a model that pre-

dicts state murder rates from their population and illiteracy rates follows:

> library(car)
> boxTidwell(Murder~Population+Illiteracy,data=states)

 Score Statistic p-value MLE of lambda
Population -0.32 0.75 0.87
Illiteracy 0.62 0.54 1.36

The results suggest trying the transformations Population.87 and Population1.36 to

achieve greater linearity. But the score tests for Population (p = .75) and Illiteracy

(p = .54) suggest that neither variable needs to be transformed. Again, these results

are consistent with the component plus residual plots in figure 8.11.

 Finally, transformations of the response variable can help in situations of het-

eroscedasticity (nonconstant error variance). You saw in listing 8.7 that the spread-

LevelPlot() function in the car package offers a power transformation for

improving homoscedasticity. Again, in the case of the states example, the constant

error-variance assumption is met, and no transformation is necessary.

A caution concerning transformations

There’s an old joke in statistics: if you can’t prove A, prove B and pretend it was A.
(For statisticians, that’s pretty funny.) The relevance here is that if you transform your
variables, your interpretations must be based on the transformed variables, not the
original variables. If the transformation makes sense, such as the log of income or
the inverse of distance, the interpretation is easier. But how do you interpret the re-
lationship between the frequency of suicidal ideation and the cube root of depression?
If a transformation doesn’t make sense, you should avoid it.

www.it-ebooks.info

http://www.it-ebooks.info/

201Selecting the “best” regression model

8.5.3 Adding or deleting variables

Changing the variables in a model will impact the fit of the model. Sometimes, adding

an important variable will correct many of the problems that we’ve discussed. Deleting

a troublesome variable can do the same thing.

 Deleting variables is a particularly important approach for dealing with multicol-

linearity. If your only goal is to make predictions, then multicollinearity isn’t a prob-

lem. But if you want to make interpretations about individual predictor variables, then

you must deal with it. The most common approach is to delete one of the variables

involved in the multicollinearity (that is, one of the variables with a). An alter-

native is to use ridge regression, a variant of multiple regression designed to deal with

multicollinearity situations.

8.5.4 Trying a different approach

As you’ve just seen, one approach to dealing with multicollinearity is to fit a different

type of model (ridge regression in this case). If there are outliers and/or influential

observations, you can fit a robust regression model rather than an OLS regression. If

you’ve violated the normality assumption, you can fit a nonparametric regression

model. If there’s significant nonlinearity, you can try a nonlinear regression model. If

you’ve violated the assumptions of independence of errors, you can fit a model that

specifically takes the error structure into account, such as time-series models or multi-

level regression models. Finally, you can turn to generalized linear models to fit a wide

range of models in situations where the assumptions of OLS regression don’t hold.

 We’ll discuss some of these alternative approaches in chapter 13. The decision

regarding when to try to improve the fit of an OLS regression model and when to try a

different approach is a complex one. It’s typically based on knowledge of the subject

matter and an assessment of which approach will provide the best result.

 Speaking of best results, let’s turn now to the problem of deciding which predictor

variables to include in a regression model.

8.6 Selecting the “best” regression model

When developing a regression equation, you’re implicitly faced with a selection of

many possible models. Should you include all the variables under study, or drop ones

that don’t make a significant contribution to prediction? Should you add polynomial

and/or interaction terms to improve the fit? The selection of a final regression model

always involves a compromise between predictive accuracy (a model that fits the data

as well as possible) and parsimony (a simple and replicable model). All things being

equal, if you have two models with approximately equal predictive accuracy, you favor

the simpler one. This section describes methods for choosing among competing mod-

els. The word “best” is in quotation marks because there’s no single criterion you can

use to make the decision. The final decision requires judgment on the part of the

investigator. (Think of it as job security.)

vif > 2

www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 8 Regression

8.6.1 Comparing models

You can compare the fit of two nested models using the anova() function in the base

installation. A nested model is one whose terms are completely included in the other

model. In the states multiple-regression model, you found that the regression coeffi-

cients for Income and Frost were nonsignificant. You can test whether a model without

these two variables predicts as well as one that includes them (see the following listing).

> states <- as.data.frame(state.x77[,c("Murder", "Population",
 "Illiteracy", "Income", "Frost")])
> fit1 <- lm(Murder ~ Population + Illiteracy + Income + Frost,
 data=states)
> fit2 <- lm(Murder ~ Population + Illiteracy, data=states)
> anova(fit2, fit1)

Analysis of Variance Table

Model 1: Murder ~ Population + Illiteracy
Model 2: Murder ~ Population + Illiteracy + Income + Frost
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 47 289.246
2 45 289.167 2 0.079 0.0061 0.994

Here, model 1 is nested within model 2. The anova() function provides a simultaneous
test that Income and Frost add to linear prediction above and beyond Population and

Illiteracy. Because the test is nonsignificant (p = .994), you conclude that they don’t add

to the linear prediction and you’re justified in dropping them from your model.
 The Akaike Information Criterion (AIC) provides another method for comparing

models. The index takes into account a model’s statistical fit and the number of

parameters needed to achieve this fit. Models with smaller AIC values—indicating ade-
quate fit with fewer parameters—are preferred. The criterion is provided by the AIC()

function (see the following listing).

> fit1 <- lm(Murder ~ Population + Illiteracy + Income + Frost,
 data=states)
> fit2 <- lm(Murder ~ Population + Illiteracy, data=states)
> AIC(fit1,fit2)

 df AIC
fit1 6 241.6429
fit2 4 237.6565

The AIC values suggest that the model without Income and Frost is the better model.

Note that although the ANOVA approach requires nested models, the AIC approach

doesn’t.
 Comparing two models is relatively straightforward, but what do you do when there

are 4, or 10, or 100 possible models to consider? That’s the topic of the next section.

Listing 8.11 Comparing nested models using the anova() function

Listing 8.12 Comparing models with the AIC

www.it-ebooks.info

http://www.it-ebooks.info/

203Selecting the “best” regression model

8.6.2 Variable selection

Two popular approaches to selecting a final set of predictor variables from a larger

pool of candidate variables are stepwise methods and all-subsets regression.

STEPWISE REGRESSION

In stepwise selection, variables are added to or deleted from a model one at a time,

until some stopping criterion is reached. For example, in forward stepwise regression,

you add predictor variables to the model one at a time, stopping when the addition of

variables would no longer improve the model. In backward stepwise regression, you start

with a model that includes all predictor variables, and then you delete them one at a

time until removing variables would degrade the quality of the model. In stepwise step-

wise regression (usually called stepwise to avoid sounding silly), you combine the for-

ward and backward stepwise approaches. Variables are entered one at a time, but at

each step, the variables in the model are reevaluated, and those that don’t contribute

to the model are deleted. A predictor variable may be added to, and deleted from, a

model several times before a final solution is reached.

 The implementation of stepwise regression methods varies by the criteria used to

enter or remove variables. The stepAIC() function in the MASS package performs step-

wise model selection (forward, backward, or stepwise) using an exact AIC criterion. The

next listing applies backward stepwise regression to the multiple regression problem.

> library(MASS)
> states <- as.data.frame(state.x77[,c("Murder", "Population",

 "Illiteracy", "Income", "Frost")])

> fit <- lm(Murder ~ Population + Illiteracy + Income + Frost,

 data=states)

> stepAIC(fit, direction="backward")

Start: AIC=97.75

Murder ~ Population + Illiteracy + Income + Frost

 Df Sum of Sq RSS AIC

- Frost 1 0.02 289.19 95.75

- Income 1 0.06 289.22 95.76
<none> 289.17 97.75

- Population 1 39.24 328.41 102.11

- Illiteracy 1 144.26 433.43 115.99

Step: AIC=95.75

Murder ~ Population + Illiteracy + Income

 Df Sum of Sq RSS AIC

- Income 1 0.06 289.25 93.76
<none> 289.19 95.75

- Population 1 43.66 332.85 100.78

- Illiteracy 1 236.20 525.38 123.61

Listing 8.13 Backward stepwise selection

www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 8 Regression

Step: AIC=93.76
Murder ~ Population + Illiteracy

 Df Sum of Sq RSS AIC
<none> 289.25 93.76
- Population 1 48.52 337.76 99.52
- Illiteracy 1 299.65 588.89 127.31

Call:
lm(formula=Murder ~ Population + Illiteracy, data=states)

Coefficients:
(Intercept) Population Illiteracy
 1.6515497 0.0002242 4.0807366

You start with all four predictors in the model. For each step, the AIC column provides

the model AIC resulting from the deletion of the variable listed in that row. The AIC

value for <none> is the model AIC if no variables are removed. In the first step, Frost is

removed, decreasing the AIC from 97.75 to 95.75. In the second step, Income is

removed, decreasing the AIC to 93.76. Deleting any more variables would increase the

AIC, so the process stops.

 Stepwise regression is controversial. Although it may find a good model, there’s no

guarantee that it will find the “best” model. This is because not every possible model is

evaluated. An approach that attempts to overcome this limitation is all subsets regression.

ALL SUBSETS REGRESSION

In all subsets regression, every possible model is inspected. The analyst can choose to

have all possible results displayed or ask for the nbest models of each subset size (one
predictor, two predictors, and so on). For example, if nbest=2, the two best one-

predictor models are displayed, followed by the two best two-predictor models, fol-

lowed by the two best three-predictor models, up to a model with all predictors.
 All subsets regression is performed using the regsubsets() function from the

leaps package. You can choose the R-squared, Adjusted R-squared, or Mallows Cp sta-

tistic as your criterion for reporting “best” models.
 As you’ve seen, R-squared is the amount of variance accounted for in the response

variable by the predictors variables. Adjusted R-squared is similar but takes into

account the number of parameters in the model. R-squared always increases with the
addition of predictors. When the number of predictors is large compared to the sam-

ple size, this can lead to significant overfitting. The Adjusted R-squared is an attempt

to provide a more honest estimate of the population R-squared—one that’s less likely
to take advantage of chance variation in the data. The Mallows Cp statistic is also used

as a stopping rule in stepwise regression. It has been widely suggested that a good

model is one in which the Cp statistic is close to the number of model parameters
(including the intercept).

 In listing 8.14, we’ll apply all subsets regression to the states data. The results can

be plotted with either the plot() function in the leaps package or the subsets()

function in the car package. An example of the former is provided in figure 8.17, and
an example of the latter is given in figure 8.18.

www.it-ebooks.info

http://www.it-ebooks.info/

205Selecting the “best” regression model

library(leaps)
states <- as.data.frame(state.x77[,c("Murder", "Population",
 "Illiteracy", "Income", "Frost")])

leaps <-regsubsets(Murder ~ Population + Illiteracy + Income +
 Frost, data=states, nbest=4)
plot(leaps, scale="adjr2")

library(car)
subsets(leaps, statistic="cp",
 main="Cp Plot for All Subsets Regression")
abline(1,1,lty=2,col="red")

Figure 8.17 can be confusing to read. Looking at the first row (starting at the bottom),

you can see that a model with the intercept and Income has an adjusted R-square of
0.33. A model with the intercept and Population has an adjusted R-square of 0.1.

Jumping to the 12th row, a model with the intercept, Population, Illiteracy, and

Income has an adjusted R-square of 0.54, whereas one with the intercept, Population,
and Illiteracy alone has an adjusted R-square of 0.55. Here you see that a model with

fewer predictors has a larger adjusted R-square (something that can’t happen with an

unadjusted R-square). The graph suggests that the two-predictor model (Population
and Illiteracy) is the best.

Listing 8.14 All subsets regression

a
d
jr
2

(I
n
te

rc
e
p
t)

P
o
p
u
la

ti
o
n

Il
lit

e
ra

c
y

In
c
o

m
e

F
ro

s
t

0.033

0.1

0.28

0.29

0.31

0.48

0.48

0.48

0.48

0.53

0.54

0.54

0.55

Figure 8.17 Best four models for each subset size based on Adjusted R-square

www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 8 Regression

Figure 8.18 shows the best four models for each subset size based on the Mallows Cp

statistic. Better models will fall close to a line with intercept 1 and slope 1. The plot

suggests that you consider a two-predictor model with Population and Illiteracy; a

three-predictor model with Population, Illiteracy, and Frost, or Population, Illiteracy,

and Income (they overlap on the graph and are hard to read); or a four-predictor

model with Population, Illiteracy, Income, and Frost. You can reject the other possible

models.

 In most instances, all subsets regression is preferable to stepwise regression,

because more models are considered. But when the number of predictors is large, the

procedure can require significant computing time. In general, automated variable-

selection methods should be seen as an aid rather than a directing force in model

selection. A well-fitting model that doesn’t make sense doesn’t help you. Ultimately,

it’s your knowledge of the subject matter that should guide you.

8.7 Taking the analysis further

We’ll end our discussion of regression by considering methods for assessing model

generalizability and predictor relative importance.

8.7.1 Cross-validation

In the previous section, we examined methods for selecting the variables to include in

a regression equation. When description is your primary goal, the selection and inter-

pretation of a regression model signals the end of your labor. But when your goal is pre-

diction, you can justifiably ask, “How well will this equation perform in the real world?”

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
1
0

2
0

3
0

4
0

5
0

Cp Plot for All Subsets Regression

Subset Size

S
ta

ti
s
ti
c
:

c
p

Il

F

P

In

P−Il

Il−FIl−In

P−F

P−Il−InP−Il−F

Il−In−F

P−In−F

P−Il−In−F

P: Population
Il: Illiteracy
In: Income
F: Frost

Figure 8.18 Best four

models for each subset

size based on the Mallows

Cp statistic

www.it-ebooks.info

http://www.it-ebooks.info/

207Taking the analysis further

 By definition, regression techniques obtain model parameters that are optimal for

a given set of data. In OLS regression, the model parameters are selected to minimize

the sum of squared errors of prediction (residuals) and, conversely, maximize the

amount of variance accounted for in the response variable (R-squared). Because the

equation has been optimized for the given set of data, it won’t perform as well with a

new set of data.

 We began this chapter with an example involving a research physiologist who

wanted to predict the number of calories an individual will burn from the duration

and intensity of their exercise, age, gender, and BMI. If you fit an OLS regression equa-

tion to this data, you’ll obtain model parameters that uniquely maximize the R-

squared for this particular set of observations. But our researcher wants to use this

equation to predict the calories burned by individuals in general, not only those in the

original study. You know that the equation won’t perform as well with a new sample of

observations, but how much will you lose? Cross-validation is a useful method for evalu-

ating the generalizability of a regression equation.

 In cross-validation, a portion of the data is selected as the training sample, and a

portion is selected as the hold-out sample. A regression equation is developed on the

training sample and then applied to the hold-out sample. Because the hold-out sam-

ple wasn’t involved in the selection of the model parameters, the performance on this

sample is a more accurate estimate of the operating characteristics of the model with

new data.

 In k-fold cross-validation, the sample is divided into k subsamples. Each of the k sub-

samples serves as a hold-out group, and the combined observations from the remaining

k – 1 subsamples serve as the training group. The performance for the k prediction

equations applied to the k hold-out samples is recorded and then averaged. (When k

equals n, the total number of observations, this approach is called jackknifing.)

 You can perform k-fold cross-validation using the crossval() function in the

bootstrap package. The following listing provides a function (called shrinkage())

for cross-validating a model’s R-square statistic using k-fold cross-validation.

shrinkage <- function(fit, k=10){
 require(bootstrap)

 theta.fit <- function(x,y){lsfit(x,y)}
 theta.predict <- function(fit,x){cbind(1,x)%*%fit$coef}

 x <- fit$model[,2:ncol(fit$model)]
 y <- fit$model[,1]

 results <- crossval(x, y, theta.fit, theta.predict, ngroup=k)
 r2 <- cor(y, fit$fitted.values)^2
 r2cv <- cor(y, results$cv.fit)^2
 cat("Original R-square =", r2, "\n")
 cat(k, "Fold Cross-Validated R-square =", r2cv, "\n")
 cat("Change =", r2-r2cv, "\n")
 }

Listing 8.15 Function for k-fold cross-validated R-square

www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 8 Regression

Using this listing, you define your functions, create a matrix of predictor and pre-

dicted values, get the raw R-squared, and get the cross-validated R-squared. (Chapter

12 covers bootstrapping in detail.)

 The shrinkage() function is then used to perform a 10-fold cross-validation with

the states data, using a model with all four predictor variables:

> states <- as.data.frame(state.x77[,c("Murder", "Population",
 "Illiteracy", "Income", "Frost")])
> fit <- lm(Murder ~ Population + Income + Illiteracy + Frost, data=states)
> shrinkage(fit)

Original R-square=0.567
10 Fold Cross-Validated R-square=0.4481
Change=0.1188

You can see that the R-square based on the sample (0.567) is overly optimistic. A bet-

ter estimate of the amount of variance in murder rates that this model will account for

with new data is the cross-validated R-square (0.448). (Note that observations are

assigned to the k groups randomly, so you’ll get a slightly different result each time

you execute the shrinkage() function.)

 You could use cross-validation in variable selection by choosing a model that dem-

onstrates better generalizability. For example, a model with two predictors (Population

and Illiteracy) shows less R-square shrinkage (.03 versus .12) than the full model:

> fit2 <- lm(Murder ~ Population + Illiteracy,data=states)
> shrinkage(fit2)

Original R-square=0.5668327
10 Fold Cross-Validated R-square=0.5346871
Change=0.03214554

This may make the two-predictor model a more attractive alternative.

 All other things being equal, a regression equation that’s based on a larger training

sample and one that’s more representative of the population of interest will cross-vali-

date better. You’ll get less R-squared shrinkage and make more accurate predictions.

8.7.2 Relative importance

Up to this point in the chapter, we’ve been asking, “Which variables are useful for pre-

dicting the outcome?” But often your real interest is in the question, “Which variables

are most important in predicting the outcome?” You implicitly want to rank-order the

predictors in terms of relative importance. There may be practical grounds for asking

the second question. For example, if you could rank-order leadership practices by

their relative importance for organizational success, you could help managers focus

on the behaviors they most need to develop.

 If predictor variables were uncorrelated, this would be a simple task. You would

rank-order the predictor variables by their correlation with the response variable. In

most cases, though, the predictors are correlated with each other, and this compli-

cates the task significantly.

www.it-ebooks.info

http://www.it-ebooks.info/

209Taking the analysis further

 There have been many attempts to develop a means for assessing the relative

importance of predictors. The simplest has been to compare standardized regression

coefficients. Standardized regression coefficients describe the expected change in the

response variable (expressed in standard deviation units) for a standard deviation

change in a predictor variable, holding the other predictor variables constant. You

can obtain the standardized regression coefficients in R by standardizing each of the

variables in your dataset to a mean of 0 and standard deviation of 1 using the scale()

function, before submitting the dataset to a regression analysis. (Note that because

the scale() function returns a matrix and the lm() function requires a data frame,

you convert between the two in an intermediate step.) The code and results for the

multiple regression problem are shown here:

> states <- as.data.frame(state.x77[,c("Murder", "Population",
 "Illiteracy", "Income", "Frost")])
> zstates <- as.data.frame(scale(states))
> zfit <- lm(Murder~Population + Income + Illiteracy + Frost, data=zstates)
> coef(zfit)

(Intercept) Population Income Illiteracy Frost
 -9.406e-17 2.705e-01 1.072e-02 6.840e-01 8.185e-03

Here you see that a one-standard-deviation increase in illiteracy rate yields a 0.68 stan-

dard deviation increase in murder rate, when controlling for population, income, and

temperature. Using standardized regression coefficients as your guide, Illiteracy is the

most important predictor and Frost is the least.

 There have been many other attempts at quantifying relative importance. Relative

importance can be thought of as the contribution each predictor makes to R-square,

both alone and in combination with other predictors. Several possible approaches to

relative importance are captured in the relaimpo package written by Ulrike Grömp-

ing (http://mng.bz/KDYF).

 A new method called relative weights shows significant promise. The method closely

approximates the average increase in R-square obtained by adding a predictor vari-

able across all possible submodels (Johnson, 2004; Johnson and Lebreton, 2004;

LeBreton and Tonidandel, 2008). A function for generating relative weights is pro-

vided in the next listing.

relweights <- function(fit,...){
 R <- cor(fit$model)
 nvar <- ncol(R)
 rxx <- R[2:nvar, 2:nvar]
 rxy <- R[2:nvar, 1]
 svd <- eigen(rxx)
 evec <- svd$vectors
 ev <- svd$values
 delta <- diag(sqrt(ev))
 lambda <- evec %*% delta %*% t(evec)

Listing 8.16 relweights() for calculating relative importance of predictors

www.it-ebooks.info

http://mng.bz/KDYF
http://www.it-ebooks.info/

210 CHAPTER 8 Regression

 lambdasq <- lambda ^ 2
 beta <- solve(lambda) %*% rxy
 rsquare <- colSums(beta ^ 2)
 rawwgt <- lambdasq %*% beta ^ 2
 import <- (rawwgt / rsquare) * 100
 import <- as.data.frame(import)
 row.names(import) <- names(fit$model[2:nvar])
 names(import) <- "Weights"
 import <- import[order(import),1, drop=FALSE]
 dotchart(import$Weights, labels=row.names(import),
 xlab="% of R-Square", pch=19,
 main="Relative Importance of Predictor Variables",
 sub=paste("Total R-Square=", round(rsquare, digits=3)),
 ...)
return(import)
}

NOTE The code in listing 8.16 is adapted from an SPSS program generously
provided by Dr. Johnson. See Johnson (2000, Multivariate Behavioral Research,
35, 1–19) for an explanation of how the relative weights are derived.

In listing 8.17, the relweights() function is applied to the states data with murder

rate predicted by the population, illiteracy, income, and temperature.

 You can see from figure 8.19 that the total amount of variance accounted for by

the model (R-square=0.567) has been divided among the predictor variables. Illiteracy

accounts for 59% of the R-square, Frost accounts for 20.79%, and so forth. Based on

Relative Importance of Predictor Variables

Income

Population

Frost

Illiteracy

10 20 30 40 50 60

Total R−Square= 0.567
% of R−Square

Figure 8.19 Dot chart of relative

weights for the states multiple

regression problem. Larger weights

indicate relatively more important

predictors. For example, Illiteracy

accounts for 59% of the total

explained variance (0.567),

whereas Income only accounts

for 5.49%. Thus Illiteracy has

greater relative importance than

Income in this model.

www.it-ebooks.info

http://www.it-ebooks.info/

211Summary

the method of relative weights, Illiteracy has the greatest relative importance, followed

by Frost, Population, and Income, in that order.

> states <- as.data.frame(state.x77[,c("Murder", "Population",
 "Illiteracy", "Income", "Frost")])
> fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)
> relweights(fit, col="blue")
 Weights
Income 5.49
Population 14.72
Frost 20.79
Illiteracy 59.00

Relative-importance measures (and, in particular, the method of relative weights)

have wide applicability. They come much closer to our intuitive conception of relative

importance than standardized regression coefficients do, and I expect to see their use

increase dramatically in coming years.

8.8 Summary

Regression analysis is a term that covers a broad range of methodologies in statistics.

You’ve seen that it’s a highly interactive approach that involves fitting models, assess-

ing their fit to statistical assumptions, modifying both the data and the models, and

refitting to arrive at a final result. In many ways, this final result is based on art and

skill as much as science.

 This has been a long chapter, because regression analysis is a process with many

parts. We’ve discussed fitting OLS regression models, using regression diagnostics to

assess the data’s fit to statistical assumptions, and methods for modifying the data to

meet these assumptions more closely. We looked at ways of selecting a final regression

model from many possible models, and you learned how to evaluate its likely perfor-

mance on new samples of data. Finally, we tackled the thorny problem of variable

importance: identifying which variables are the most important for predicting an

outcome.

 In each of the examples in this chapter, the predictor variables have been quantita-

tive. However, there are no restrictions against using categorical variables as predic-

tors as well. Using a categorical predictor such as gender, treatment type, or

manufacturing process allows you to examine group differences on a response or out-

come variable. This is the focus of our next chapter.

Listing 8.17 Applying the relweights() function

www.it-ebooks.info

http://www.it-ebooks.info/

212

Analysis of variance

In chapter 7, we looked at regression models for predicting a quantitative response

variable from quantitative predictor variables. But there’s no reason that we
couldn’t have included nominal or ordinal factors as predictors as well. When fac-

tors are included as explanatory variables, our focus usually shifts from prediction

to understanding group differences, and the methodology is referred to as analysis

of variance (ANOVA). ANOVA methodology is used to analyze a wide variety of experi-

mental and quasi-experimental designs. This chapter provides an overview of R

functions for analyzing common research designs.

 First we’ll look at design terminology, followed by a general discussion of R’s
approach to fitting ANOVA models. Then we’ll explore several examples that illus-

trate the analysis of common designs. Along the way, you’ll treat anxiety disorders,

lower blood cholesterol levels, help pregnant mice have fat babies, assure that pigs
grow long in the tooth, facilitate breathing in plants, and learn which grocery

shelves to avoid.

This chapter covers

■ Using R to model basic experimental designs

■ Fitting and interpreting ANOVA type models

■ Evaluating model assumptions

www.it-ebooks.info

http://www.it-ebooks.info/

213A crash course on terminology

 In addition to the base installation, you’ll be using the car, gplots, HH, rrcov,

multicomp, effects, MASS, and mvoutlier packages in the examples. Be sure to install

them before trying out the sample code.

9.1 A crash course on terminology

Experimental design in general, and analysis of variance in particular, has its own lan-
guage. Before discussing the analysis of these designs, we’ll quickly review some

important terms. We’ll use a series of increasingly complex study designs to introduce

the most significant concepts.
 Say you’re interested in studying the treat-

ment of anxiety. Two popular therapies for

anxiety are cognitive behavior therapy (CBT)

and eye movement desensitization and repro-

cessing (EMDR). You recruit 10 anxious indi-

viduals and randomly assign half of them to
receive five weeks of CBT and half to receive

five weeks of EMDR. At the conclusion of ther-

apy, each patient is asked to complete the
State-Trait Anxiety Inventory (STAI), a self-

report measure of anxiety. The design is out-

lined in table 9.1.

 In this design, Treatment is a between-groups factor with two levels (CBT, EMDR). It’s
called a between-groups factor because patients are assigned to one and only one

group. No patient receives both CBT and EMDR. The s characters represent the sub-

jects (patients). STAI is the dependent variable, and Treatment is the independent variable.
Because there is an equal number of observations in each treatment condition, you

have a balanced design. When the sample sizes

are unequal across the cells of a design, you

have an unbalanced design.

 The statistical design in table 9.1 is called a

one-way ANOVA because there’s a single classifi-
cation variable. Specifically, it’s a one-way

between-groups ANOVA. Effects in ANOVA

designs are primarily evaluated through F
tests. If the F test for Treatment is significant,

you can conclude that the mean STAI scores

for two therapies differed after five weeks of
treatment.

 If you were interested in the effect of CBT on

anxiety over time, you could place all 10

patients in the CBT group and assess them at

the conclusion of therapy and again six months

later. This design is displayed in table 9.2.

Table 9.1 One-way between-groups ANOVA

Treatment

CBT EMDR

s1 s6

s2 s7

s3 s8

s4 s9

s5 s10

Table 9.2 One-way within-groups ANOVA

Patient

Time

5 weeks 6 months

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 9 Analysis of variance

 Time is a within-groups factor with two levels (five weeks, six months). It’s called a

within-groups factor because each patient is measured under both levels. The statisti-

cal design is a one-way within-groups ANOVA. Because each subject is measured more

than once, the design is also called a repeated measures ANOVA. If the F test for Time is

significant, you can conclude that patients’ mean STAI scores changed between five

weeks and six months.

 If you were interested in both treatment differences and change over time, you

could combine the first two study designs and randomly assign five patients to CBT

and five patients to EMDR, and assess their STAI results at the end of therapy (five

weeks) and at six months (see table 9.3).

 By including both Therapy and Time as factors, you’re able to examine the impact

of Therapy (averaged across time), Time (averaged across therapy type), and the

interaction of Therapy and Time. The first two are called the main effects, whereas the

interaction is (not surprisingly) called an interaction effect.

 When you cross two or more factors, as is done here, you have a factorial ANOVA

design. Crossing two factors produces a two-way ANOVA, crossing three factors pro-

duces a three-way ANOVA, and so forth. When a factorial design includes both

between-groups and within-groups factors, it’s also called a mixed-model ANOVA. The

current design is a two-way mixed-model factorial ANOVA (phew!).

 In this case, you’ll have three F tests: one for Therapy, one for Time, and one for

the Therapy × Time interaction. A significant result for Therapy indicates that CBT

and EMDR differ in their impact on anxiety. A significant result for Time indicates that

Table 9.3 Two-way factorial ANOVA with one between-groups and one within-groups factor

Patient

Time

5 weeks 6 months

Therapy

CBT

s1

s2

s3

s4

s5

EMDR

s6

s7

s8

s9

s10

www.it-ebooks.info

http://www.it-ebooks.info/

215Fitting ANOVA models

anxiety changed from week five to the six-month follow-up. A significant Therapy ×

Time interaction indicates that the two treatments for anxiety had a differential

impact over time (that is, the change in anxiety from five weeks to six months was dif-

ferent for the two treatments).

 Now let’s extend the design a bit. It’s known that depression can have an impact

on therapy, and that depression and anxiety often co-occur. Even though subjects

were randomly assigned to treatment conditions, it’s possible that the two therapy

groups differed in patient depression levels at the initiation of the study. Any post-

therapy differences might then be due to the preexisting depression differences and

not to your experimental manipulation. Because depression could also explain the

group differences on the dependent variable, it’s a confounding factor. And because

you’re not interested in depression, it’s called a nuisance variable.

 If you recorded depression levels using a self-report depression measure such as

the Beck Depression Inventory (BDI) when patients were recruited, you could statisti-

cally adjust for any treatment group differences in depression before assessing the

impact of therapy type. In this case, BDI would be called a covariate, and the design

would be called an analysis of covariance (ANCOVA).

 Finally, you’ve recorded a single dependent variable in this study (the STAI). You

could increase the validity of this study by including additional measures of anxiety

(such as family ratings, therapist ratings, and a measure assessing the impact of anxi-

ety on their daily functioning). When there’s more than one dependent variable, the

design is called a multivariate analysis of variance (MANOVA). If there are covariates pres-

ent, it’s called a multivariate analysis of covariance (MANCOVA).

 Now that you have the basic terminology under your belt, you’re ready to amaze

your friends, dazzle new acquaintances, and learn how to fit ANOVA/ANCOVA/

MANOVA models with R.

9.2 Fitting ANOVA models

Although ANOVA and regression methodologies developed separately, functionally

they’re both special cases of the general linear model. You could analyze ANOVA mod-

els using the same lm() function used for regression in chapter 7. But you’ll primarily

use the aov() function in this chapter. The results of lm() and aov() are equivalent,

but the aov() function presents these results in a format that’s more familiar to

ANOVA methodologists. For completeness, I’ll provide an example using lm() at the

end of this chapter.

9.2.1 The aov() function

The syntax of the aov() function is aov(formula, data=dataframe). Table 9.4

describes special symbols that can be used in the formulas. In this table, y is the

dependent variable and the letters A, B, and C represent factors.

www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 9 Analysis of variance

Table 9.5 provides formulas for several common research designs. In this table, lower-

case letters are quantitative variables, uppercase letters are grouping factors, and

Subject is a unique identifier variable for subjects.

We’ll explore in-depth examples of several of these designs later in this chapter.

9.2.2 The order of formula terms

The order in which the effects appear in a formula matters when (a) there’s more

than one factor and the design is unbalanced, or (b) covariates are present. When

either of these two conditions is present, the variables on the right side of the equa-

tion will be correlated with each other. In this case, there’s no unambiguous way to

divide up their impact on the dependent variable. For example, in a two-way ANOVA

Table 9.4 Special symbols used in R formulas

Symbol Usage

~ Separates response variables on the left from the explanatory variables on the

right. For example, a prediction of y from A, B, and C would be coded

y ~ A + B + C

: Denotes an interaction between variables. A prediction of y from A, B, and the

interaction between A and B would be coded

y ~ A + B + A:B

* Denotes the complete crossing variables. The code y ~ A*B*C expands to

y ~ A + B + C + A:B + A:C + B:C + A:B:C

^ Denotes crossing to a specified degree. The code y ~ (A+B+C)^2 expands to

y ~ A + B + C + A:B + A:C + A:B

. Denotes all remaining variables. The code y ~ . expands to

y ~ A + B + C

Table 9.5 Formulas for common research designs

Design Formula

One-way ANOVA y ~ A

One-way ANCOVA with 1 covariate y ~ x + A

Two-way factorial ANOVA y ~ A * B

Two-way factorial ANCOVA with 2 covariates y ~ x1 + x2 + A * B

Randomized block y ~ B + A (where B is a blocking factor)

One-way within-groups ANOVA y ~ A + Error(Subject/A)

Repeated measures ANOVA with 1 within-groups

factor (W) and 1 between-groups factor (B)
y ~ B * W + Error(Subject/W)

www.it-ebooks.info

http://www.it-ebooks.info/

217Fitting ANOVA models

with unequal numbers of observations in the treatment combinations, the model

y ~ A*B will not produce the same results as the model y ~ B*A.

 By default, R employs the Type I (sequential) approach to calculating ANOVA

effects (see the sidebar “Order counts!”). The first model can be written as y ~ A + B

+ A:B. The resulting R ANOVA table will assess

■ The impact of A on y
■ The impact of B on y, controlling for A
■ The interaction of A and B, controlling for the A and B main effects

The greater the imbalance in sample sizes, the greater the impact that the order of

the terms will have on the results. In general, more fundamental effects should be

listed earlier in the formula. In particular, covariates should be listed first, followed by

main effects, followed by two-way interactions, followed by three-way interactions, and

so on. For main effects, more fundamental variables should be listed first. Thus gen-

der would be listed before treatment. Here’s the bottom line: when the research

design isn’t orthogonal (that is, when the factors and/or covariates are correlated), be

careful when specifying the order of effects.

Order counts!

When independent variables are correlated with each other or with covariates, there’s
no unambiguous method for assessing the independent contributions of these vari-
ables to the dependent variable. Consider an unbalanced two-way factorial design with
factors A and B and dependent variable y. There are three effects in this design: the
A and B main effects and the A × B interaction. Assuming that you’re modeling the
data using the formula

Y ~ A + B + A:B

there are three typical approaches for partitioning the variance in y among the effects
on the right side of this equation.

TYPE I (SEQUENTIAL)

Effects are adjusted for those that appear earlier in the formula. A is unadjusted. B
is adjusted for the A. The A:B interaction is adjusted for A and B.

TYPE II (HIERARCHICAL)

Effects are adjusted for other effects at the same or lower level. A is adjusted for B.
B is adjusted for A. The A:B interaction is adjusted for both A and B.

TYPE III (MARGINAL)

Each effect is adjusted for every other effect in the model. A is adjusted for B and
A:B. B is adjusted for A and A:B. The A:B interaction is adjusted for A and B.

R employs the Type I approach by default. Other programs such as SAS and SPSS
employ the Type III approach by default.

www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 9 Analysis of variance

 Before moving on to specific examples, note that the Anova() function in the car

package (not to be confused with the standard anova() function) provides the option

of using the Type II or Type III approach, rather than the Type I approach used by the

aov() function. You may want to use the Anova() function if you’re concerned about

matching your results to those provided by other packages such as SAS and SPSS. See

help(Anova, package="car") for details.

9.3 One-way ANOVA

In a one-way ANOVA, you’re interested in comparing the dependent variable means of

two or more groups defined by a categorical grouping factor. This example comes

from the cholesterol dataset in the multcomp package, taken from Westfall, Tobia,

Rom, & Hochberg (1999). Fifty patients received one of five cholesterol-reducing

drug regimens (trt). Three of the treatment conditions involved the same drug

administered as 20 mg once per day (1time), 10mg twice per day (2times), or 5 mg

four times per day (4times). The two remaining conditions (drugD and drugE) repre-

sented competing drugs. Which drug regimen produced the greatest cholesterol

reduction (response)? The analysis is provided in the following listing.

> library(multcomp)
> attach(cholesterol)
> table(trt)
trt
 1time 2times 4times drugD drugE
 10 10 10 10 10

> aggregate(response, by=list(trt), FUN=mean)
 Group.1 x
1 1time 5.78
2 2times 9.22
3 4times 12.37
4 drugD 15.36
5 drugE 20.95

> aggregate(response, by=list(trt), FUN=sd)
 Group.1 x
1 1time 2.88
2 2times 3.48
3 4times 2.92
4 drugD 3.45
5 drugE 3.35

> fit <- aov(response ~ trt)
> summary(fit)
 Df Sum Sq Mean Sq F value Pr(>F)
trt 4 1351 338 32.4 9.8e-13 ***
Residuals 45 469 10

Listing 9.1 One-way ANOVA

Group sample sizesb

Group meansc

Group standard deviationsd

Tests for group
differences (ANOVA)

e

www.it-ebooks.info

http://www.it-ebooks.info/

219One-way ANOVA

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> library(gplots)
> plotmeans(response ~ trt, xlab="Treatment", ylab="Response",
 main="Mean Plot\nwith 95% CI")
> detach(cholesterol)

Looking at the output, you can

see that 10 patients received each

of the drug regimens b. From

the means, it appears that drugE

produced the greatest cholesterol

reduction, whereas 1time pro-

duced the least c. Standard devi-

ations were relatively constant

across the five groups, ranging

from 2.88 to 3.48 d. The ANOVA

F test for treatment (trt) is signifi-

cant (p < .0001), providing evi-

dence that the five treatments

aren’t all equally effective e.

 The plotmeans() function in

the gplots package can be used

to produce a graph of group

means and their confidence

intervals f. A plot of the treat-

ment means, with 95% confidence limits, is provided in figure 9.1 and allows you to

clearly see these treatment differences.

9.3.1 Multiple comparisons

The ANOVA F test for treatment tells you that the five drug regimens aren’t equally

effective, but it doesn’t tell you which treatments differ from one another. You can use

a multiple comparison procedure to answer this question. For example, the

TukeyHSD() function provides a test of all pairwise differences between group means,

as shown next.

> TukeyHSD(fit)
 Tukey multiple comparisons of means
 95% family-wise confidence level

Fit: aov(formula = response ~ trt)

$trt

Listing 9.2 Tukey HSD pairwise group comparisons

Plots group means
and confidence
intervals

f

5
1
0

1
5

2
0

Mean Plot with 95% CI

Treatment

R
e

s
p

o
n

s
e

1time 2times 4times drugD drugE

n=10 n=10 n=10 n=10 n=10

Figure 9.1 Treatment group means with 95% confidence

intervals for five cholesterol-reducing drug regimens

www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 9 Analysis of variance

 diff lwr upr p adj
2times-1time 3.44 -0.658 7.54 0.138
4times-1time 6.59 2.492 10.69 0.000
drugD-1time 9.58 5.478 13.68 0.000
drugE-1time 15.17 11.064 19.27 0.000
4times-2times 3.15 -0.951 7.25 0.205
drugD-2times 6.14 2.035 10.24 0.001
drugE-2times 11.72 7.621 15.82 0.000
drugD-4times 2.99 -1.115 7.09 0.251
drugE-4times 8.57 4.471 12.67 0.000
drugE-drugD 5.59 1.485 9.69 0.003

> par(las=2)
> par(mar=c(5,8,4,2))
> plot(TukeyHSD(fit))

For example, the mean cholesterol reductions for 1time and 2times aren’t signifi-

cantly different from each other (p = 0.138), whereas the difference between 1time
and 4times is significantly different (p < .001).

 The pairwise comparisons are plotted in figure 9.2. The first par statement rotates

the axis labels, and the second one increases the left margin area so that the labels fit
(par options are covered in chapter 3). In this graph, confidence intervals that

include 0 indicate treatments that aren’t significantly different (p > 0.5).

0 5

1
0

1
5

2
0

drugE−drugD

drugE−4times

drugD−4times

drugE−2times

drugD−2times

4times−2times

drugE−1time

drugD−1time

4times−1tim e

2times−1tim e

95% family−wise confidence level

Differences in mean levels of trt

Figure 9.2 Plot of Tukey HSD pairwise mean comparisons

www.it-ebooks.info

http://www.it-ebooks.info/

221One-way ANOVA

The glht() function in the multcomp package provides a much more comprehensive

set of methods for multiple mean comparisons that you can use for both linear mod-

els (such as those described in this chapter) and generalized linear models (covered

in chapter 13). The following code reproduces the Tukey HSD test, along with a differ-

ent graphical representation of the results (figure 9.3):

> library(multcomp)
> par(mar=c(5,4,6,2))
> tuk <- glht(fit, linfct=mcp(trt="Tukey"))
> plot(cld(tuk, level=.05),col="lightgrey")

In this code, the par statement increases the top margin to fit the letter array. The

level option in the cld() function provides the significance level to use (0.05, or

95% confidence in this case).

 Groups (represented by box plots) that have the same letter don’t have significantly

different means. You can see that 1time and 2times aren’t significantly different (they

both have the letter a) and that 2times and 4times aren’t significantly different (they

both have the letter b); but that 1time and 4times are different (they don’t share a let-

ter). Personally, I find figure 9.3 easier to read than figure 9.2. It also has the advantage

of providing information on the distribution of scores within each group.

 From these results, you can see that taking the cholesterol-lowering drug in 5 mg

doses four times a day was better than taking a 20 mg dose once per day. The compet-

itor drugD wasn’t superior to this four-times-per-day regimen. But competitor drugE

was superior to both drugD and all three dosage strategies for the focus drug.

1time 2times 4times drugD drugE

5
1
0

1
5

2
0

2
5

trt

re
s
p

o
n

s
e

a

a
b

b
c

c

d

Figure 9.3 Tukey HSD tests

provided by the multcomp package

www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 9 Analysis of variance

 Multiple comparisons methodology is a complex and rapidly changing area of

study. To learn more, see Bretz, Hothorn, and Westfall (2010).

9.3.2 Assessing test assumptions

As you saw in the previous chapter, confidence in results depends on the degree to

which your data satisfies the assumptions underlying the statistical tests. In a one-way

ANOVA, the dependent variable is assumed to be normally distributed and have equal

variance in each group. You can use a Q-Q plot to assess the normality assumption:

> library(car)
> qqPlot(lm(response ~ trt, data=cholesterol),
 simulate=TRUE, main="Q-Q Plot", labels=FALSE)

Note the qqPlot() requires an lm() fit. The graph is provided in figure 9.4. The data

falls within the 95% confidence envelope, suggesting that the normality assumption

has been met fairly well.

 R provides several tests for the equality (homogeneity) of variances. For example,

you can perform Bartlett’s test with this code:

> bartlett.test(response ~ trt, data=cholesterol)

 Bartlett test of homogeneity of variances

data: response by trt
Bartlett's K-squared = 0.5797, df = 4, p-value = 0.9653

−2 −1 0 1 2

−
2

−
1

0
1

2

Q−Q Plot

t Quantiles

S
tu

d
e

n
ti
ze

d
 R

e
s
id

u
a

ls
(l
m

(r
e

s
p

o
n

s
e

 ~
 t

rt
,

d
a

ta
 =

 c
h

o
le

s
te

ro
l)
)

Figure 9.4

Test of normality

www.it-ebooks.info

http://www.it-ebooks.info/

223One-way ANCOVA

Bartlett’s test indicates that the variances in the five groups don’t differ significantly

(p = 0.97). Other possible tests include the Fligner–Killeen test (provided by the
fligner.test() function) and the Brown–Forsythe test (provided by the hov() func-

tion in the HH package). Although not shown, the other two tests reach the same

conclusion.
 Finally, analysis of variance methodologies can be sensitive to the presence of outli-

ers. You can test for outliers using the outlierTest() function in the car package:

> library(car)
> outlierTest(fit)

No Studentized residuals with Bonferonni p < 0.05
Largest |rstudent|:
 rstudent unadjusted p-value Bonferonni p
19 2.251149 0.029422 NA

From the output, you can see that there’s no indication of outliers in the cholesterol

data (NA occurs when p > 1). Taking the Q-Q plot, Bartlett’s test, and outlier test
together, the data appear to fit the ANOVA model quite well. This, in turn, adds to

your confidence in the results.

9.4 One-way ANCOVA

A one-way analysis of covariance (ANCOVA) extends the one-way ANOVA to include
one or more quantitative covariates. This example comes from the litter dataset in

the multcomp package (see Westfall et al., 1999). Pregnant mice were divided into four

treatment groups; each group received a different dose of a drug (0, 5, 50, or 500).
The mean post-birth weight for each litter was the dependent variable, and gestation

time was included as a covariate. The analysis is given in the following listing.

> data(litter, package="multcomp")
> attach(litter)
> table(dose)
dose
 0 5 50 500
 20 19 18 17
> aggregate(weight, by=list(dose), FUN=mean)
 Group.1 x
1 0 32.3
2 5 29.3
3 50 29.9
4 500 29.6
> fit <- aov(weight ~ gesttime + dose)
> summary(fit)
 Df Sum Sq Mean Sq F value Pr(>F)
gesttime 1 134.30 134.30 8.0493 0.005971 **
dose 3 137.12 45.71 2.7394 0.049883 *
Residuals 69 1151.27 16.69

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Listing 9.3 One-way ANCOVA

www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 9 Analysis of variance

From the table() function, you can see that there is an unequal number of litters at

each dosage level, with 20 litters at zero dosage (no drug) and 17 litters at dosage 500.

Based on the group means provided by the aggregate() function, the no-drug group

had the highest mean litter weight (32.3). The ANCOVA F tests indicate that (a) gesta-

tion time was related to birth weight, and (b) drug dosage was related to birth weight

after controlling for gestation time. The mean birth weight isn’t the same for each of

the drug dosages, after controlling for gestation time.

 Because you’re using a covariate, you may want to obtain adjusted group means—

that is, the group means obtained after partialing out the effects of the covariate. You

can use the effect() function in the effects library to calculate adjusted means:

> library(effects)
> effect("dose", fit)

 dose effect
dose
 0 5 50 500
32.4 28.9 30.6 29.3

In this case, the adjusted means are similar to the unadjusted means produced by the

aggregate() function, but this won’t always be the case. The effects package provides

a powerful method of obtaining adjusted means for complex research designs and pre-

senting them visually. See the package documentation on CRAN for more details.

 As with the one-way ANOVA example in the last section, the F test for dose indicates

that the treatments don’t have the same mean birth weight, but it doesn’t tell you

which means differ from one another. Again you can use the multiple comparison

procedures provided by the multcomp package to compute all pairwise mean compari-

sons. Additionally, the multcomp package can be used to test specific user-defined

hypotheses about the means.

 Suppose you’re interested in whether the no-drug condition differs from the three-

drug condition. The code in the following listing can be used to test this hypothesis.

> library(multcomp)
> contrast <- rbind("no drug vs. drug" = c(3, -1, -1, -1))
> summary(glht(fit, linfct=mcp(dose=contrast)))

Multiple Comparisons of Means: User-defined Contrasts

Fit: aov(formula = weight ~ gesttime + dose)

Linear Hypotheses:
 Estimate Std. Error t value Pr(>|t|)
no drug vs. drug == 0 8.284 3.209 2.581 0.0120 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Listing 9.4 Multiple comparisons employing user-supplied contrasts

www.it-ebooks.info

http://www.it-ebooks.info/

225One-way ANCOVA

The contrast c(3, -1, -1, -1) specifies a comparison of the first group with the aver-

age of the other three. The hypothesis is tested with a t statistic (2.581 in this case),

which is significant at the p < .05 level. Therefore, you can conclude that the no-drug

group has a higher birth weight than drug conditions. Other contrasts can be added

to the rbind() function (see help(glht) for details).

9.4.1 Assessing test assumptions

ANCOVA designs make the same normality and homogeneity of variance assumptions

described for ANOVA designs, and you can test these assumptions using the same pro-

cedures described in section 9.3.2. In addition, standard ANCOVA designs assume

homogeneity of regression slopes. In this case, it’s assumed that the regression slope

for predicting birth weight from gestation time is the same in each of the four treat-

ment groups. A test for the homogeneity of regression slopes can be obtained by

including a gestation × dose interaction term in your ANCOVA model. A significant

interaction would imply that the relationship between gestation and birth weight

depends on the level of the dose variable. The code and results are provided in the

following listing.

> library(multcomp)

> fit2 <- aov(weight ~ gesttime*dose, data=litter)

> summary(fit2)

 Df Sum Sq Mean Sq F value Pr(>F)

gesttime 1 134 134 8.29 0.0054 **

dose 3 137 46 2.82 0.0456 *

gesttime:dose 3 82 27 1.68 0.1789

Residuals 66 1069 16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The interaction is nonsignificant, supporting the assumption of equality of slopes. If

the assumption is untenable, you could try transforming the covariate or dependent

variable, using a model that accounts for separate slopes, or employing a nonparamet-

ric ANCOVA method that doesn’t require homogeneity of regression slopes. See the

sm.ancova() function in the sm package for an example of the latter.

9.4.2 Visualizing the results

The ancova() function in the HH package provides a plot of the relationship between

the dependent variable, the covariate, and the factor. For example,

> library(HH)
> ancova(weight ~ gesttime + dose, data=litter)

produces the plot shown in figure 9.5. (The figure has been modified to display better

in black and white and will look slightly different when you run the code yourself.)

Listing 9.5 Testing for homogeneity of regression slopes

www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 9 Analysis of variance

Here you can see that the regression lines for predicting birth weight from gestation

time are parallel in each group but have different intercepts. As gestation time

increases, birth weight increases. Additionally, you can see that the zero-dose group

has the largest intercept and the five-dose group has the lowest intercept. The lines

are parallel because they’ve been specified to be. If you used the statement

ancova(weight~gesttime*dose) instead, you’d generate a plot that allows both the

slopes and intercepts to vary by group. This approach is useful for visualizing the case

where the homogeneity of regression slopes doesn’t hold.

9.5 Two-way factorial ANOVA

In a two-way factorial ANOVA, subjects are assigned to groups that are formed from the

cross-classification of two factors. This example uses the ToothGrowth dataset in the

base installation to demonstrate a two-way between-groups ANOVA. Sixty guinea pigs

are randomly assigned to receive one of three levels of ascorbic acid (0.5, 1, or 2 mg)

and one of two delivery methods (orange juice or Vitamin C), under the restriction

that each treatment combination has 10 guinea pigs. The dependent variable is tooth

length. The following listing shows the code for the analysis.

weight ~ gesttime + dose

gesttime

w
e

ig
h

t

20

25

30

35

21.5 22.5

0

21.5 22.5

5

21.5 22.5

50

21.5 22.5

500

21.5 22.5

superpose

dose
0
5
50
500

Figure 9.5 Plot of the

relationship between gestation

time and birth weight for each

of four drug treatment groups

www.it-ebooks.info

http://www.it-ebooks.info/

227Two-way factorial ANOVA

> attach(ToothGrowth)

> table(supp, dose)

 dose

supp 0.5 1 2

 OJ 10 10 10

 VC 10 10 10

> aggregate(len, by=list(supp, dose), FUN=mean)

 Group.1 Group.2 x

1 OJ 0.5 13.23

2 VC 0.5 7.98

3 OJ 1.0 22.70

4 VC 1.0 16.77

5 OJ 2.0 26.06

6 VC 2.0 26.14

> aggregate(len, by=list(supp, dose), FUN=sd)

 Group.1 Group.2 x

1 OJ 0.5 4.46

2 VC 0.5 2.75

3 OJ 1.0 3.91

4 VC 1.0 2.52

5 OJ 2.0 2.66

6 VC 2.0 4.80

> dose <- factor(dose)

> fit <- aov(len ~ supp*dose)

> summary(fit)

 Df Sum Sq Mean Sq F value Pr(>F)

supp 1 205 205 15.57 0.00023 ***

dose 2 2426 1213 92.00 < 2e-16 ***

supp:dose 2 108 54 4.11 0.02186 *

Residuals 54 712 13

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> detach(ToothGrowth)

The table statement indicates that you have a balanced design (equal sample sizes in

each cell of the design), and the aggregate statements provide the cell means and

standard deviations. The dose variable is converted to a factor so that the aov() func-

tion will treat it as a grouping variable, rather than a numeric covariate. The ANOVA

table provided by the summary() function indicates that both main effects (supp and

dose) and the interaction between these factors are significant.

 You can visualize the results in several ways. You can use the interaction.plot()

function to display the interaction in a two-way ANOVA. The code is

interaction.plot(dose, supp, len, type="b",
 col=c("red","blue"), pch=c(16, 18),
 main = "Interaction between Dose and Supplement Type")

Listing 9.6 Two-way ANOVA

www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 9 Analysis of variance

and the resulting plot is pre-

sented in figure 9.6. The plot

provides the mean tooth

length for each supplement at

each dosage.

Figure 9.6 Interaction between

dose and delivery mechanism

on tooth growth. The plot of

means was created using the

interaction.plot() function.

With a little finesse, you can get an interaction plot out of the plotmeans() function

in the gplots package. The following code produces the graph in figure 9.7:

library(gplots)
plotmeans(len ~ interaction(supp, dose, sep=" "),
 connect=list(c(1,3,5),c(2,4,6)),
 col=c("red", "darkgreen"),
 main = "Interaction Plot with 95% CIs",
 xlab="Treatment and Dose Combination")

The graph includes the

means, as well as error bars

(95% confidence intervals)

and sample sizes.

Figure 9.7 Interaction between dose

and delivery mechanism on tooth

growth. The mean plot with 95%

confidence intervals was created

by the plotmeans() function.

1
0

1

5

2
0

2

5

Interaction between Dose and Supplement Type

dose

m
e

a
n

 o
f

 l
e

n

0.5 21

 supp

VC
OJ

1
0

1

5

2
0

2

5

3
0

Interaction Plot with 95% CIs

Treatment and Dose Combination

le
n

OJ 0.5 VC 0.5 OJ 1 VC 1 OJ 2 VC 2

n=10 n=10 n=10 n=10 n=10 n=10

www.it-ebooks.info

http://www.it-ebooks.info/

229Repeated measures ANOVA

Finally, you can use the interaction2wt() function in the HH package to produce a

plot of both main effects and two-way interactions for any factorial design of any order

(figure 9.8):

library(HH)
interaction2wt(len~supp*dose)

Again, this figure has been modified to display more clearly in black and white and

will look slightly different when you run the code yourself.

 All three graphs indicate that tooth growth increases with the dose of ascorbic acid

for both orange juice and Vitamin C. For the 0.5 and 1 mg doses, orange juice pro-

duced more tooth growth than Vitamin C. For 2 mg of ascorbic acid, both delivery

methods produced identical growth.

 Of the three plotting methods provided, I prefer the interaction2wt() function in

the HH package. It displays both the main effects (the box plots) and the two-way inter-

actions for designs of any complexity (two-way ANOVA, three-way ANOVA, and so on).

 Although I don’t cover the tests of model assumptions and mean comparison pro-

cedures, they’re a natural extension of the methods you’ve seen so far. Additionally,

the design is balanced, so you don’t have to worry about the order of effects.

9.6 Repeated measures ANOVA

In repeated measures ANOVA, subjects are measured more than once. This section

focuses on a repeated measures ANOVA with one within-groups and one

len: main effects and 2−way interactions

x.values

re
s
p

o
n

s
e
.v

a
r

OJ VC

ppuus

len ~ supp | supp

0.5 1 2

esood

5

10

15

20

25

30

nel

len ~ dose | supp

len ~ supp | dose

5

10

15

20

25

30

nel

len ~ dose | dose

dose
0.5
1
2

supp
OJ
VC

Figure 9.8 Main effects

and two-way interaction

for the ToothGrowth

dataset. This plot was

created by the

interaction2way()

function.

www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 9 Analysis of variance

between-groups factor (a common design). We’ll take our example from the field of

physiological ecology. Physiological ecologists study how the physiological and bio-

chemical processes of living systems respond to variations in environmental factors (a

crucial area of study given the realities of global warming). The CO2 dataset included

in the base installation contains the results of a study of cold tolerance in Northern

and Southern plants of the grass species Echinochloa crus-galli (Potvin, Lechowicz, &

Tardif, 1990). The photosynthetic rates of chilled plants were compared with the

photosynthetic rates of nonchilled plants at several ambient CO2 concentrations. Half

the plants were from Quebec, and half were from Mississippi.

 In this example, we’ll focus on chilled plants. The dependent variable is carbon

dioxide uptake (uptake) in ml/L, and the independent variables are Type (Quebec

versus Mississippi) and ambient CO2 concentration (conc) with seven levels (ranging

from 95 to 1000 umol/m^2 sec). Type is a between-groups factor, and conc is a within-

groups factor. Type is already stored as a factor, but you’ll need to convert conc to a

factor before continuing. The analysis is presented in the next listing.

> CO2$conc <- factor(CO2$conc)
> w1b1 <- subset(CO2, Treatment=='chilled')
> fit <- aov(uptake ~ conc*Type + Error(Plant/(conc)), w1b1)
> summary(fit)

Error: Plant
 Df Sum Sq Mean Sq F value Pr(>F)
Type 1 2667 2667 60.4 0.0015 **
Residuals 4 177 44

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Plant:conc
 Df Sum Sq Mean Sq F value Pr(>F)
conc 6 1472 245.4 52.5 1.3e-12 ***
conc:Type 6 429 71.5 15.3 3.7e-07 ***
Residuals 24 112 4.7

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> par(las=2)
> par(mar=c(10,4,4,2))
> with(w1b1, interaction.plot(conc,Type,uptake,
 type="b", col=c("red","blue"), pch=c(16,18),
 main="Interaction Plot for Plant Type and Concentration"))
> boxplot(uptake ~ Type*conc, data=w1b1, col=(c("gold", "green")),
 main="Chilled Quebec and Mississippi Plants",
 ylab="Carbon dioxide uptake rate (umol/m^2 sec)")

The ANOVA table indicates that the Type and concentration main effects and the Type

× concentration interaction are all significant at the 0.01 level. The interaction is plot-

ted via the interaction.plot() function in figure 9.9.

Listing 9.7 Repeated measures ANOVA with one between- and within-groups factor

www.it-ebooks.info

http://www.it-ebooks.info/

231Repeated measures ANOVA

In order to demonstrate a different presentation of the interaction, the boxplot()

function is used to plot the same data. The results are provided in figure 9.10.

10

15

20

25

30

35

40

Interaction Plot f or Plant T ype and Concentration

conc

m
e

a
n

 o
f

 u
p

ta
k
 e

9
5

1
7

5

2
5

0

3
5

0

5
0

0

6
7

5

1
0
0
0

 T ype

Quebec
Mississippi

Figure 9.9 Interaction of

ambient CO2 concentration

and plant type on CO2

uptake. Graph produced by

the interaction.plot()

function.

Q
u
e
b
e
c
.9

5

M
is

s
is

s
ip

p
i.
9

5

Q
u
e
b
e
c
.1

7
5

M
is

s
is

s
ip

p
i.
1
7
5

Q
u
e
b
e
c
.2

5
0

M
is

s
is

s
ip

p
i.
2
5
0

Q
u
e
b
e
c
.3

5
0

M
is

s
is

s
ip

p
i.
3
5
0

Q
u
e
b
e
c
.5

0
0

M
is

s
is

s
ip

p
i.
5
0
0

Q
u
e
b
e
c
.6

7
5

M
is

s
is

s
ip

p
i.
6
7
5

Q
u

e
b

e
c
.1

0
0

0

M
is

s
is

s
ip

p
i.
1
0
0
0

10

15

20

25

30

35

40

Chilled Quebec and Mississippi Plants

C
a
rb

o
n
 d

io
 x
id

e
 u

p
ta

k
 e
 r

a
te

 (
u
m

o
l/
m

^2
 s

e
c
)

Figure 9.10 Interaction of ambient CO2 concentration and plant type on

CO2 uptake. Graph produced by the boxplot() function.

www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 9 Analysis of variance

From either graph, you can see that there’s a greater carbon dioxide uptake in plants

from Quebec compared to Mississippi. The difference is more pronounced at higher

ambient CO2 concentrations.

NOTE Datasets are typically in wide format, where columns are variables and
rows are observations, and there’s a single row for each subject. The litter
data frame from section 9.4 is a good example. When dealing with repeated
measures designs, you typically need the data in long format before fitting
models. In long format, each measurement of the dependent variable is
placed in its own row. The CO2 dataset follows this form. Luckily, the reshape
package described in chapter 5 (section 5.6.3) can easily reorganize your data
into the required format.

Up to this point, all the methods in this chapter have assumed that there’s a single

dependent variable. In the next section, we’ll briefly consider designs that include

more than one outcome variable.

9.7 Multivariate analysis of variance (MANOVA)

If there’s more than one dependent (outcome) variable, you can test them simultane-

ously using a multivariate analysis of variance (MANOVA). The following example is

based on the UScereal dataset in the MASS package. The dataset comes from Venables

& Ripley (1999). In this example, you’re interested in whether the calories, fat, and

sugar content of US cereals vary by store shelf, where 1 is the bottom shelf, 2 is the

middle shelf, and 3 is the top shelf. Calories, fat, and sugars are the dependent

The many approaches to mixed-model designs

The CO2 example in this section was analyzed using a traditional repeated measures
ANOVA. The approach assumes that the covariance matrix for any within-groups factor
follows a specified form known as sphericity. Specifically, it assumes that the vari-
ances of the differences between any two levels of the within-groups factor are equal.
In real-world data, it’s unlikely that this assumption will be met. This has led to a num-
ber of alternative approaches, including the following:

■ Using the lmer() function in the lme4 package to fit linear mixed models
(Bates, 2005)

■ Using the Anova() function in the car package to adjust traditional test statis-
tics to account for lack of sphericity (for example, the Geisser–Greenhouse cor-
rection)

■ Using the gls() function in the nlme package to fit generalized least squares
models with specified variance-covariance structures (UCLA, 2009)

■ Using multivariate analysis of variance to model repeated measured data
(Hand, 1987)

Coverage of these approaches is beyond the scope of this text. If you’re interested
in learning more, check out Pinheiro and Bates (2000) and Zuur et al. (2009).

www.it-ebooks.info

http://www.it-ebooks.info/

233Multivariate analysis of variance (MANOVA)

variables, and shelf is the independent variable, with three levels (1, 2, and 3). The

analysis is presented in the following listing.

> library(MASS)

> attach(UScereal)

> shelf <- factor(shelf)

> y <- cbind(calories, fat, sugars)

> aggregate(y, by=list(shelf), FUN=mean)

 Group.1 calories fat sugars

1 1 119 0.662 6.3

2 2 130 1.341 12.5

3 3 180 1.945 10.9

> cov(y)

 calories fat sugars
calories 3895.2 60.67 180.38

fat 60.7 2.71 4.00

sugars 180.4 4.00 34.05

> fit <- manova(y ~ shelf)

> summary(fit)

 Df Pillai approx F num Df den Df Pr(>F)

shelf 2 0.402 5.12 6 122 1e-04 ***
Residuals 62

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary.aov(fit)

Response calories :
 Df Sum Sq Mean Sq F value Pr(>F)
shelf 2 50435 25218 7.86 0.00091 ***

Residuals 62 198860 3207

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response fat :

 Df Sum Sq Mean Sq F value Pr(>F)

shelf 2 18.4 9.22 3.68 0.031 *
Residuals 62 155.2 2.50

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response sugars :

 Df Sum Sq Mean Sq F value Pr(>F)
shelf 2 381 191 6.58 0.0026 **

Residuals 62 1798 29

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Listing 9.8 One-way MANOVA

Prints univariate resultsb

www.it-ebooks.info

http://www.it-ebooks.info/

234 CHAPTER 9 Analysis of variance

First, the shelf variable is converted to a factor so that it can represent a grouping vari-

able in the analyses. Next, the cbind() function is used to form a matrix of the three
dependent variables (calories, fat, and sugars). The aggregate() function provides

the shelf means, and the cov() function provides the variance and the covariances

across cereals.
 The manova() function provides the multivariate test of group differences. The sig-

nificant F value indicates that the three groups differ on the set of nutritional mea-

sures. Note that the shelf variable was converted to a factor so that it can represent a
grouping variable.

 Because the multivariate test is significant, you can use the summary.aov() func-

tion to obtain the univariate one-way ANOVAs b. Here, you see that the three groups
differ on each nutritional measure considered separately. Finally, you can use a mean

comparison procedure (such as TukeyHSD) to determine which shelves differ from

each other for each of the three dependent variables (omitted here to save space).

9.7.1 Assessing test assumptions

The two assumptions underlying a one-way MANOVA are multivariate normality and

homogeneity of variance-covariance matrices. The first assumption states that the vec-
tor of dependent variables jointly follows a multivariate normal distribution. You can

use a Q-Q plot to assess this assumption (see the sidebar “A theory interlude” for a sta-

tistical explanation of how this works).

The code is provided in the following listing, and the resulting graph is displayed in

figure 9.11.

> center <- colMeans(y)
> n <- nrow(y)
> p <- ncol(y)
> cov <- cov(y)
> d <- mahalanobis(y,center,cov)
> coord <- qqplot(qchisq(ppoints(n),df=p),
 d, main="Q-Q Plot Assessing Multivariate Normality",
 ylab="Mahalanobis D2")
> abline(a=0,b=1)
> identify(coord$x, coord$y, labels=row.names(UScereal))

A theory interlude

If you have p × 1 multivariate normal random vector x with mean µ and covariance
matrix Σ, then the squared Mahalanobis distance between x and µ is chi-square dis-
tributed with p degrees of freedom. The Q-Q plot graphs the quantiles of the chi-square
distribution for the sample against the Mahalanobis D-squared values. To the degree
that the points fall along a line with slope 1 and intercept 0, there’s evidence that
the data is multivariate normal.

Listing 9.9 Assessing multivariate normality

www.it-ebooks.info

http://www.it-ebooks.info/

235Multivariate analysis of variance (MANOVA)

If the data follow a multivariate normal distribution, then points will fall on the line.

The identify() function allows you to interactively identify points in the graph. (The

identify() function is covered in section 16.4.) Here, the dataset appears to violate

multivariate normality, primarily due to the observations for Wheaties Honey Gold and

Wheaties. You may want to delete these two cases and rerun the analyses.

 The homogeneity of variance-covariance matrices assumption requires that the

covariance matrix for each group is equal. The assumption is usually evaluated with a

Box’s M test. R doesn’t include a function for Box’s M, but an internet search will pro-

vide the appropriate code. Unfortunately, the test is sensitive to violations of normal-

ity, leading to rejection in most typical cases. This means that we don’t yet have a good

working method for evaluating this important assumption (but see Anderson [2006]

and Silva et al. [2008] for interesting alternative approaches not yet available in R).

 Finally, you can test for multivariate outliers using the aq.plot() function in the

mvoutlier package. The code in this case looks like this:

library(mvoutlier)
outliers <- aq.plot(y)
outliers

Try it, and see what you get!

9.7.2 Robust MANOVA

If the assumptions of multivariate normality or homogeneity of variance-covariance

matrices are untenable, or if you’re concerned about multivariate outliers, you may

want to consider using a robust or nonparametric version of the MANOVA test instead.

A robust version of the one-way MANOVA is provided by the Wilks.test() function in

0 108642 12

0
4

0
3

0
2

0
1

0

qchisq(ppoints(n), df = p)

M
a

h
a

la
n

o
b

is
 D

2

Wheaties

Wheaties Honey Gold

Q−Q Plot Assessing Multivariate Normality

Figure 9.11 A Q-Q plot

for assessing multivariate

normality

www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 9 Analysis of variance

the rrcov package. The adonis() function in the vegan package can provide the

equivalent of a nonparametric MANOVA. The following listing applies Wilks.test()

to the example.

library(rrcov)
> Wilks.test(y,shelf,method="mcd")

 Robust One-way MANOVA (Bartlett Chi2)

data: x
Wilks' Lambda = 0.511, Chi2-Value = 23.96, DF = 4.98, p-value =
0.0002167
sample estimates:
 calories fat sugars
1 120 0.701 5.66
2 128 1.185 12.54
3 161 1.652 10.35

From the results, you can see that using a robust test that’s insensitive to both outliers

and violations of MANOVA assumptions still indicates that the cereals on the top, mid-

dle, and bottom store shelves differ in their nutritional profiles.

9.8 ANOVA as regression

In section 9.2, we noted that ANOVA and regression are both special cases of the same

general linear model. As such, the designs in this chapter could have been analyzed

using the lm() function. But in order to understand the output, you need to under-

stand how R deals with categorical variables when fitting models.

 Consider the one-way ANOVA problem in section 9.3, which compares the impact

of five cholesterol-reducing drug regimens (trt):

> library(multcomp)
> levels(cholesterol$trt)

[1] "1time" "2times" "4times" "drugD" "drugE"

First, let’s fit the model using the aov() function:

> fit.aov <- aov(response ~ trt, data=cholesterol)
> summary(fit.aov)

 Df Sum Sq Mean Sq F value Pr(>F)
trt 4 1351.37 337.84 32.433 9.819e-13 ***
Residuals 45 468.75 10.42

Now, let’s fit the same model using lm(). In this case, you get the results shown in the

next listing.

> fit.lm <- lm(response ~ trt, data=cholesterol)
> summary(fit.lm)

Listing 9.10 Robust one-way MANOVA

Listing 9.11 A regression approach to the ANOVA problem in section 9.3

www.it-ebooks.info

http://www.it-ebooks.info/

237ANOVA as regression

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.782 1.021 5.665 9.78e-07 ***
trt2times 3.443 1.443 2.385 0.0213 *
trt4times 6.593 1.443 4.568 3.82e-05 ***
trtdrugD 9.579 1.443 6.637 3.53e-08 ***
trtdrugE 15.166 1.443 10.507 1.08e-13 ***

Residual standard error: 3.227 on 45 degrees of freedom
Multiple R-squared: 0.7425, Adjusted R-squared: 0.7196
F-statistic: 32.43 on 4 and 45 DF, p-value: 9.819e-13

What are you looking at? Because linear models require numeric predictors, when the

lm() function encounters a factor, it replaces that factor with a set of numeric vari-

ables representing contrasts among the levels. If the factor has k levels, k – 1 contrast

variables are created. R provides five built-in methods for creating these contrast vari-

ables (see table 9.6). You can also create your own (we won’t cover that here). By

default, treatment contrasts are used for unordered factors, and orthogonal polyno-

mials are used for ordered factors.

With treatment contrasts, the first level of the factor becomes the reference group,

and each subsequent level is compared with it. You can see the coding scheme via the

contrasts() function:

> contrasts(cholesterol$trt)
 2times 4times drugD drugE
1time 0 0 0 0
2times 1 0 0 0
4times 0 1 0 0
drugD 0 0 1 0
drugE 0 0 0 1

If a patient is in the drugD condition, then the variable drugD equals 1, and the vari-

ables 2times, 4times, and drugE each equal zero. You don’t need a variable for the first

Table 9.6 Built-in contrasts

Contrast Description

contr.helmert Contrasts the second level with the first, the third level with the average of the

first two, the fourth level with the average of the first three, and so on.

contr.poly Contrasts are used for trend analysis (linear, quadratic, cubic, and so on) based

on orthogonal polynomials. Use for ordered factors with equally spaced levels.

contr.sum Contrasts are constrained to sum to zero. Also called deviation contrasts, they

compare the mean of each level to the overall mean across levels.

contr.treatment Contrasts each level with the baseline level (first level by default). Also called

dummy coding.

contr.SAS Similar to contr.treatment, but the baseline level is the last level. This pro-

duces coefficients similar to contrasts used in most SAS procedures.

www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 9 Analysis of variance

group, because a zero on each of the four indicator variables uniquely determines

that the patient is in the 1times condition.

 In listing 9.11, the variable trt2times represents a contrast between the levels 1time

and 2time. Similarly, trt4times is a contrast between 1time and 4times, and so on. You

can see from the probability values in the output that each drug condition is signifi-

cantly different from the first (1time).

 You can change the default contrasts used in lm() by specifying a contrasts

option. For example, you can specify Helmert contrasts by using

fit.lm <- lm(response ~ trt, data=cholesterol, contrasts="contr.helmert")

You can change the default contrasts used during an R session via the options() func-

tion. For example,

options(contrasts = c("contr.SAS", "contr.helmert"))

would set the default contrast for unordered factors to contr.SAS and for ordered fac-

tors to contr.helmert. Although we’ve limited our discussion to the use of contrasts

in linear models, note that they’re applicable to other modeling functions in R. This

includes the generalized linear models covered in chapter 13.

9.9 Summary

In this chapter, we reviewed the analysis of basic experimental and quasi-experimental

designs using ANOVA/ANCOVA/MANOVA methodology. We reviewed the basic termi-

nology used and looked at examples of between- and within-groups designs, including

the one-way ANOVA, one-way ANCOVA, two-way factorial ANOVA, repeated measures

ANOVA, and one-way MANOVA.

 In addition to the basic analyses, we reviewed methods of assessing model assump-

tions and applying multiple comparison procedures following significant omnibus

tests. Finally, we explored a wide variety of methods for displaying the results visually.

If you’re interested in learning more about the design of experiments (DOE) using R,

be sure to see the CRAN View provided by Groemping (2009).

 Chapters 8 and 9 have covered the statistical methods most often used by research-

ers in a wide variety of fields. In the next chapter, we’ll address issues of power analy-

sis. Power analysis helps us to determine the sample sizes needed to detect an effect of

a given size with a given degree of confidence and is a crucial component of research

design.

www.it-ebooks.info

http://www.it-ebooks.info/

239

Power analysis

As a statistical consultant, I’m often asked, “How many subjects do I need for my

study?” Sometimes the question is phrased this way: “I have x number of people avail-

able for this study. Is the study worth doing?” Questions like these can be answered

through power analysis, an important set of techniques in experimental design.

 Power analysis allows you to determine the sample size required to detect an

effect of a given size with a given degree of confidence. Conversely, it allows you to

determine the probability of detecting an effect of a given size with a given level of

confidence, under sample size constraints. If the probability is unacceptably low,

you’d be wise to alter or abandon the experiment.

 In this chapter, you’ll learn how to conduct power analyses for a variety of statis-

tical tests, including tests of proportions, t-tests, chi-square tests, balanced one-way

ANOVA, tests of correlations, and linear models. Because power analysis applies to

hypothesis testing situations, we’ll start with a brief review of null hypothesis signifi-

cance testing (NHST). Then we’ll review conducting power analyses within R, focus-

This chapter covers

■ Determining sample size requirements

■ Calculating effect sizes

■ Assessing statistical power

www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 10 Power analysis

ing primarily on the pwr package. Finally, we’ll consider other approaches to power

analysis available with R.

10.1 A quick review of hypothesis testing

To help you understand the steps in a power analysis, we’ll briefly review statistical
hypothesis testing in general. If you have a statistical background, feel free to skip to
section 10.2.

 In statistical hypothesis testing, you specify a hypothesis about a population param-
eter (your null hypothesis, or H0). You then draw a sample from this population and cal-
culate a statistic that’s used to make inferences about the population parameter.
Assuming that the null hypothesis is true, you calculate the probability of obtaining
the observed sample statistic or one more extreme. If the probability is sufficiently
small, you reject the null hypothesis in favor of its opposite (referred to as the alterna-

tive or research hypothesis, H1).
 An example will clarify the process. Say you’re interested in evaluating the impact

of cell phone use on driver reaction time. Your null hypothesis is Ho: µ1 – µ2 = 0,
where µ1 is the mean response time for drivers using a cell phone and µ2 is the mean
response time for drivers that are cell phone free (here, µ1 – µ2 is the population
parameter of interest). If you reject this null hypothesis, you’re left with the alternate
or research hypothesis, namely H1: µ1 – µ2 ≠ 0. This is equivalent to µ1 ≠ µ2, that the
mean reaction times for the two conditions are not equal.

 A sample of individuals is selected and randomly assigned to one of two condi-
tions. In the first condition, participants react to a series of driving challenges in a sim-
ulator while talking on a cell phone. In the second condition, participants complete
the same series of challenges but without a cell phone. Overall reaction time is
assessed for each individual.

 Based on the sample data, you can calculate the statistic , where

X
_

1 and X
_

2 are the sample reaction time means in the two conditions, s is the pooled
sample standard deviation, and n is the number of participants in each condition. If

the null hypothesis is true and you can assume that reaction times are normally dis-

tributed, this sample statistic will follow a t distribution with 2n – 2 degrees of free-
dom. Using this fact, you can calculate the probability of obtaining a sample statistic

this large or larger. If the probability (p) is smaller than some predetermined cutoff

(say p < .05), you reject the null hypothesis in favor of the alternate hypothesis. This
predetermined cutoff (0.05) is called the significance level of the test.

 Note that you use sample data to make an inference about the population it’s drawn
from. Your null hypothesis is that the mean reaction time of all drivers talking on cell
phones isn’t different from the mean reaction time of all drivers who aren’t talking on
cell phones, not just those drivers in your sample. The four possible outcomes from
your decision are as follows:

■ If the null hypothesis is false and the statistical test leads you to reject it, you’ve

made a correct decision. You’ve correctly determined that reaction time is

affected by cell phone use.

(X1 − X2)/(s/)n
_ _

www.it-ebooks.info

http://www.it-ebooks.info/

241A quick review of hypothesis testing

■ If the null hypothesis is true and you don’t reject it, again you’ve made a correct

decision. Reaction time isn’t affected by cell phone use.
■ If the null hypothesis is true but you reject it, you’ve committed a Type I error.

You’ve concluded that cell phone use affects reaction time when it doesn’t.
■ If the null hypothesis is false and you fail to reject it, you’ve committed a Type II

error. Cell phone use affects reaction time, but you’ve failed to discern this.

Each of these outcomes is illustrated in the following table:

In planning research, the researcher typically

pays special attention to four quantities (see fig-

ure 10.1):

■ Sample size refers to the number of observa-

tions in each condition/group of the

experimental design.
■ The significance level (also referred to as

alpha) is defined as the probability of mak-

ing a Type I error. The significance level

can also be thought of as the probability of

finding an effect that is not there.
■ Power is defined as one minus the probabil-

ity of making a Type II error. Power can be

thought of as the probability of finding an

effect that is there.

Decision

Reject H0 Fail to Reject H0

Actual H0 true Type I error correct

H0 false correct Type II error

Controversy surrounding null hypothesis significance testing

Null hypothesis significance testing isn’t without controversy; detractors have raised
numerous concerns about the approach, particularly as practiced in the field of psy-
chology. They point to a widespread misunderstanding of p values, reliance on sta-
tistical significance over practical significance, the fact that the null hypothesis is never
exactly true and will always be rejected for sufficient sample sizes, and a number of
logical inconsistencies in NHST practices.

An in-depth discussion of this topic is beyond the scope of this book. Interested read-
ers are referred to Harlow, Mulaik, and Steiger (1997).

Power

1-P(Type II Error)

Sample Size

n

Significance Level

P(Type I Error)

Effect Size

ES

Figure 10.1 Four primary quantities

considered in a study design power

analysis. Given any three, you can

calculate the fourth.

www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 10 Power analysis

■ Effect size is the magnitude of the effect under the alternate or research hypoth-

esis. The formula for effect size depends on the statistical methodology

employed in the hypothesis testing.

Although the sample size and significance level are under the direct control of the

researcher, power and effect size are affected more indirectly. For example, as you

relax the significance level (in other words, make it easier to reject the null hypothe-

sis), power increases. Similarly, increasing the sample size increases power.

 Your research goal is typically to maximize the power of your statistical tests while

maintaining an acceptable significance level and employing as small a sample size as

possible. That is, you want to maximize the chances of finding a real effect and mini-

mize the chances of finding an effect that isn’t really there, while keeping study costs

within reason.

 The four quantities (sample size, significance level, power, and effect size) have an

intimate relationship. Given any three, you can determine the fourth. You’ll use this fact to

carry out various power analyses throughout the remainder of the chapter. In the next

section, we’ll look at ways of implementing power analyses using the R package pwr.

Later, we’ll briefly look at some highly specialized power functions that are used in

biology and genetics.

10.2 Implementing power analysis with the pwr package

The pwr package, developed by Stéphane Champely, implements power analysis as

outlined by Cohen (1988). Some of the more important functions are listed in table

10.1. For each function, you can specify three of the four quantities (sample size, sig-

nificance level, power, effect size), and the fourth will be calculated.

Table 10.1 pwr package functions

Function Power calculations for …

pwr.2p.test Two proportions (equal n)

pwr.2p2n.test Two proportions (unequal n)

pwr.anova.test Balanced one-way ANOVA

pwr.chisq.test Chi-square test

pwr.f2.test General linear model

pwr.p.test Proportion (one sample)

pwr.r.test Correlation

pwr.t.test t-tests (one sample, two samples, paired)

pwr.t2n.test t-test (two samples with unequal n)

www.it-ebooks.info

http://www.it-ebooks.info/

243Implementing power analysis with the pwr package

Of the four quantities, effect size is often the most difficult to specify. Calculating effect

size typically requires some experience with the measures involved and knowledge of

past research. But what can you do if you have no clue what effect size to expect in a

given study? We’ll look at this difficult question in section 10.2.7. In the remainder of

this section, we’ll look at the application of pwr functions to common statistical tests.

Before invoking these functions, be sure to install and load the pwr package.

10.2.1 t-tests

When the statistical test to be used is a t-test, the pwr.t.test() function provides a

number of useful power analysis options. The format is

pwr.t.test(n=, d=, sig.level=, power=, type=, alternative=)

where

■ n is the sample size.

■ d is the effect size defined as the standardized mean difference.

where μ1 = mean of group 1

 μ2 = mean of group 2

 σ2 = common error variance

■ sig.level is the significance level (0.05 is the default).

■ power is the power level.

■ type is a two-sample t-test ("two.sample"), a one-sample t-test ("one.sample"),

or a dependent sample t-test ("paired"). A two-sample test is the default.

■ alternative indicates whether the statistical test is two-sided ("two.sided")

or one-sided ("less" or "greater"). A two-sided test is the default.

Let’s work through an example. Continuing the experiment from section 10.1 involv-

ing cell phone use and driving reaction time, assume that you’ll be using a two-tailed

independent sample t-test to compare the mean reaction time for participants in the

cell phone condition with the mean reaction time for participants driving unencum-

bered.

 Let’s assume that you know from past experience that reaction time has a standard

deviation of 1.25 seconds. Also suppose that a 1-second difference in reaction time is

considered an important difference. You’d therefore like to conduct a study in which

you’re able to detect an effect size of d = 1/1.25 = 0.8 or larger. Additionally, you want

to be 90% sure to detect such a difference if it exists, and 95% sure that you won’t

declare a difference to be significant when it’s actually due to random variability. How

many participants will you need in your study?

 Entering this information in the pwr.t.test() function, you have the following:

> library(pwr)
> pwr.t.test(d=.8, sig.level=.05, power=.9, type="two.sample",
 alternative="two.sided")

d
μ

σ
1 μ2=
−

www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 10 Power analysis

 Two-sample t test power calculation

 n = 34
 d = 0.8
 sig.level = 0.05
 power = 0.9
 alternative = two.sided

 NOTE: n is number in *each* group

The results suggest that you need 34 participants in each group (for a total of 68 par-

ticipants) in order to detect an effect size of 0.8 with 90% certainty and no more than

a 5% chance of erroneously concluding that a difference exists when, in fact, it

doesn’t.

 Let’s alter the question. Assume that in comparing the two conditions you want to

be able to detect a 0.5 standard deviation difference in population means. You want to

limit the chances of falsely declaring the population means to be different to 1 out of

100. Additionally, you can only afford to include 40 participants in the study. What’s

the probability that you’ll be able to detect a difference between the population

means that’s this large, given the constraints outlined?

 Assuming that an equal number of participants will be placed in each condition,

you have

> pwr.t.test(n=20, d=.5, sig.level=.01, type="two.sample",
 alternative="two.sided")

 Two-sample t test power calculation

 n = 20
 d = 0.5
 sig.level = 0.01
 power = 0.14
 alternative = two.sided

 NOTE: n is number in *each* group

With 20 participants in each group, an a priori significance level of 0.01, and a depen-

dent variable standard deviation of 1.25 seconds, you have less than a 14% chance of

declaring a difference of 0.625 seconds or less significant (d = 0.5 = 0.625/1.25). Con-

versely, there’s an 86% chance that you’ll miss the effect that you’re looking for. You

may want to seriously rethink putting the time and effort into the study as it stands.

 The previous examples assumed that there are equal sample sizes in the two

groups. If the sample sizes for the two groups are unequal, the function

pwr.t2n.test(n1=, n2=, d=, sig.level=, power=, alternative=)

can be used. Here, n1 and n2 are the sample sizes, and the other parameters are the

same as for pwer.t.test. Try varying the values input to the pwr.t2n.test function

and see the effect on the output.

www.it-ebooks.info

http://www.it-ebooks.info/

245Implementing power analysis with the pwr package

10.2.2 ANOVA

The pwr.anova.test() function provides power analysis options for a balanced one-

way analysis of variance. The format is

pwr.anova.test(k=, n=, f=, sig.level=, power=)

where k is the number of groups and n is the common sample size in each group.

 For a one-way ANOVA, effect size is measured by f,

where pi = ni/N

 ni = number of observations in group i

 N = total number of observations

 μi = mean of group i

 μ = grand mean

 σ2 = error variance within groups

Let’s try an example. For a one-way ANOVA comparing five groups, calculate the sam-

ple size needed in each group to obtain a power of 0.80, when the effect size is 0.25

and a significance level of 0.05 is employed. The code looks like this:

> pwr.anova.test(k=5, f=.25, sig.level=.05, power=.8)

 Balanced one-way analysis of variance power calculation

 k = 5
 n = 39
 f = 0.25
 sig.level = 0.05
 power = 0.8

 NOTE: n is number in each group

The total sample size is therefore 5 × 39, or 195. Note that this example requires you

to estimate what the means of the five groups will be, along with the common vari-

ance. When you have no idea what to expect, the approaches described in section

10.2.7 may help.

10.2.3 Correlations

The pwr.r.test() function provides a power analysis for tests of correlation coeffi-

cients. The format is as follows

pwr.r.test(n=, r=, sig.level=, power=, alternative=)

where n is the number of observations, r is the effect size (as measured by a linear cor-

relation coefficient), sig.level is the significance level, power is the power level, and
alternative specifies a two-sided ("two.sided") or a one-sided ("less" or

"greater") significance test.

 For example, let’s assume that you’re studying the relationship between depres-

sion and loneliness. Your null and research hypotheses are

 H0: ρ ≤ 0.25 versus H1: ρ > 0.25

www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 10 Power analysis

where ρ is the population correlation between these two psychological variables. You’ve

set your significance level to 0.05, and you want to be 90% confident that you’ll reject

H0 if it’s false. How many observations will you need? This code provides the answer:

> pwr.r.test(r=.25, sig.level=.05, power=.90, alternative="greater")

 approximate correlation power calculation (arctangh transformation)

 n = 134
 r = 0.25
 sig.level = 0.05
 power = 0.9
 alternative = greater

Thus, you need to assess depression and loneliness in 134 participants in order to be

90% confident that you’ll reject the null hypothesis if it’s false.

10.2.4 Linear models

For linear models (such as multiple regression), the pwr.f2.test() function can be

used to carry out a power analysis. The format is

pwr.f2.test(u=, v=, f2=, sig.level=, power=)

where u and v are the numerator and denominator degrees of freedom and f2 is the

effect size.

where R2 = population squared

 multiple correlation

where R2
A = variance accounted for in the

 population by variable set A

 R2
AB = variance accounted for in the

 population by variable set A and B together

The first formula for f2 is appropriate when you’re evaluating the impact of a set of
predictors on an outcome. The second formula is appropriate when you’re evaluating

the impact of one set of predictors above and beyond a second set of predictors (or

covariates).
 Let’s say you’re interested in whether a boss’s leadership style impacts workers’ sat-

isfaction above and beyond the salary and perks associated with the job. Leadership

style is assessed by four variables, and salary and perks are associated with three vari-
ables. Past experience suggests that salary and perks account for roughly 30% of the

variance in worker satisfaction. From a practical standpoint, it would be interesting if

leadership style accounted for at least 5% above this figure. Assuming a significance
level of 0.05, how many subjects would be needed to identify such a contribution with

90% confidence?

 Here, sig.level=0.05, power=0.90, u=3 (total number of predictors minus the

number of predictors in set B), and the effect size is f2 = (.35 – .30)/(1 – .35)

= 0.0769. Entering this into the function yields the following:

f
R

R
2

2

21
=

−

f
RAB −RA

RAB

2
2 2

21
=

−

www.it-ebooks.info

http://www.it-ebooks.info/

247Implementing power analysis with the pwr package

> pwr.f2.test(u=3, f2=0.0769, sig.level=0.05, power=0.90)

 Multiple regression power calculation

 u = 3
 v = 184.2426
 f2 = 0.0769
 sig.level = 0.05
 power = 0.9

In multiple regression, the denominator degrees of freedom equals N – k – 1, where

N is the number of observations and k is the number of predictors. In this case,

N – 7 – 1 = 185, which means the required sample size is N = 185 + 7 + 1 = 193.

10.2.5 Tests of proportions

The pwr.2p.test() function can be used to perform a power analysis when compar-

ing two proportions. The format is

pwr.2p.test(h=, n=, sig.level=, power=)

where h is the effect size and n is the common sample size in each group. The effect

size h is defined as

and can be calculated with the function ES.h(p1, p2).

 For unequal ns, the desired function is

pwr.2p2n.test(h=, n1=, n2=, sig.level=, power=)

The alternative= option can be used to specify a two-tailed ("two.sided") or one-
tailed ("less" or "greater") test. A two-tailed test is the default.

 Let’s say that you suspect that a popular medication relieves symptoms in 60% of

users. A new (and more expensive) medication will be marketed if it improves symp-
toms in 65% of users. How many participants will you need to include in a study com-

paring these two medications if you want to detect a difference this large?

 Assume that you want to be 90% confident in a conclusion that the new drug is
better and 95% confident that you won’t reach this conclusion erroneously. You’ll use

a one-tailed test because you’re only interested in assessing whether the new drug is

better than the standard. The code looks like this:

> pwr.2p.test(h=ES.h(.65, .6), sig.level=.05, power=.9,
 alternative="greater")

 Difference of proportion power calculation for binomial
 distribution (arcsine transformation)
 h = 0.1033347
 n = 1604.007
 sig.level = 0.05
 power = 0.9
 alternative = greater

 NOTE: same sample sizes

p
1

h = 2 arcsin 2 arcsin − p
2

www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 10 Power analysis

Based on these results, you’ll need to conduct a study with 1,605 individuals receiving

the new drug and 1,605 receiving the existing drug in order to meet the criteria.

10.2.6 Chi-square tests

Chi-square tests are often used to assess the relationship between two categorical vari-

ables. The null hypothesis is typically that the variables are independent versus a

research hypothesis that they aren’t. The pwr.chisq.test() function can be used to

evaluate the power, effect size, or requisite sample size when employing a chi-square

test. The format is

pwr.chisq.test(w=, N=, df=, sig.level=, power=)

where w is the effect size, N is the total sample size, and df is the degrees of freedom.

Here, effect size w is defined as

where p0i = cell probability in ith cell under H0

 p1i = cell probability in ith cell under H1

The summation goes from 1 to m, where m is the number of cells in the contingency

table. The function ES.w2(P) can be used to calculate the effect size corresponding to

the alternative hypothesis in a two-way contingency table. Here, P is a hypothesized

two-way probability table.

 As a simple example, let’s assume that you’re looking at the relationship between

ethnicity and promotion. You anticipate that 70% of your sample will be Caucasian,

10% will be African-American, and 20% will be Hispanic. Further, you believe that

60% of Caucasians tend to be promoted, compared with 30% for African-Americans

and 50% for Hispanics. Your research hypothesis is that the probability of promotion

follows the values in table 10.2.

For example, you expect that 42% of the population will be promoted Caucasians

(.42 = .70 × .60) and 7% of the population will be nonpromoted African-Americans

(.07 = .10 × .70). Let’s assume a significance level of 0.05 and that the desired power

level is 0.90. The degrees of freedom in a two-way contingency table are (r–1)×(c–1),

where r is the number of rows and c is the number of columns. You can calculate the

hypothesized effect size with the following code:

Table 10.2 Proportion of individuals expected to be promoted based on the research hypothesis

Ethnicity Promoted Not promoted

Caucasian 0.42 0.28

African-American 0.03 0.07

Hispanic 0.10 0.10

www.it-ebooks.info

http://www.it-ebooks.info/

249Implementing power analysis with the pwr package

> prob <- matrix(c(.42, .28, .03, .07, .10, .10), byrow=TRUE, nrow=3)
> ES.w2(prob)

[1] 0.1853198

Using this information, you can calculate the necessary sample size like this:

> pwr.chisq.test(w=.1853, df=2, sig.level=.05, power=.9)

 Chi squared power calculation

 w = 0.1853
 N = 368.5317
 df = 2
 sig.level = 0.05
 power = 0.9

 NOTE: N is the number of observations

The results suggest that a study with 369 participants will be adequate to detect a rela-

tionship between ethnicity and promotion given the effect size, power, and signifi-

cance level specified.

10.2.7 Choosing an appropriate effect size in novel situations

In power analysis, the expected effect size is the most difficult parameter to deter-

mine. It typically requires that you have experience with the subject matter and the

measures employed. For example, the data from past studies can be used to calculate
effect sizes, which can then be used to plan future studies.

 But what can you do when the research situation is completely novel and you have

no past experience to call upon? In the area of behavioral sciences, Cohen (1988)
attempted to provide benchmarks for “small,” “medium,” and “large” effect sizes for

various statistical tests. These guidelines are provided in table 10.3.

When you have no idea what effect size may be present, this table may provide some
guidance. For example, what’s the probability of rejecting a false null hypothesis (that

Table 10.3 Cohen’s effect size benchmarks

Statistical method
Effect size

measures
Suggested guidelines for effect size

Small Medium Large

t-test d 0.20 0.50 0.80

ANOVA f 0.10 0.25 0.40

Linear models f2 0.02 0.15 0.35

Test of proportions h 0.20 0.50 0.80

Chi-square w 0.10 0.30 0.50

www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 10 Power analysis

is, finding a real effect) if you’re using a one-way ANOVA with 5 groups, 25 subjects per
group, and a significance level of 0.05?

 Using the pwr.anova.test() function and the suggestions in the f row of table
10.3, the power would be 0.118 for detecting a small effect, 0.574 for detecting a mod-
erate effect, and 0.957 for detecting a large effect. Given the sample-size limitations,
you’re only likely to find an effect if it’s large.

 It’s important to keep in mind that Cohen’s benchmarks are just general sugges-
tions derived from a range of social research studies and may not apply to your partic-
ular field of research. An alternative is to vary the study parameters and note the
impact on such things as sample size and power. For example, again assume that you
want to compare five groups using a one-way ANOVA and a 0.05 significance level. The
following listing computes the sample sizes needed to detect a range of effect sizes
and plots the results in figure 10.2.

library(pwr)
es <- seq(.1, .5, .01)
nes <- length(es)

samsize <- NULL
for (i in 1:nes){
 result <- pwr.anova.test(k=5, f=es[i], sig.level=.05, power=.9)
 samsize[i] <- ceiling(result$n)
}

plot(samsize,es, type="l", lwd=2, col="red",
 ylab="Effect Size",
 xlab="Sample Size (per cell)",
 main="One Way ANOVA with Power=.90 and Alpha=.05")

Listing 10.1 Sample sizes for detecting significant effects in a one-way ANOVA

50 100 150 200 250 300

0
.1

0
.2

0
.3

0
.4

0
.5

One Way ANOVA with Power=.90 and Alpha=.05

Sample Size (per cell)

E
ff
e

c
t

S
iz

e

Figure 10.2 Sample size needed

to detect various effect sizes in a

one-way ANOVA with five groups

(assuming a power of 0.90 and

significance level of 0.05)

www.it-ebooks.info

http://www.it-ebooks.info/

251Creating power analysis plots

Graphs such as these can help you estimate the impact of various conditions on your

experimental design. For example, there appears to be little bang for the buck in

increasing the sample size above 200 observations per group. We’ll look at another

plotting example in the next section.

10.3 Creating power analysis plots

Before leaving the pwr package, let’s look at a more involved graphing example. Sup-

pose you’d like to see the sample size necessary to declare a correlation coefficient sta-

tistically significant for a range of effect sizes and power levels. You can use the

pwr.r.test() function and for loops to accomplish this task, as shown in the follow-

ing listing.

library(pwr)
r <- seq(.1,.5,.01)
nr <- length(r)

p <- seq(.4,.9,.1)
np <- length(p)

samsize <- array(numeric(nr*np), dim=c(nr,np))
for (i in 1:np){
 for (j in 1:nr){
 result <- pwr.r.test(n = NULL, r = r[j],
 sig.level = .05, power = p[i],
 alternative = "two.sided")
 samsize[j,i] <- ceiling(result$n)
 }
}

xrange <- range(r)
yrange <- round(range(samsize))
colors <- rainbow(length(p))
plot(xrange, yrange, type="n",
 xlab="Correlation Coefficient (r)",
 ylab="Sample Size (n)")

for (i in 1:np){
 lines(r, samsize[,i], type="l", lwd=2, col=colors[i])
}

abline(v=0, h=seq(0,yrange[2],50), lty=2, col="grey89")
abline(h=0, v=seq(xrange[1],xrange[2],.02), lty=2, col="gray89")

title("Sample Size Estimation for Correlation Studies\n
 Sig=0.05 (Two-tailed)")
legend("topright", title="Power", as.character(p),
 fill=colors)

Listing 10.2 uses the seq function to generate a range of effect sizes r (correlation

coefficients under H1) and power levels p b. It then uses two for loops to cycle

Listing 10.2 Sample-size curves for detecting correlations of various sizes

Sets the range of correlations
and power values

b

Obtains sample sizec

Sets up the graphd

Adds power
curves

e

Adds grid
lines

f

Adds annotationsg

www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 10 Power analysis

through these effect sizes and power levels, calculating the corresponding sample

sizes required and saving them in the array samsize c. The graph is set up with the

appropriate horizontal and vertical axes and labels d. Power curves are added using

lines rather than points e. Finally, a grid f and legend g are added to aid in read-

ing the graph. The resulting graph is displayed in figure 10.3.

 As you can see from the graph, you’d need a sample size of approximately 75 to

detect a correlation of 0.20 with 40% confidence. You’d need approximately 185 addi-

tional observations (n = 260) to detect the same correlation with 90% confidence.

With simple modifications, the same approach can be used to create sample size and

power curve graphs for a wide range of statistical tests.

 We’ll close this chapter by briefly looking at other R functions that are useful for

power analysis.

10.4 Other packages

There are several other packages in R that can be useful in the planning stages of

studies (see table 10.4). Some contain general tools, whereas some are highly special-

ized. The last five in the table are particularly focused on power analysis in genetic

studies. Genome-wide association studies (GWAS) are studies used to identify genetic

0.1 0.2 0.3 0.4 0.5

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Correlation Coefficient (r)

S
a

m
p

le
 S

iz
 e

 (
n

)

Sample Size Estimation f or Correlation Studies

 Sig=0.05 (T w o−tailed)

Po we r

0.4
0.5
0.6
0.7
0.8
0.9

Figure 10.3 Sample size curves for detecting a significant correlation at

various power levels

www.it-ebooks.info

http://www.it-ebooks.info/

253Summary

associations with observable traits. For example, these studies would focus on why

some people get a specific type of heart disease.

Finally, the MBESS package contains a wide range of functions that can be used for var-

ious forms of power analysis and sample size determination. The functions are partic-

ularly relevant for researchers in the behavioral, educational, and social sciences.

10.5 Summary

In chapters 7, 8, and 9, we explored a wide range of R functions for statistical hypoth-

esis testing. In this chapter, we focused on the planning stages of such research. Power

analysis helps you to determine the sample sizes needed to discern an effect of a given

size with a given degree of confidence. It can also tell you the probability of detecting

such an effect for a given sample size. You can directly see the tradeoff between limit-

ing the likelihood of wrongly declaring an effect significant (a Type I error) with the

likelihood of rightly identifying a real effect (power).

 The bulk of this chapter has focused on the use of functions provided by the pwr

package. These functions can be used to carry out power and sample-size determina-

tions for common statistical methods (including t-tests, chi-square tests, and tests of

proportions, ANOVA, and regression). Pointers to more specialized methods were pro-

vided in the final section.

Table 10.4 Specialized power-analysis packages

Package Purpose

asypow Power calculations via asymptotic likelihood ratio methods

longpower Sample-size calculations for longitudinal data

PwrGSD Power analysis for group sequential designs

pamm Power analysis for random effects in mixed models

powerSurvEpi Power and sample-size calculations for survival analysis in epidemio-

logical studies

powerMediation Power and sample-size calculations for mediation effects in linear,

logistic, Poisson, and cox regression

powerpkg Power analyses for the affected sib pair and the TDT (transmission

disequilibrium test) design

powerGWASinteraction Power calculations for interactions for GWAS

pedantics Functions to facilitate power analyses for genetic studies of natural

populations

gap Functions for power and sample-size calculations in case-cohort

designs

ssize.fdr Sample-size calculations for microarray experiments

www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 10 Power analysis

 Power analysis is typically an interactive process. The investigator varies the param-

eters of sample size, effect size, desired significance level, and desired power to

observe their impact on each other. The results are used to plan studies that are more

likely to yield meaningful results. Information from past research (particularly regard-

ing effect sizes) can be used to design more effective and efficient future research.

 An important side benefit of power analysis is the shift that it encourages, away

from a singular focus on binary hypothesis testing (that is, does an effect exist or not),

toward an appreciation of the size of the effect under consideration. Journal editors

are increasingly requiring authors to include effect sizes as well as p values when

reporting research results. This helps you to determine both the practical implica-

tions of the research and provides you with information that can be used to plan

future studies.

 In the next chapter, we’ll look at additional and novel ways to visualize multivariate

relationships. These graphic methods can complement and enhance the analytic

methods that we’ve discussed so far and prepare you for the advanced methods cov-

ered in part 3.

www.it-ebooks.info

http://www.it-ebooks.info/

255

Intermediate graphs

In chapter 6 (basic graphs), we considered a wide range of graph types for display-

ing the distribution of single categorical or continuous variables. Chapter 8 (regres-

sion) reviewed graphical methods that are useful when predicting a continuous

outcome variable from a set of predictor variables. In chapter 9 (analysis of vari-

ance), we considered techniques that are particularly useful for visualizing how

groups differ on a continuous outcome variable. In many ways, the current chapter

is a continuation and extension of the topics covered so far.

 In this chapter, we’ll focus on graphical methods for displaying relationships

between two variables (bivariate relationships) and between many variables (multi-

variate relationships). For example:

■ What’s the relationship between automobile mileage and car weight? Does it

vary by the number of cylinders the car has?

This chapter covers

■ Visualizing bivariate and multivariate
relationships

■ Working with scatter and line plots

■ Understanding corrgrams

■ Using mosaic and association plots

www.it-ebooks.info

http://www.it-ebooks.info/

256 CHAPTER 11 Intermediate graphs

■ How can you picture the relationships among an automobile’s mileage, weight,

displacement, and rear axle ratio in a single graph?
■ When plotting the relationship between two variables drawn from a large data-

set (say, 10,000 observations), how can you deal with the massive overlap of data

points you’re likely to see? In other words, what do you do when your graph is

one big smudge?
■ How can you visualize the multivariate relationships among three variables at

once (given a 2D computer screen or sheet of paper, and a budget slightly less

than that for Avatar)?
■ How can you display the growth of several trees over time?
■ How can you visualize the correlations among a dozen variables in a single

graph? How does it help you to understand the structure of your data?
■ How can you visualize the relationship of class, gender, and age with passenger

survival on the Titanic? What can you learn from such a graph?

These are the types of questions that can be answered with the methods described in

this chapter. The datasets that we’ll use are examples of what’s possible. It’s the gen-

eral techniques that are most important. If the topic of automobile characteristics or

tree growth isn’t interesting to you, plug in your own data!

 We’ll start with scatter plots and scatter-plot matrices. Then, we’ll explore line

charts of various types. These approaches are well known and widely used in research.

Next, we’ll review the use of corrgrams for visualizing correlations and mosaic plots

for visualizing multivariate relationships among categorical variables. These

approaches are also useful but much less well known among researchers and data ana-

lysts. You’ll see examples of how you can use each of these approaches to gain a better

understanding of your data and communicate these findings to others.

11.1 Scatter plots

As you’ve seen in previous chapters, scatter plots describe the relationship between

two continuous variables. In this section, we’ll start with a depiction of a single bivari-

ate relationship (x versus y). We’ll then explore ways to enhance this plot by superim-

posing additional information. Next, you’ll learn how to combine several scatter plots

into a scatter-plot matrix so that you can view many bivariate relationships at once.

We’ll also review the special case where many data points overlap, limiting your ability

to picture the data, and we’ll discuss a number of ways around this difficulty. Finally,

we’ll extend the two-dimensional graph to three dimensions, with the addition of a

third continuous variable. This will include 3D scatter plots and bubble plots. Each

can help you understand the multivariate relationship among three variables at once.

 The basic function for creating a scatter plot in R is plot(x, y), where x and y are

numeric vectors denoting the (x, y) points to plot. The following listing presents an

example.

www.it-ebooks.info

http://www.it-ebooks.info/

257Scatter plots

attach(mtcars)
plot(wt, mpg,
 main="Basic Scatter plot of MPG vs. Weight",
 xlab="Car Weight (lbs/1000)",
 ylab="Miles Per Gallon ", pch=19)
abline(lm(mpg~wt), col="red", lwd=2, lty=1)
lines(lowess(wt,mpg), col="blue", lwd=2, lty=2)

The resulting graph is provided in figure 11.1.

 The code in listing 11.1 attaches the mtcars data frame and creates a basic scatter

plot using filled circles for the plotting symbol. As expected, as car weight increases,

miles per gallon decreases, although the relationship isn’t perfectly linear. The abline()

function is used to add a linear line of best fit, and the lowess() function is used to

add a smoothed line. This smoothed line is a nonparametric fit line based on locally

weighted polynomial regression. See Cleveland (1981) for details on the algorithm.

NOTE R has two functions for producing lowess fits: lowess() and loess().
The loess() function is a newer, formula-based version of lowess() and is
more powerful. The two functions have different defaults, so be careful not to
confuse them.

The scatterplot() function in the car package offers many enhanced features and

convenience functions for producing scatter plots, including fit lines, marginal box

plots, confidence ellipses, plotting by subgroups, and interactive point identification.

Listing 11.1 A scatter plot with best-fit lines

2 3 4 5

1
0

1
5

2
0

2
5

3
0

Basic Scatter plot of MPG vs. Weight

Car Weight (lbs/1000)

M
ile

s
 P

e
r

G
a

llo
n

Figure 11.1 Scatter plot of

car mileage vs. weight, with

superimposed linear and

lowess fit lines

www.it-ebooks.info

http://www.it-ebooks.info/

258 CHAPTER 11 Intermediate graphs

For example, a more complex version of the previous plot is produced by the follow-

ing code:

library(car)
scatterplot(mpg ~ wt | cyl, data=mtcars, lwd=2, span=0.75,
 main="Scatter Plot of MPG vs. Weight by # Cylinders",
 xlab="Weight of Car (lbs/1000)",
 ylab="Miles Per Gallon",
 legend.plot=TRUE,
 id.method="identify",
 labels=row.names(mtcars),
 boxplots="xy"
)

Here, the scatterplot() function is used to plot miles per gallon versus weight for

automobiles that have four, six, or eight cylinders. The formula mpg ~ wt | cyl indi-

cates conditioning (that is, separate plots between mpg and wt for each level of cyl).

The graph is provided in figure 11.2.

 By default, subgroups are differentiated by color and plotting symbol, and separate

linear and loess lines are fit. The span parameter controls the amount of smoothing

in the loess line. Larger values lead to smoother fits. The id.method option indicates
that points will be identified interactively by mouse clicks, until you select Stop (via

the Graphics or context-sensitive menu) or press the Esc key. The labels option indi-

cates that points will be identified with their row names. Here you see that the Toyota

Corolla and Fiat 128 have unusually good gas mileage, given their weights. The

2 3 4 5

1
0

1
5

2
0

2
5

3
0

Scatter Plot of MPG vs. Weight by # Cylinders

Weight of Car (lbs/1000)

M
ile

s
 P

e
r

G
a

llo
n

cyl

4
6
8

Figure 11.2 Scatter plot

with subgroups and separately

estimated fit lines

www.it-ebooks.info

http://www.it-ebooks.info/

259Scatter plots

legend.plot option adds a legend to the upper-left margin, and marginal box plots

for mpg and weight are requested with the boxplots option. The scatterplot()
function has many features worth investigating, including robust options and data

concentration ellipses not covered here. See help(scatterplot) for more details.

 Scatter plots help you visualize relationships between quantitative variables, two at
a time. But what if you wanted to look at the bivariate relationships between automobile

mileage, weight, displacement (cubic inch), and rear axle ratio? One way is to arrange

these six scatter plots in a matrix. When there are several quantitative variables, you can
represent their relationships in a scatter-plot matrix, which is covered next.

11.1.1 Scatter-plot matrices

There are many useful functions for creating scatter-plot matrices in R. A basic scatter-

plot matrix can be created with the pairs() function. The following code produces a

scatter-plot matrix for the variables mpg, disp, drat, and wt:

pairs(~mpg+disp+drat+wt, data=mtcars,
 main="Basic Scatter Plot Matrix")

All the variables on the right of the ~ are included in the plot. The graph is provided

in figure 11.3.

 Here you can see the bivariate relationship among all the variables specified. For

example, the scatter plot between mpg and disp is found at the row and column

mpg

100 200 300 400 2 3 4 5

1
0

1
5

2
0

2
5

3
0

1
0

0
2

0
0

3
0

0
4

0
0

disp

drat

3
.0

3
.5

4
.0

4
.5

5
.0

10 15 20 25 30

2
3

4
5

3.0 3.5 4.0 4.5 5.0

wt

Basic Scatter Plot Matrix

Figure 11.3 Scatter-plot

matrix created by the

pairs() function

www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 11 Intermediate graphs

intersection of those two variables. Note that the six scatter plots below the principal

diagonal are the same as those above the diagonal. This arrangement is a matter of

convenience. By adjusting the options, you could display just the lower or upper trian-

gle. For example, the option upper.panel=NULL would produce a graph with just the

lower triangle of plots.

 The scatterplotMatrix() function in the car package can also produce scatter-

plot matrices and can optionally do the following:

■ Condition the scatter plot matrix on a factor.
■ Include linear and loess fit lines.
■ Place box plots, densities, or histograms in the principal diagonal.
■ Add rug plots in the margins of the cells.

Here’s an example:

library(car)
scatterplotMatrix(~ mpg + disp + drat + wt, data=mtcars,
 spread=FALSE, smoother.args=list(lty=2),
 main="Scatter Plot Matrix via car Package")

The graph is provided in figure 11.4. Here you can see that linear and smoothed

(loess) fit lines are added by default and that kernel density and rug plots are added

to the principal diagonal. The spread=FALSE option suppresses lines showing spread

mpg

100 200 300 400 2 3 4 5

1
0

1
5

2
0

2
5

3
0

1
0

0
2

0
0

3
0

0
4

0
0 disp

drat

3
.0

3
.5

4
.0

4
.5

5
.0

10 15 20 25 30

2
3

4
5

3.0 3.5 4.0 4.5 5.0

wt

Scatter Plot Matrix via car Package

Figure 11.4 Scatter-plot

matrix created with the

scatterplotMatrix()

function. The graph

includes kernel density

and rug plots in the

principal diagonal and

linear and loess fit lines.

www.it-ebooks.info

http://www.it-ebooks.info/

261Scatter plots

and asymmetry, and the smoother.args=list(lty=2) option displays the loess fit

lines using dashed rather than solid lines.

 R provides many other ways to create scatter-plot matrices. You may want to

explore the cpars() function in the glus package, the pairs2() function in the

TeachingDemos package, the xysplom() function in the HH package, the kepairs()

function in the ResourceSelection package, and pairs.mod() in the SMPracticals

package. Each adds its own unique twist. Analysts must love scatter-plot matrices!

11.1.2 High-density scatter plots

When there’s a significant overlap among data points, scatter plots become less useful

for observing relationships. Consider the following contrived example with 10,000

observations falling into two overlapping clusters of data:

set.seed(1234)
n <- 10000
c1 <- matrix(rnorm(n, mean=0, sd=.5), ncol=2)
c2 <- matrix(rnorm(n, mean=3, sd=2), ncol=2)
mydata <- rbind(c1, c2)
mydata <- as.data.frame(mydata)
names(mydata) <- c("x", "y")

If you generate a standard scatter plot between these variables using the following

code

with(mydata,
 plot(x, y, pch=19, main="Scatter Plot with 10,000 Observations"))

you’ll obtain a graph like the one in figure 11.5.

−5 0 5 10

−
5

1
0

5
0

Scatter Plot with 10,000 Observations

x

y

Figure 11.5 Scatter plot with

10,000 observations and

significant overlap of data

points. Note that the overlap of

data points makes it difficult to

discern where the concentration

of data is greatest.

www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 11 Intermediate graphs

The overlap of data points in figure 11.5 makes it difficult to discern the relationship

between x and y. R provides several graphical approaches that can be used when this

occurs. They include the use of binning, color, and transparency to indicate the num-

ber of overprinted data points at any point on the graph.

 The smoothScatter() function uses a kernel-density estimate to produce

smoothed color density representations of the scatter plot. The following code

with(mydata,
 smoothScatter(x, y, main="Scatter Plot Colored by Smoothed Densities"))

produces the graph in figure 11.6.

 Using a different approach, the hexbin() function in the hexbin package provides

bivariate binning into hexagonal cells (it looks better than it sounds). Applying this

function to the dataset

library(hexbin)
with(mydata, {
 bin <- hexbin(x, y, xbins=50)
 plot(bin, main="Hexagonal Binning with 10,000 Observations")
 })

you get the scatter plot in figure 11.7.

−5 0 5 10

−
5

0
5

1
0

Scatter Plot Colored by Smoothed Densities

x

y

Figure 11.6 Scatter plot using smoothScatter() to plot smoothed density

estimates. Densities are easy to read from the graph.

www.it-ebooks.info

http://www.it-ebooks.info/

263Scatter plots

It’s useful to note that the smoothScatter() function in the base package, along with

the ipairs() function in the IDPmisc package, can be used to create readable scatter

plot matrices for large datasets as well. See ?smoothScatter and ?ipairs for examples.

11.1.3 3D scatter plots

Scatter plots and scatter-plot matrices display bivariate relationships. What if you want

to visualize the interaction of three quantitative variables at once? In this case, you can

use a 3D scatter plot.

 For example, say that you’re interested in the relationship between automobile

mileage, weight, and displacement. You can use the scatterplot3d() function in the

scatterplot3d package to picture their relationship. The format is

scatterplot3d(x, y, z)

where x is plotted on the horizontal axis, y is plotted on the vertical axis, and z is plot-

ted in perspective. Continuing the example,

library(scatterplot3d)
attach(mtcars)
scatterplot3d(wt, disp, mpg,
 main="Basic 3D Scatter Plot")

−5 50 10

−5

0

5

10

x

y

1

17

34

50

66

83

99

115

132

148

164

180

197

213

229

246

262

Counts

Hexagonal Binning with 10,000 Observations

Figure 11.7 Scatter plot using hexagonal binning to display the number of

observations at each point. Data concentrations are easy to see, and counts can

be read from the legend.

www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 11 Intermediate graphs

produces the 3D scatter plot in figure 11.8.

 The scatterplot3d() function offers many options, including the ability to spec-

ify symbols, axes, colors, lines, grids, highlighting, and angles. For example, the code

library(scatterplot3d)
attach(mtcars)
scatterplot3d(wt, disp, mpg,
 pch=16,
 highlight.3d=TRUE,
 type="h",
 main="3D Scatter Plot with Vertical Lines")

produces a 3D scatter plot

with highlighting to

enhance the impression

of depth, and vertical lines

connecting points to the

horizontal plane (see fig-

ure 11.9).

Figure 11.9 3D scatter plot

with vertical lines and shading

Basic 3D Scatter Plot

1 2 3 4 5 6

1
0

1
5

2
0

2
5

3
0

3
5

 0

100

200

300

400

500

wt

d
is

p

m
p
g

Figure 11.8 3D scatter plot of miles per

gallon, auto weight, and displacement

3D Scatter Plot with Vertical Lines

wt

d
is

p

m
p

g

1 2 3 4 5 6

1
0

1
5

2
0

2
5

3
0

3
5

 0

100

200

300

400

500

www.it-ebooks.info

http://www.it-ebooks.info/

265Scatter plots

As a final example, let’s take the previous graph and add a regression plane. The nec-

essary code is

library(scatterplot3d)
attach(mtcars)
s3d <-scatterplot3d(wt, disp, mpg,
 pch=16,
 highlight.3d=TRUE,
 type="h",
 main="3D Scatter Plot with Vertical Lines and Regression Plane")
fit <- lm(mpg ~ wt+disp)
s3d$plane3d(fit)

The resulting graph is pro-
vided in figure 11.10.

 The graph allows you to
visualize the prediction of
miles per gallon from auto-
mobile weight and displace-
ment using a multiple-
regression equation. The
plane represents the pre-
dicted values, and the points
are the actual values. The ver-
tical distances from the plane
to the points are the residu-
als. Points that lie above the
plane are under-predicted,
whereas points that lie below
the line are over-predicted.
Multiple regression is cov-
ered in chapter 8.

11.1.4 Spinning 3D scatter plots

Three-dimensional scatter plots are much easier to interpret if you can interact with
them. R provides several mechanisms for rotating graphs so that you can see the plot-
ted points from more than one angle.

 For example, you can create an interactive 3D scatter plot using the plot3d()
function in the rgl package. It creates a spinning 3D scatter plot that can be rotated
with the mouse. The format is

plot3d(x, y, z)

where x, y, and z are numeric vectors representing points. You can also add options
like col and size to control the color and size of the points, respectively. Continuing
the example, try this code:

library(rgl)
attach(mtcars)
plot3d(wt, disp, mpg, col="red", size=5)

3D Scatter Plot with Vertical Lines and Regression Plane

1 2 3 4 5 6

1
0

1
5

2
0

2
5

3
0

3
5

 0

100

200

300

400

500

wt

d
is

p

m
p
g

Figure 11.10 3D scatter plot with vertical lines, shading, and

overlaid regression plane

www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 11 Intermediate graphs

You should get a graph like the one

depicted in figure 11.11. Use the

mouse to rotate the axes. I think

you’ll find that being able to rotate

the scatter plot in three dimensions

makes the graph much easier to

understand.

 You can perform a similar func-

tion with scatter3d() in the car

package:

library(car)
with(mtcars,
 scatter3d(wt, disp, mpg))

The results are displayed in figure

11.12.

 The scatter3d() function can

include a variety of regression sur-

faces, such as linear, quadratic,
smooth, and additive. The linear sur-

face depicted is the default. Addi-

tionally, there are options for

interactively identifying points. See
help(scatter3d) for more details.

11.1.5 Bubble plots

In the previous section, you dis-
played the relationship between

three quantitative variables using a

3D scatter plot. Another approach is
to create a 2D scatter plot and use

the size of the plotted point to repre-

sent the value of the third variable.
This approach is referred to as a bub-

ble plot.

 You can create a bubble plot
using the symbols() function. This

function can be used to draw circles,

squares, stars, thermometers, and box plots at a specified set of (x, y) coordinates. For
plotting circles, the format is

symbols(x, y, circle=radius)

where x, y, and radius are vectors specifying the x and y coordinates and circle radii,

respectively.

Figure 11.11 Rotating 3D scatter plot produced by

the plot3d() function in the rgl package

Figure 11.12 Spinning 3D scatter plot produced by

the scatter3d() function in the car package

www.it-ebooks.info

http://www.it-ebooks.info/

267Scatter plots

 You want the areas, rather than the radii, of the circles to be proportional to the

values of a third variable. Given the formula for the radius of a circle , the

proper call is

symbols(x, y, circle=sqrt(z/pi))

where z is the third variable to be plotted.

 Let’s apply this to the mtcars data, plotting car weight on the x-axis, miles per gal-

lon on the y-axis, and engine displacement as the bubble size. The following code

attach(mtcars)
r <- sqrt(disp/pi)
symbols(wt, mpg, circle=r, inches=0.30,
 fg="white", bg="lightblue",
 main="Bubble Plot with point size proportional to displacement",
 ylab="Miles Per Gallon",
 xlab="Weight of Car (lbs/1000)")
text(wt, mpg, rownames(mtcars), cex=0.6)
detach(mtcars)

produces the graph in figure 11.13. The option inches is a scaling factor that can be

used to control the size of the circles (the default is to make the largest circle 1 inch).

The text() function is optional. Here it is used to add the names of the cars to the

plot. From the figure, you can see that increased gas mileage is associated with both

decreased car weight and engine displacement.

 In general, statisticians involved in the R project tend to avoid bubble plots for the

same reason they avoid pie charts. Humans typically have a harder time making

A
πr = −

1
0

1

5

2
0

2

5

3
0

3

5

Bubble Plot with point size proportional to displacement

Weight of Car (lbs/1000)

M
ile

s
 P

e
r

G
a

llo
n

Mazda RX4 Mazda RX4 W ag

Datsun 710

Hor net 4 D ri ve

Hor net Spor tabout
V aliant

Duster 360

Merc 240D

Merc 230

Merc 280

Merc 280C

Merc 450S E

Merc 450S L

Merc 450SLC

Cadillac Fleetwood Lincoln Continental

Chr ysler Imper ial

Fiat 128

Honda Civic

To y ota Corolla

To y ota Corona

Dodge Challenger
AMC Jav elin

Camaro Z28

P ontiac Firebird

Fiat X1−9

P orsche 914−2

Lotus Europa

F ord P antera L

F errar i Dino

Maserati Bor a

V olv o 142E

Figure 11.13 Bubble plot

of car weight vs. mpg, where

point size is proportional to

engine displacement

www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 11 Intermediate graphs

judgments about volume than distance. But bubble charts are popular in the business

world, so I’m including them here for completeness.

 l’ve certainly had a lot to say about scatter plots. This attention to detail is due, in

part, to the central place that scatter plots hold in data analysis. Although simple, they

can help you visualize your data in an immediate and straightforward manner, uncov-

ering relationships that might otherwise be missed.

11.2 Line charts

If you connect the points in a scatter plot moving from left to right, you have a line

plot. The dataset Orange that come with the base installation contains age and circum-

ference data for five orange trees. Consider the growth of the first orange tree,

depicted in figure 11.14. The plot on the left is a scatter plot, and the plot on the right

is a line chart. As you can see, line charts are particularly good vehicles for conveying

change. The graphs in figure 11.14 were created with the code in the following listing.

opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
t1 <- subset(Orange, Tree==1)
plot(t1$age, t1$circumference,
 xlab="Age (days)",
 ylab="Circumference (mm)",
 main="Orange Tree 1 Growth")
plot(t1$age, t1$circumference,
 xlab="Age (days)",
 ylab="Circumference (mm)",
 main="Orange Tree 1 Growth",
 type="b")
par(opar)

Listing 11.2 Creating side-by-side scatter and line plots

500 1000 1500

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0

Orange Tree 1 Growth Orange Tree 1 Growth

Age (days)

C
ir
c
u

m
fe

re
n

c
e

 (
m

m
)

500 1000 1500

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0

Age (days)

C
ir
c
u

m
fe

re
n

c
e

 (
m

m
)

Figure 11.14 Comparison of a scatter plot and a line plot

www.it-ebooks.info

http://www.it-ebooks.info/

269Line charts

You’ve seen the elements that make up this code in chapter 3, so I won’t go into detail

here. The main difference between the two plots in figure 11.14 is produced by the

option type="b". In general, line charts are created with one of the following two

functions

plot(x, y, type=)
lines(x, y, type=)

where x and y are numeric vectors of

(x,y) points to connect. The option

type= can take the values described

in table 11.1.

 Examples of each type are given

in figure 11.15. As you can see,

type="p" produces the typical scatter

plot. The option type="b" is the

most common for line charts. The

difference between b and c is

whether the points appear or gaps

are left instead. Both type="s" and

type="S" produce stair steps (step

functions). The first runs, then rises,

whereas the second rises, then runs.

Table 11.1 Line chart options

Type What is plotted

p Points only

l Lines only

o Over-plotted points (that is, lines

overlaid on top of points)

b, c Points (empty if c) joined by lines

s, S Stair steps

h Histogram-line vertical lines

n Doesn’t produce any points or lines

(used to set up the axes for later

commands)

1 2 3 4 5

1
2

3
4

5

type= "p"

x

y

1 2 3 4 5

1
2

3
4

5

type= "l"

x

y

1 2 3 4 5

1
2

3
4

5

type= "o"

x

y

1 2 3 4 5

1
2

3
4

5

type= "b"

x

y

type= "c" type= "s" type= "S" type= "h"

1 2 3 4 5

1
2

3
4

5

x

y

1 2 3 4 5

1
2

3
4

5

x

y

1 2 3 4 5

1
2

3
4

5

x

y

1 2 3 4 5

1
2

3
4

5

x

y

Figure 11.15 type=

options in the plot()

and lines() functions

www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 11 Intermediate graphs

There’s an important difference between the plot() and lines() functions. The

plot() function creates a new graph when invoked. The lines() function adds infor-
mation to an existing graph but can’t produce a graph on its own.

 Because of this, the lines() function is typically used after a plot() command has

produced a graph. If desired, you can use the type="n" option in the plot() function
to set up the axes, titles, and other graph features, and then use the lines() function

to add various lines to the plot.

 To demonstrate the creation of a more complex line chart, let’s plot the growth of
all five orange trees over time. Each tree will have its own distinctive line. The code is

shown in the next listing and the results in figure 11.16.

Orange$Tree <- as.numeric(Orange$Tree)
ntrees <- max(Orange$Tree)

xrange <- range(Orange$age)
yrange <- range(Orange$circumference)

plot(xrange, yrange,
 type="n",
 xlab="Age (days)",
 ylab="Circumference (mm)"
)

colors <- rainbow(ntrees)
linetype <- c(1:ntrees)
plotchar <- seq(18, 18+ntrees, 1)

for (i in 1:ntrees) {
 tree <- subset(Orange, Tree==i)
 lines(tree$age, tree$circumference,
 type="b",
 lwd=2,
 lty=linetype[i],
 col=colors[i],
 pch=plotchar[i]
)
}

title("Tree Growth", "example of line plot")

legend(xrange[1], yrange[2],
 1:ntrees,
 cex=0.8,
 col=colors,
 pch=plotchar,
 lty=linetype,
 title="Tree"
)

In listing 11.3, the plot() function is used to set up the graph and specify the axis

labels and ranges but plots no actual data. The lines() function is then used to add a

separate line and set of points for each orange tree. You can see that tree 4 and tree 5

Listing 11.3 Line chart displaying the growth of five orange trees over time

Converts a factor to
numeric for convenience

Sets up the plot

Adds lines

Adds a legend

www.it-ebooks.info

http://www.it-ebooks.info/

271Corrgrams

demonstrated the greatest growth across the range of days measured, and that tree 5
overtakes tree 4 at around 664 days.

 Many of the programming conventions in R that I discussed in chapters 2, 3, and 4

are used in listing 11.3. You may want to test your understanding by working through
each line of code and visualizing what it’s doing. If you can, you’re on your way to

becoming a serious R programmer (and fame and fortune is near at hand)! In the next

section, you’ll explore ways of examining a number of correlation coefficients at once.

11.3 Corrgrams

Correlation matrices are a fundamental aspect of multivariate statistics. Which vari-

ables under consideration are strongly related to each other, and which aren’t? Are

there clusters of variables that relate in specific ways? As the number of variables

grows, such questions can be harder to answer. Corrgrams are a relatively recent tool

for visualizing the data in correlation matrices.

 It’s easier to explain a corrgram once you’ve seen one. Consider the correlations

among the variables in the mtcars data frame. Here you have 11 variables, each mea-

suring some aspect of 32 automobiles. You can get the correlations using the following

code:

> options(digits=2)
> cor(mtcars)
 mpg cyl disp hp drat wt qsec vs am gear carb
mpg 1.00 -0.85 -0.85 -0.78 0.681 -0.87 0.419 0.66 0.600 0.48 -0.551
cyl -0.85 1.00 0.90 0.83 -0.700 0.78 -0.591 -0.81 -0.523 -0.49 0.527

500 1000 1500

5
0

1

0
0

1

5
0

2

0
0

Age (da ys)

C
ir
c
u

m
f e

re
n

c
e

 (
m

m
)

Tree Growth

e xample of line plot

Tr ee

1
2
3
4
5

Figure 11.16 Line chart

displaying the growth of

five orange trees

www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 11 Intermediate graphs

disp -0.85 0.90 1.00 0.79 -0.710 0.89 -0.434 -0.71 -0.591 -0.56 0.395
hp -0.78 0.83 0.79 1.00 -0.449 0.66 -0.708 -0.72 -0.243 -0.13 0.750
drat 0.68 -0.70 -0.71 -0.45 1.000 -0.71 0.091 0.44 0.713 0.70 -0.091
wt -0.87 0.78 0.89 0.66 -0.712 1.00 -0.175 -0.55 -0.692 -0.58 0.428
qsec 0.42 -0.59 -0.43 -0.71 0.091 -0.17 1.000 0.74 -0.230 -0.21 -0.656
vs 0.66 -0.81 -0.71 -0.72 0.440 -0.55 0.745 1.00 0.168 0.21 -0.570
am 0.60 -0.52 -0.59 -0.24 0.713 -0.69 -0.230 0.17 1.000 0.79 0.058
gear 0.48 -0.49 -0.56 -0.13 0.700 -0.58 -0.213 0.21 0.794 1.00 0.274
carb -0.55 0.53 0.39 0.75 -0.091 0.43 -0.656 -0.57 0.058 0.27 1.000

Which variables are most related? Which variables are relatively independent? Are

there any patterns? It isn’t that easy to tell from the correlation matrix without signifi-

cant time and effort (and probably a set of colored pens to make notations).

 You can display that same correlation matrix using the corrgram() function in the

corrgram package (see figure 11.17). The code is

library(corrgram)
corrgram(mtcars, order=TRUE, lower.panel=panel.shade,
 upper.panel=panel.pie, text.panel=panel.txt,
 main="Corrgram of mtcars intercorrelations")

gear

am

drat

mpg

vs

qsec

wt

disp

cyl

hp

carb

Corrgram of mtcars intercorrelations

Figure 11.17 Corrgram of the correlations among the variables in the mtcars data

frame. Rows and columns have been reordered using principal components analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

273Corrgrams

To interpret this graph, start with the lower triangle of cells (the cells below the princi-

pal diagonal). By default, a blue color and hashing that goes from lower left to upper

right represent a positive correlation between the two variables that meet at that cell.

Conversely, a red color and hashing that goes from the upper left to lower right repre-

sent a negative correlation. The darker and more saturated the color, the greater the

magnitude of the correlation. Weak correlations, near zero, appear washed out. In the

current graph, the rows and columns have been reordered (using principal compo-

nents analysis) to cluster variables together that have similar correlation patterns.

 You can see from the shaded cells that gear, am, drat, and mpg are positively corre-

lated with one another. You can also see that wt, disp, cyl, hp, and carb are positively cor-

related with one another. But the first group of variables is negatively correlated with

the second group of variables. You can also see that the correlation between carb and

am is weak, as is the correlation between vs and gear, vs and am, and drat and qsec.

 The upper triangle of cells displays the same information using pies. Here, color

plays the same role, but the strength of the correlation is displayed by the size of the

filled pie slice. Positive correlations fill the pie starting at 12 o’clock and moving in a

clockwise direction. Negative correlations fill the pie by moving in a counterclockwise

direction.

 The format of the corrgram() function is

corrgram(x, order=, panel=, text.panel=, diag.panel=)

where x is a data frame with one observation per row. When order=TRUE, the variables

are reordered using a principal component analysis of the correlation matrix. Reor-

dering can help make patterns of bivariate relationships more obvious.

 The option panel specifies the type of off-diagonal panels to use. Alternatively, you

can use the options lower.panel and upper.panel to choose different options below

and above the main diagonal. The text.panel and diag.panel options refer to the

main diagonal. Allowable values for panel are described in table 11.2.

Table 11.2 Panel options for the corrgram() function

Placement Panel Option Description

Off diagonal panel.pie The filled portion of the pie indicates the magnitude of the

correlation.

panel.shade The depth of the shading indicates the magnitude of the correlation.

panel.ellipse Plots a confidence ellipse and smoothed line.

panel.pts Plots a scatter plot.

panel.conf Prints correlations and their confidence intervals.

Main diagonal panel.txt Prints the variable name.

panel.minmax Prints the minimum and maximum value and variable name.

panel.density Prints the kernel density plot and variable name.

www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 11 Intermediate graphs

Let’s try a second example. The code

library(corrgram)
corrgram(mtcars, order=TRUE, lower.panel=panel.ellipse,
 upper.panel=panel.pts, text.panel=panel.txt,
 diag.panel=panel.minmax,
 main="Corrgram of mtcars data using scatter plots
 and ellipses")

produces the graph in figure 11.18. Here you’re using smoothed fit lines and confi-

dence ellipses in the lower triangle and scatter plots in the upper triangle.

Why do the scatter plots look odd?

Several of the variables that are plotted in figure 11.18 have limited allowable values.
For example, the number of gears is 3, 4, or 5. The number of cylinders is 4, 6, or 8.
Both am (transmission type) and vs (V/S) are dichotomous. This explains the odd-
looking scatter plots in the upper diagonal.

Always be careful that the statistical methods you choose are appropriate to the form
of the data. Specifying these variables as ordered or unordered factors can serve as
a useful check. When R knows that a variable is categorical or ordinal, it attempts to
apply statistical methods that are appropriate to that level of measurement.

3

5

gear

0

1

am

2.76

4.93

drat

10.4

33.9

mpg

0

1

vs

14.5

22.9

qsec

1.51

5.42

wt

71.1

472

disp

4

8

cyl

52

335

hp

1

8

carb

Corrgram of mtcars data using scatter plots and ellipses

Figure 11.18 Corrgram

of the correlations

among the variables in

the mtcars data frame.

The lower triangle

contains smoothed best-

fit lines and confidence

ellipses, and the upper

triangle contains scatter

plots. The diagonal panel

contains minimum and

maximum values. Rows

and columns have been

reordered using principal

components analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

275Corrgrams

We’ll finish with one more example. The code

library(corrgram)
corrgram(mtcars, lower.panel=panel.shade,
 upper.panel=NULL, text.panel=panel.txt,
 main="Car Mileage Data (unsorted)")

produces the graph in figure 11.19. Here you’re using shading in the lower triangle,

keeping the original variable order, and leaving the upper triangle blank.

 Before moving on, I should point out that you can control the colors used by the

corrgram() function. To do so, specify four colors in the colorRampPalette() func-

tion, and include the results using the col.regions option. Here’s an example:

library(corrgram)
cols <- colorRampPalette(c("darkgoldenrod4", "burlywood1",
 "darkkhaki", "darkgreen"))
corrgram(mtcars, order=TRUE, col.regions=cols,
 lower.panel=panel.shade,
 upper.panel=panel.conf, text.panel=panel.txt,
 main="A Corrgram (or Horse) of a Different Color")

Try it and see what you get.

mpg

cyl

disp

hp

drat

wt

qsec

vs

am

gear

carb

Car Mileage Data (unsorted)

Figure 11.19 Corrgram of the correlations among the variables in the mtcars

data frame. The lower triangle is shaded to represent the magnitude and

direction of the correlations. The variables are plotted in their original order.

www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 11 Intermediate graphs

Corrgrams can be a useful way to examine large numbers of bivariate relationships

among quantitative variables. Because they’re relatively new, the greatest challenge is

to educate the recipient on how to interpret them. To learn more, see Michael

Friendly’s article “Corrgrams: Exploratory Displays for Correlation Matrices,” avail-

able at www.math.yorku.ca/SCS/Papers/corrgram.pdf.

11.4 Mosaic plots

Up to this point, we’ve been exploring methods of visualizing relationships among

quantitative/continuous variables. But what if your variables are categorical? When

you’re looking at a single categorical variable, you can use a bar or pie chart. If there

are two categorical variables, you can look at a 3D bar chart (which, by the way, is not

easy to do in R). But what do you do if there are more than two categorical variables?

 One approach is to use mosaic plots. In a mosaic plot, the frequencies in a multidi-

mensional contingency table are represented by nested rectangular regions that are

proportional to their cell frequency. Color and/or shading can be used to represent

residuals from a fitted model. For details, see Meyer, Zeileis, and Hornick (2006), or

Michael Friendly’s excellent tutorial (http://mng.bz/3p0d).

 Mosaic plots can be created with the mosaic() function from the vcd library

(there’s a mosaicplot() function in the basic installation of R, but I recommend you

use the vcd package for its more extensive features). As an example, consider the

Titanic dataset available in the base installation. It describes the number of passengers

who survived or died, cross-classified by their class (1st, 2nd, 3rd, Crew), sex (Male,

Female), and age (Child, Adult). This is a well-studied dataset. You can see the cross-

classification using the following code:

> ftable(Titanic)
 Survived No Yes
Class Sex Age
1st Male Child 0 5
 Adult 118 57
 Female Child 0 1
 Adult 4 140
2nd Male Child 0 11
 Adult 154 14
 Female Child 0 13
 Adult 13 80
3rd Male Child 35 13
 Adult 387 75
 Female Child 17 14
 Adult 89 76
Crew Male Child 0 0
 Adult 670 192
 Female Child 0 0
 Adult 3 20

The mosaic() function can be invoked as

mosaic(table)

www.it-ebooks.info

http://mng.bz/3p0d
www.math.yorku.ca/SCS/Papers/corrgram.pdf
http://www.it-ebooks.info/

277Mosaic plots

where table is a contingency table in array form, or

mosaic(formula, data=)

where formula is a standard R formula, and data specifies either a data frame or a

table. Adding the option shade=TRUE colors the figure based on Pearson residuals

from a fitted model (independence by default), and the option legend=TRUE displays

a legend for these residuals.

 For example, both

library(vcd)
mosaic(Titanic, shade=TRUE, legend=TRUE)

and

library(vcd)
mosaic(~Class+Sex+Age+Survived, data=Titanic, shade=TRUE, legend=TRUE)

will produce the graph shown in figure 11.20. The formula version gives you greater

control over the selection and placement of variables in the graph.

−11

 −4

 −2

 0

 2

 4

 26

Pearson
residuals:

p−value =
<2e−16

Sex

Survived

C
la

s
s

A
g

e

C
re

w

No Yes

A
d
u
lt

No

C
h
ild

3
rd

A
d
u
lt

C
h
ild

2
n
d

A
d
u
lt
C

h
ild

1
s
t

Male Female

A
d
u
lt

C
h
ild

Figure 11.20 Mosaic plot describing Titanic survivors by class, sex, and age

www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 11 Intermediate graphs

A great deal of information is packed into this one picture. For example, as a person

moves from crew to first class, the survival rate increases precipitously. Most children

were in third and second class. Most females in first class survived, whereas only about

half the females in third class survived. There were few females in the crew, causing

the Survived labels (No, Yes at the bottom of the chart) to overlap for this group. Keep

looking, and you’ll see many more interesting facts. Remember to look at the relative

widths and heights of the rectangles. What else can you learn about that night?

 Extended mosaic plots add color and shading to represent the residuals from a fit-

ted model. In this example, the blue shading indicates cross-classifications that occur

more often than expected, assuming that survival is unrelated to class, gender, and

age. Red shading indicates cross-classifications that occur less often than expected

under the independence model. Be sure to run the example so that you can see the

results in color. The graph indicates that more first-class women survived and more

male crew members died than would be expected under an independence model.

Fewer third-class men survived than would be expected if survival was independent of

class, gender, and age. If you’d like to explore mosaic plots in greater detail, try run-

ning example(mosaic).

11.5 Summary

In this chapter, we considered a wide range of techniques for displaying relationships

among two or more variables. These included the use of 2D and 3D scatter plots, scat-

ter-plot matrices, bubble plots, line plots, corrgrams, and mosaic plots. Some of these

methods are standard techniques, where others are relatively new.

 Taken together with methods that allow you to customize graphs (chapter 3), dis-

play univariate distributions (chapter 6), explore regression models (chapter 8), and

visualize group differences (chapter 9), you now have a comprehensive toolbox for

visualizing and extracting meaning from your data. In later chapters, you’ll expand

your skills with additional specialized techniques, including graphics for latent variable

models (chapter 14), time series (chapter 15), clustered data (chapter 16), and tech-

niques for creating graphs that are conditioned on one or more variables (chapter 18).

 In the next chapter, we’ll explore resampling statistics and bootstrapping. These are

computer-intensive methods that allow you to analyze data in new and unique ways.

www.it-ebooks.info

http://www.it-ebooks.info/

279

Resampling statistics
and bootstrapping

In chapters 7, 8, and 9, we reviewed statistical methods that test hypotheses and esti-
mate confidence intervals for population parameters by assuming that the

observed data is sampled from a normal distribution or some other well-known the-

oretical distribution. But there will be many cases in which this assumption is

unwarranted. Statistical approaches based on randomization and resampling can
be used in cases where the data is sampled from unknown or mixed distributions,

where sample sizes are small, where outliers are a problem, or where devising an

appropriate test based on a theoretical distribution is too complex and mathemati-
cally intractable.

 In this chapter, we’ll explore two broad statistical approaches that use random-

ization: permutation tests and bootstrapping. Historically, these methods were only
available to experienced programmers and expert statisticians. Contributed pack-

ages in R now make them readily available to a wider audience of data analysts.

This chapter covers

■ Understanding the logic of permutation tests

■ Applying permutation tests to linear models

■ Using bootstrapping to obtain confidence
intervals

www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 12 Resampling statistics and bootstrapping

 We’ll also revisit problems that were initially analyzed using traditional methods

(for example, t-tests, chi-square tests, ANOVA, and regression) and see how they can

be approached using these robust, computer-intensive methods. To get the most out

of section 12.2, be sure to read chapter 7 first. Chapters 8 and 9 serve as prerequisites

for section 12.3. Other sections can be read on their own.

12.1 Permutation tests

Permutation tests, also called randomization or re-randomization tests, have been around

for decades, but it took the advent of high-speed computers to make them practically

available. To understand the logic of a permutation test, consider the following hypo-

thetical problem. Ten subjects have been randomly assigned to one of two treatment

conditions (A or B), and an outcome variable (score) has been recorded. The results

of the experiment are presented in table 12.1.

 The data are also displayed in the strip

chart in figure 12.1. Is there enough evi-

dence to conclude that the treatments dif-

fer in their impact?

 In a parametric approach, you might

assume that the data are sampled from

normal populations with equal variances

and apply a two-tailed independent-groups

t-test. The null hypothesis is that the popu-

lation mean for Treatment A is equal to the

population mean for Treatment B. You’d

calculate a t-statistic from the data and compare it to the theoretical distribution. If

the observed t-statistic is sufficiently extreme, say outside the middle 95% of values in

the theoretical distribution, you’d reject the null hypothesis and declare that the pop-

ulation means for the two groups are unequal at the 0.05 level of significance.

 A permutation test takes a different approach. If the two treatments are truly

equivalent, the label (Treatment A or Treatment B) assigned to an observed score is

Table 12.1 Hypothetical two-group problem

Treatment A Treatment B

40 57

57 64

45 55

55 62

58 65

score

T
 re

a
tm

e
n

t

A

B

40 45 50 55 60 65

Figure 12.1 Strip chart of the hypothetical treatment data in table 12.1

www.it-ebooks.info

http://www.it-ebooks.info/

281Permutation tests

arbitrary. To test for differences between the two treatments, you could follow these

steps:

1 Calculate the observed t-statistic, as in the parametric approach; call this t0.

2 Place all 10 scores in a single group.

3 Randomly assign five scores to Treatment A and five scores to Treatment B.

4 Calculate and record the new observed t-statistic.

5 Repeat steps 3–4 for every possible way of assigning five scores to Treatment A

and five scores to Treatment B. There are 252 such possible arrangements.

6 Arrange the 252 t-statistics in ascending order. This is the empirical distribu-

tion, based on (or conditioned on) the sample data.

7 If t0 falls outside the middle 95% of the empirical distribution, reject the null

hypothesis that the population means for the two treatment groups are equal at

the 0.05 level of significance.

Notice that the same t-statistic is calculated in both the permutation and parametric

approaches. But instead of comparing the statistic to a theoretical distribution in

order to determine if it was extreme enough to reject the null hypothesis, it’s com-

pared to an empirical distribution created from permutations of the observed data.

This logic can be extended to most classical statistical tests and linear models.

 In the previous example, the empirical distribution was based on all possible per-

mutations of the data. In such cases, the permutation test is called an exact test. As the

sample sizes increase, the time required to form all possible permutations can become

prohibitive. In such cases, you can use Monte Carlo simulation to sample from all pos-

sible permutations. Doing so provides an approximate test.

 If you’re uncomfortable assuming that the data is normally distributed, concerned

about the impact of outliers, or feel that the dataset is too small for standard paramet-

ric approaches, a permutation test provides an excellent alternative. R has some of the

most comprehensive and sophisticated packages for performing permutation tests

currently available. The remainder of this section focuses on two contributed pack-

ages: the coin package and the lmPerm package. The coin package provides a com-

prehensive framework for permutation tests applied to independence problems,

whereas the lmPerm package provides permutation tests for ANOVA and regression

designs. We’ll consider each in turn and end the section with a quick review of other

permutation packages available in R.

 To install the coin package, use

install.packages(c("coin")

Sadly, Bob Wheeler, the author of the lmPerm package, passed away in 2012, and the

source code has been moved into the CRAN archive for unsupported packages. There-

fore, installation of the package is a bit more complicated than usual:

1 Download the file lmPerm_1.1-2.tar.gz from http://cran.r-project.org/src/

contrib/Archive/lmPerm/, and save it on your hard drive.

www.it-ebooks.info

http://cran.r-project.org/src/contrib/Archive/lmPerm/
http://cran.r-project.org/src/contrib/Archive/lmPerm/
http://www.it-ebooks.info/

282 CHAPTER 12 Resampling statistics and bootstrapping

2 MS Windows users: install RTools from http://cran.r-project.org/bin/

windows/Rtools/. Mac and Linux users can skip this step.

3 Execute the function

install.packages(file.choose(), repos=NULL, type="source")

from within R. When a dialog box pops up, find and choose the lmPerm_1.1-2.tar.gz

file. This will install the package on your machine.

12.2 Permutation tests with the coin package

The coin package provides a general framework for applying permutation tests to

independence problems. With this package, you can answer such questions as

■ Are responses independent of group assignment?
■ Are two numeric variables independent?
■ Are two categorical variables independent?

Using convenience functions provided in the package (see table 12.2), you can per-

form permutation test equivalents for most of the traditional statistical tests covered in

chapter 7.

Setting the random number seed

Before moving on, it’s important to remember that permutation tests use pseudo-
random numbers to sample from all possible permutations (when performing an ap-
proximate test). Therefore, the results will change each time the test is performed.
Setting the random-number seed in R allows you to fix the random numbers generated.
This is particularly useful when you want to share your examples with others, because
results will always be the same if the calls are made with the same seed. Setting the
random number seed to 1234 (that is, set.seed(1234)) will allow you to replicate
the results presented in this chapter.

Table 12.2 coin functions providing permutation test alternatives to traditional tests

Test coin function

Two- and K-sample permutation test oneway_test(y ~ A)

Wilcoxon–Mann–Whitney rank-sum test wilcox_test(y ~ A)

Kruskal–Wallis test kruskal_test(y ~ A)

Pearson’s chi-square test chisq_test(A ~ B)

Cochran–Mantel–Haenszel test cmh_test(A ~ B | C)

Linear-by-linear association test lbl_test(D ~ E)

Spearman’s test spearman_test(y ~ x)

www.it-ebooks.info

http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/windows/Rtools/
http://www.it-ebooks.info/

283Permutation tests with the coin package

In the coin function column, y and x are numeric variables, A and B are categorical factors, C is a

categorical blocking variable, D and E are ordered factors, and y1 and y2 are matched numeric variables.

Each of the functions listed in table 12.2 takes the form

function_name(formula, data, distribution=)

where

■ formula describes the relationship among variables to be tested. Examples are

given in the table.
■ data identifies a data frame.
■ distribution specifies how the empirical distribution under the null hypothe-

sis should be derived. Possible values are exact, asymptotic, and approximate.

If distribution="exact", the distribution under the null hypothesis is computed

exactly (that is, from all possible permutations). The distribution can also be approxi-

mated by its asymptotic distribution (distribution="asymptotic") or via Monte

Carlo resampling (distribution="approximate(B=#)"), where # indicates the num-

ber of replications used to approximate the exact distribution. At present, distribu-

tion="exact" is only available for two-sample problems.

NOTE In the coin package, categorical variables and ordinal variables must
be coded as factors and ordered factors, respectively. Additionally, the data
must be stored in a data frame.

In the remainder of this section, you’ll apply several of the permutation tests

described in table 12.2 to problems from previous chapters. This will allow you to

compare the results to more traditional parametric and nonparametric approaches.

We’ll end this discussion of the coin package by considering advanced extensions.

12.2.1 Independent two-sample and k-sample tests

To begin, let’s compare an independent samples t-test with a one-way exact test applied

to the hypothetical data in table 12.2. The results are given in the following listing.

> library(coin)
> score <- c(40, 57, 45, 55, 58, 57, 64, 55, 62, 65)
> treatment <- factor(c(rep("A",5), rep("B",5)))
> mydata <- data.frame(treatment, score)
> t.test(score~treatment, data=mydata, var.equal=TRUE)

Friedman test friedman_test(y ~ A | C)

Wilcoxon signed-rank test wilcoxsign_test(y1 ~ y2)

Listing 12.1 t-test vs. one-way permutation test for the hypothetical data

Table 12.2 coin functions providing permutation test alternatives to traditional tests

Test coin function

www.it-ebooks.info

http://www.it-ebooks.info/

284 CHAPTER 12 Resampling statistics and bootstrapping

 Two Sample t-test

data: score by treatment
t = -2.3, df = 8, p-value = 0.04705
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -19.04 -0.16
sample estimates:
mean in group A mean in group B
 51 61

> oneway_test(score~treatment, data=mydata, distribution="exact")

 Exact 2-Sample Permutation Test

data: score by treatment (A, B)
Z = -1.9, p-value = 0.07143
alternative hypothesis: true mu is not equal to 0

The traditional t-test indicates a significant group difference (p < .05), whereas the

exact test doesn’t (p > 0.072). With only 10 observations, l’d be more inclined to trust

the results of the permutation test and attempt to collect more data before reaching a

final conclusion.

 Next, consider the Wilcoxon–Mann–Whitney U test. In chapter 7, we examined

the difference in the probability of imprisonment in Southern versus non-Southern

US states using the wilcox.test() function. Using an exact Wilcoxon rank-sum test,

you’d get

> library(MASS)
> UScrime <- transform(UScrime, So = factor(So))
> wilcox_test(Prob ~ So, data=UScrime, distribution="exact")

 Exact Wilcoxon Mann-Whitney Rank Sum Test

data: Prob by So (0, 1)
Z = -3.7, p-value = 8.488e-05
alternative hypothesis: true mu is not equal to 0

suggesting that incarceration is more likely in Southern states. Note that in the previ-

ous code, the numeric variable So was transformed into a factor. This is because the

coin package requires that all categorical variables be coded as factors. Additionally,

you may have noted that these results agree exactly with the results of the wil-

cox.test() function in chapter 7. This is because wilcox.test() also computes an

exact distribution by default.

 Finally, consider a k-sample test. In chapter 9, you used a one-way ANOVA to evalu-

ate the impact of five drug regimens on cholesterol reduction in a sample of 50

patients. An approximate k-sample permutation test can be performed instead, using

this code:

> library(multcomp)
> set.seed(1234)
> oneway_test(response~trt, data=cholesterol,
 distribution=approximate(B=9999))

www.it-ebooks.info

http://www.it-ebooks.info/

285Permutation tests with the coin package

 Approximative K-Sample Permutation Test

data: response by
 trt (1time, 2times, 4times, drugD, drugE)
maxT = 4.7623, p-value < 2.2e-16

Here, the reference distribution is based on 9,999 permutations of the data. The ran-

dom-number seed is set so that your results will be the same as mine. There’s clearly a

difference in response among patients in the various groups.

12.2.2 Independence in contingency tables

You can use permutation tests to assess the independence of two categorical variables

using either the chisq_test() or cmh_test() function. The latter function is used

when data is stratified on a third categorical variable. If both variables are ordinal, you
can use the lbl_test() function to test for a linear trend.

 In chapter 7, you applied a chi-square test to assess the relationship between arthri-

tis treatment and improvement. Treatment had two levels (Placebo and Treated), and
Improved had three levels (None, Some, and Marked). The Improved variable was

encoded as an ordered factor.

 If you want to perform a permutation version of the chi-square test, you can use
the following code:

> library(coin)
> library(vcd)
> Arthritis <- transform(Arthritis,
 Improved=as.factor(as.numeric(Improved)))
> set.seed(1234)
> chisq_test(Treatment~Improved, data=Arthritis,
 distribution=approximate(B=9999))

 Approximative Pearson's Chi-Squared Test

data: Treatment by Improved (1, 2, 3)
chi-squared = 13.055, p-value = 0.0018

This gives you an approximate chi-square test based on 9,999 replications. You might

ask why you transformed the variable Improved from an ordered factor to a categori-

cal factor. (Good question!) If you’d left it an ordered factor, coin() would have gen-

erated a linear × linear trend test instead of a chi-square test. Although a trend test

would be a good choice in this situation, keeping it a chi-square test allows you to com-

pare the results with those reported in chapter 7.

12.2.3 Independence between numeric variables

The spearman_test() function provides a permutation test of the independence of

two numeric variables. In chapter 7, we examined the correlation between illiteracy

rates and murder rates for US states. You can test the association via permutation,

using the following code:

> states <- as.data.frame(state.x77)
> set.seed(1234)

www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 12 Resampling statistics and bootstrapping

> spearman_test(Illiteracy~Murder, data=states,
 distribution=approximate(B=9999))

 Approximative Spearman Correlation Test

data: Illiteracy by Murder
Z = 4.7065, p-value < 2.2e-16
alternative hypothesis: true mu is not equal to 0

Based on an approximate permutation test with 9,999 replications, the hypothesis of

independence can be rejected. Note that state.x77 is a matrix. It had to be converted

into a data frame for use in the coin package.

12.2.4 Dependent two-sample and k-sample tests

Dependent sample tests are used when observations in different groups have been

matched or when repeated measures are used. For permutation tests with two paired

groups, the wilcoxsign_test() function can be used. For more than two groups, use

the friedman_test() function.

 In chapter 7, we compared the unemployment rate for urban males age 14–24

(U1) with urban males age 35–39 (U2). Because the two variables are reported for

each of the 50 US states, you have a two-dependent groups design (state is the match-

ing variable). You can use an exact Wilcoxon signed-rank test to see if unemployment

rates for the two age groups are equal:

> library(coin)
> library(MASS)
> wilcoxsign_test(U1~U2, data=UScrime, distribution="exact")

 Exact Wilcoxon-Signed-Rank Test

data: y by x (neg, pos)
 stratified by block
Z = 5.9691, p-value = 1.421e-14
alternative hypothesis: true mu is not equal to 0

Based on the results, you’d conclude that the unemployment rates differ.

12.2.5 Going further

The coin package provides a general framework for testing that one group of vari-

ables is independent of a second group of variables (with optional stratification on a

blocking variable) against arbitrary alternatives, via approximate permutation tests. In

particular, the independence_test() function lets you approach most traditional tests

from a permutation perspective and create new and novel statistical tests for situations

not covered by traditional methods. This flexibility comes at a price: a high level of sta-

tistical knowledge is required to use the function appropriately. See the vignettes that

accompany the package (accessed via vignette("coin")) for further details.

 In the next section, you’ll learn about the lmPerm package. This package provides a

permutation approach to linear models, including regression and analysis of variance.

www.it-ebooks.info

http://www.it-ebooks.info/

287Permutation tests with the lmPerm package

12.3 Permutation tests with the lmPerm package

The lmPerm package provides support for a permutation approach to linear models.

In particular, the lmp() and aovp() functions are the lm() and aov() functions modi-

fied to perform permutation tests rather than normal theory tests.

 The parameters in the lmp() and aovp() functions are similar to those in the lm()

and aov() functions, with the addition of a perm= parameter. The perm= option can

take the value Exact, Prob, or SPR. Exact produces an exact test, based on all possible

permutations. Prob samples from all possible permutations. Sampling continues until

the estimated standard deviation falls below 0.1 of the estimated p-value. The stopping

rule is controlled by an optional Ca parameter. Finally, SPR uses a sequential probabil-

ity ratio test to decide when to stop sampling. Note that if the number of observations

is greater than 10, perm="Exact" will automatically default to perm="Prob"; exact tests

are only available for small problems.

 To see how this works, you’ll apply a permutation approach to simple regression,

polynomial regression, multiple regression, one-way analysis of variance, one-way anal-

ysis of covariance, and a two-way factorial design.

12.3.1 Simple and polynomial regression

In chapter 8, you used linear regression to study the relationship between weight and

height for a group of 15 women. Using lmp() instead of lm() generates the permuta-

tion test results shown in the following listing.

> library(lmPerm)
> set.seed(1234)
> fit <- lmp(weight~height, data=women, perm="Prob")
[1] "Settings: unique SS : numeric variables centered"
> summary(fit)

Call:
lmp(formula = weight ~ height, data = women, perm = "Prob")

Residuals:
 Min 1Q Median 3Q Max
-1.733 -1.133 -0.383 0.742 3.117

Coefficients:
 Estimate Iter Pr(Prob)
height 3.45 5000 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.5 on 13 degrees of freedom
Multiple R-Squared: 0.991, Adjusted R-squared: 0.99
F-statistic: 1.43e+03 on 1 and 13 DF, p-value: 1.09e-14

To fit a quadratic equation, you could use the code in this next listing.

Listing 12.2 Permutation tests for simple linear regression

www.it-ebooks.info

http://www.it-ebooks.info/

288 CHAPTER 12 Resampling statistics and bootstrapping

> library(lmPerm)
> set.seed(1234)
> fit <- lmp(weight~height + I(height^2), data=women, perm="Prob")
[1] "Settings: unique SS : numeric variables centered"
> summary(fit)

Call:
lmp(formula = weight ~ height + I(height^2), data = women, perm = "Prob")

Residuals:
 Min 1Q Median 3Q Max
-0.5094 -0.2961 -0.0094 0.2862 0.5971

Coefficients:
 Estimate Iter Pr(Prob)
height -7.3483 5000 <2e-16 ***
I(height^2) 0.0831 5000 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.38 on 12 degrees of freedom
Multiple R-Squared: 0.999, Adjusted R-squared: 0.999
F-statistic: 1.14e+04 on 2 and 12 DF, p-value: <2e-16

As you can see, it’s a simple matter to test these regressions using permutation tests

and requires little change in the underlying code. The output is also similar to that

produced by the lm() function. Note that an Iter column is added, indicating how

many iterations were required to reach the stopping rule.

12.3.2 Multiple regression

In chapter 8, multiple regression was used to predict the murder rate based on popu-

lation, illiteracy, income, and frost for 50 US states. Applying the lmp() function to

this problem results in the following output.

> library(lmPerm)
> set.seed(1234)
> states <- as.data.frame(state.x77)
> fit <- lmp(Murder~Population + Illiteracy+Income+Frost,
 data=states, perm="Prob")
[1] "Settings: unique SS : numeric variables centered"
> summary(fit)

Call:
lmp(formula = Murder ~ Population + Illiteracy + Income + Frost,
 data = states, perm = "Prob")

Residuals:
 Min 1Q Median 3Q Max
-4.79597 -1.64946 -0.08112 1.48150 7.62104

Listing 12.3 Permutation tests for polynomial regression

Listing 12.4 Permutation tests for multiple regression

www.it-ebooks.info

http://www.it-ebooks.info/

289Permutation tests with the lmPerm package

Coefficients:
 Estimate Iter Pr(Prob)
Population 2.237e-04 51 1.0000
Illiteracy 4.143e+00 5000 0.0004 ***
Income 6.442e-05 51 1.0000
Frost 5.813e-04 51 0.8627

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '. ' 0.1 ' ' 1

Residual standard error: 2.535 on 45 degrees of freedom
Multiple R-Squared: 0.567, Adjusted R-squared: 0.5285
F-statistic: 14.73 on 4 and 45 DF, p-value: 9.133e-08

Looking back to chapter 8, both Population and Illiteracy are significant (p < 0.05)

when normal theory is used. Based on the permutation tests, the Population variable is

no longer significant. When the two approaches don’t agree, you should look at your

data more carefully. It may be that the assumption of normality is untenable or that out-

liers are present.

12.3.3 One-way ANOVA and ANCOVA

Each of the analysis of variance designs discussed in chapter 9 can be performed via

permutation tests. First, let’s look at the one-way ANOVA problem considered in sec-

tion 9.1 on the impact of treatment regimens on cholesterol reduction. The code and

results are given in the next listing.

> library(lmPerm)
> library(multcomp)
> set.seed(1234)
> fit <- aovp(response~trt, data=cholesterol, perm="Prob")
[1] "Settings: unique SS "
> anova(fit)
Component 1 :
 Df R Sum Sq R Mean Sq Iter Pr(Prob)
trt 4 1351.37 337.84 5000 < 2.2e-16 ***
Residuals 45 468.75 10.42

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '. ' 0.1 ' ' 1

The results suggest that the treatment effects are not all equal.

 This second example in this section applies a permutation test to a one-way analy-

sis of covariance. The problem is from chapter 9, where you investigated the impact of

four drug doses on the litter weights of rats, controlling for gestation times. The next

listing shows the permutation test and results.

> library(lmPerm)
> set.seed(1234)
> fit <- aovp(weight ~ gesttime + dose, data=litter, perm="Prob")

Listing 12.5 Permutation test for one-way ANOVA

Listing 12.6 Permutation test for one-way ANCOVA

www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 12 Resampling statistics and bootstrapping

[1] "Settings: unique SS : numeric variables centered"

> anova(fit)

Component 1 :

 Df R Sum Sq R Mean Sq Iter Pr(Prob)

gesttime 1 161.49 161.493 5000 0.0006 ***

dose 3 137.12 45.708 5000 0.0392 *

Residuals 69 1151.27 16.685

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the p-values, the four drug doses don’t equally impact litter weights, control-

ling for gestation time.

12.3.4 Two-way ANOVA

You’ll end this section by applying permutation tests to a factorial design. In chapter

9, you examined the impact of vitamin C on the tooth growth in guinea pigs. The two

manipulated factors were dose (three levels) and delivery method (two levels). Ten

guinea pigs were placed in each treatment combination, resulting in a balanced 3 × 2

factorial design. The permutation tests are provided in the next listing.

> library(lmPerm)

> set.seed(1234)

> fit <- aovp(len~supp*dose, data=ToothGrowth, perm="Prob")

[1] "Settings: unique SS : numeric variables centered"

> anova(fit)

Component 1 :

 Df R Sum Sq R Mean Sq Iter Pr(Prob)

supp 1 205.35 205.35 5000 < 2e-16 ***

dose 1 2224.30 2224.30 5000 < 2e-16 ***

supp:dose 1 88.92 88.92 2032 0.04724 *

Residuals 56 933.63 16.67

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

At the .05 level of significance, all three effects are statistically different from zero. At

the .01 level, only the main effects are significant.

 It’s important to note that when aovp() is applied to ANOVA designs, it defaults to

unique sums of squares (also called SAS Type III sums of squares). Each effect is adjusted

for every other effect. The default for parametric ANOVA designs in R is sequential

sums of squares (SAS Type I sums of squares). Each effect is adjusted for those that

appear earlier in the model. For balanced designs, the two approaches will agree, but

for unbalanced designs with unequal numbers of observations per cell, they won’t.

The greater the imbalance, the greater the disagreement. If desired, specifying

seqs=TRUE in the aovp() function will produce sequential sums of squares. For more

on Type I and Type III sums of squares, see section 9.2.

Listing 12.7 Permutation test for two-way ANOVA

www.it-ebooks.info

http://www.it-ebooks.info/

291Bootstrapping

12.4 Additional comments on permutation tests

R offers other permutation packages besides coin and lmPerm. The perm package pro-

vides some of the same functionality provided by the coin package and can act as an

independent validation of that package. The corrperm package provides permutation

tests of correlations with repeated measures. The logregperm package offers a permu-

tation test for logistic regression. Perhaps most important, the glmperm package

extends permutation tests to generalized linear models. Generalized linear models

are described in the next chapter.

 Permutation tests provide a powerful alternative to tests that rely on a knowledge

of the underlying sampling distribution. In each of the permutation tests described,

you were able to test statistical hypotheses without recourse to the normal, t, F, or chi-

square distributions.

 You may have noticed how closely the results of the tests based on normal theory

agreed with the results of the permutation approach in previous sections. The data in

these problems were well behaved, and the agreement between methods is a testa-

ment to how well normal-theory methods work in such cases.

 Permutation tests really shine in cases where the data are clearly non-normal (for

example, highly skewed), outliers are present, samples sizes are small, or no paramet-

ric tests exist. But if the original sample is a poor representation of the population of

interest, no test, including permutation tests, will improve the inferences generated.

 Permutation tests are primarily useful for generating p-values that can be used to

test null hypotheses. They can help answer the question, “Does an effect exist?” It’s

more difficult to use permutation methods to obtain confidence intervals and estimates

of measurement precision. Fortunately, this is an area in which bootstrapping excels.

12.5 Bootstrapping

Bootstrapping generates an empirical distribution of a test statistic or set of test statistics

by repeated random sampling with replacement from the original sample. It allows

you to generate confidence intervals and test statistical hypotheses without having to

assume a specific underlying theoretical distribution.

 It’s easiest to demonstrate the logic of bootstrapping with an example. Say that you

want to calculate the 95% confidence interval for a sample mean. Your sample has 10

observations, a sample mean of 40, and a sample standard deviation of 5. If you’re will-

ing to assume that the sampling distribution of the mean is normally distributed, the

(1-α/2)% confidence interval can be calculated using

where t is the upper 1-α/2 critical value for a t distribution with n – 1 degrees of free-

dom. For a 95% confidence interval, you have 40 – 2.262(5/3.163) < µ < 40 + 2.262

(5/3.162) or 36.424 < µ < 43.577. You’d expect 95% of confidence intervals created in

this way to surround the true population mean.

X t
s

n
X t

s

n
− < < +

www.it-ebooks.info

http://www.it-ebooks.info/

292 CHAPTER 12 Resampling statistics and bootstrapping

 But what if you aren’t willing to assume that the sampling distribution of the mean

is normally distributed? You can use a bootstrapping approach instead:

1 Randomly select 10 observations from the sample, with replacement after each
selection. Some observations may be selected more than once, and some may

not be selected at all.

2 Calculate and record the sample mean.

3 Repeat the first two steps 1,000 times.

4 Order the 1,000 sample means from smallest to largest.

5 Find the sample means representing the 2.5th and 97.5th percentiles. In this

case, it’s the 25th number from the bottom and top. These are your 95% confi-
dence limits.

In the present case, where the sample mean is likely to be normally distributed, you
gain little from the bootstrap approach. Yet there are many cases where the bootstrap

approach is advantageous. What if you wanted confidence intervals for the sample

median, or the difference between two sample medians? There are no simple normal-
theory formulas here, and bootstrapping is the approach of choice. If the underlying

distributions are unknown, if outliers are a problem, if sample sizes are small, or if

parametric approaches don’t exist, bootstrapping can often provide a useful method
of generating confidence intervals and testing hypotheses.

12.6 Bootstrapping with the boot package

The boot package provides extensive facilities for bootstrapping and related resam-

pling methods. You can bootstrap a single statistic (for example, a median) or a vector

of statistics (for example, a set of regression coefficients). Be sure to download and

install the boot package before first use:

install.packages("boot")

The bootstrapping process will seem complicated, but once you review the examples it

should make sense.

 In general, bootstrapping involves three main steps:

1 Write a function that returns the statistic or statistics of interest. If there is a sin-

gle statistic (for example, a median), the function should return a number. If

there is a set of statistics (for example, a set of regression coefficients), the func-

tion should return a vector.

2 Process this function through the boot() function in order to generate R boot-

strap replications of the statistic(s).

3 Use the boot.ci() function to obtain confidence intervals for the statistic(s)

generated in step 2.

Now to the specifics.

 The main bootstrapping function is boot(). It has the format

bootobject <- boot(data=, statistic=, R=, ...)

www.it-ebooks.info

http://www.it-ebooks.info/

293Bootstrapping with the boot package

The parameters are described in table 12.3.

The boot() function calls the statistic function R times. Each time, it generates a set of

random indices, with replacement, from the integers 1:nrow(data). These indices

are used in the statistic function to select a sample. The statistics are calculated on the

sample, and the results are accumulated in bootobject. The bootobject structure is

described in table 12.4.

You can access these elements as bootobject$t0 and bootobject$t.

 Once you generate the bootstrap samples, you can use print() and plot() to

examine the results. If the results look reasonable, you can use the boot.ci() func-

tion to obtain confidence intervals for the statistic(s). The format is

boot.ci(bootobject, conf=, type=)

The parameters are given in table 12.5.

Table 12.3 Parameters of the boot() function

Parameter Description

data A vector, matrix, or data frame.

statistic A function that produces the k statistics to be bootstrapped (k=1 if bootstrap-

ping a single statistic). The function should include an indices parameter that

the boot() function can use to select cases for each replication (see the

examples in the text).

R Number of bootstrap replicates.

... Additional parameters to be passed to the function that produces the statistic

of interest.

Table 12.4 Elements of the object returned by the boot() function

Element Description

t0 The observed values of k statistics applied to the original data

t An R × k matrix, where each row is a bootstrap replicate of the k statistics

Table 12.5 Parameters of the boot.ci() function

Parameter Description

bootobject The object returned by the boot() function.

conf The desired confidence interval (default: conf=0.95).

type The type of confidence interval returned. Possible values are norm, basic,

stud, perc, bca, and all (default: type="all")

www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 12 Resampling statistics and bootstrapping

The type parameter specifies the method for obtaining the confidence limits. The

perc method (percentile) was demonstrated in the sample mean example. bca pro-

vides an interval that makes simple adjustments for bias. I find bca preferable in most

circumstances. See Mooney and Duval (1993) for an introduction to these methods.

 In the remaining sections, we’ll look at bootstrapping a single statistic and a vector

of statistics.

12.6.1 Bootstrapping a single statistic

The mtcars dataset contains information on 32 automobiles reported in the 1974

Motor Trend magazine. Suppose you’re using multiple regression to predict miles per

gallon from a car’s weight (lb/1,000) and engine displacement (cu. in.). In addition

to the standard regression statistics, you’d like to obtain a 95% confidence interval

for the R-squared value (the percent of variance in the response variable explained

by the predictors). The confidence interval can be obtained using nonparametric

bootstrapping.

 The first task is to write a function for obtaining the R-squared value:

rsq <- function(formula, data, indices) {
 d <- data[indices,]
 fit <- lm(formula, data=d)
 return(summary(fit)$r.square)
}

The function returns the R-squared value from a regression. The d <- data[indi-

ces,] statement is required for boot() to be able to select samples.

 You can then draw a large number of bootstrap replications (say, 1,000) with the

following code:

library(boot)
set.seed(1234)
results <- boot(data=mtcars, statistic=rsq,
 R=1000, formula=mpg~wt+disp)

The boot object can be printed using

> print(results)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = mtcars, statistic = rsq, R = 1000, formula = mpg ~
 wt + disp)

Bootstrap Statistics :
 original bias std. error
t1* 0.7809306 0.01333670 0.05068926

and plotted using plot(results). The resulting graph is shown in figure 12.2.

www.it-ebooks.info

http://www.it-ebooks.info/

295Bootstrapping with the boot package

In figure 12.2, you can see that the distribution of bootstrapped R-squared values isn’t

normally distributed. A 95% confidence interval for the R-squared values can be

obtained using

> boot.ci(results, type=c("perc", "bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = results, type = c("perc", "bca"))

Intervals :
Level Percentile BCa
95% (0.6838, 0.8833) (0.6344, 0.8549)
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable

You can see from this example that different approaches to generating the confidence

intervals can lead to different intervals. In this case, the bias-adjusted interval is mod-

erately different from the percentile method. In either case, the null hypothesis H0:

R-square = 0 would be rejected, because zero is outside the confidence limits.

 In this section, you estimated the confidence limits of a single statistic. In the next

section, you’ll estimate confidence intervals for several statistics.

Histogram of t

t*

D
e

n
s
it
y

0.6 0.7 0.8 0.9

0
2

4
6

8

−3 −2 −1 0 1 2 3

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0

Quantiles of Standard Normal

t*

Figure 12.2 Distribution of bootstrapped R-squared values

www.it-ebooks.info

http://www.it-ebooks.info/

296 CHAPTER 12 Resampling statistics and bootstrapping

12.6.2 Bootstrapping several statistics

In the previous example, bootstrapping was used to estimate the confidence interval

for a single statistic (R-squared). Continuing the example, let’s obtain the 95% confi-

dence intervals for a vector of statistics. Specifically, let’s get confidence intervals for

the three model regression coefficients (intercept, car weight, and engine displace-

ment).

 First, create a function that returns the vector of regression coefficients:

bs <- function(formula, data, indices) {
 d <- data[indices,]
 fit <- lm(formula, data=d)
 return(coef(fit))
}

Then use this function to bootstrap 1,000 replications:

library(boot)
set.seed(1234)
results <- boot(data=mtcars, statistic=bs,
 R=1000, formula=mpg~wt+disp)
> print(results)
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = mtcars, statistic = bs, R = 1000, formula = mpg ~
 wt + disp)

Bootstrap Statistics :
 original bias std. error
t1* 34.9606 0.137873 2.48576
t2* -3.3508 -0.053904 1.17043
t3* -0.0177 -0.000121 0.00879

When bootstrapping multiple statistics, add an index parameter to the plot() and

boot.ci() functions to indicate which column of bootobject$t to analyze. In this

example, index 1 refers to the intercept, index 2 is car weight, and index 3 is the

engine displacement. To plot the results for car weight, use

plot(results, index=2)

The graph is given in figure 12.3.

 To get the 95% confidence intervals for car weight and engine displacement, use

> boot.ci(results, type="bca", index=2)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = results, type = "bca", index = 2)

Intervals :
Level BCa
95% (-5.66, -1.19)
Calculations and Intervals on Original Scale

www.it-ebooks.info

http://www.it-ebooks.info/

297Bootstrapping with the boot package

> boot.ci(results, type="bca", index=3)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = results, type = "bca", index = 3)

Intervals :

Level BCa

95% (-0.0331, 0.0010)

Calculations and Intervals on Original Scale

NOTE The previous example resamples the entire sample of data each time.
If you can assume that the predictor variables have fixed levels (typical in
planned experiments), you’d do better to only resample residual terms. See
Mooney and Duval (1993, pp. 16–17) for a simple explanation and algorithm.

Before we leave bootstrapping, it’s worth addressing two questions that come up often:

■ How large does the original sample need to be?
■ How many replications are needed?

Histogram of t

t*

D
e

n
s
it
y

−6 −4 −2 0

0
.0

0
.1

0
.2

0
.3

0
.4

−3 −2 −1 0 1 2 3

−
6

−
5

−
4

−
3

−
2

−
1

0

Quantiles of Standard Normal

t*

Figure 12.3 Distribution of bootstrapping regression coefficients for car weight

www.it-ebooks.info

http://www.it-ebooks.info/

298 CHAPTER 12 Resampling statistics and bootstrapping

There’s no simple answer to the first question. Some say that an original sample size of

20–30 is sufficient for good results, as long as the sample is representative of the popu-

lation. Random sampling from the population of interest is the most trusted method

for assuring the original sample’s representativeness. With regard to the second ques-

tion, I find that 1,000 replications are more than adequate in most cases. Computer

power is cheap, and you can always increase the number of replications if desired.

 There are many helpful sources of information about permutation tests and boot-

strapping. An excellent starting place is an online article by Yu (2003). Good (2006)

provides a comprehensive overview of resampling in general and includes R code. A

good, accessible introduction to bootstrapping is provided by Mooney and Duval

(1993). The definitive source on bootstrapping is Efron and Tibshirani (1998).

Finally, there are a number of great online resources, including Simon (1997), Canty

(2002), Shah (2005), and Fox (2002).

12.7 Summary

This chapter introduced a set of computer-intensive methods based on randomization

and resampling that allow you to test hypotheses and form confidence intervals with-

out reference to a known theoretical distribution. They’re particularly valuable when

your data comes from unknown population distributions, when there are serious out-

liers, when your sample sizes are small, and when there are no existing parametric

methods to answer the hypotheses of interest.

 The methods in this chapter are particularly exciting because they provide an ave-

nue for answering questions when your standard data assumptions are clearly unten-

able or when you have no other idea how to approach the problem. Permutation tests

and bootstrapping aren’t panaceas, though. They can’t turn bad data into good data.

If your original samples aren’t representative of the population of interest or are too

small to accurately reflect it, then these techniques won’t help.

 In the next chapter, we’ll consider data models for variables that follow known, but

not necessarily normal, distributions.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 4

Advanced methods

In this part of the book, we’ll consider advanced methods of statistical analy-

sis to round out your data analysis toolkit. The methods in this part play a key

role in the growing field of data mining and predictive analytics.

 Chapter 13 expands on the regression methods in chapter 8 to cover para-

metric approaches to data that are not normally distributed. The chapter starts

with a discussion of the generalized linear model and then focuses on cases

where you’re trying to predict an outcome variable that is either categorical

(logistic regression) or a count (Poisson regression).

 Dealing with a large number of variables can be challenging, due to the com-

plexity inherent in multivariate data. Chapter 14 describes two popular methods

for exploring and simplifying multivariate data. Principal components analysis

can be used to transform a large number of correlated variables into a smaller

set of composite variables. Factor analysis consists of a set of techniques for

uncovering the latent structure underlying a given set of variables. Chapter 14

provides step-by-step instructions for carrying out each.

 Chapter 15 explores time-dependent data. Analysts are frequently faced with

the need to understand trends and predict future events. Chapter 15 provides a

thorough introduction to the analysis of time-series data and forecasting. After

describing the general characteristics of time series data, two of the most popu-

lar forecasting approaches (Exponential and ARIMA) are illustrated.

 Cluster analysis is the subject of chapter 16. While principal components and

factor analysis simplify multivariate data by combining individual variables into

composite variables, cluster analysis attempts to simplify multivariate data by

combining individual observations into subgroups called clusters. Clusters con-

tain cases that are similar to each other and different from the cases in other

www.it-ebooks.info

http://www.it-ebooks.info/

300 CHAPTER

clusters. The chapter considers methods for determining the number of clusters pres-

ent in a data set and combining observations into these clusters.

 Chapter 17 addresses the important topic of classification. In classification prob-

lems, the analyst attempts to develop a model for predicting the group membership of

new cases (for example, good credit/bad credit risk, benign/malignant, pass/fail)

from a (potentially large) set of predictor variables. A wide variety of methods are con-

sidered, including logistic regression, decision trees, random forests, and support-vec-

tor machines. Methods for assessing the efficacy of the resulting classification models

are also described.

 In practice, researchers must often deal with incomplete datasets. Chapter 18 con-

siders modern approaches to the ubiquitous problem of missing data values. R sup-

ports a number of elegant approaches for analyzing datasets that are incomplete for

various reasons. Several of the best are described here, along with guidance about

which ones to use and which ones to avoid.

 After completing part 4, you’ll have the tools to manage a wide range of complex

data-analysis problems. This includes modeling non-normal outcome variables, deal-

ing with large numbers of correlated variables, reducing a large number of cases to a

smaller number of homogeneous clusters, developing models to predict future values

or categorical outcomes, and handling messy and incomplete data.

Advanced methods

www.it-ebooks.info

http://www.it-ebooks.info/

301

Generalized linear models

In chapters 8 (regression) and 9 (ANOVA), we explored linear models that can be

used to predict a normally distributed response variable from a set of continuous

and/or categorical predictor variables. But there are many situations in which it’s

unreasonable to assume that the dependent variable is normally distributed (or

even continuous). For example:

■ The outcome variable may be categorical. Binary variables (for example, yes/

no, passed/failed, lived/died) and polytomous variables (for example,

poor/good/excellent, republican/democrat/independent) clearly aren’t

normally distributed.
■ The outcome variable may be a count (for example, number of traffic acci-

dents in a week, number of drinks per day). Such variables take on a limited

number of values and are never negative. Additionally, their mean and vari-

ance are often related (which isn’t true for normally distributed variables).

This chapter covers

■ Formulating a generalized linear model

■ Predicting categorical outcomes

■ Modeling count data

www.it-ebooks.info

http://www.it-ebooks.info/

302 CHAPTER 13 Generalized linear models

Generalized linear models extend the linear-model framework to include dependent vari-

ables that are decidedly non-normal.

 In this chapter, we’ll start with a brief overview of generalized linear models and

the glm() function used to estimate them. Then we’ll focus on two popular models in

this framework: logistic regression (where the dependent variable is categorical) and

Poisson regression (where the dependent variable is a count variable).

 To motivate the discussion, you’ll apply generalized linear models to two research

questions that aren’t easily addressed with standard linear models:

■ What personal, demographic, and relationship variables predict marital infidel-

ity? In this case, the outcome variable is binary (affair/no affair).
■ What impact does a drug treatment for seizures have on the number of seizures

experienced over an eight-week period? In this case, the outcome variable is a

count (number of seizures).

You’ll apply logistic regression to address the first question and Poison regression to

address the second. Along the way, we’ll consider extensions of each technique.

13.1 Generalized linear models and the glm() function

A wide range of popular data-analytic methods are subsumed within the framework of

the generalized linear model. In this section, we’ll briefly explore some of the theory

behind this approach. You can safely skip this section if you like and come back to it

later.

 Let’s say that you want to model the relationship between a response variable Y and

a set of p predictor variables X1 ...Xp. In the standard linear model, you assume that Y

is normally distributed and that the form of the relationship is

This equation states that the conditional mean of the response variable is a linear

combination of the predictor variables. The βj are the parameters specifying the

expected change in Y for a unit change in Xj, and β0 is the expected value of Y when all

the predictor variables are 0. You’re saying that you can predict the mean of the Y dis-

tribution for observations with a given set of X values by applying the proper weights

to the X variables and adding them up.

 Note that you’ve made no distributional assumptions about the predictor vari-

ables, Xj. Unlike Y, there’s no requirement that they be normally distributed. In fact,

they’re often categorical (for example, ANOVA designs). Additionally, nonlinear func-

tions of the predictors are allowed. You often include such predictors as X2 or X1
 × X2.

What is important is that the equation is linear in the parameters (β0, β1,… βp).

 In generalized linear models, you fit models of the form

= +μY β0 βjX j
j =1

p

= +g(μY) β0 βjX j
j =1

p

www.it-ebooks.info

http://www.it-ebooks.info/

303Generalized linear models and the glm() function

where g(µY) is a function of the conditional mean (called the link function). Addition-

ally, you relax the assumption that Y is normally distributed. Instead, you assume that

Y follows a distribution that’s a member of the exponential family. You specify the link

function and the probability distribution, and the parameters are derived through an

iterative maximum-likelihood-estimation procedure.

13.1.1 The glm() function

Generalized linear models are typically fit in R through the glm() function (although

other specialized functions are available). The form of the function is similar to lm()

but includes additional parameters. The basic format of the function is

glm(formula, family=family(link=function), data=)

where the probability distribution (family) and corresponding default link function

(function) are given in table 13.1.

The glm() function allows you to fit a number of popular models, including logistic

regression, Poisson regression, and survival analysis (not considered here). You can

demonstrate this for the first two models as follows. Assume that you have a single

response variable (Y), three predictor variables (X1, X2, X3), and a data frame

(mydata) containing the data.

 Logistic regression is applied to situations in which the response variable is dichot-

omous (0 or 1). The model assumes that Y follows a binomial distribution and that

you can fit a linear model of the form

where π = μY is the conditional mean of Y (that is, the probability that Y = 1 given a set

of X values), (π/1 – π) is the odds that Y = 1, and log(π/1 – π) is the log odds, or logit.

Table 13.1 glm() parameters

Family Default link function

binomial (link = "logit")

gaussian (link = "identity")

gamma (link = "inverse")

inverse.gaussian (link = "1/mu^2")

poisson (link = "log")

quasi (link = "identity", variance = "constant")

quasibinomial (link = "logit")

quasipoisson (link = "log")

loge β0

π
π1−

= + βjX j
j =1

p

www.it-ebooks.info

http://www.it-ebooks.info/

304 CHAPTER 13 Generalized linear models

In this case, log(π/1 – π) is the link function, the probability distribution is binomial,

and the logistic regression model can be fit using

glm(Y~X1+X2+X3, family=binomial(link="logit"), data=mydata)

Logistic regression is described more fully in section 13.2.

 Poisson regression is applied to situations in which the response variable is the num-

ber of events to occur in a given period of time. The Poisson regression model assumes

that Y follows a Poisson distribution and that you can fit a linear model of the form

where λ is the mean (and variance) of Y. In this case, the link function is log(λ), the

probability distribution is Poisson, and the Poisson regression model can be fit using

glm(Y~X1+X2+X3, family=poisson(link="log"), data=mydata)

Poisson regression is described in section 13.3.

 It’s worth noting that the standard linear model is also a special case of the gener-

alized linear model. If you let the link function g(μY) = μY or the identity function and

specify that the probability distribution is normal (Gaussian), then

glm(Y~X1+X2+X3, family=gaussian(link="identity"), data=mydata)

would produce the same results as

lm(Y~X1+X2+X3, data=mydata)

To summarize, generalized linear models extend the standard linear model by fitting
a function of the conditional mean response (rather than the conditional mean
response) and assuming that the response variable follows a member of the exponential

family of distributions (rather than being limited to the normal distribution). The
parameter estimates are derived via maximum likelihood rather than least squares.

13.1.2 Supporting functions

Many of the functions that you used in conjunction with lm() when analyzing stan-

dard linear models have corresponding versions for glm(). Some commonly used

functions are given in table 13.2.

Table 13.2 Functions that support glm()

Function Description

summary() Displays detailed results for the fitted model

coefficients(), coef() Lists the model parameters (intercept and slopes) for the fitted model

confint() Provides confidence intervals for the model parameters (95% by default)

residuals() Lists the residual values in a fitted model

anova() Generates an ANOVA table comparing two fitted models

loge(λ) β0 = + βjX j
j =1

p

www.it-ebooks.info

http://www.it-ebooks.info/

305Generalized linear models and the glm() function

We’ll explore examples of these functions in later sections. In the next section, we’ll

briefly consider the assessment of model adequacy.

13.1.3 Model fit and regression diagnostics

The assessment of model adequacy is as important for generalized linear models as it

is for standard (OLS) linear models. Unfortunately, there’s less agreement in the statis-

tical community regarding appropriate assessment procedures. In general, you can
use the techniques described in chapter 8, with the following caveats.

 When assessing model adequacy, you’ll typically want to plot predicted values

expressed in the metric of the original response variable against residuals of the devi-
ance type. For example, a common diagnostic plot would be

plot(predict(model, type="response"),
 residuals(model, type= "deviance"))

where model is the object returned by the glm() function.

 The hat values, studentized residuals, and Cook’s D statistics that R provides will be
approximate values. Additionally, there’s no general consensus on cutoff values for

identifying problematic observations. Values have to be judged relative to each other.

One approach is to create index plots for each statistic and look for unusually large
values. For example, you could use the following code to create three diagnostic plots:

plot(hatvalues(model))
plot(rstudent(model))
plot(cooks.distance(model))

Alternatively, you could use the code

library(car)
influencePlot(model)

to create one omnibus plot. In the latter graph, the horizontal axis is the leverage, the

vertical axis is the studentized residual, and the plotted symbol is proportional to the
Cook’s distance.

 Diagnostic plots tend to be most helpful when the response variable takes on many

values. When the response variable can only take on a limited number of values (for

example, logistic regression), the utility of these plots is decreased.
 For more on regression diagnostics for generalized linear models, see Fox (2008)

and Faraway (2006). In the remaining portion of this chapter, we’ll consider two of

plot() Generates diagnostic plots for evaluating the fit of a model

predict() Uses a fitted model to predict response values for a new dataset

deviance() Deviance for the fitted model

df.residual() Residual degrees of freedom for the fitted model

Table 13.2 Functions that support glm()

Function Description

www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 13 Generalized linear models

the most popular forms of the generalized linear model in detail: logistic regression
and Poisson regression.

13.2 Logistic regression

Logistic regression is useful when you’re predicting a binary outcome from a set of

continuous and/or categorical predictor variables. To demonstrate this, let’s explore

the data on infidelity contained in the data frame Affairs, provided with the AER

package. Be sure to download and install the package (using install.pack-

ages("AER")) before first use.

 The infidelity data, known as Fair’s Affairs, is based on a cross-sectional survey con-
ducted by Psychology Today in 1969 and is described in Greene (2003) and Fair (1978).

It contains 9 variables collected on 601 participants and includes how often the

respondent engaged in extramarital sexual intercourse during the past year, as well as
their gender, age, years married, whether they had children, their religiousness (on a

5-point scale from 1=anti to 5=very), education, occupation (Hollingshead 7-point

classification with reverse numbering), and a numeric self-rating of their marriage
(from 1=very unhappy to 5=very happy).

 Let’s look at some descriptive statistics:

> data(Affairs, package="AER")
> summary(Affairs)
 affairs gender age yearsmarried children
 Min. : 0.000 female:315 Min. :17.50 Min. : 0.125 no :171
 1st Qu.: 0.000 male :286 1st Qu.:27.00 1st Qu.: 4.000 yes:430
 Median : 0.000 Median :32.00 Median : 7.000
 Mean : 1.456 Mean :32.49 Mean : 8.178
 3rd Qu.: 0.000 3rd Qu.:37.00 3rd Qu.:15.000
 Max. :12.000 Max. :57.00 Max. :15.000
 religiousness education occupation rating
 Min. :1.000 Min. : 9.00 Min. :1.000 Min. :1.000
 1st Qu.:2.000 1st Qu.:14.00 1st Qu.:3.000 1st Qu.:3.000
 Median :3.000 Median :16.00 Median :5.000 Median :4.000
 Mean :3.116 Mean :16.17 Mean :4.195 Mean :3.932
 3rd Qu.:4.000 3rd Qu.:18.00 3rd Qu.:6.000 3rd Qu.:5.000
 Max. :5.000 Max. :20.00 Max. :7.000 Max. :5.000

> table(Affairs$affairs)
 0 1 2 3 7 12
451 34 17 19 42 38

From these statistics, you can see that that 52% of respondents were female, that 72%

had children, and that the median age for the sample was 32 years. With regard to the
response variable, 75% of respondents reported not engaging in an infidelity in the

past year (451/601). The largest number of encounters reported was 12 (6%).

 Although the number of indiscretions was recorded, your interest here is in the

binary outcome (had an affair/didn’t have an affair). You can transform affairs into a

dichotomous factor called ynaffair with the following code.

> Affairs$ynaffair[Affairs$affairs > 0] <- 1
> Affairs$ynaffair[Affairs$affairs == 0] <- 0

www.it-ebooks.info

http://www.it-ebooks.info/

307Logistic regression

> Affairs$ynaffair <- factor(Affairs$ynaffair,
 levels=c(0,1),
 labels=c("No","Yes"))
> table(Affairs$ynaffair)
No Yes
451 150

This dichotomous factor can now be used as the outcome variable in a logistic regres-

sion model:

> fit.full <- glm(ynaffair ~ gender + age + yearsmarried + children +
 religiousness + education + occupation +rating,
 data=Affairs, family=binomial())
> summary(fit.full)

Call:
glm(formula = ynaffair ~ gender + age + yearsmarried + children +
 religiousness + education + occupation + rating, family = binomial(),
 data = Affairs)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.571 -0.750 -0.569 -0.254 2.519

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.3773 0.8878 1.55 0.12081
gendermale 0.2803 0.2391 1.17 0.24108
age -0.0443 0.0182 -2.43 0.01530 *
yearsmarried 0.0948 0.0322 2.94 0.00326 **
childrenyes 0.3977 0.2915 1.36 0.17251
religiousness -0.3247 0.0898 -3.62 0.00030 ***
education 0.0211 0.0505 0.42 0.67685
occupation 0.0309 0.0718 0.43 0.66663
rating -0.4685 0.0909 -5.15 2.6e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 675.38 on 600 degrees of freedom
Residual deviance: 609.51 on 592 degrees of freedom
AIC: 627.5

Number of Fisher Scoring iterations: 4

From the p-values for the regression coefficients (last column), you can see that gen-

der, presence of children, education, and occupation may not make a significant con-

tribution to the equation (you can’t reject the hypothesis that the parameters are 0).

Let’s fit a second equation without them and test whether this reduced model fits the

data as well:

> fit.reduced <- glm(ynaffair ~ age + yearsmarried + religiousness +
 rating, data=Affairs, family=binomial())
> summary(fit.reduced)

www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 13 Generalized linear models

Call:
glm(formula = ynaffair ~ age + yearsmarried + religiousness + rating,
 family = binomial(), data = Affairs)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.628 -0.755 -0.570 -0.262 2.400

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.9308 0.6103 3.16 0.00156 **
age -0.0353 0.0174 -2.03 0.04213 *
yearsmarried 0.1006 0.0292 3.44 0.00057 ***
religiousness -0.3290 0.0895 -3.68 0.00023 ***
rating -0.4614 0.0888 -5.19 2.1e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 675.38 on 600 degrees of freedom
Residual deviance: 615.36 on 596 degrees of freedom
AIC: 625.4

Number of Fisher Scoring iterations: 4

Each regression coefficient in the reduced model is statistically significant (p < .05).

Because the two models are nested (fit.reduced is a subset of fit.full), you can use

the anova() function to compare them. For generalized linear models, you’ll want a

chi-square version of this test:

> anova(fit.reduced, fit.full, test="Chisq")
Analysis of Deviance Table

Model 1: ynaffair ~ age + yearsmarried + religiousness + rating
Model 2: ynaffair ~ gender + age + yearsmarried + children +
 religiousness + education + occupation + rating
 Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 596 615
2 592 610 4 5.85 0.21

The nonsignificant chi-square value (p = 0.21) suggests that the reduced model with

four predictors fits as well as the full model with nine predictors, reinforcing your

belief that gender, children, education, and occupation don’t add significantly to the

prediction above and beyond the other variables in the equation. Therefore, you can

base your interpretations on the simpler model.

13.2.1 Interpreting the model parameters

Let’s look at the regression coefficients:

> coef(fit.reduced)
 (Intercept) age yearsmarried religiousness rating
 1.931 -0.035 0.101 -0.329 -0.461

www.it-ebooks.info

http://www.it-ebooks.info/

309Logistic regression

In a logistic regression, the response being modeled is the log(odds) that Y = 1. The

regression coefficients give the change in log(odds) in the response for a unit change

in the predictor variable, holding all other predictor variables constant.

 Because log(odds) are difficult to interpret, you can exponentiate them to put the

results on an odds scale:

> exp(coef(fit.reduced))
 (Intercept) age yearsmarried religiousness rating
 6.895 0.965 1.106 0.720 0.630

Now you can see that the odds of an extramarital encounter are increased by a factor

of 1.106 for a one-year increase in years married (holding age, religiousness, and mar-

ital rating constant). Conversely, the odds of an extramarital affair are multiplied by a

factor of 0.965 for every year increase in age. The odds of an extramarital affair increase

with years married and decrease with age, religiousness, and marital rating. Because the

predictor variables can’t equal 0, the intercept isn’t meaningful in this case.

 If desired, you can use the confint() function to obtain confidence intervals for

the coefficients. For example, exp(confint(fit.reduced)) would print 95% confi-

dence intervals for each of the coefficients on an odds scale.

 Finally, a one-unit change in a predictor variable may not be inherently interesting.

For binary logistic regression, the change in the odds of the higher value on the

response variable for an n unit change in a predictor variable is exp(βj)^n. If a one-

year increase in years married multiplies the odds of an affair by 1.106, a 10-year

increase would increase the odds by a factor of 1.106^10, or 2.7, holding the other

predictor variables constant.

13.2.2 Assessing the impact of predictors on the probability of an outcome

For many of us, it’s easier to think in terms of probabilities than odds. You can use the

predict() function to observe the impact of varying the levels of a predictor variable

on the probability of the outcome. The first step is to create an artificial dataset con-

taining the values of the predictor variables you’re interested in. Then you can use

this artificial dataset with the predict() function to predict the probabilities of the

outcome event occurring for these values.

 Let’s apply this strategy to assess the impact of marital ratings on the probability of

having an extramarital affair. First, create an artificial dataset where age, years mar-

ried, and religiousness are set to their means, and marital rating varies from 1 to 5:

> testdata <- data.frame(rating=c(1, 2, 3, 4, 5), age=mean(Affairs$age),
 yearsmarried=mean(Affairs$yearsmarried),
 religiousness=mean(Affairs$religiousness))
> testdata
 rating age yearsmarried religiousness
1 1 32.5 8.18 3.12
2 2 32.5 8.18 3.12
3 3 32.5 8.18 3.12
4 4 32.5 8.18 3.12
5 5 32.5 8.18 3.12

www.it-ebooks.info

http://www.it-ebooks.info/

310 CHAPTER 13 Generalized linear models

Next, use the test dataset and prediction equation to obtain probabilities:

> testdata$prob <- predict(fit.reduced, newdata=testdata, type="response")
 testdata
 rating age yearsmarried religiousness prob
1 1 32.5 8.18 3.12 0.530
2 2 32.5 8.18 3.12 0.416
3 3 32.5 8.18 3.12 0.310
4 4 32.5 8.18 3.12 0.220
5 5 32.5 8.18 3.12 0.151

From these results, you see that the probability of an extramarital affair decreases

from 0.53 when the marriage is rated 1=very unhappy to 0.15 when the marriage is

rated 5=very happy (holding age, years married, and religiousness constant). Now

look at the impact of age:

> testdata <- data.frame(rating=mean(Affairs$rating),
 age=seq(17, 57, 10),
 yearsmarried=mean(Affairs$yearsmarried),
 religiousness=mean(Affairs$religiousness))
> testdata
 rating age yearsmarried religiousness
1 3.93 17 8.18 3.12
2 3.93 27 8.18 3.12
3 3.93 37 8.18 3.12
4 3.93 47 8.18 3.12
5 3.93 57 8.18 3.12

> testdata$prob <- predict(fit.reduced, newdata=testdata, type="response")
> testdata
 rating age yearsmarried religiousness prob
1 3.93 17 8.18 3.12 0.335
2 3.93 27 8.18 3.12 0.262
3 3.93 37 8.18 3.12 0.199
4 3.93 47 8.18 3.12 0.149
5 3.93 57 8.18 3.12 0.109

Here, you see that as age increases from 17 to 57, the probability of an extramarital

encounter decreases from 0.34 to 0.11, holding the other variables constant. Using

this approach, you can explore the impact of each predictor variable on the outcome.

13.2.3 Overdispersion

The expected variance for data drawn from a binomial distribution is σ2 = nπ(1 − π),
where n is the number of observations and π is the probability of belonging to the

Y = 1 group. Overdispersion occurs when the observed variance of the response variable

is larger than what would be expected from a binomial distribution. Overdispersion

can lead to distorted test standard errors and inaccurate tests of significance.

 When overdispersion is present, you can still fit a logistic regression using the

glm() function, but in this case, you should use the quasibinomial distribution rather

than the binomial distribution.

www.it-ebooks.info

http://www.it-ebooks.info/

311Logistic regression

 One way to detect overdispersion is to compare the residual deviance with the

residual degrees of freedom in your binomial model. If the ratio

is considerably larger than 1, you have evidence of overdispersion. Applying this to

the Affairs example, you have

> deviance(fit.reduced)/df.residual(fit.reduced)
[1] 1.032

which is close to 1, suggesting no overdispersion.

 You can also test for overdispersion. To do this, you fit the model twice, but in the

first instance you use family="binomial" and in the second instance you use
family="quasibinomial". If the glm() object returned in the first case is called fit

and the object returned in the second case is called fit.od, then

pchisq(summary(fit.od)$dispersion * fit$df.residual,
 fit$df.residual, lower = F)

provides the p-value for testing the null hypothesis H0: φ = 1 versus the alternative

hypothesis H1: φ ≠ 1. If p is small (say, less than 0.05), you’d reject the null hypothesis.

 Applying this to the Affairs dataset, you have

> fit <- glm(ynaffair ~ age + yearsmarried + religiousness +
 rating, family = binomial(), data = Affairs)
> fit.od <- glm(ynaffair ~ age + yearsmarried + religiousness +
 rating, family = quasibinomial(), data = Affairs)
> pchisq(summary(fit.od)$dispersion * fit$df.residual,
 fit$df.residual, lower = F)

[1] 0.34

The resulting p-value (0.34) is clearly not significant (p > 0.05), strengthening your

belief that overdispersion isn’t a problem. We’ll return to the issue of overdispersion
when we discuss Poisson regression.

13.2.4 Extensions

Several logistic regression extensions and variations are available in R:

■ Robust logistic regression—The glmRob() function in the robust package can be

used to fit a robust generalized linear model, including robust logistic regres-

sion. Robust logistic regression can be helpful when fitting logistic regression
models to data containing outliers and influential observations.

■ Multinomial logistic regression—If the response variable has more than two unor-

dered categories (for example, married/widowed/divorced), you can fit a poly-

tomous logistic regression using the mlogit() function in the mlogit package.
■ Ordinal logistic regression—If the response variable is a set of ordered categories

(for example, credit risk as poor/good/excellent), you can fit an ordinal logis-
tic regression using the lrm() function in the rms package.

Residual deviance

Residual df
φ =

www.it-ebooks.info

http://www.it-ebooks.info/

312 CHAPTER 13 Generalized linear models

The ability to model a response variable with multiple categories (both ordered and

unordered) is an important extension, but it comes at the expense of greater interpre-

tive complexity. Assessing model fit and regression diagnostics in these cases will also

be more complex.

 In the Affairs example, the number of extramarital contacts was dichotomized

into a yes/no response variable because our interest centered on whether respon-

dents had an affair in the past year. If our interest had been centered on magnitude—

the number of encounters in the past year—we would have analyzed the count data

directly. One popular approach to analyzing count data is Poisson regression, the next

topic we’ll address.

13.3 Poisson regression

Poisson regression is useful when you’re predicting an outcome variable representing

counts from a set of continuous and/or categorical predictor variables. A comprehen-

sive yet accessible introduction to Poisson regression is provided by Coxe, West, and

Aiken (2009).

 To illustrate the fitting of a Poisson regression model, along with some issues that

can come up in the analysis, we’ll use the Breslow seizure data (Breslow, 1993) pro-

vided in the robust package. Specifically, we’ll consider the impact of an antiepileptic

drug treatment on the number of seizures occurring over an eight-week period follow-

ing the initiation of therapy. Be sure to install the robust package before continuing.

 Data were collected on the age and number of seizures reported by patients suffer-

ing from simple or complex partial seizures during an eight-week period before, and

eight-week period after, randomization into a drug or placebo condition. SumY (the

number of seizures in the eight-week period post-randomization) is the response vari-

able. Treatment condition (Trt), age in years (Age), and number of seizures reported

in the baseline eight-week period (Base) are the predictor variables. The baseline

number of seizures and age are included because of their potential effect on the

response variable. We're interested in whether or not evidence exists that the drug

treatment decreases the number of seizures after accounting for these covariates.

 First, let’s look at summary statistics for the dataset:

> data(breslow.dat, package="robust")
> names(breslow.dat)
 [1] "ID" "Y1" "Y2" "Y3" "Y4" "Base" "Age" "Trt" "Ysum"
[10] "sumY" "Age10" "Base4"

> summary(breslow.dat[c(6,7,8,10)])
 Base Age Trt sumY
 Min. : 6.0 Min. :18.0 placebo :28 Min. : 0.0
 1st Qu.: 12.0 1st Qu.:23.0 progabide:31 1st Qu.: 11.5
 Median : 22.0 Median :28.0 Median : 16.0
 Mean : 31.2 Mean :28.3 Mean : 33.1
 3rd Qu.: 41.0 3rd Qu.:32.0 3rd Qu.: 36.0
 Max. :151.0 Max. :42.0 Max. :302.0

www.it-ebooks.info

http://www.it-ebooks.info/

313Poisson regression

Note that although there are 12 variables in the dataset, we’re limiting our attention

to the 4 described earlier. Both the baseline and post-randomization number of sei-

zures are highly skewed. Let’s look at the response variable in more detail. The follow-

ing code produces the graphs in figure 13.1:

opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
attach(breslow.dat)
hist(sumY, breaks=20, xlab="Seizure Count",
 main="Distribution of Seizures")
boxplot(sumY ~ Trt, xlab="Treatment", main="Group Comparisons")
par(opar)

You can clearly see the skewed nature of the dependent variable and the possible pres-

ence of outliers. At first glance, the number of seizures in the drug condition appears

to be smaller and has a smaller variance. (You’d expect a smaller variance to accom-

pany a smaller mean with Poisson distributed data.) Unlike standard OLS regression,

this heterogeneity of variance isn’t a problem in Poisson regression.

 The next step is to fit the Poisson regression:

> fit <- glm(sumY ~ Base + Age + Trt, data=breslow.dat, family=poisson())
> summary(fit)

Distribution of Seizures

Seizure Count

F
re

q
u

e
n

c
y

0 50 150 250

0
5

1
0

1
5

2
0

2
5

3
0

placebo progabide

0
5

0
1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

Group Comparisons

Treatment

Figure 13.1 Distribution of post-treatment seizure counts (source: Breslow seizure data)

www.it-ebooks.info

http://www.it-ebooks.info/

314 CHAPTER 13 Generalized linear models

Call:
glm(formula = sumY ~ Base + Age + Trt, family = poisson(), data =

breslow.dat)

Deviance Residuals:
 Min 1Q Median 3Q Max
-6.057 -2.043 -0.940 0.793 11.006

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.948826 0.135619 14.37 < 2e-16 ***
Base 0.022652 0.000509 44.48 < 2e-16 ***
Age 0.022740 0.004024 5.65 1.6e-08 ***
Trtprogabide -0.152701 0.047805 -3.19 0.0014 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 2122.73 on 58 degrees of freedom
Residual deviance: 559.44 on 55 degrees of freedom
AIC: 850.7

Number of Fisher Scoring iterations: 5

The output provides the deviances, regression parameters, and standard errors, and

tests that these parameters are 0. Note that each of the predictor variables is signifi-

cant at the p < 0.05 level.

13.3.1 Interpreting the model parameters

The model coefficients are obtained using the coef() function or by examining the

Coefficients table in the summary() function output:

> coef(fit)
 (Intercept) Base Age Trtprogabide
 1.9488 0.0227 0.0227 -0.1527

In a Poisson regression, the dependent variable being modeled is the log of the condi-

tional mean loge(λ). The regression parameter 0.0227 for Age indicates that a one-
year increase in age is associated with a 0.03 increase in the log mean number of

seizures, holding baseline seizures and treatment condition constant. The intercept is

the log mean number of seizures when each of the predictors equals 0. Because you
can’t have a zero age and none of the participants had a zero number of baseline sei-

zures, the intercept isn’t meaningful in this case.

 It’s usually much easier to interpret the regression coefficients in the original scale
of the dependent variable (number of seizures, rather than log number of seizures).

To accomplish this, exponentiate the coefficients:

> exp(coef(fit))
 (Intercept) Base Age Trtprogabide
 7.020 1.023 1.023 0.858

Now you see that a one-year increase in age multiplies the expected number of sei-

zures by 1.023, holding the other variables constant. This means that increased age is

www.it-ebooks.info

http://www.it-ebooks.info/

315Poisson regression

associated with higher numbers of seizures. More important, a one-unit change in Trt

(that is, moving from placebo to progabide) multiplies the expected number of sei-

zures by 0.86. You’d expect a 20% decrease in the number of seizures for the drug

group compared with the placebo group, holding baseline number of seizures and

age constant.

 It’s important to remember that, like the exponentiated parameters in logistic

regression, the exponentiated parameters in the Poisson model have a multiplicative

rather than an additive effect on the response variable. Also, as with logistic regres-

sion, you must evaluate your model for overdispersion.

13.3.2 Overdispersion

In a Poisson distribution, the variance and mean are equal. Overdispersion occurs in

Poisson regression when the observed variance of the response variable is larger than

would be predicted by the Poisson distribution. Because overdispersion is often

encountered when dealing with count data and can have a negative impact on the

interpretation of the results, we’ll spend some time discussing it.

 There are several reasons why overdispersion may occur (Coxe et al., 2009):

■ The omission of an important predictor variable can lead to overdispersion.
■ Overdispersion can also be caused by a phenomenon known as state dependence.

Within observations, each event in a count is assumed to be independent. For

the seizure data, this would imply that for any patient, the probability of a sei-

zure is independent of each other seizure. But this assumption is often unten-

able. For a given individual, the probability of having a first seizure is unlikely to

be the same as the probability of having a 40th seizure, given that they’ve

already had 39.
■ In longitudinal studies, overdispersion can be caused by the clustering inherent

in repeated measures data. We won’t discuss longitudinal Poisson models here.

If overdispersion is present and you don’t account for it in your model, you’ll get stan-

dard errors and confidence intervals that are too small, and significance tests that are

too liberal (that is, you’ll find effects that aren’t really there).

 As with logistic regression, overdispersion is suggested if the ratio of the residual

deviance to the residual degrees of freedom is much larger than 1. For the seizure

data, the ratio is

> deviance(fit)/df.residual(fit)
[1] 10.17

which is clearly much larger than 1.

 The qcc package provides a test for overdispersion in the Poisson case. (Be sure to

download and install this package before first use.) You can test for overdispersion in

the seizure data using the following code:

> library(qcc)
> qcc.overdispersion.test(breslow.dat$sumY, type="poisson")

www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 13 Generalized linear models

Overdispersion test Obs.Var/Theor.Var Statistic p-value
 poisson data 62.9 3646 0

Not surprisingly, the significance test has a p-value less than 0.05, strongly suggesting

the presence of overdispersion.

 You can still fit a model to your data using the glm() function, by replacing fam-

ily="poisson" with family="quasipoisson". Doing so is analogous to the approach

to logistic regression when overdispersion is present:

> fit.od <- glm(sumY ~ Base + Age + Trt, data=breslow.dat,
 family=quasipoisson())
> summary(fit.od)

Call:
glm(formula = sumY ~ Base + Age + Trt, family = quasipoisson(),
 data = breslow.dat)

Deviance Residuals:
 Min 1Q Median 3Q Max
-6.057 -2.043 -0.940 0.793 11.006

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.94883 0.46509 4.19 0.00010 ***
Base 0.02265 0.00175 12.97 < 2e-16 ***
Age 0.02274 0.01380 1.65 0.10509
Trtprogabide -0.15270 0.16394 -0.93 0.35570

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 11.8)

 Null deviance: 2122.73 on 58 degrees of freedom
Residual deviance: 559.44 on 55 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

Notice that the parameter estimates in the quasi-Poisson approach are identical to

those produced by the Poisson approach. The standard errors are much larger,

though. In this case, the larger standard errors have led to p-values for Trt (and Age)

that are greater than 0.05. When you take overdispersion into account, there’s insuffi-

cient evidence to declare that the drug regimen reduces seizure counts more than

receiving a placebo, after controlling for baseline seizure rate and age.

 Please remember that this example is used for demonstration purposes only. The

results shouldn’t be taken to imply anything about the efficacy of progabide in the

real world. I’m not a doctor—at least not a medical doctor—and I don’t even play one

on TV.

 We’ll finish this exploration of Poisson regression with a discussion of some impor-

tant variants and extensions.

www.it-ebooks.info

http://www.it-ebooks.info/

317Poisson regression

13.3.3 Extensions

R provides several useful extensions to the basic Poisson regression model, including

models that allow varying time periods, models that correct for too many zeros, and

robust models that are useful when data includes outliers and influential observations.

I’ll describe each separately.

POISSON REGRESSION WITH VARYING TIME PERIODS

Our discussion of Poisson regression has been limited to response variables that mea-

sure a count over a fixed length of time (for example, number of seizures in an eight-

week period, number of traffic accidents in the past year, or number of pro-social

behaviors in a day). The length of time is constant across observations. But you can fit

Poisson regression models that allow the time period to vary for each observation. In

this case, the outcome variable is a rate.

 To analyze rates, you must include a variable (for example, time) that records the

length of time over which the count occurs for each observation. You then change the

model from

to

or equivalently

To fit this new model, you use the offset option in the glm() function. For example,

assume that the length of time that patients participated post-randomization in the

Breslow study varied from 14 days to 60 days. You could use the rate of seizures as the

dependent variable (assuming you had recorded time for each patient in days) and fit

the model

fit <- glm(sumY ~ Base + Age + Trt, data=breslow.dat,
 offset= log(time), family=poisson)

where sumY is the number of seizures that occurred post-randomization for a patient

during the time the patient was studied. In this case, you’re assuming that rate doesn’t

vary over time (for example, 2 seizures in 4 days is equivalent to 10 seizures in 20 days).

ZERO-INFLATED POISSON REGRESSION

There are times when the number of zero counts in a dataset is larger than would be

predicted by the Poisson model. This can occur when there’s a subgroup of the popu-

lation that would never engage in the behavior being counted. For example, in the

Affairs dataset described in the section on logistic regression, the original outcome

loge(λ) β0 = + βjX j
j =1

p

loge β0 βjX j
j =1

pλ
time

= +

=log ee(λ) log (time) β0 ++ βjX j
j =1

p

www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 13 Generalized linear models

variable (affairs) counted the number of extramarital sexual intercourse experiences

participants had in the past year. It’s likely that there’s a subgroup of faithful marital

partners who would never have an affair, no matter how long the period of time stud-

ied. These are called structural zeros (primarily by the swingers in the group).

 In such cases, you can analyze the data using an approach called zero-inflated Poisson

regression. The approach fits two models simultaneously—one that predicts who would

or would not have an affair, and the second that predicts how many affairs a participant

would have if you excluded the permanently faithful. Think of this as a model that com-

bines a logistic regression (for predicting structural zeros) and a Poisson regression

model (that predicts counts for observations that aren’t structural zeros). Zero-inflated

Poisson regression can be fit using the zeroinfl() function in the pscl package.

ROBUST POISSON REGRESSION

Finally, the glmRob() function in the robust package can be used to fit a robust gener-

alized linear model, including robust Poisson regression. As mentioned previously,

this can be helpful in the presence of outliers and influential observations.

13.4 Summary

In this chapter, we used generalized linear models to expand the range of approaches

available for helping you to understand your data. In particular, the framework allows

you to analyze response variables that are decidedly non-normal, including categorical

outcomes and discrete counts. After briefly describing the general approach, we

focused on logistic regression (for analyzing a dichotomous outcome) and Poisson

regression (for analyzing outcomes measured as counts or rates).

 We also discussed the important topic of overdispersion, including how to detect it

and how to adjust for it. Finally, we looked at some of the extensions and variations

that are available in R.

 Each of the statistical approaches covered so far has dealt with directly observed

and recorded variables. In the next chapter, we’ll look at statistical models that deal

with latent variables—unobserved, theoretical variables that you believe underlie and

account for the behavior of the variables you do observe. In particular, you’ll see how

you can use factor analytic methods to detect and test hypotheses about these unob-

served variables.

Going further

Generalized linear models are a complex and mathematically sophisticated subject,
but many fine resources are available for learning about them. A good, short introduc-
tion to the topic is Dunteman and Ho (2006). The classic (and advanced) text on gen-
eralized linear models is provided by McCullagh and Nelder (1989). Comprehensive
and accessible presentations are provided by Dobson and Barnett (2008) and Fox
(2008). Faraway (2006) and Fox (2002) provide excellent introductions within the con-
text of R.

www.it-ebooks.info

http://www.it-ebooks.info/

319

Principal components
and factor analysis

One of the most challenging aspects of multivariate data is the sheer complexity of

the information. If you have a dataset with 100 variables, how do you make sense of

all the interrelationships present? Even with 20 variables, there are 190 pairwise

correlations to consider when you’re trying to understand how the individual vari-

ables relate to one another. Two related but distinct methodologies for exploring

and simplifying complex multivariate data are principal components and explor-

atory factor analysis.

 Principal components analysis (PCA) is a data-reduction technique that transforms

a larger number of correlated variables into a much smaller set of uncorrelated

variables called principal components. For example, you might use PCA to transform

30 correlated (and possibly redundant) environmental variables into 5 uncorre-

lated composite variables that retain as much information from the original set of

variables as possible.

This chapter covers

■ Principal components analysis

■ Exploratory factor analysis

■ Understanding other latent variable models

www.it-ebooks.info

http://www.it-ebooks.info/

320 CHAPTER 14 Principal components and factor analysis

 In contrast, exploratory factor analysis (EFA) is a collection of methods designed to
uncover the latent structure in a given set of variables. It looks for a smaller set of
underlying or latent constructs that can explain the relationships among the observed
or manifest variables. For example, the dataset Harman74.cor contains the correla-
tions among 24 psychological tests given to 145 seventh- and eighth-grade children. If
you apply EFA to this data, the results suggest that the 276 test intercorrelations can be
explained by the children’s abilities on 4 underlying factors (verbal ability, processing
speed, deduction, and memory).

 The differences between the PCA and EFA models can be seen in figure 14.1. Prin-
cipal components (PC1 and PC2) are linear combinations of the observed variables
(X1 to X5). The weights used to form the linear composites are chosen to maximize
the variance each principal component accounts for, while keeping the components
uncorrelated.

 In contrast, factors (F1 and F2) are assumed to underlie or “cause” the observed
variables, rather than being linear combinations of them. The errors (e1 to e5) repre-
sent the variance in the observed variables unexplained by the factors. The circles
indicate that the factors and errors aren’t directly observable but are inferred from
the correlations among the variables. In this example, the curved arrow between the
factors indicates that they’re correlated. Correlated factors are common, but not
required, in the EFA model.

 The methods described in this chapter require large samples to derive stable solu-
tions. What constitutes an adequate sample size is somewhat complicated. Until
recently, analysts used rules of thumb like “factor analysis requires 5–10 times as many
subjects as variables.” Recent studies suggest that the required sample size depends on
the number of factors, the number of variables associated with each factor, and how
well the set of factors explains the variance in the variables (Bandalos and Boehm-
Kaufman, 2009). I’ll go out on a limb and say that if you have several hundred obser-
vations, you’re probably safe. In this chapter, we’ll look at artificially small problems in
order to keep the output (and page count) manageable.

 We’ll start by reviewing the functions in R that can be used to perform PCA or EFA

and give a brief overview of the steps involved. Then we’ll work carefully through two

PCA examples, followed by an extended EFA example. A brief overview of other pack-

ages in R that can be used for fitting latent variable models is provided at the end of

X1

X2

X3

X4

X5

PC1

PC2

X1

X2

X3

X4

X5

F1

F1

e2

e1

e3

e4

e5

(a) Principal Components Model (b) Factor Analysis Model

Figure 14.1 Comparing

principal components and factor

analysis models. The diagrams

show the observed variables

(X1 to X5), the principal

components (PC1, PC2), factors

(F1, F2), and errors (e1 to e5).

www.it-ebooks.info

http://www.it-ebooks.info/

321Principal components and factor analysis in R

the chapter. This discussion includes packages for confirmatory factor analysis, struc-

tural equation modeling, correspondence analysis, and latent class analysis.

14.1 Principal components and factor analysis in R

In the base installation of R, the functions for PCA and EFA are princomp() and

factanal(), respectively. In this chapter, we’ll focus on functions provided in the

psych package. They offer many more useful options than their base counterparts.
Additionally, the results are reported in a metric that will be more familiar to social

scientists and more likely to match the output provided by corresponding programs in

other statistical packages such as SAS and SPSS.
 The psych package functions that are most relevant here are listed in table 14.1.

Be sure to install the package before trying the examples in this chapter.

EFA (and to a lesser degree PCA) are often confusing to new users. The reason is that

they describe a wide range of approaches, and each approach requires several steps

(and decisions) to achieve a final result. The most common steps are as follows:

1 Prepare the data. Both PCA and EFA derive their solutions from the correlations
among the observed variables. You can input either the raw data matrix or the

correlation matrix to the principal() and fa() functions. If raw data is input,

the correlation matrix is automatically calculated. Be sure to screen the data for
missing values before proceeding.

2 Select a factor model. Decide whether PCA (data reduction) or EFA (uncovering

latent structure) is a better fit for your research goals. If you select an EFA

approach, you’ll also need to choose a specific factoring method (for example,
maximum likelihood).

3 Decide how many components/factors to extract.

4 Extract the components/factors.

5 Rotate the components/factors.

6 Interpret the results.

7 Compute component or factor scores.

Table 14.1 Useful factor analytic functions in the psych package

Function Description

principal() Principal components analysis with optional rotation

fa() Factor analysis by principal axis, minimum residual, weighted least squares, or

maximum likelihood

fa.parallel() Scree plots with parallel analyses

factor.plot() Plot the results of a factor or principal components analysis

fa.diagram() Graph factor or principal components loading matrices

scree() Scree plot for factor and principal components analysis

www.it-ebooks.info

http://www.it-ebooks.info/

322 CHAPTER 14 Principal components and factor analysis

In the remainder of this chapter, we’ll carefully consider each of the steps, starting

with PCA. At the end of the chapter, you’ll find a detailed flow chart of the possible

steps in PCA/EFA (figure 14.7). The chart will make more sense once you’ve read

through the intervening material.

14.2 Principal components

The goal of PCA is to replace a large number of correlated variables with a smaller

number of uncorrelated variables while capturing as much information in the original

variables as possible. These derived variables, called principal components, are linear

combinations of the observed variables. Specifically, the first principal component

PC1 = a1X1 + a2X2 + ... + akXk

is the weighted combination of the k observed variables that accounts for the most

variance in the original set of variables. The second principal component is the linear

combination that accounts for the most variance in the original variables, under the

constraint that it’s orthogonal (uncorrelated) to the first principal component. Each

subsequent component maximizes the variance accounted for, while at the same time

remaining uncorrelated with all previous components. Theoretically, you can extract

as many principal components as there are variables. But from a practical viewpoint,

you hope that you can approximate the full set of variables with a much smaller set of

components. Let’s look at a simple example.

 The dataset USJudgeRatings contains lawyers’ ratings of state judges in the US

Superior Court. The data frame contains 43 observations on 12 numeric variables.

The variables are listed in table 14.2.

From a practical point of view, can you summarize the 11 evaluative ratings (INTG to

RTEN) with a smaller number of composite variables? If so, how many will you need, and

how will they be defined? Because the goal is to simplify the data, you’ll approach this

problem using PCA. The data are in raw score format, and there are no missing values.

Therefore, your next step is deciding how many principal components you’ll need.

Table 14.2 Variables in the USJudgeRatings dataset

Variable Description Variable Description

CONT Number of contacts of lawyer with judge PREP Preparation for trial

INTG Judicial integrity FAMI Familiarity with law

DMNR Demeanor ORAL Sound oral rulings

DILG Diligence WRIT Sound written rulings

CFMG Case flow managing PHYS Physical ability

DECI Prompt decisions RTEN Worthy of retention

www.it-ebooks.info

http://www.it-ebooks.info/

323Principal components

14.2.1 Selecting the number of components to extract

Several criteria are available for deciding how many components to retain in a PCA.
They include

■ Basing the number of components on prior experience and theory
■ Selecting the number of components needed to account for some threshold

cumulative amount of variance in the variables (for example, 80%)
■ Selecting the number of components to retain by examining the eigenvalues of

the k × k correlation matrix among the variables

The most common approach is based on the eigenvalues. Each component is associ-
ated with an eigenvalue of the correlation matrix. The first PC is associated with the
largest eigenvalue, the second PC with the second-largest eigenvalue, and so on. The
Kaiser–Harris criterion suggests retaining components with eigenvalues greater than
1. Components with eigenvalues less than 1 explain less variance than contained in a
single variable. In the Cattell Scree test, the eigenvalues are plotted against their com-
ponent numbers. Such plots typically demonstrate a bend or elbow, and the compo-
nents above this sharp break are retained. Finally, you can run simulations, extracting
eigenvalues from random data matrices of the same size as the original matrix. If an
eigenvalue based on real data is larger than the average corresponding eigenvalues
from a set of random data matrices, that component is retained. The approach is
called parallel analysis (see Hayton, Allen, and Scarpello, 2004, for more details).

 You can assess all three eigenvalue criteria at the same time via the fa.parallel()
function. For the 11 ratings (dropping the CONT variable), the necessary code is as
follows:

library(psych)
fa.parallel(USJudgeRatings[,-1], fa="pc", n.iter=100,
 show.legend=FALSE, main="Scree plot with parallel analysis")

This code produces the graph
shown in figure 14.2. The plot dis-

plays the scree test based on the

observed eigenvalues (as straight-
line segments and x’s), the mean

eigenvalues derived from 100 ran-

dom data matrices (as dashed
lines), and the eigenvalues

greater than 1 criteria (as a hori-

zontal line at y=1).

Figure 14.2 Assessing the number of

principal components to retain for the

USJudgeRatings example. A scree plot

(the line with x’s), eigenvalues greater than

1 criteria (horizontal line), and parallel

analysis with 100 simulations (dashed line)

 suggest retaining a single component.

2 4 6 8 10

0
2

4
6

8
1
0

Scree plot with parallel analysis

Factor Number

e
ig

e
n

 v
a
lu

e
s
 o

f
p

ri
n

c
ip

a
l
c
o

m
p

o
n

e
n

ts

www.it-ebooks.info

http://www.it-ebooks.info/

324 CHAPTER 14 Principal components and factor analysis

All three criteria suggest that a single component is appropriate for summarizing this

dataset. Your next step is to extract the principal component using the principal()

function.

14.2.2 Extracting principal components

As indicated earlier, the principal() function performs a principal components anal-

ysis starting with either a raw data matrix or a correlation matrix. The format is

principal(r, nfactors=, rotate=, scores=)

where

■ r is a correlation matrix or a raw data matrix.
■ nfactors specifies the number of principal components to extract (1 by default).
■ rotate indicates the rotation to be applied (varimax by default; see section

14.2.3).
■ scores specifies whether to calculate principal-component scores (false by

default).

To extract the first principal component, you can use the code in the following listing.

> library(psych)
> pc <- principal(USJudgeRatings[,-1], nfactors=1)
> pc

Principal Components Analysis
Call: principal(r = USJudgeRatings[, -1], nfactors=1)
Standardized loadings based upon correlation matrix
 PC1 h2 u2
INTG 0.92 0.84 0.157
DMNR 0.91 0.83 0.166
DILG 0.97 0.94 0.061
CFMG 0.96 0.93 0.072
DECI 0.96 0.92 0.076
PREP 0.98 0.97 0.030
FAMI 0.98 0.95 0.047
ORAL 1.00 0.99 0.009
WRIT 0.99 0.98 0.020
PHYS 0.89 0.80 0.201
RTEN 0.99 0.97 0.028

 PC1
SS loadings 10.13
Proportion Var 0.92
[... additional output omitted ...]

Here, you’re inputting the raw data without the CONT variable and specifying that

one unrotated component should be extracted. (Rotation is explained in section

14.3.3.) Because PCA is performed on a correlation matrix, the raw data is automati-

cally converted to a correlation matrix before the components are extracted.

Listing 14.1 Principal components analysis of USJudgeRatings

www.it-ebooks.info

http://www.it-ebooks.info/

325Principal components

 The column labeled PC1 contains the component loadings, which are the correla-

tions of the observed variables with the principal component(s). If you extracted

more than one principal component, there would be columns for PC2, PC3, and so on.

Component loadings are used to interpret the meaning of components. You can see

that each variable correlates highly with the first component (PC1). It therefore

appears to be a general evaluative dimension.

 The column labeled h2 contains the component communalities—the amount of

variance in each variable explained by the components. The u2 column contains the

component uniquenesses—the amount of variance not accounted for by the compo-

nents (or 1 – h2). For example, 80% of the variance in physical ability (PHYS) ratings

is accounted for by the first PC, and 20% isn’t. PHYS is the variable least well repre-

sented by a one-component solution.

 The row labeled SS Loadings contains the eigenvalues associated with the compo-

nents. The eigenvalues are the standardized variance associated with a particular com-

ponent (in this case, the value for the first component is 10). Finally, the row labeled

Proportion Var represents the amount of variance accounted for by each component.

Here you see that the first principal component accounts for 92% of the variance in

the 11 variables.

 Let’s consider a second example, one that results in a solution with more than one

principal component. The dataset Harman23.cor contains data on 8 body measure-

ments for 305 girls. In this case, the dataset consists of the correlations among the vari-

ables rather than the original data (see table 14.3).

Source: H. H. Harman, Modern Factor Analysis, Third Edition Revised, University of Chicago Press, 1976, Table 2.3.

Again, you wish to replace the original physical measurements with a smaller number

of derived variables. You can determine the number of components to extract using

Table 14.3 Correlations among body measurements for 305 girls (Harman23.cor)

Height
Arm

span
Forearm

Lower

leg
Weight

Bitro

diameter

Chest

girth

Chest

width

Height 1.00 0.85 0.80 0.86 0.47 0.40 0.30 0.38

Arm span 0.85 1.00 0.88 0.83 0.38 0.33 0.28 0.41

Forearm 0.80 0.88 1.00 0.80 0.38 0.32 0.24 0.34

Lower leg 0.86 0.83 0.8 1.00 0.44 0.33 0.33 0.36

Weight 0.47 0.38 0.38 0.44 1.00 0.76 0.73 0.63

Bitro diameter 0.40 0.33 0.32 0.33 0.76 1.00 0.58 0.58

Chest girth 0.30 0.28 0.24 0.33 0.73 0.58 1.00 0.54

Chest width 0.38 0.41 0.34 0.36 0.63 0.58 0.54 1.00

www.it-ebooks.info

http://www.it-ebooks.info/

326 CHAPTER 14 Principal components and factor analysis

the following code. In this case, you need to identify the correlation matrix (the cov

component of the Harman23.cor object) and specify the sample size (n.obs):

library(psych)
fa.parallel(Harman23.cor$cov, n.obs=302, fa="pc", n.iter=100,
 show.legend=FALSE, main="Scree plot with parallel analysis")

The resulting graph is displayed in figure 14.3.

 You can see from the plot that a two-component solution is suggested. As in the

first example, the Kaiser–Harris criteria, scree test, and parallel analysis agree. This

won’t always be the case, and you may need to extract different numbers of compo-

nents and select the solution that appears most useful. The next listing extracts the

first two principal components from the correlation matrix.

> library(psych)
> pc <- principal(Harman23.cor$cov, nfactors=2, rotate="none")
> pc

Principal Components Analysis
Call: principal(r = Harman23.cor$cov, nfactors = 2, rotate = "none")
Standardized loadings based upon correlation matrix
 PC1 PC2 h2 u2
height 0.86 -0.37 0.88 0.123
arm.span 0.84 -0.44 0.90 0.097
forearm 0.81 -0.46 0.87 0.128
lower.leg 0.84 -0.40 0.86 0.139
weight 0.76 0.52 0.85 0.150
bitro.diameter 0.67 0.53 0.74 0.261

Listing 14.2 Principal components analysis of body measurements

1 2 3 4 5 6 7 8

0
1

2
3

4

Scree plot with parallel analysis

Factor Number

e
ig

e
n

 v
a

lu
e

s
 o

f
p

ri
n

c
ip

a
l
c
o

m
p

o
n

e
n

ts

Figure 14.3 Assessing the number

of principal components to retain for

the body measurements example.

The scree plot (line with x’s),

eigenvalues greater than 1 criteria

(horizontal line), and parallel analysis

with 100 simulations (dashed line)

suggest retaining two components.

www.it-ebooks.info

http://www.it-ebooks.info/

327Principal components

chest.girth 0.62 0.58 0.72 0.283
chest.width 0.67 0.42 0.62 0.375

 PC1 PC2
SS loadings 4.67 1.77
Proportion Var 0.58 0.22
Cumulative Var 0.58 0.81

[... additional output omitted ...]

If you examine the PC1 and PC2 columns in listing 14.2, you see that the first compo-

nent accounts for 58% of the variance in the physical measurements, whereas the sec-

ond component accounts for 22%. Together, the two components account for 81% of

the variance. The two components together account for 88% of the variance in the

height variable.

 Components and factors are interpreted by examining their loadings. The first

component correlates positively with each physical measure and appears to be a gen-

eral size factor. The second component contrasts the first four variables (height, arm

span, forearm, and lower leg), with the second four variables (weight, bitro diameter,

chest girth, and chest width). It therefore appears to be a length-versus-volume factor.

Conceptually, this isn’t an easy construct to work with. Whenever two or more compo-

nents have been extracted, you can rotate the solution to make it more interpretable.

This is the topic we’ll turn to next.

14.2.3 Rotating principal components

Rotations are a set of mathematical techniques for transforming the component load-

ing matrix into one that’s more interpretable. They do this by “purifying” the compo-

nents as much as possible. Rotation methods differ with regard to whether the

resulting components remain uncorrelated (orthogonal rotation) or are allowed to cor-

relate (oblique rotation). They also differ in their definition of purifying. The most pop-

ular orthogonal rotation is the varimax rotation, which attempts to purify the columns

of the loading matrix, so that each component is defined by a limited set of variables

(that is, each column has a few large loadings and many very small loadings). Apply-

ing a varimax rotation to the body measurement data, you get the results provided in

the next listing. You’ll see an example of an oblique rotation in section 14.4.

> rc <- principal(Harman23.cor$cov, nfactors=2, rotate="varimax")
> rc

Principal Components Analysis
Call: principal(r = Harman23.cor$cov, nfactors = 2, rotate = "varimax")
Standardized loadings based upon correlation matrix
 RC1 RC2 h2 u2
height 0.90 0.25 0.88 0.123
arm.span 0.93 0.19 0.90 0.097
forearm 0.92 0.16 0.87 0.128
lower.leg 0.90 0.22 0.86 0.139

Listing 14.3 Principal components analysis with varimax rotation

www.it-ebooks.info

http://www.it-ebooks.info/

328 CHAPTER 14 Principal components and factor analysis

weight 0.26 0.88 0.85 0.150
bitro.diameter 0.19 0.84 0.74 0.261
chest.girth 0.11 0.84 0.72 0.283
chest.width 0.26 0.75 0.62 0.375

 RC1 RC2
SS loadings 3.52 2.92
Proportion Var 0.44 0.37
Cumulative Var 0.44 0.81

[... additional output omitted ...]

The column names change from PC to RC to denote rotated components. Looking at

the loadings in column RC1, you see that the first component is primarily defined by

the first four variables (length variables). The loadings in the column RC2 indicate

that the second component is primarily defined by variables 5 through 8 (volume vari-

ables). Note that the two components are still uncorrelated and that together, they

still explain the variables equally well. You can see that the rotated solution explains

the variables equally well because the variable communalities haven’t changed. Addi-

tionally, the cumulative variance accounted for by the two-component rotated solu-

tion (81%) hasn’t changed. But the proportion of variance accounted for by each

individual component has changed (from 58% to 44% for component 1 and from

22% to 37% for component 2). This spreading out of the variance across components

is common, and technically you should now call them components rather than princi-

pal components (because the variance-maximizing properties of individual compo-

nents haven’t been retained).

 The ultimate goal is to replace a larger set of correlated variables with a smaller set

of derived variables. To do this, you need to obtain scores for each observation on the

components.

14.2.4 Obtaining principal components scores

In the USJudgeRatings example, you extracted a single principal component from

the raw data describing lawyers’ ratings on 11 variables. The principal() function

makes it easy to obtain scores for each participant on this derived variable (see the

next listing).

> library(psych)
> pc <- principal(USJudgeRatings[,-1], nfactors=1, score=TRUE)
> head(pc$scores)
 PC1
AARONSON,L.H. -0.1857981
ALEXANDER,J.M. 0.7469865
ARMENTANO,A.J. 0.0704772
BERDON,R.I. 1.1358765
BRACKEN,J.J. -2.1586211
BURNS,E.B. 0.7669406

Listing 14.4 Obtaining component scores from raw data

www.it-ebooks.info

http://www.it-ebooks.info/

329Principal components

The principal component scores are saved in the scores element of the object

returned by the principal() function when the option scores=TRUE. If you wanted,

you could now get the correlation between the number of contacts occurring between

a lawyer and a judge and their evaluation of the judge using

> cor(USJudgeRatings$CONT, pc$score)
 PC1
[1,] -0.008815895

Apparently, there’s no relationship between the lawyer’s familiarity and their opinions!

 When the principal components analysis is based on a correlation matrix and the

raw data aren’t available, getting principal component scores for each observation is

clearly not possible. But you can get the coefficients used to calculate the principal

components.

 In the body measurement data, you have correlations among body measurements,

but you don’t have the individual measurements for these 305 girls. You can get the

scoring coefficients using the code in the following listing.

> library(psych)
> rc <- principal(Harman23.cor$cov, nfactors=2, rotate="varimax")
> round(unclass(rc$weights), 2)
 RC1 RC2
height 0.28 -0.05
arm.span 0.30 -0.08
forearm 0.30 -0.09
lower.leg 0.28 -0.06
weight -0.06 0.33
bitro.diameter -0.08 0.32
chest.girth -0.10 0.34
chest.width -0.04 0.27

The component scores are obtained using the formulas

PC1 = 0.28*height + 0.30*arm.span + 0.30*forearm + 0.29*lower.leg -
 0.06*weight - 0.08*bitro.diameter - 0.10*chest.girth -
 0.04*chest.width

and

PC2 = -0.05*height - 0.08*arm.span - 0.09*forearm - 0.06*lower.leg +
 0.33*weight + 0.32*bitro.diameter + 0.34*chest.girth +
 0.27*chest.width

These equations assume that the physical measurements have been standardized

(mean = 0, sd = 1). Note that the weights for PC1 tend to be around 0.3 or 0. The same

is true for PC2. As a practical matter, you could simplify your approach further by taking

the first composite variable as the mean of the standardized scores for the first four vari-

ables. Similarly, you could define the second composite variable as the mean of the stan-

dardized scores for the second four variables. This is typically what I’d do in practice.

Listing 14.5 Obtaining principal component scoring coefficients

www.it-ebooks.info

http://www.it-ebooks.info/

330 CHAPTER 14 Principal components and factor analysis

If your goal is to look for latent underlying variables that explain your observed vari-

ables, you can turn to factor analysis. This is the topic of the next section.

14.3 Exploratory factor analysis

The goal of EFA is to explain the correlations among a set of observed variables by

uncovering a smaller set of more fundamental unobserved variables underlying the

data. These hypothetical, unobserved variables are called factors. (Each factor is

assumed to explain the variance shared among two or more observed variables, so

technically, they’re called common factors.)

 The model can be represented as

X i = a1F1 + a2F2 + ... + apFp + Ui

where X i is the ith observed variable (i = 1…k), Fj are the common factors (j = 1…p),

and p < k. Ui is the portion of variable X i unique to that variable (not explained by the

common factors). The ai can be thought of as the degree to which each factor contrib-

utes to the composition of an observed variable. If we go back to the Harman74.cor

example at the beginning of this chapter, we’d say that an individual’s scores on each

of the 24 observed psychological tests is due to a weighted combination of their ability

on 4 underlying psychological constructs.

 Although the PCA and EFA models differ, many of the steps appear similar. To illus-

trate the process, you’ll apply EFA to the correlations among six psychological tests.

One hundred twelve individuals were given six tests, including a nonverbal measure of

general intelligence (general), a picture-completion test (picture), a block design test

(blocks), a maze test (maze), a reading comprehension test (reading), and a vocabu-

lary test (vocab). Can you explain the participants’ scores on these tests with a smaller

number of underlying or latent psychological constructs?

 The covariance matrix among the variables is provided in the dataset ability.cov.

You can transform this into a correlation matrix using the cov2cor() function:

Little Jiffy conquers the world

There’s quite a bit of confusion among data analysts regarding PCA and EFA. One rea-
son for this is historical and can be traced back to a program called Little Jiffy (no
kidding). Little Jiffy was one of the most popular early programs for factor analysis,
and it defaulted to a principal components analysis, extracting components with
eigenvalues greater than 1 and rotating them to a varimax solution. The program was
so widely used that many social scientists came to think of this default behavior as
synonymous with EFA. Many later statistical packages also incorporated these de-
faults in their EFA programs.

As I hope you’ll see in the next section, there are important and fundamental differ-
ences between PCA and EFA. To learn more about the PCA/EFA confusion, see Hayton,
Allen, and Scarpello, 2004.

www.it-ebooks.info

http://www.it-ebooks.info/

331Exploratory factor analysis

> options(digits=2)
> covariances <- ability.cov$cov
> correlations <- cov2cor(covariances)
> correlations
 general picture blocks maze reading vocab
general 1.00 0.47 0.55 0.34 0.58 0.51
picture 0.47 1.00 0.57 0.19 0.26 0.24
blocks 0.55 0.57 1.00 0.45 0.35 0.36
maze 0.34 0.19 0.45 1.00 0.18 0.22
reading 0.58 0.26 0.35 0.18 1.00 0.79
vocab 0.51 0.24 0.36 0.22 0.79 1.00

Because you’re looking for hypothetical constructs that explain the data, you’ll use an

EFA approach. As in PCA, the next task is to decide how many factors to extract.

14.3.1 Deciding how many common factors to extract

To decide on the number of factors to extract, turn to the fa.parallel() function:

> library(psych)
> covariances <- ability.cov$cov
> correlations <- cov2cor(covariances)
> fa.parallel(correlations, n.obs=112, fa="both", n.iter=100,
 main="Scree plots with parallel analysis")

The resulting plot is shown in figure 14.4. Notice you’ve requested that the function

display results for both a principal-components and common-factor approach, so that

you can compare them (fa = "both").

 There are several things to notice in this graph. If you’d taken a PCA approach, you

might have chosen one component (scree test, parallel analysis) or two components

1 2 3 4 5 6

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Scree plots with parallel analysis

Factor Number

e
ig

e
n
va

lu
e

s
 o

f
p

ri
n

c
ip

a
l
c
o

m
p

o
n

e
n

ts
 a

n
d

 f
a

c
to

r
a

n
a

ly
s
is PC Actual Data

 PC Simulated Data
FA Actual Data
 FA Simulated Data

Figure 14.4 Assessing the number

of factors to retain for the

psychological tests example.

Results for both PCA and EFA are

present. The PCA results suggest

one or two components. The EFA

results suggest two factors.

www.it-ebooks.info

http://www.it-ebooks.info/

332 CHAPTER 14 Principal components and factor analysis

(eigenvalues greater than 1). When in doubt, it’s usually a better idea to overfactor than

to underfactor. Overfactoring tends to lead to less distortion of the “true” solution.

 Looking at the EFA results, a two-factor solution is clearly indicated. The first two

eigenvalues (triangles) are above the bend in the scree test and also above the mean

eigenvalues based on 100 simulated data matrices. For EFA, the Kaiser–Harris crite-

rion is number of eigenvalues above 0, rather than 1. (Most people don’t realize this,

so it’s a good way to win bets at parties.) In the present case the Kaiser–Harris criteria

also suggest two factors.

14.3.2 Extracting common factors

Now that you’ve decided to extract two factors, you can use the fa() function to

obtain your solution. The format of the fa() function is

fa(r, nfactors=, n.obs=, rotate=, scores=, fm=)

where

■ r is a correlation matrix or a raw data matrix.
■ nfactors specifies the number of factors to extract (1 by default).
■ n.obs is the number of observations (if a correlation matrix is input).
■ rotate indicates the rotation to be applied (oblimin by default).
■ scores specifies whether or not to calculate factor scores (false by default).
■ fm specifies the factoring method (minres by default).

Unlike PCA, there are many methods of extracting common factors. They include

maximum likelihood (ml), iterated principal axis (pa), weighted least square (wls),

generalized weighted least squares (gls), and minimum residual (minres). Statisti-

cians tend to prefer the maximum likelihood approach because of its well-defined sta-

tistical model. Sometimes, this approach fails to converge, in which case the iterated

principal axis option often works well. To learn more about the different approaches,

see Mulaik (2009) and Gorsuch (1983).

 For this example, you’ll extract the unrotated factors using the iterated principal

axis (fm = "pa") approach. The results are given in the next listing.

> fa <- fa(correlations, nfactors=2, rotate="none", fm="pa")
> fa
Factor Analysis using method = pa
Call: fa(r = correlations, nfactors = 2, rotate = "none", fm = "pa")
Standardized loadings based upon correlation matrix
 PA1 PA2 h2 u2
general 0.75 0.07 0.57 0.43
picture 0.52 0.32 0.38 0.62
blocks 0.75 0.52 0.83 0.17
maze 0.39 0.22 0.20 0.80
reading 0.81 -0.51 0.91 0.09
vocab 0.73 -0.39 0.69 0.31

Listing 14.6 Principal axis factoring without rotation

www.it-ebooks.info

http://www.it-ebooks.info/

333Exploratory factor analysis

 PA1 PA2
SS loadings 2.75 0.83
Proportion Var 0.46 0.14
Cumulative Var 0.46 0.60
[... additional output deleted ...]

You can see that the two factors account for 60% of the variance in the six psychologi-

cal tests. When you examine the loadings, though, they aren’t easy to interpret. Rotat-

ing them should help.

14.3.3 Rotating factors

You can rotate the two-factor solution from section 14.3.4 using either an orthogonal

rotation or an oblique rotation. Let’s try both so you can see how they differ. First try

an orthogonal rotation (in the next listing).

> fa.varimax <- fa(correlations, nfactors=2, rotate="varimax", fm="pa")
> fa.varimax
Factor Analysis using method = pa
Call: fa(r = correlations, nfactors = 2, rotate = "varimax", fm = "pa")
Standardized loadings based upon correlation matrix
 PA1 PA2 h2 u2
general 0.49 0.57 0.57 0.43
picture 0.16 0.59 0.38 0.62
blocks 0.18 0.89 0.83 0.17
maze 0.13 0.43 0.20 0.80
reading 0.93 0.20 0.91 0.09
vocab 0.80 0.23 0.69 0.31

 PA1 PA2
SS loadings 1.83 1.75
Proportion Var 0.30 0.29
Cumulative Var 0.30 0.60

[... additional output omitted ...]

Looking at the factor loadings, the factors are certainly easier to interpret. Reading

and vocabulary load on the first factor; and picture completion, block design, and

mazes load on the second factor. The general nonverbal intelligence measure loads

on both factors. This may indicate a verbal intelligence factor and a nonverbal intelli-

gence factor.

 By using an orthogonal rotation, you artificially force the two factors to be uncorre-

lated. What would you find if you allowed the two factors to correlate? You can try an

oblique rotation such as promax (see the next listing).

> fa.promax <- fa(correlations, nfactors=2, rotate="promax", fm="pa")
> fa.promax
Factor Analysis using method = pa

Listing 14.7 Factor extraction with orthogonal rotation

Listing 14.8 Factor extraction with oblique rotation

www.it-ebooks.info

http://www.it-ebooks.info/

334 CHAPTER 14 Principal components and factor analysis

Call: fa(r = correlations, nfactors = 2, rotate = "promax", fm = "pa")
Standardized loadings based upon correlation matrix
 PA1 PA2 h2 u2
general 0.36 0.49 0.57 0.43
picture -0.04 0.64 0.38 0.62
blocks -0.12 0.98 0.83 0.17
maze -0.01 0.45 0.20 0.80
reading 1.01 -0.11 0.91 0.09
vocab 0.84 -0.02 0.69 0.31

 PA1 PA2
SS loadings 1.82 1.76
Proportion Var 0.30 0.29
Cumulative Var 0.30 0.60

 With factor correlations of
 PA1 PA2
PA1 1.00 0.57
PA2 0.57 1.00
[... additional output omitted ...]

Several differences exist between the orthogonal and oblique solutions. In an orthog-

onal solution, attention focuses on the factor structure matrix (the correlations of the

variables with the factors). In an oblique solution, there are three matrices to con-

sider: the factor structure matrix, the factor pattern matrix, and the factor intercorre-

lation matrix.

 The factor pattern matrix is a matrix of standardized regression coefficients. They

give the weights for predicting the variables from the factors. The factor intercorrelation

matrix gives the correlations among the factors.

 In listing 14.8, the values in the PA1 and PA2 columns constitute the factor pattern

matrix. They’re standardized regression coefficients rather than correlations. Exami-

nation of the columns of this matrix is still used to name the factors (although there’s

some controversy here). Again, you’d find a verbal and nonverbal factor.

 The factor intercorrelation matrix indicates that the correlation between the two

factors is 0.57. This is a hefty correlation. If the factor intercorrelations had been low,

you might have gone back to an orthogonal solution to keep things simple.

 The factor structure matrix (or factor loading matrix) isn’t provided. But you can

easily calculate it using the formula F = P*Phi, where F is the factor loading matrix, P

is the factor pattern matrix, and Phi is the factor intercorrelation matrix. A simple

function for carrying out the multiplication is as follows:

fsm <- function(oblique) {
if (class(oblique)[2]=="fa" & is.null(oblique$Phi)) {
 warning("Object doesn't look like oblique EFA")
} else {
 P <- unclass(oblique$loading)
 F <- P %*% oblique$Phi
 colnames(F) <- c("PA1", "PA2")
 return(F)
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

335Exploratory factor analysis

Applying this to the example, you get

> fsm(fa.promax)
 PA1 PA2
general 0.64 0.69
picture 0.33 0.61
blocks 0.44 0.91
maze 0.25 0.45
reading 0.95 0.47
vocab 0.83 0.46

Now you can review the correlations between the variables and the factors. Compar-

ing them to the factor loading matrix in the orthogonal solution, you see that these

columns aren’t as pure. This is because you’ve allowed the underlying factors to be

correlated. Although the oblique approach is more complicated, it’s often a more

realistic model of the data.

 You can graph an orthogonal or oblique solution using the factor.plot() or

fa.diagram() function. The code

factor.plot(fa.promax, labels=rownames(fa.promax$loadings))

produces the graph in figure 14.5.

 The code

fa.diagram(fa.promax, simple=FALSE)

produces the diagram in figure 14.6. If you let simple = TRUE, only the largest load-

ing per item is displayed. It shows the largest loadings for each factor, as well as the

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Factor Analysis

PA1

P
A

2 general

picture

blocks

maze

reading

vocab

Figure 14.5 Two-factor plot for

the psychological tests in

ability.cov. vocab and

reading load on the first factor

(PA1), and blocks, picture, and

maze load on the second factor

(PA2). The general intelligence

test loads on both.

www.it-ebooks.info

http://www.it-ebooks.info/

336 CHAPTER 14 Principal components and factor analysis

correlations between the factors. This type of diagram is helpful when there are sev-

eral factors.

 When you’re dealing with data in real life, it’s unlikely that you’d apply factor anal-

ysis to a dataset with so few variables. We’ve done it here to keep things manageable. If

you’d like to test your skills, try factor-analyzing the 24 psychological tests contained in

Harman74.cor. The code

library(psych)
fa.24tests <- fa(Harman74.cor$cov, nfactors=4, rotate="promax")

should get you started!

14.3.4 Factor scores

Compared with PCA, the goal of EFA is much less likely to be the calculation of factor

scores. But these scores are easily obtained from the fa() function by including the

score = TRUE option (when raw data are available). Additionally, the scoring coeffi-

cients (standardized regression weights) are available in the weights element of the

object returned.

 For the ability.cov dataset, you can obtain the beta weights for calculating the

factor score estimates for the two-factor oblique solution using

> fa.promax$weights
 [,1] [,2]
general 0.080 0.210
picture 0.021 0.090
blocks 0.044 0.695
maze 0.027 0.035
reading 0.739 0.044
vocab 0.176 0.039

Unlike component scores, which are calculated exactly, factor scores can only be esti-

mated. Several methods exist. The fa() function uses the regression approach. To

learn more about factor scores, see DiStefano, Zhu, and Mîndrila, (2009).

Factor Analysis

reading

vocab

blocks

picture

general

maze

PA1

1

0.8

0.4

PA2

1

0.6

0.5

0.5

0.6

Figure 14.6 Diagram of the oblique two-factor solution

for the psychological test data in ability.cov

∩

www.it-ebooks.info

http://www.it-ebooks.info/

337Other latent variable models

 Before moving on, let’s briefly review other R packages that are useful for explor-

atory factor analysis.

14.3.5 Other EFA-related packages

R contains a number of other contributed packages that are useful for conducting fac-

tor analyses. The FactoMineR package provides methods for PCA and EFA, as well as
other latent variable models. It provides many options that we haven’t considered

here, including the use of both numeric and categorical variables. The FAiR package

estimates factor analysis models using a genetic algorithm that permits the ability to
impose inequality restrictions on model parameters. The GPArotation package offers

many additional factor rotation methods. Finally, the nFactors package offers sophis-

ticated techniques for determining the number of factors underlying data.

14.4 Other latent variable models

EFA is only one of a wide range of latent variable models used in statistics. We’ll end

this chapter with a brief description of other models that can be fit within R. These
include models that test a priori theories, that can handle mixed data types (numeric

and categorical), or that are based solely on categorical multiway tables.

 In EFA, you allow the data to determine the number of factors to be extracted and

their meaning. But you could start with a theory about how many factors underlie a
set of variables, how the variables load on those factors, and how the factors correlate

with one another. You could then test this theory against a set of collected data. The

approach is called confirmatory factor analysis (CFA).
 CFA is a subset of a methodology called structural equation modeling (SEM). SEM

allows you to posit not only the number and composition of underlying factors but

also how these factors impact one another. You can think of SEM as a combination of
confirmatory factor analyses (for the variables) and regression analyses (for the fac-

tors). The resulting output includes statistical tests and fit indices. There are several

excellent packages for CFA and SEM in R. They include sem, OpenMx, and lavaan.
 The ltm package can be used to fit latent models to the items contained in tests

and questionnaires. The methodology is often used to create large-scale standardized

tests. Examples include the Scholastic Aptitude Test (SAT) and the Graduate Record
Exam (GRE).

 Latent class models (where the underlying factors are assumed to be categorical

rather than continuous) can be fit with the FlexMix, lcmm, randomLCA, and poLCA
packages. The lcda package performs latent class discriminant analysis, and the lsa

package performs latent semantic analysis, a methodology used in natural language

processing.
 The ca package provides functions for simple and multiple correspondence analy-

sis. These methods allow you to explore the structure of categorical variables in two-

way and multiway tables, respectively.

 Finally, R contains numerous methods for multidimensional scaling (MDS). MDS is

designed to detect underlying dimensions that explain the similarities and distances

www.it-ebooks.info

http://www.it-ebooks.info/

338 CHAPTER 14 Principal components and factor analysis

between a set of measured objects (for example, countries). The cmdscale() function

in the base installation performs a classical MDS, whereas the isoMDS() function in

the MASS package performs a nonmetric MDS. The vegan package also contains func-

tions for classical and nonmetric MDS.

14.5 Summary

In this chapter, we reviewed methods for principal components (PCA) analysis and

exploratory factor analysis (EFA). PCA is a useful data-reduction method that can

replace a large number of correlated variables with a smaller number of uncorrelated

variables, simplifying the analyses. EFA contains a broad range of methods for identify-

ing latent or unobserved constructs (factors) that may underlie a set of observed or

manifest variables.

 Whereas the goal of PCA is typically to summarize the data and reduce its dimen-

sionality, EFA can be used as a hypothesis-generating tool, useful when you’re trying to

Orthogonal Oblique

Interpret Components/Factors

Rotate Components/Factors

TheoryInterpretabilityVariance Accounted

Kaiser/Harris Scree Test

Minimum Residual

Maximum Likelihood

Weighted Least Squares

Principal Axis

Parallel Analysis

Select Number of
Components/Factors

Components

Principal Components

Common Factor

Select Factor Model

Varimax

Other Orthogonal Rotation

Promax

Other Oblique Rotation

Calculate Factor Scores
Figure 14.7 A principal components/

exploratory factor analysis decision chart

www.it-ebooks.info

http://www.it-ebooks.info/

339Summary

understand the relationships between a large number of variables. It’s often used in

the social sciences for theory development.

 Although there are many superficial similarities between the two approaches,

important differences exist as well. In this chapter, we considered the models underly-

ing each, methods for selecting the number of components/factors to extract, meth-

ods for extracting components/factors and rotating (transforming) them to enhance

interpretability, and techniques for obtaining component or factor scores. The steps

in a PCA or EFA are summarized in figure 14.7. We ended the chapter with a brief dis-

cussion of other latent variable methods available in R.

 In the next chapter, we’ll consider methods for working with time-series data.

www.it-ebooks.info

http://www.it-ebooks.info/

340

Time series

How fast is global warming occurring, and what will the impact be in 10 years? With

the exception of repeated measures ANOVA in section 9.6, each of the preceding

chapters has focused on cross-sectional data. In a cross-sectional dataset, variables are

measured at a single point in time. In contrast, longitudinal data involves measuring

variables repeatedly over time. By following a phenomenon over time, it’s possible

to learn a great deal about it.

 In this chapter, we’ll examine observations that have been recorded at regularly

spaced time intervals for a given span of time. We can arrange observations such as

these into a time series of the form Y1, Y2, Y3, … , Yt, …, YT, where Yt represents the

value of Y at time t and T is the total number of observations in the series.

 Consider two very different time series displayed in figure 15.1. The series on

the left contains the quarterly earnings (dollars) per Johnson & Johnson share

between 1960 and 1980. There are 84 observations: one for each quarter over 21

This chapter covers

■ Creating a time series

■ Decomposing a time series into components

■ Developing predictive models

■ Forecasting future values

www.it-ebooks.info

http://www.it-ebooks.info/

341

years. The series on the right describes the monthly mean relative sunspot numbers

from 1749 to 1983 recorded by the Swiss Federal Observatory and the Tokyo Astro-

nomical Observatory. The sunspots time series is much longer, with 2,820 observa-

tions—1 per month for 235 years.

 Studies of time-series data involve two fundamental questions: what happened

(description), and what will happen next (forecasting)? For the Johnson & Johnson

data, you might ask

■ Is the price of Johnson & Johnson shares changing over time?
■ Are there quarterly effects, with share prices rising and falling in a regular fash-

ion throughout the year?
■ Can you forecast what future share prices will be and, if so, to what degree of

accuracy?

For the sunspot data, you might ask

■ What statistical models best describe sunspot activity?
■ Do some models fit the data better than others?
■ Are the number of sunspots at a given time predictable and, if so, to what degree?

The ability to accurately predict stock prices has relevance for my (hopefully) early

retirement to a tropical island, whereas the ability to predict sunspot activity has rele-

vance for my cell phone reception on said island.
 Predicting future values of a time series, or forecasting, is a fundamental human

activity, and studies of time series data have important real-world applications. Econo-

mists use time-series data in an attempt to understand and predict what will happen in

Johnson & Johnson

Q
u

a
rt

e
rl
y
 e

a
rn

in
g

s
 p

e
r

s
h

a
re

 (
d

o
lla

rs
)

1960 1970 1980

0
5

1
0

1
5

Sunspots

TimeTime

M
e

a
n

 m
o

n
th

ly
 f

re
q

u
e

n
c
y

1750 1850 1950

0
5
0

1
0

0
1

5
0

2
0

0
2

5
0

Figure 15.1 Time series plots for (a) Johnson & Johnson quarterly earnings per

share (in dollars) from 1960 to 1980, and (b) the monthly mean relative sunspot

numbers recorded from 1749 to 1983

Time series

www.it-ebooks.info

http://www.it-ebooks.info/

342 CHAPTER 15 Time series

financial markets. City planners use time-series data to predict future transportation

demands. Climate scientists use time-series data to study global climate change. Cor-
porations use time series to predict product demand and future sales. Healthcare offi-

cials use time-series data to study the spread of disease and to predict the number of

future cases in a given region. Seismologists study times-series data in order to predict
earthquakes. In each case, the study of historical time series is an indispensable part of

the process. Because different approaches may work best with different types of time

series, we’ll investigate many examples in this chapter.
 There is a wide range of methods for describing time-series data and forecasting

future values. If you work with time-series data, you’ll find that R has some of the most

comprehensive analytic capabilities available anywhere. This chapter explores some of

the most common descriptive and forecasting approaches and the R functions used to

perform them. The functions are listed in table 15.1 in their order of appearance in

the chapter.

Table 15.1 Functions for time-series analysis

Function Package Use

ts() stats Creates a time-series object.

plot() graphics Plots a time series.

start() stats Returns the starting time of a time series.

end() stats Returns the ending time of a time series.

frequency() stats Returns the period of a time series.

window() stats Subsets a time-series object.

ma() forecast Fits a simple moving-average model.

stl() stats Decomposes a time series into seasonal, trend, and irregular

components using loess.

monthplot() stats Plots the seasonal components of a time series.

seasonplot() forecast Generates a season plot.

HoltWinters() stats Fits an exponential smoothing model.

forecast() forecast Forecasts future values of a time series.

accuracy() forecast Reports fit measures for a time-series model.

ets() forecast Fits an exponential smoothing model. Includes the ability to

automate the selection of a model.

lag() stats Returns a lagged version of a time series.

Acf() forecast Estimates the autocorrelation function.

Pacf() forecast Estimates the partial autocorrelation function.

diff() base Returns lagged and iterated differences.

www.it-ebooks.info

http://www.it-ebooks.info/

343Creating a time-series object in R

Table 15.2 lists the time-series data that you’ll analyze. They’re available with the base

installation of R. The datasets vary greatly in their characteristics and the models that

fit them best.

We’ll start with methods for creating and manipulating time series, describing and
plotting them, and decomposing them into level, trend, seasonal, and irregular
(error) components. Then we’ll turn to forecasting, starting with popular exponential
modeling approaches that use weighted averages of time-series values to predict
future values. Next we’ll consider a set of forecasting techniques called autoregressive

integrated moving averages (ARIMA) models that use correlations among recent data
points and among recent prediction errors to make future forecasts. Throughout,
we’ll consider methods of evaluating the fit of models and the accuracy of their pre-
dictions. The chapter ends with a description of resources available for learning more
about these topics.

15.1 Creating a time-series object in R

In order to work with a time series in R, you have to place it into a time-series object—an

R structure that contains the observations, the starting and ending time of the series,

ndiffs() forecast Determines the level of differencing needed to remove trends in a

time series.

adf.test() tseries Computes an Augmented Dickey–Fuller test that a time series is

stationary.

arima() stats Fits autoregressive integrated moving-average models.

Box.test() stats Computes a Ljung–Box test that the residuals of a time series are

independent.

bds.test() tseries Computes the BDS test that a series consists of independent,

identically distributed random variables.

auto.arima() forecast Automates the selection of an ARIMA model.

Table 15.2 Datasets used in this chapter

Time series Description

AirPassengers Monthly airline passenger numbers from 1949–1960

JohnsonJohnson Quarterly earnings per Johnson & Johnson share

nhtemp Average yearly temperatures in New Haven, Connecticut, from 1912–1971

Nile Flow of the river Nile

sunspots Monthly sunspot numbers from 1749–1983

Table 15.1 Functions for time-series analysis

Function Package Use

www.it-ebooks.info

http://www.it-ebooks.info/

344 CHAPTER 15 Time series

and information about its periodicity (for example, monthly, quarterly, or annual

data). Once the data are in a time-series object, you can use numerous functions to

manipulate, model, and plot the data.

 A vector of numbers, or a column in a data frame, can be saved as a time-series

object using the ts() function. The format is

myseries <- ts(data, start=, end=, frequency=)

where myseries is the time-series object, data is a numeric vector containing the

observations, start specifies the series start time, end specifies the end time

(optional), and frequency indicates the number of observations per unit time (for

example, frequency=1 for annual data, frequency=12 for monthly data, and

frequency=4 for quarterly data).

 An example is given in the following listing. The data consist of monthly sales fig-

ures for two years, starting in January 2003.

> sales <- c(18, 33, 41, 7, 34, 35, 24, 25, 24, 21, 25, 20,
 22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35)

> tsales <- ts(sales, start=c(2003, 1), frequency=12)
> tsales

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2003 18 33 41 7 34 35 24 25 24 21 25 20
2004 22 31 40 29 25 21 22 54 31 25 26 35

> plot(tsales)
> start(tsales)

[1] 2003 1

> end(tsales)

[1] 2004 12

> frequency(tsales)

[1] 12

> tsales.subset <- window(tsales, start=c(2003, 5), end=c(2004, 6))
> tsales.subset

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2003 34 35 24 25 24 21 25 20
2004 22 31 40 29 25 21

In this listing, the ts() function is used to create the time-series object b. Once it’s

created, you can print and plot it; the plot is given in figure 15.2. You can modify the

plot using the techniques described in chapter 3. For example, plot(tsales,

type="o", pch=19) would create a time-series plot with connected, solid-filled circles.

Listing 15.1 Creating a time-series object

Creates a
time-series
objectb

Gets information
about the objectc

Subsets the object d

www.it-ebooks.info

http://www.it-ebooks.info/

345Smoothing and seasonal decomposition

Once you’ve created the time-series object, you can use functions like start(), end(),

and frequency() to return its properties c. You can also use the window() function

to create a new time series that’s a subset of the original d.

15.2 Smoothing and seasonal decomposition

Just as analysts explore a dataset with descriptive statistics and graphs before attempt-

ing to model the data, describing a time series numerically and visually should be the

first step before attempting to build complex models. In this section, we’ll look at

smoothing a time series to clarify its general trend, and decomposing a time series in

order to observe any seasonal effects.

15.2.1 Smoothing with simple moving averages

The first step when investigating a time series is to plot it, as in listing 15.1. Consider

the Nile time series. It records the annual flow of the river Nile at Ashwan from 1871–

1970. A plot of the series can be seen in the upper-left panel of figure 15.3. The time

series appears to be decreasing, but there is a great deal of variation from year to year.

 Time series typically have a significant irregular or error component. In order to

discern any patterns in the data, you’ll frequently want to plot a smoothed curve that

damps down these fluctuations. One of the simplest methods of smoothing a time

series is to use simple moving averages. For example, each data point can be replaced

with the mean of that observation and one observation before and after it. This is

called a centered moving average. A centered moving average is defined as

St = (Yt-q + … + Yt + … + Yt+q) / (2q + 1)

where St is the smoothed value at time t and k = 2q + 1 is the number of observations

that are averaged. The k value is usually chosen to be an odd number (3 in this

example). By necessity, when using a centered moving average, you lose the (k – 1) / 2

observations at each end of the series.

Time

ts
a

le
s

2003.0 2003.5 2004.0 2004.5

1
0

2
0

3
0

4
0

5
0

Figure 15.2 Time-series plot for the

sales data in listing 15.1. The

decimal notation on the time

dimension is used to represent the

portion of a year. For example,

2003.5 represents July 1 (halfway

through 2003).

www.it-ebooks.info

http://www.it-ebooks.info/

346 CHAPTER 15 Time series

 Several functions in R can provide a simple moving average, including SMA() in

the TTR package, rollmean() in the zoo package, and ma() in the forecast package.

Here, you’ll use the ma() function to smooth the Nile time series that comes with the

base R installation.

 The code in the next listing plots the raw time series and smoothed versions using

k equal to 3, 7, and 15. The plots are given in figure 15.3.

library(forecast)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
ylim <- c(min(Nile), max(Nile))
plot(Nile, main="Raw time series")
plot(ma(Nile, 3), main="Simple Moving Averages (k=3)", ylim=ylim)
plot(ma(Nile, 7), main="Simple Moving Averages (k=7)", ylim=ylim)
plot(ma(Nile, 15), main="Simple Moving Averages (k=15)", ylim=ylim)
par(opar)

As k increases, the plot becomes increasingly smoothed. The challenge is to find the

value of k that highlights the major patterns in the data, without under- or over-

smoothing. This is more art than science, and you’ll probably want to try several val-

ues of k before settling on one. From the plots in figure 15.3, there certainly appears

to have been a drop in river flow between 1892 and 1900. Other changes are open to

interpretation. For example, there may have been a small increasing trend between

1941 and 1961, but this could also have been a random variation.

 For time-series data with a periodicity greater than one (that is, with a seasonal

component), you’ll want to go beyond a description of the overall trend. Seasonal

decomposition can be used to examine both seasonal and general trends.

Listing 15.2 Simple moving averages

Raw time series

Time

N
ile

1880 1920 1960

6
0
0

1
0
0
0

1
4
0
0

Simple Moving Averages (k=3)

Time

m
a
(N

ile
,
3
)

1880 1920 1960

6
0
0

1
0
0
0

1
4
0
0

Simple Moving Averages (k=7)

Time

m
a
(N

ile
,
7
)

1880 1920 1960

6
0
0

1
0
0
0

1
4
0
0

Simple Moving Averages (k=15)

Time

m
a
(N

ile
,
1
5
)

1880 1920 1960

6
0
0

1
0
0
0

1
4
0
0

Figure 15.3 The Nile time

series measuring annual

river flow at Ashwan from

1871–1970 (upper left).

The other plots are

smoothed versions using

simple moving averages at

three smoothing levels

(k=3, 7, and 15).

www.it-ebooks.info

http://www.it-ebooks.info/

347Smoothing and seasonal decomposition

15.2.2 Seasonal decomposition

Time-series data that have a seasonal aspect (such as monthly or quarterly data) can

be decomposed into a trend component, a seasonal component, and an irregular

component. The trend component captures changes in level over time. The seasonal com-

ponent captures cyclical effects due to the time of year. The irregular (or error) component

captures those influences not described by the trend and seasonal effects.

 The decomposition can be additive or multiplicative. In an additive model, the

components sum to give the values of the time series. Specifically,

Yt = Trendt + Seasonalt + Irregulart

where the observation at time t is the sum of the contributions of the trend at time t,

the seasonal effect at time t, and an irregular effect at time t.

 In a multiplicative model, given by the equation

Yt = Trendt * Seasonalt * Irregulart

the trend, seasonal, and irregular influences are multiplied. Examples are given in fig-

ure 15.4.

(a) Stationary

Time

Y

2000 2002 2004 2006 2008 2010

5
5

0
6

0
0

6
5

0

(b) Additive Trend
and Irregular Components

Time

Y

2000 2002 2004 2006 2008 2010

3
0

0
5

0
0

7
0

0
9

0
0

(c) Additive Seasonal
and Irregular Components

Time

Y

2000 2002 2004 2006 2008 2010

5
0

0
6

0
0

7
0

0

(d) Additive Trend, Seasonal,
and Irregular Components

Time

Y

2000 2002 2004 2006 2008 2010

2
0

0
6

0
0

(e) Multiplicative Trend, Seasonal,
and Irregular Components

Time

Y

2000 2002 2004 2006 2008 2010

2
0

0
6
0

0
1

0
0

0

Figure 15.4 Time-series examples

consisting of different combinations of

trend, seasonal, and irregular components

www.it-ebooks.info

http://www.it-ebooks.info/

348 CHAPTER 15 Time series

In the first plot (a), there is neither a trend nor a seasonal component. The only influ-

ence is a random fluctuation around a given level. In the second plot (b), there is an

upward trend over time, as well as random fluctuations. In the third plot (c), there are

seasonal effects and random fluctuations, but no overall trend away from a horizontal

line. In the fourth plot (d), all three components are present: an upward trend, sea-

sonal effects, and random fluctuations. You also see all three components in the final

plot (e), but here they combine in a multiplicative way. Notice how the variability is

proportional to the level: as the level increases, so does the variability. This amplifica-

tion (or possible damping) based on the current level of the series strongly suggests a

multiplicative model.

 An example may make the difference between additive and multiplicative models

clearer. Consider a time series that records the monthly sales of motorcycles over a 10-

year period. In a model with an additive seasonal effect, the number of motorcycles

sold tends to increase by 500 in November and December (due to the Christmas rush)

and decrease by 200 in January (when sales tend to be down). The seasonal increase

or decrease is independent of the current sales volume.

 In a model with a multiplicative seasonal effect, motorcycle sales in November and

December tend to increase by 20% and decrease in January by 10%. In the multiplica-

tive case, the impact of the seasonal effect is proportional to the current sales volume.

This isn’t the case in an additive model. In many instances, the multiplicative model is

more realistic.

 A popular method for decomposing a time series into trend, seasonal, and irregu-

lar components is seasonal decomposition by loess smoothing. In R, this can be

accomplished with the stl() function. The format is

stl(ts, s.window=, t.window=)

where ts is the time series to be decomposed, s.window controls how fast the seasonal

effects can change over time, and t.window controls how fast the trend can change

over time. Smaller values allow more rapid change. Setting s.window="periodic"

forces seasonal effects to be identical across years. Only the ts and s.window parame-

ters are required. See help(stl) for details.

 The stl() function can only handle additive models, but this isn’t a serious limita-

tion. Multiplicative models can be transformed into additive models using a log trans-

formation:

log(Yt) = log(Trendt * Seasonalt * Irregulart)
 = log(Trendt) + log(Seasonalt) + log(Irregulart)

After fitting the additive model to the log transformed series, the results can be back-

transformed to the original scale. Let’s look at an example.

 The time series AirPassengers comes with a base R installation and describes the

monthly totals (in thousands) of international airline passengers between 1949 and

1960. A plot of the data is given in the top of figure 15.5. From the graph, it appears

that variability of the series increases with the level, suggesting a multiplicative model.

www.it-ebooks.info

http://www.it-ebooks.info/

349Smoothing and seasonal decomposition

The plot in the lower portion of figure 15.5 displays the time series created by taking

the log of each observation. The variance has stabilized, and the logged series looks

like an appropriate candidate for an additive decomposition. This is carried out using

the stl() function in the following listing.

> plot(AirPassengers)
> lAirPassengers <- log(AirPassengers)
> plot(lAirPassengers, ylab="log(AirPassengers)")

> fit <- stl(lAirPassengers, s.window="period")
> plot(fit)

> fit$time.series

 seasonal trend remainder
Jan 1949 -0.09164 4.829 -0.0192494
Feb 1949 -0.11403 4.830 0.0543448
Mar 1949 0.01587 4.831 0.0355884
Apr 1949 -0.01403 4.833 0.0404633
May 1949 -0.01502 4.835 -0.0245905
Jun 1949 0.10979 4.838 -0.0426814
Jul 1949 0.21640 4.841 -0.0601152
Aug 1949 0.20961 4.843 -0.0558625
Sep 1949 0.06747 4.846 -0.0008274
Oct 1949 -0.07025 4.851 -0.0015113
Nov 1949 -0.21353 4.856 0.0021631

Listing 15.3 Seasonal decomposition using stl()

A
ir
P

a
s
s
e

n
g

e
rs

1950 1952 1954 1956 1958 1960

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

Time

lo
g

(A
ir
P

a
s
s
e

n
g

e
rs

)

1950 1952 1954 1956 1958 1960

5
.0

5
.5

6
.0

6
.5

Figure 15.5 Plot of the

AirPassengers time series

(top). The time series contains

the monthly totals (in

thousands) of international

airline passengers between

1949 and 1960. The log-

transformed time series

(bottom) stabilizes the

variance and fits an additive

seasonal decomposition

model better.

Plots the time seriesb

Decomposes the time seriesc

Components for
each observationd

www.it-ebooks.info

http://www.it-ebooks.info/

350 CHAPTER 15 Time series

Dec 1949 -0.10064 4.865 0.0067347
... output omitted ...

> exp(fit$time.series)

 seasonal trend remainder
Jan 1949 0.9124 125.1 0.9809
Feb 1949 0.8922 125.3 1.0558
Mar 1949 1.0160 125.4 1.0362
Apr 1949 0.9861 125.6 1.0413
May 1949 0.9851 125.9 0.9757
Jun 1949 1.1160 126.2 0.9582
Jul 1949 1.2416 126.6 0.9417
Aug 1949 1.2332 126.9 0.9457
Sep 1949 1.0698 127.2 0.9992
Oct 1949 0.9322 127.9 0.9985
Nov 1949 0.8077 128.5 1.0022
Dec 1949 0.9043 129.6 1.0068
... output omitted ...

First, the time series is plotted and transformed b. A seasonal decomposition is per-

formed and saved in an object called fit c. Plotting the results gives the graph in fig-

ure 15.6. The graph shows the time series, seasonal, trend, and irregular components

from 1949 to 1960. Note that the seasonal components have been constrained to

5
.0

5
.5

6
.0

6
.5

d
a
ta

−
0

.2
0

.0
0

.1
0

.2

s
e
a
s
o
n
a
l

4
.8

5
.2

5
.6

6
.0

tr
e
n
d

−
0

.1
0

0
.0

0

1950 1952 1954 1956 1958 1960

ir
re

g
u
la

r

time

Figure 15.6 A seasonal decomposition of the logged AirPassengers

time series using the stl() function. The time series (data) is

decomposed into seasonal, trend, and irregular components.

www.it-ebooks.info

http://www.it-ebooks.info/

351Smoothing and seasonal decomposition

remain the same across each year (using the s.window="period" option). The trend

is monotonically increasing, and the seasonal effect suggests more passengers in the

summer (perhaps during vacations). The grey bars on the right are magnitude

guides—each bar represents the same magnitude. This is useful because the y-axes are

different for each graph.

 The object returned by the stl() function contains a component called

time.series that contains the trend, season, and irregular portion of each obser-

vation d. In this case, fit$time.series is based on the logged time series.

exp(fit$time.series) converts the decomposition back to the original metric.

Examining the seasonal effects suggests that the number of passengers increased by

24% in July (a multiplier of 1.24) and decreased by 20% in November (with a multi-

plier of .80).

 Two additional graphs can help to visualize a seasonal decomposition. They’re cre-

ated by the monthplot() function that comes with base R and the seasonplot() func-

tion provided in the forecast package. The code

par(mfrow=c(2,1))
library(forecast)
monthplot(AirPassengers, xlab="", ylab="")
seasonplot(AirPassengers, year.labels="TRUE", main="")

produces the graphs in figure 15.7.

J F M A M J J A S O N D

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

1949
1950
1951
19521953
1954

1955
1956
19571958

1959
1960

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 15.7 A month

plot (top) and season

plot (bottom) for the

AirPassengers time

series. Each shows an

increasing trend and

similar seasonal pattern

year to year.

www.it-ebooks.info

http://www.it-ebooks.info/

352 CHAPTER 15 Time series

The month plot (top figure) displays the subseries for each month (all January values

connected, all February values connected, and so on), along with the average of each
subseries. From this graph, it appears that the trend is increasing for each month in a

roughly uniform way. Additionally, the greatest number of passengers occurs in July

and August. The season plot (lower figure) displays the subseries by year. Again you see
a similar pattern, with increases in passengers each year, and the same seasonal pattern.

 Note that although you’ve described the time series, you haven’t predicted any

future values. In the next section, we’ll consider the use of exponential models for
forecasting beyond the available data.

15.3 Exponential forecasting models

Exponential models are some of the most popular approaches to forecasting the
future values of a time series. They’re simpler than many other types of models, but

they can yield good short-term predictions in a wide range of applications. They differ

from each other in the components of the time series that are modeled. A simple
exponential model (also called a single exponential model) fits a time series that has a

constant level and an irregular component at time i but has neither a trend nor a sea-

sonal component. A double exponential model (also called a Holt exponential smoothing)
fits a time series with both a level and a trend. Finally, a triple exponential model (also

called a Holt-Winters exponential smoothing) fits a time series with level, trend, and sea-

sonal components.

 Exponential models can be fit with either the HoltWinters() function in the base
installation or the ets() function that comes with the forecast package. The ets()

function has more options and is generally more powerful. We’ll focus on the ets()

function in this section.
 The format of the ets() function is

ets(ts, model="ZZZ")

where ts is a time series and the model is specified by three letters. The first letter

denotes the error type, the second letter denotes the trend type, and the third letter

denotes the seasonal type. Allowable letters are A for additive, M for multiplicative, N

for none, and Z for automatically selected. Examples of common models are given in

table 15.3.

Table 15.3 Functions for fitting simple, double, and triple exponential forecasting models

Type Parameters fit Functions

simple level ets(ts, model="ANN")

ses(ts)

double level, slope ets(ts, model="AAN")

holt(ts)

triple level, slope, seasonal ets(ts, model="AAA")

hw(ts)

www.it-ebooks.info

http://www.it-ebooks.info/

353Exponential forecasting models

The ses(), holt(), and hw() functions are convenience wrappers to the ets() func-

tion with prespecified defaults.

 First we’ll look at the most basic exponential model: simple exponential smooth-
ing. Be sure to install the forecast package (install.packages("forecast"))
before proceeding.

15.3.1 Simple exponential smoothing

Simple exponential smoothing uses a weighted average of existing time-series values to
make a short-term prediction of future values. The weights are chosen so that observa-
tions have an exponentially decreasing impact on the average as you go back in time.

 The simple exponential smoothing model assumes that an observation in the time
series can be described by

Yt = level + irregulart

The prediction at time Yt+1 (called the 1-step ahead forecast) is written as

Yt+1 = c0Yt + c1Yt−1 + c2Yt−2 + c2Yt−2 + ...

where ci = α(1−α)i, i = 0, 1, 2, ... and 0≤ α ≤ 1. The ci weights sum to one, and the
1-step ahead forecast can be seen to be a weighted average of the current value and all

past values of the time series. The alpha (α) parameter controls the rate of decay for

the weights. The closer alpha is to 1, the more weight is given to recent observations.

The closer alpha is to 0, the more weight is given to past observations. The actual
value of alpha is usually chosen by computer in order to optimize a fit criterion. A

common fit criterion is the sum of squared errors between the actual and predicted

values. An example will help clarify these ideas.
 The nhtemp time series contains the mean annual temperature in degrees Fahren-

heit in New Haven, Connecticut, from 1912 to 1971. A plot of the time series can be

seen as the line in figure 15.8.
 There is no obvious trend, and the yearly data lack a seasonal component, so the

simple exponential model is a reasonable place to start. The code for making a 1-step

ahead forecast using the ses() function is given next.

> library(forecast)
> fit <- ets(nhtemp, model="ANN")
> fit

ETS(A,N,N)

Call:
 ets(y = nhtemp, model = "ANN")

 Smoothing parameters:
 alpha = 0.182

 Initial states:
 l = 50.2759

Listing 15.4 Simple exponential smoothing

Fits the modelb

www.it-ebooks.info

http://www.it-ebooks.info/

354 CHAPTER 15 Time series

 sigma: 1.126

 AIC AICc BIC
263.9 264.1 268.1

> forecast(fit, 1)

 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1972 51.87 50.43 53.31 49.66 54.08

> plot(forecast(fit, 1), xlab="Year",
 ylab=expression(paste("Temperature (", degree*F,")",)),
 main="New Haven Annual Mean Temperature")

> accuracy(fit)

 ME RMSE MAE MPE MAPE MASE
Training set 0.146 1.126 0.8951 0.2419 1.749 0.9228

The ets(mode="ANN") statement fits the simple exponential model to the nhtemp time

series b. The A indicates that the errors are additive, and the NN indicates that there is

no trend and no seasonal component. The relatively low value of alpha (0.18) indicates

that distant as well as recent observations are being considered in the forecast. This

value is automatically chosen to maximize the fit of the model to the given dataset.

 The forecast() function is used to predict the time series k steps into the future.

The format is forecast(fit, k). The 1-step ahead forecast for this series is 51.9°F

with a 95% confidence interval (49.7°F to 54.1°F) c. The time series, the forecasted

value, and the 80% and 95% confidence intervals are plotted in figure 15.8 d.

1-step ahead forecastc

Prints accuracy measuresd

New Haven Annual Mean Temperature

Year

Te
m

p
e

ra
tu

re
 (

°F
)

1910 1920 1930 1940 1950 1960 1970

4
8

4
9

5
0

5
1

5
2

5
3

5
4

Figure 15.8 Average yearly temperatures in New Haven, Connecticut; and

a 1-step ahead prediction from a simple exponential forecast using the

ets() function

www.it-ebooks.info

http://www.it-ebooks.info/

355Exponential forecasting models

The forecast package also provides an accuracy() function that displays the most

popular predictive accuracy measures for time-series forecasts d. A description of

each is given in table 15.4. The et represent the error or irregular component of each

observation (Yt−).

The mean error and mean percentage error may not be that useful, because positive
and negative errors can cancel out. The RMSE gives the square root of the mean

square error, which in this case is 1.13°F. The mean absolute percentage error reports

the error as a percentage of the time-series values. It’s unit-less and can be used to
compare prediction accuracy across time series. But it assumes a measurement scale

with a true zero point (for example, number of passengers per day). Because the Fahr-

enheit scale has no true zero, you can’t use it here. The mean absolute scaled error is
the most recent accuracy measure and is used to compare the forecast accuracy across

time series on different scales. There is no one best measure of predictive accuracy.

The RMSE is certainly the best known and often cited.

 Simple exponential smoothing assumes the absence of trend or seasonal compo-

nents. The next section considers exponential models that can accommodate both.

15.3.2 Holt and Holt-Winters exponential smoothing

The Holt exponential smoothing approach can fit a time series that has an overall

level and a trend (slope). The model for an observation at time t is

Yt = level + slope*t + irregulart

An alpha smoothing parameter controls the exponential decay for the level, and a beta

smoothing parameter controls the exponential decay for the slope. Again, each param-

eter ranges from 0 to 1, with larger values giving more weight to recent observations.

 The Holt-Winters exponential smoothing approach can be used to fit a time series

that has an overall level, a trend, and a seasonal component. Here, the model is

Yt = level + slope*t + st + irregulart

Table 15.4 Predictive accuracy measures

Measure Abbreviation Definition

Mean error ME mean(et)

Root mean squared error RMSE sqrt(mean(et
2))

Mean absolute error MAE mean(| et |)

Mean percentage error MPE mean(100 * et / Yt)

Mean absolute percentage error MAPE mean(| 100 * et / Yt |)

Mean absolute scaled error MASE mean(| qt |) where

qt = et / (1/(T-1) * sum(| yt – yt-1|)), T is the number

of observations, and the sum goes from t=2 to t=T

Yi

www.it-ebooks.info

http://www.it-ebooks.info/

356 CHAPTER 15 Time series

where st represents the seasonal influence at time t. In addition to alpha and beta

parameters, a gamma smoothing parameter controls the exponential decay of the sea-

sonal component. Like the others, it ranges from 0 to 1, and larger values give more

weight to recent observations in calculating the seasonal effect.

 In section 15.2, you decomposed a time series describing the monthly totals (in log

thousands) of international airline passengers into additive trend, seasonal, and irreg-

ular components. Let’s use an exponential model to predict future travel. Again,

you’ll use log values so that an additive model fits the data. The code in the following

listing applies the Holt-Winters exponential smoothing approach to predicting the

next five values of the AirPassengers time series.

> library(forecast)
> fit <- ets(log(AirPassengers), model="AAA")
> fit

ETS(A,A,A)

Call:
 ets(y = log(AirPassengers), model = "AAA")

 Smoothing parameters:
 alpha = 0.8528
 beta = 4e-04
 gamma = 0.0121

 Initial states:
 l = 4.8362
 b = 0.0097
 s=-0.1137 -0.2251 -0.0756 0.0623 0.2079 0.2222
 0.1235 -0.009 0 0.0203 -0.1203 -0.0925

 sigma: 0.0367

 AIC AICc BIC
-204.1 -199.8 -156.5

>accuracy(fit)

 ME RMSE MAE MPE MAPE MASE
Training set -0.0003695 0.03672 0.02835 -0.007882 0.5206 0.07532

> pred <- forecast(fit, 5)
> pred
 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jan 1961 6.101 6.054 6.148 6.029 6.173
Feb 1961 6.084 6.022 6.146 5.989 6.179
Mar 1961 6.233 6.159 6.307 6.120 6.346
Apr 1961 6.222 6.138 6.306 6.093 6.350
May 1961 6.225 6.131 6.318 6.082 6.367

> plot(pred, main="Forecast for Air Travel",
 ylab="Log(AirPassengers)", xlab="Time")

Listing 15.5 Exponential smoothing with level, slope, and seasonal components

Smoothing parametersb

Future forecastsc

www.it-ebooks.info

http://www.it-ebooks.info/

357Exponential forecasting models

> pred$mean <- exp(pred$mean)
> pred$lower <- exp(pred$lower)
> pred$upper <- exp(pred$upper)
> p <- cbind(pred$mean, pred$lower, pred$upper)
> dimnames(p)[[2]] <- c("mean", "Lo 80", "Lo 95", "Hi 80", "Hi 95")
> p

 mean Lo 80 Lo 95 Hi 80 Hi 95
Jan 1961 446.3 425.8 415.3 467.8 479.6
Feb 1961 438.8 412.5 399.2 466.8 482.3
Mar 1961 509.2 473.0 454.9 548.2 570.0
Apr 1961 503.6 463.0 442.9 547.7 572.6
May 1961 505.0 460.1 437.9 554.3 582.3

The smoothing parameters for the level (.82), trend (.0004), and seasonal compo-

nents (.012) are given in b. The low value for the trend (.0004) doesn’t mean there is

no slope; it indicates that the slope estimated from early observations didn’t need to

be updated.

 The forecast() function produces forecasts for the next five months c and is

plotted in figure 15.9. Because the predictions are on a log scale, exponentiation is

used to get the predictions in the original metric: numbers (in thousands) of passen-

gers d. The matrix pred$mean contains the point forecasts, and the matrices

pred$lower and pred$upper contain the 80% and 95% lower and upper confidence

limits, respectively. The exp() function is used to return the predictions to the origi-

nal scale, and cbind() creates a single table. Thus the model predicts 509,200 passen-

gers in March, with a 95% confidence band ranging from 454,900 to 570,000.

Makes forecasts in
the original scale

d

Forecast for Air Travel

Time

L
o

g
(A

ir
P

a
s
s
e

n
g

e
rs

)

1950 1952 1954 1956 1958 1960

5
.0

5
.5

6
.0

6
.5

Figure 15.9 Five-year forecast of log(number of international airline

passengers in thousands) based on a Holt-Winters exponential smoothing

model. Data are from the AirPassengers time series.

www.it-ebooks.info

http://www.it-ebooks.info/

358 CHAPTER 15 Time series

15.3.3 The ets() function and automated forecasting

The ets() function has additional capabilities. You can use it to fit exponential mod-

els that have multiplicative components, add a dampening component, and perform

automated forecasts. Let’s consider each in turn.

 In the previous section, you fit an additive exponential model to the log of the

AirPassengers time series. Alternatively, you could fit a multiplicative model to the

original data. The function call would be either ets(AirPassengers, model="MAM")

or the equivalent hw(AirPassengers, seasonal="multiplicative"). The trend

remains additive, but the seasonal and irregular components are assumed to be multi-

plicative. By using a multiplicative model in this case, the accuracy statistics and fore-

casted values are reported in the original metric (thousands of passengers)—a

decided advantage.

 The ets() function can also fit a damping component. Time-series predictions

often assume that a trend will continue up forever (housing market, anyone?). A

damping component forces the trend to a horizontal asymptote over a period of time.

In many cases, a damped model makes more realistic predictions.

 Finally, you can invoke the ets() function to automatically select a best-fitting

model for the data. Let’s fit an automated exponential model to the Johnson & John-

son data described in the introduction to this chapter. The following code allows the

software to select a best-fitting model.

> library(forecast)
> fit <- ets(JohnsonJohnson)
> fit

ETS(M,M,M)

Call:
 ets(y = JohnsonJohnson)

 Smoothing parameters:
 alpha = 0.2328
 beta = 0.0367
 gamma = 0.5261

 Initial states:
 l = 0.625
 b = 1.0286
 s=0.6916 1.2639 0.9724 1.0721

 sigma: 0.0863

 AIC AICc BIC
162.4737 164.3937 181.9203

> plot(forecast(fit), main="Johnson & Johnson Forecasts",
 ylab="Quarterly Earnings (Dollars)", xlab="Time", flty=2)

Listing 15.6 Automatic exponential forecasting with ets()

www.it-ebooks.info

http://www.it-ebooks.info/

359ARIMA forecasting models

Because no model is specified, the software performs a search over a wide array of

models to find one that minimizes the fit criterion (log-likelihood by default). The

selected model is one that has multiplicative trend, seasonal, and error components.

The plot, along with forecasts for the next eight quarters (the default in this case), is

given in figure 15.10. The flty parameter sets the line type for the forecast line

(dashed in this case).

 As stated earlier, exponential time-series modeling is popular because it can give

good short-term forecasts in many situations. A second approach that is also popular

is the Box-Jenkins methodology, commonly referred to as ARIMA models. These are

described in the next section.

15.4 ARIMA forecasting models

In the autoregressive integrated moving average (ARIMA) approach to forecasting, pre-

dicted values are a linear function of recent actual values and recent errors of predic-

tion (residuals). ARIMA is a complex approach to forecasting. In this section, we’ll

limit discussion to ARIMA models for non-seasonal time series.

 Before describing ARIMA models, a number of terms need to be defined, including

lags, autocorrelation, partial autocorrelation, differencing, and stationarity. Each is

considered in the next section.

15.4.1 Prerequisite concepts

When you lag a time series, you shift it back by a given number of observations. Con-

sider the first few observations from the Nile time series, displayed in table 15.5. Lag 0

Johnson & Johnson Forecasts

Time

Q
u

a
rt

e
rl

y
 E

a
rn

in
g

s
 (

D
o

lla
rs

)

1960 1965 1970 1975 1980

0
5

1
0

1
5

2
0

2
5

Figure 15.10 Multiplicative

exponential smoothing forecast

with trend and seasonal

components. The forecasts are

a dashed line, and the 80% and

95% confidence intervals are

provided in light and dark gray,

respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

360 CHAPTER 15 Time series

is the unshifted time series. Lag 1 is the time series shifted one position to the left. Lag

2 shifts the time series two positions to the left, and so on. Time series can be lagged

using the function lag(ts,k), where ts is the time series and k is the number of lags.

Autocorrelation measures the way observations in a time series relate to each other. ACk

is the correlation between a set of observations (Yt) and observations k periods earlier

(Yt-k). So AC1 is the correlation between the Lag 1 and Lag 0 time series, AC2 is the

correlation between the Lag 2 and Lag 0 time series, and so on. Plotting these correla-

tions (AC1, AC2, …, ACk) produces an autocorrelation function (ACF) plot. The ACF plot is

used to select appropriate parameters for the ARIMA model and to assess the fit of the

final model.

 An ACF plot can be produced with the acf() function in the stats package or the

Acf() function in the forecast package. Here, the Acf() function is used because it

produces a plot that is somewhat easier to read. The format is Acf(ts), where ts is the

original time series. The ACF plot for the Nile time series, with k=1 to 18, is provided a

little later, in the top half of figure 15.12.

 A partial autocorrelation is the correlation between Yt and Yt-k with the effects of all Y

values between the two (Yt-1, Yt-2, …, Yt-k+1) removed. Partial autocorrelations can also

be plotted for multiple values of k. The PACF plot can be generated with either the

pacf() function in the stats package or the Pacf() function in the forecast pack-

age. Again, the Pacf() function is preferred due to its formatting. The function call is

Pacf(ts), where ts is the time series to be assessed. The PACF plot is also used to

determine the most appropriate parameters for the ARIMA model. The results for the

Nile time series are given in the bottom half of figure 15.12.

 ARIMA models are designed to fit stationary time series (or time series that can be

made stationary). In a stationary time series, the statistical properties of the series

don’t change over time. For example, the mean and variance of Yt are constant. Addi-

tionally, the autocorrelations for any lag k don’t change with time.

 It may be necessary to transform the values of a time series in order to achieve con-

stant variance before proceeding to fitting an ARIMA model. The log transformation is

often useful here, as you saw in section 15.1.3. Other transformations, such as the Box-

Cox transformation described in section 8.5.2, may also be helpful.

 Because stationary time series are assumed to have constant means, they can’t have

a trend component. Many non-stationary time series can be made stationary through

Table 15.5 The Nile time series at various lags

Lag 1869 1870 1871 1872 1873 1874 1875 …

0 1120 1160 963 1210 1160 …

1 1120 1160 963 1210 1160 1160 …

2 1120 1160 963 1210 1160 1160 813 …

www.it-ebooks.info

http://www.it-ebooks.info/

361ARIMA forecasting models

differencing. In differencing, each value of a time series Yt is replaced with Yt-1 – Yt. Dif-

ferencing a time series once removes a linear trend. Differencing it a second time

removes a quadratic trend. A third time removes a cubic trend. It’s rarely necessary to

difference more than twice.

 You can difference a time series with the diff() function. The format is diff(ts,

differences=d), where d indicates the number of times the time series ts is differ-

enced. The default is d=1. The ndiffs() function in the forecast package can be

used to help determine the best value of d. The format is ndiffs(ts).

 Stationarity is often evaluated with a visual inspection of a time-series plot. If the

variance isn’t constant, the data are transformed. If there are trends, the data are dif-

ferenced. You can also use a statistical procedure called the Augmented Dickey-Fuller

(ADF) test to evaluate the assumption of stationarity. In R, the function adf.test() in

the tseries package performs the test. The format is adf.test(ts), where ts is the

time series to be evaluated. A significant result suggests stationarity.

 To summarize, ACF and PCF plots are used to determine the parameters of ARIMA

models. Stationarity is an important assumption, and transformations and differenc-

ing are used to help achieve stationarity. With these concepts in hand, we can now

turn to fitting models with an autoregressive (AR) component, a moving averages

(MA) component, or both components (ARMA). Finally, we’ll examine ARIMA models

that include ARMA components and differencing to achieve stationarity (Integration).

15.4.2 ARMA and ARIMA models

In an autoregressive model of order p, each value in a time series is predicted from a lin-

ear combination of the previous p values

AR(p):Yt = μ + β1Yt−1 + β2Yt−2 + ... + βpYt−p + ε t

where Yt is a given value of the series, µ is the mean of the series, the β s are the

weights, and ε t is the irregular component. In a moving average model of order q, each

value in the time series is predicted from a linear combination of q previous errors. In

this case

MA(q):Yt = μ − θ1ε t−1 − θ2ε t−2 ... − θqε t−q + ε t

where the ε s are the errors of prediction and the θ s are the weights. (It’s important to

note that the moving averages described here aren’t the simple moving averages

described in section 15.1.2.)

 Combining the two approaches yields an ARMA(p, q) model of the form

Yt = μ + β1Yt−1 + β2Yt−2 + ... + βpYt−p − θ1ε t−1 − θ2ε t−2 ... − θqε t−q + ε t

that predicts each value of the time series from the past p values and q residuals.

 An ARIMA(p, d, q) model is a model in which the time series has been differenced

d times, and the resulting values are predicted from the previous p actual values and q

www.it-ebooks.info

http://www.it-ebooks.info/

362 CHAPTER 15 Time series

previous errors. The predictions are “un-differenced” or integrated to achieve the final

prediction.

 The steps in ARIMA modeling are as follows:

1 Ensure that the time series is stationary.

2 Identify a reasonable model or models (possible values of p and q).

3 Fit the model.

4 Evaluate the model’s fit, including statistical assumptions and predictive accu-

racy.

5 Make forecasts.

 Let’s apply each step in turn to fit an ARIMA model to the Nile time series.

ENSURING THAT THE TIME SERIES IS STATIONARY

First you plot the time series and assess its stationarity (see listing 15.7 and the top half

of figure 15.11). The variance appears to be stable across the years observed, so

there’s no need for a transformation. There may be a trend, which is supported by the

results of the ndiffs() function.

N
ile

1880 1900 1920 1940 1960

6
0
0

8
0
0

1
0
0
0

1
4
0
0

Time

d
if
f(

N
ile

)

1880 1900 1920 1940 1960

−
4
0
0

−
2
0
0

0
2
0
0

4
0
0

Figure 15.11 Time series displaying the annual flow of the river Nile at Ashwan

from 1871 to 1970 (top) along with the times series differenced once (bottom).

The differencing removes the decreasing trend evident in the original plot.

www.it-ebooks.info

http://www.it-ebooks.info/

363ARIMA forecasting models

> library(forecast)
> library(tseries)
> plot(Nile)
> ndiffs(Nile)

[1] 1

> dNile <- diff(Nile)
> plot(dNile)
> adf.test(dNile)

 Augmented Dickey-Fuller Test

data: dNile
Dickey-Fuller = -6.5924, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary

The series is differenced once (lag=1 is the default) and saved as dNile. The differ-

enced time series is plotted in the bottom half of figure 15.11 and certainly looks

more stationary. Applying the ADF test to the differenced series suggest that it’s now

stationary, so you can proceed to the next step.

IDENTIFYING ONE OR MORE REASONABLE MODELS

Possible models are selected based on the ACF and PACF plots:

Acf(dNile)
Pacf(dNile)

The resulting plots are

given in figure 15.12.

Figure 15.12 Autocorrelation

and partial autocorrelation

plots for the differenced

Nile time series

Listing 15.7 Transforming the time series and assessing stationarity

−
0
.4

−
0
.2

0
.0

0
.2

A
C

F

1 2 3 4 5 6 7 8 9 10 12 14 16 18

−
0
.4

−
0
.2

0
.0

0
.2

Lag

P
a
rt

ia
l
A

C
F

1 2 3 4 5 6 7 8 9 10 12 14 16 18

www.it-ebooks.info

http://www.it-ebooks.info/

364 CHAPTER 15 Time series

The goal is to identify the parameters p, d, and q. You already know that d=1 from the

previous section. You get p and q by comparing the ACF and PACF plots with the

guidelines given in table 15.6.

The results in table 15.6 are theoretical, and the actual ACF and PACF may not match

this exactly. But they can be used to give a rough guide of reasonable models to try.

For the Nile time series in figure 15.12, there appears to be one large autocorrelation

at lag 1, and the partial autocorrelations trail off to zero as the lags get bigger. This

suggests trying an ARIMA(0, 1, 1) model.

FITTING THE MODEL(S)

The ARIMA model is fit with the arima() function. The format is arima(ts,

order=c(q, d, q)). The result of fitting an ARIMA(0, 1, 1) model to the Nile time

series is given in the following listing.

> library(forecast)
> fit <- arima(Nile, order=c(0,1,1))
> fit

Series: Nile
ARIMA(0,1,1)

Coefficients:
 ma1
 -0.7329
s.e. 0.1143

sigma^2 estimated as 20600: log likelihood=-632.55
AIC=1269.09 AICc=1269.22 BIC=1274.28

> accuracy(fit)

 ME RMSE MAE MPE MAPE MASE
Training set -11.94 142.8 112.2 -3.575 12.94 0.8089

Note that you apply the model to the original time series. By specifying d=1, it calcu-

lates first differences for you. The coefficient for the moving averages (-0.73) is pro-

vided along with the AIC. If you fit other models, the AIC can help you choose which

one is most reasonable. Smaller AIC values suggest better models. The accuracy

Table 15.6 Guidelines for selecting an ARIMA model

Model ACF PACF

ARIMA(p, d, 0) Trails off to zero Zero after lag p

ARIMA(0, d, q) Zero after lag q Trails off to zero

ARIMA(p, d, q) Trails off to zero Trails off to zero

Listing 15.8 Fitting an ARIMA model

www.it-ebooks.info

http://www.it-ebooks.info/

365ARIMA forecasting models

measures can help you determine whether the model fits with sufficient accuracy.

Here the mean absolute percent error is 13% of the river level.

EVALUATING MODEL FIT

If the model is appropriate, the residuals should be normally distributed with mean

zero, and the autocorrelations should be zero for every possible lag. In other words,

the residuals should be normally and independently distributed (no relationship

between them). The assumptions can be evaluated with the following code.

> qqnorm(fit$residuals)
> qqline(fit$residuals)
> Box.test(fit$residuals, type="Ljung-Box")

 Box-Ljung test

data: fit$residuals
X-squared = 1.3711, df = 1, p-value = 0.2416

The qqnorm() and qqline() functions produce the plot in figure 15.13. Normally dis-

tributed data should fall along the line. In this case, the results look good.

 The Box.test() function provides a test that the autocorrelations are all zero. The

results aren’t significant, suggesting that the autocorrelations don’t differ from zero.

This ARIMA model appears to fit the data well.

MAKING FORECASTS

If the model hadn’t met the assumptions of normal residuals and zero autocorrela-

tions, it would have been necessary to alter the model, add parameters, or try a differ-

ent approach. Once a final model has been chosen, it can be used to make

predictions of future values. In the next listing, the forecast() function from the

forecast package is used to predict three years ahead.

Listing 15.9 Evaluating the model fit

−2 −1 0 1 2

−
4

0
0

−
2

0
0

0
2

0
0

Normal Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure 15.13 Normal Q-Q plot for

determining the normality of the

time-series residuals

www.it-ebooks.info

http://www.it-ebooks.info/

366 CHAPTER 15 Time series

> forecast(fit, 3)

 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1971 798.3673 614.4307 982.3040 517.0605 1079.674
1972 798.3673 607.9845 988.7502 507.2019 1089.533
1973 798.3673 601.7495 994.9851 497.6663 1099.068

> plot(forecast(fit, 3), xlab="Year", ylab="Annual Flow")

The plot() function is used to plot the forecast in figure 15.14. Point estimates are

given by the blue dots, and 80% and 95% confidence bands are represented by dark

and light bands, respectively.

15.4.3 Automated ARIMA forecasting

In section 15.2.3, you used the ets() function in the forecast package to automate

the selection of a best exponential model. The package also provides an

auto.arima() function to select a best ARIMA model. The next listing applies this

approach to the sunspots time series described in the chapter introduction.

> library(forecast)
> fit <- auto.arima(sunspots)
> fit
Series: sunspots
ARIMA(2,1,2)

Listing 15.10 Forecasting with an ARIMA model

Listing 15.11 Automated ARIMA forecasting

Forecasts from ARIMA(0,1,1)

Year

A
n

n
u

a
l
F

lo
w

1880 1900 1920 1940 1960

6
0

0
8

0
0

1
0

0
0

1
2

0
0

1
4

0
0

Figure 15.14 Three-year

forecast for the Nile time series

from a fitted ARIMA(0,1,1)

model. Blue dots represent point

estimates, and the light and dark

gray bands represent the 80%

and 95% confidence bands limits,

respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

367Summary

Coefficients:
 ar1 ar2 ma1 ma2
 1.35 -0.396 -1.77 0.810
s.e. 0.03 0.029 0.02 0.019

sigma^2 estimated as 243: log likelihood=-11746
AIC=23501 AICc=23501 BIC=23531

> forecast(fit, 3)

 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jan 1984 40.437722 20.4412613 60.43418 9.855774 71.01967
Feb 1984 41.352897 18.2795867 64.42621 6.065314 76.64048
Mar 1984 39.796425 15.2537785 64.33907 2.261686 77.33116

> accuracy(fit)
 ME RMSE MAE MPE MAPE MASE
Training set -0.02673 15.6 11.03 NaN Inf 0.32

The function selects an ARIMA model with p=2, d=1, and q=2. These are values that

minimize the AIC criterion over a large number of possible models. The MPE and

MAPE accuracy blow up because there are zero values in the series (a drawback of

these two statistics). Plotting the results and evaluating the fit are left for you as an

exercise.

15.5 Going further

There are many good books on time-series analysis and forecasting. If you’re new to

the subject, I suggest starting with the book Time Series (Open University, 2006).

Although it doesn’t include R code, it provides a very understandable and intuitive

introduction. A Little Book of R for Time Series by Avril Coghlan (http://mng.bz/8fz0,

2010) pairs well with the Open University text and includes R code and examples.

 Forecasting: Principles and Practice (http://otexts.com/fpp, 2013) is a clear and con-

cise online textbook written by Rob Hyndman and George Athanasopoulos; it

includes R code throughout. I highly recommend it. Additionally, Cowpertwait & Met-

calfe (2009) have written an excellent text on analyzing time series with R. A more

advanced treatment that also includes R code can be found in Shumway & Stoffer

(2010).

 Finally, you can consult the CRAN Task View on Time Series Analysis (http://

cran.r-project.org/web/views/TimeSeries.html). It contains a comprehensive sum-

mary of all of R’s time-series capabilities.

15.6 Summary

Forecasting has a long and varied history, from early shamans predicting the weather

to modern data scientists predicting the results of recent elections. Prediction is fun-

damental to both science and human nature. In this chapter, we’ve looked at how to

create time series in R, assess trends, and examine seasonal effects. Then we

www.it-ebooks.info

http://mng.bz/8fz0
http://otexts.com/fpp
http://cran.r-project.org/web/views/TimeSeries.html
http://cran.r-project.org/web/views/TimeSeries.html
http://www.it-ebooks.info/

368 CHAPTER 15 Time series

considered two of the most popular approaches to forecasting: exponential models

and ARIMA models.

 Although these methodologies can be crucial in understanding and predicting a

wide variety of phenomena, it’s important to remember that they each entail extrapo-

lation—going beyond the data. They assume that future conditions mirror current

conditions. Financial predictions made in 2007 assumed continued economic growth

in 2008 and beyond. As we all know now, that isn’t exactly how things turned out. Sig-

nificant events can change the trend and pattern in a time series, and the farther out

you try to predict, the greater the uncertainty.

 In the next chapter, we’ll shift gears and look at methodologies that are important

to anyone trying to classify individuals or observations into discrete groups.

www.it-ebooks.info

http://www.it-ebooks.info/

369

Cluster analysis

Cluster analysis is a data-reduction technique designed to uncover subgroups of

observations within a dataset. It allows you to reduce a large number of observa-

tions to a much smaller number of clusters or types. A cluster is defined as a group

of observations that are more similar to each other than they are to the observa-

tions in other groups. This isn’t a precise definition, and that fact has led to an

enormous variety of clustering methods.

 Cluster analysis is widely used in the biological and behavioral sciences, market-

ing, and medical research. For example, a psychological researcher might cluster

data on the symptoms and demographics of depressed patients, seeking to uncover
subtypes of depression. The hope would be that finding such subtypes might lead

to more targeted and effective treatments and a better understanding of the disor-

der. Marketing researchers use cluster analysis as a customer-segmentation strategy.

This chapter covers

■ Identifying cohesive subgroups (clusters) of
observations

■ Determining the number of clusters present

■ Obtaining a nested hierarchy of clusters

■ Obtaining discrete clusters

www.it-ebooks.info

http://www.it-ebooks.info/

370 CHAPTER 16 Cluster analysis

Customers are arranged into clusters based on the similarity of their demographics

and buying behaviors. Marketing campaigns are then tailored to appeal to one or
more of these subgroups. Medical researchers use cluster analysis to help catalog

gene-expression patterns obtained from DNA microarray data. This can help them to

understand normal growth and development and the underlying causes of many
human diseases.

 The two most popular clustering approaches are hierarchical agglomerative clustering

and partitioning clustering. In agglomerative hierarchical clustering, each observation
starts as its own cluster. Clusters are then combined, two at a time, until all clusters are

merged into a single cluster. In the partitioning approach, you specify K: the number

of clusters sought. Observations are then randomly divided into K groups and reshuf-
fled to form cohesive clusters.

 Within each of these broad approaches, there are many clustering algorithms to

choose from. For hierarchical clustering, the most popular are single linkage, com-
plete linkage, average linkage, centroid, and Ward’s method. For partitioning, the two

most popular are k-means and partitioning around medoids (PAM). Each clustering

method has advantages and disadvantages, which we’ll discuss.
 The examples in this chapter focus on food and wine (I suspect my friends aren’t

surprised). Hierarchical clustering is applied to the nutrient dataset contained in the

flexclust package to answer the following questions:

■ What are the similarities and differences among 27 types of fish, fowl, and meat,

based on 5 nutrient measures?
■ Is there a smaller number of groups into which these foods can be meaningfully

clustered?

Partitioning methods will be used to evaluate 13 chemical analyses of 178 Italian wine
samples. The data are contained in the wine dataset available with the rattle pack-

age. Here, the questions are as follows:

■ Are there subtypes of wine in the data?
■ If so, how many subtypes are there, and what are their characteristics?

In fact, the wine samples represent three varietals (recorded as Type). This will allow

you to evaluate how well the cluster analysis recovers the underlying structure.

 Although there are many approaches to cluster analysis, they usually follow a simi-
lar set of steps. These common steps are described in section 16.1. Hierarchical

agglomerative clustering is described in section 16.2, and partitioning methods are

covered in section 16.3. Some final advice and cautionary statements are provided in
section 16.4. In order to run the examples in this chapter, be sure to install the

cluster, NbClust, flexclust, fMultivar, ggplot2, and rattle packages. The rattle

package will also be used in chapter 17.

16.1 Common steps in cluster analysis

Like factor analysis (chapter 14), an effective cluster analysis is a multistep process

with numerous decision points. Each decision can affect the quality and usefulness of

www.it-ebooks.info

http://www.it-ebooks.info/

371Common steps in cluster analysis

the results. This section describes the 11 typical steps in a comprehensive cluster

analysis:

1 Choose appropriate attributes. The first (and perhaps most important) step is to
select variables that you feel may be important for identifying and understand-
ing differences among groups of observations within the data. For example, in a
study of depression, you might want to assess one or more of the following: psy-
chological symptoms; physical symptoms; age at onset; number, duration, and
timing of episodes; number of hospitalizations; functional status with regard to
self-care; social and work history; current age; gender; ethnicity; socioeconomic
status; marital status; family medical history; and response to previous treat-
ments. A sophisticated cluster analysis can’t compensate for a poor choice of
variables.

2 Scale the data. If the variables in the analysis vary in range, the variables with the
largest range will have the greatest impact on the results. This is often undesir-
able, and analysts scale the data before continuing. The most popular approach
is to standardize each variable to a mean of 0 and a standard deviation of 1.
Other alternatives include dividing each variable by its maximum value or sub-
tracting the variable’s mean and dividing by the variable’s median absolute devi-
ation. The three approaches are illustrated with the following code snippets:

df1 <- apply(mydata, 2, function(x){(x-mean(x))/sd(x)})
df2 <- apply(mydata, 2, function(x){x/max(x)})
df3 <- apply(mydata, 2, function(x){(x – mean(x))/mad(x)})

In this chapter, you’ll use the scale() function to standardize the variables to a
mean of 0 and a standard deviation of 1. This is equivalent to the first code snip-
pet (df1).

3 Screen for outliers. Many clustering techniques are sensitive to outliers, distorting
the cluster solutions obtained. You can screen for (and remove) univariate out-
liers using functions from the outliers package. The mvoutlier package con-
tains functions that can be used to identify multivariate outliers. An alternative
is to use a clustering method that is robust to the presence of outliers. Partition-
ing around medoids (section 16.3.2) is an example of the latter approach.

4 Calculate distances. Although clustering algorithms vary widely, they typically
require a measure of the distance among the entities to be clustered. The most
popular measure of the distance between two observations is the Euclidean dis-
tance, but the Manhattan, Canberra, asymmetric binary, maximum, and
Minkowski distance measures are also available (see ?dist for details). In this
chapter, the Euclidean distance is used throughout. Calculating Euclidean dis-
tances is covered in section 16.1.1.

5 Select a clustering algorithm. Next, you select a method of clustering the data.
Hierarchical clustering is useful for smaller problems (say, 150 observations or
less) and where a nested hierarchy of groupings is desired. The partitioning
method can handle much larger problems but requires that the number of
clusters be specified in advance.

www.it-ebooks.info

http://www.it-ebooks.info/

372 CHAPTER 16 Cluster analysis

Once you’ve chosen the hierarchical or partitioning approach, you must select
a specific clustering algorithm. Again, each has advantages and disadvantages.
The most popular methods are described in sections 16.2 and 16.3. You may
wish to try more than one algorithm to see how robust the results are to the
choice of methods.

6 Obtain one or more cluster solutions. This step uses the method(s) selected in step 5.

7 Determine the number of clusters present. In order to obtain a final cluster solution,
you must decide how many clusters are present in the data. This is a thorny
problem, and many approaches have been proposed. It usually involves extract-
ing various numbers of clusters (say, 2 to K) and comparing the quality of the
solutions. The NbClust() function in the NBClust package provides 30 differ-
ent indices to help you make this decision (elegantly demonstrating how unre-
solved this issue is). NbClust is used throughout this chapter.

8 Obtain a final clustering solution. Once the number of clusters has been deter-
mined, a final clustering is performed to extract that number of subgroups.

9 Visualize the results. Visualization can help you determine the meaning and use-
fulness of the cluster solution. The results of a hierarchical clustering are usu-
ally presented as a dendrogram. Partitioning results are typically visualized
using a bivariate cluster plot.

10 Interpret the clusters. Once a cluster solution has been obtained, you must interpret
(and possibly name) the clusters. What do the observations in a cluster have in
common? How do they differ from the observations in other clusters? This step
is typically accomplished by obtaining summary statistics for each variable by
cluster. For continuous data, the mean or median for each variable within each
cluster is calculated. For mixed data (data that contain categorical variables), the
summary statistics will also include modes or category distributions.

11 Validate the results. Validating the cluster solution involves asking the question,
“Are these groupings in some sense real, and not a manifestation of unique
aspects of this dataset or statistical technique?” If a different cluster method or
different sample is employed, would the same clusters be obtained? The fpc,
clv, and clValid packages each contain functions for evaluating the stability of
a clustering solution.

Because the calculations of distances between observations is such an integral part of

cluster analysis, it’s described next and in some detail.

16.2 Calculating distances

Every cluster analysis begins with the calculation of a distance, dissimilarity, or proxim-

ity between each entity to be clustered. The Euclidean distance between two observa-

tions is given by

where i and j are observations and P is the number of variables.

−=dij (xip xjp) p =1

p 2

www.it-ebooks.info

http://www.it-ebooks.info/

373Calculating distances

 Consider the nutrient dataset provided with the flexclust package. The dataset

contains measurements on the nutrients of 27 types of meat, fish, and fowl. The first

few observations are given by

> data(nutrient, package="flexclust")
> head(nutrient, 4)

 energy protein fat calcium iron
BEEF BRAISED 340 20 28 9 2.6
HAMBURGER 245 21 17 9 2.7
BEEF ROAST 420 15 39 7 2.0
BEEF STEAK 375 19 32 9 2.6

and the Euclidean distance between the first two (beef braised and hamburger) is

The dist() function in the base R installation can be used to calculate the distances

between all rows (observations) of a matrix or data frame. The format is dist(x,

method=), where x is the input data and method="euclidean" by default. The function

returns a lower triangle matrix by default, but the as.matrix() function can be used to

access the distances using standard bracket notation. For the nutrient data frame,

> d <- dist(nutrient)
> as.matrix(d)[1:4,1:4]

 BEEF BRAISED HAMBURGER BEEF ROAST BEEF STEAK
BEEF BRAISED 0.0 95.6 80.9 35.2
HAMBURGER 95.6 0.0 176.5 130.9
BEEF ROAST 80.9 176.5 0.0 45.8
BEEF STEAK 35.2 130.9 45.8 0.0

Larger distances indicate larger dissimilarities between observations. The distance

between an observation and itself is 0. As expected, the dist() function provides the

same distance between beef braised and hamburger as the hand calculations.

Note that distances in the nutrient data frame are heavily dominated by the contribu-

tion of the energy variable, which has a much larger range. Scaling the data will help

Cluster analysis with mixed data types

Euclidean distances are usually the distance measure of choice for continuous data.
But if other variable types are present, alternative dissimilarity measures are required.
You can use the daisy() function in the cluster package to obtain a dissimilarity
matrix among observations that have any combination of binary, nominal, ordinal, and
continuous attributes. Other functions in the cluster package can use these dissim-
ilarities to carry out a cluster analysis. For example, agnes() offers agglomerative
hierarchical clustering, and pam() provides partitioning around medoids.

(340 − 245)2 + (20 − 21)2 + (28 − 17)2 + (9 − 9)2 + (26 − 27)2 = 95.64 d =

www.it-ebooks.info

http://www.it-ebooks.info/

374 CHAPTER 16 Cluster analysis

to equalize the impact of each variable. In the next section, you’ll apply hierarchical

cluster analysis to this dataset.

16.3 Hierarchical cluster analysis

As stated previously, in agglomerative hierarchical clustering, each case or observation

starts as its own cluster. Clusters are then combined two at a time until all clusters are

merged into a single cluster. The algorithm is as follows:

1 Define each observation (row, case) as a cluster.

2 Calculate the distances between every cluster and every other cluster.

3 Combine the two clusters that have the smallest distance. This reduces the num-
ber of clusters by one.

4 Repeat steps 2 and 3 until all clusters have been merged into a single cluster

containing all observations.

The primary difference among hierarchical clustering algorithms is their definitions

of cluster distances (step 2). Five of the most common hierarchical clustering meth-

ods and their definitions of the distance between two clusters are given in table 16.1.

Single-linkage clustering tends to find elongated, cigar-shaped clusters. It also com-

monly displays a phenomenon called chaining—dissimilar observations are joined into

the same cluster because they’re similar to intermediate observations between them.
Complete-linkage clustering tends to find compact clusters of approximately equal

diameter. It can also be sensitive to outliers. Average-linkage clustering offers a com-

promise between the two. It’s less likely to chain and is less susceptible to outliers. It
also has a tendency to join clusters with small variances.

 Ward’s method tends to join clusters with small numbers of observations and tends

to produce clusters with roughly equal numbers of observations. It can also be sensi-

tive to outliers. The centroid method offers an attractive alternative due to its simple
and easily understood definition of cluster distances. It’s also less sensitive to outliers

than other hierarchical methods. But it may not perform as well as the average-

linkage or Ward method.

Table 16.1 Hierarchical clustering methods

Cluster method Definition of the distance between two clusters

Single linkage Shortest distance between a point in one cluster and a point in the other cluster.

Complete linkage Longest distance between a point in one cluster and a point in the other cluster.

Average linkage Average distance between each point in one cluster and each point in the other

cluster (also called UPGMA [unweighted pair group mean averaging]).

Centroid Distance between the centroids (vector of variable means) of the two clusters.

For a single observation, the centroid is the variable’s values.

Ward The ANOVA sum of squares between the two clusters added up over all the

variables.

www.it-ebooks.info

http://www.it-ebooks.info/

375Hierarchical cluster analysis

 Hierarchical clustering can be accomplished with the hclust() function. The for-

mat is hclust(d, method=), where d is a distance matrix produced by the dist()

function and methods include "single", "complete", "average", "centroid", and

"ward".

 In this section, you’ll apply average-linkage clustering to the nutrient data intro-

duced from section 16.1.1. The goal is to identify similarities, differences, and group-

ings among 27 food types based on nutritional information. The code for carrying out

the clustering is provided in the following listing.

data(nutrient, package="flexclust")
row.names(nutrient) <- tolower(row.names(nutrient))
nutrient.scaled <- scale(nutrient)

d <- dist(nutrient.scaled)

fit.average <- hclust(d, method="average")
plot(fit.average, hang=-1, cex=.8, main="Average Linkage Clustering")

First the data are imported, and the row names are set to lowercase (because I hate

UPPERCASE LABELS). Because the variables differ widely in range, they’re standardized

to a mean of 0 and a standard deviation of 1. Euclidean distances between each of the

27 food types are calculated, and an average-linkage clustering is performed. Finally,

the results are plotted as a dendrogram (see figure 16.1). The hang option in the

plot() function justifies the observation labels (causing them to hang down from 0).

Listing 16.1 Average-linkage clustering of the nutrient data

s
a
rd

in
e
s
 c

a
n
n
e
d

c
la

m
s
 r

a
w

c
la

m
s
 c

a
n
n
e
d

b
e
e
f

h
e
a
rt

b
e
e
f

ro
a
s
t

la
m

b
 s

h
o
u
ld

e
r

ro
a
s
t

b
e
e
f

s
te

a
k

b
e
e
f

b
ra

is
e
d

s
m

o
ke

d
 h

a
m

p
o
rk

 r
o
a
s
t

p
o
rk

 s
im

m
e
re

d

m
a
c
ke

re
l
c
a
n
n
e
d

s
a
lm

o
n
 c

a
n
n
e
d

m
a
c
ke

re
l
b
ro

ile
d

p
e
rc

h
 f
ri

e
d

c
ra

b
m

e
a
t

c
a
n
n
e
d

h
a
d
d
o
c
k
 f
ri

e
d

b
e
e
f

c
a
n
n
e
d

ve
a
l
c
u
tl
e
t

b
e
e
f

to
n
g
u
e

h
a
m

b
u
rg

e
r

la
m

b
 l
e
g
 r

o
a
s
t

s
h
ri

m
p
 c

a
n
n
e
d

c
h
ic

ke
n
 c

a
n
n
e
d

tu
n
a
 c

a
n
n
e
d

c
h
ic

ke
n
 b

ro
ile

d

b
lu

e
fi
s
h
 b

a
ke

d

0
1

2
3

4
5

Average-Linkage Clustering

hclust (*, "average")
d

H
e
ig

h
t

Figure 16.1 Average-linkage

clustering of nutrient data

www.it-ebooks.info

http://www.it-ebooks.info/

376 CHAPTER 16 Cluster analysis

The dendrogram displays how items are combined into clusters and is read from the

bottom up. Each observation starts as its own cluster. Then the two observations that

are closest (beef braised and smoked ham) are combined. Next, pork roast and pork

simmered are combined, followed by chicken canned and tuna canned. In the fourth

step, the beef braised/smoked ham cluster and the pork roast/pork simmered clus-

ters are combined (and the cluster now contains four food items). This continues

until all observations are combined into a single cluster. The height dimension indi-

cates the criterion value at which clusters are joined. For average-linkage clustering,

this criterion is the average distance between each point in one cluster and each point

in the other cluster.

 If your goal is to understand how food types are similar or different with regard to

their nutrients, then figure 16.1 may be sufficient. It creates a hierarchical view of the

similarity/dissimilarity among the 27 items. Canned tuna and chicken are similar, and

both differ greatly from canned clams. But if the end goal is to assign these foods to a

smaller number of (hopefully meaningful) groups, additional analyses are required to

select an appropriate number of clusters.

 The NbClust package offers numerous indices for determining the best number of

clusters in a cluster analysis. There is no guarantee that they will agree with each

other. In fact, they probably won’t. But the results can be used as a guide for selecting

possible candidate values for K, the number of clusters. Input to the NbClust() func-

tion includes the matrix or data frame to be clustered, the distance measure and clus-

tering method to employ, and the minimum and maximum number of clusters to

consider. It returns each of the clustering indices, along with the best number of clus-

ters proposed by each. The next listing applies this approach to the average-linkage

clustering of the nutrient data.

> library(NbClust)
> devAskNewPage(ask=TRUE)
> nc <- NbClust(nutrient.scaled, distance="euclidean",
 min.nc=2, max.nc=15, method="average")
> table(nc$Best.n[1,])

 0 2 3 4 5 9 10 13 14 15
 2 4 4 3 4 1 1 2 1 4

> barplot(table(nc$Best.n[1,]),
 xlab="Numer of Clusters", ylab="Number of Criteria",
 main="Number of Clusters Chosen by 26 Criteria")

Here, four criteria each favor two clusters, four criteria favor three clusters, and so on.

The results are plotted in figure 16.2.

 You could try the number of clusters (2, 3, 5, and 15) with the most “votes” and

select the one that makes the most interpretive sense. The following listing explores

the five-cluster solution.

Listing 16.2 Selecting the number of clusters

www.it-ebooks.info

http://www.it-ebooks.info/

377Hierarchical cluster analysis

> clusters <- cutree(fit.average, k=5)
> table(clusters)

clusters
 1 2 3 4 5
 7 16 1 2 1

> aggregate(nutrient, by=list(cluster=clusters), median)

 cluster energy protein fat calcium iron
1 1 340.0 19 29 9 2.50
2 2 170.0 20 8 13 1.45
3 3 160.0 26 5 14 5.90
4 4 57.5 9 1 78 5.70
5 5 180.0 22 9 367 2.50

> aggregate(as.data.frame(nutrient.scaled), by=list(cluster=clusters),
 median)

 cluster energy protein fat calcium iron
1 1 1.310 0.000 1.379 -0.448 0.0811
2 2 -0.370 0.235 -0.487 -0.397 -0.6374
3 3 -0.468 1.646 -0.753 -0.384 2.4078
4 4 -1.481 -2.352 -1.109 0.436 2.2709
5 5 -0.271 0.706 -0.398 4.140 0.0811

> plot(fit.average, hang=-1, cex=.8,
 main="Average Linkage Clustering\n5 Cluster Solution")
> rect.hclust(fit.average, k=5)

The cutree() function is used to cut the tree into five clusters b. The first cluster
has 7 observations, the second cluster has 16 observations, and so on. The aggre-
gate() function is then used to obtain the median profile for each cluster c. The
results are reported in both the original metric and in standardized form. Finally, the

Listing 16.3 Obtaining the final cluster solution

Assigns casesb

0 1 2 3 4 5 9 10 13 14 15

Number of Clusters Chosen by 26 Criteria

Number of Clusters

N
u

m
b

e
r

o
f

C
ri

te
ri

a

0
1

2
3

4

Figure 16.2 Recommended

number of clusters using 26

criteria provided by the

NbClust package

Describes clustersc

Plots resultsd

www.it-ebooks.info

http://www.it-ebooks.info/

378 CHAPTER 16 Cluster analysis

dendrogram is replotted, and the rect.hclust() function is used to superimpose
the five-cluster solution d. The results are displayed in figure 16.3.

 Sardines form their own cluster and are much higher in calcium than the other
food groups. Beef heart is also a singleton and is high in protein and iron. The clam
cluster is low in protein and high in iron. The items in the cluster containing beef
roast to pork simmered are high in energy and fat. Finally, the largest group (mack-
erel to bluefish) is relatively low in iron.

 Hierarchical clustering can be particularly useful when you expect nested clustering
and a meaningful hierarchy. This is often the case in the biological sciences. But the
hierarchical algorithms are greedy in the sense that once an observation is assigned to
a cluster, it can’t be reassigned later in the process. Additionally, hierarchical clustering
is difficult to apply in large samples, where there may be hundreds or even thousands
of observations. Partitioning methods can work well in these situations.

16.4 Partitioning cluster analysis

In the partitioning approach, observations are divided into K groups and reshuffled
to form the most cohesive clusters possible according to a given criterion. This section
considers two methods: k-means and partitioning around medoids (PAM).

16.4.1 K-means clustering

The most common partitioning method is the k-means cluster analysis. Conceptually,

the k-means algorithm is as follows:

s
a
rd

in
e
s
 c

a
n
n
e
d

c
la

m
s
 r

a
w

c
la

m
s
 c

a
n
n
e
d

b
e
e
f

h
e
a
rt

b
e

e
f

ro
a

s
t

la
m

b
 s

h
o
u
ld

e
r

ro
a
s
t

b
e
e
f
s
te

a
k

b
e
e
f
b
ra

is
e
d

s
m

o
ke

d
 h

a
m

p
o
rk

 r
o
a
s
t

p
o
rk

 s
im

m
e
re

d

m
a
c
ke

re
l
c
a
n
n
e
d

s
a
lm

o
n
 c

a
n
n
e
d

m
a

c
ke

re
l
b

ro
ile

d

p
e
rc

h
 f
ri

e
d

c
ra

b
m

e
a
t
c
a
n
n
e
d

h
a
d
d
o
c
k
 f
ri

e
d

b
e
e
f
c
a
n
n
e
d

ve
a

l
c
u

tl
e

t

b
e
e
f

to
n
g
u
e

h
a
m

b
u
rg

e
r

la
m

b
 l
e
g
 r

o
a
s
t

s
h
ri

m
p
 c

a
n
n
e
d

c
h
ic

ke
n
 c

a
n
n
e
d

tu
n
a
 c

a
n
n
e
d

c
h
ic

ke
n
 b

ro
ile

d

b
lu

e
fi
s
h
 b

a
ke

d

0
1

2
3

4
5

Average-Linkage Clustering
5 Cluster Solution

hclust (*, "average")
d

H
e

ig
h

t

Figure 16.3 Average-

linkage clustering of the

nutrient data with a five-

cluster solution

www.it-ebooks.info

http://www.it-ebooks.info/

379Partitioning cluster analysis

1 Select K centroids (K rows chosen at random).

2 Assign each data point to its closest centroid.

3 Recalculate the centroids as the average of all data points in a cluster (that is,

the centroids are p-length mean vectors, where p is the number of variables).

4 Assign data points to their closest centroids.

5 Continue steps 3 and 4 until the observations aren’t reassigned or the maxi-

mum number of iterations (R uses 10 as a default) is reached.

Implementation details for this approach can vary.

 R uses an efficient algorithm by Hartigan and Wong (1979) that partitions the

observations into k groups such that the sum of squares of the observations to their

assigned cluster centers is a minimum. This means, in steps 2 and 4, each observation

is assigned to the cluster with the smallest value of

where k is the cluster, xij is the value of the j th variable for the i th observation, x̄kj is the

mean of the j th variable for the k th cluster, and p is the number of variables.

 K-means clustering can handle larger datasets than hierarchical cluster
approaches. Additionally, observations aren’t permanently committed to a cluster.

They’re moved when doing so improves the overall solution. But the use of means

implies that all variables must be continuous, and the approach can be severely
affected by outliers. It also performs poorly in the presence of non-convex (for exam-

ple, U-shaped) clusters.

 The format of the k-means function in R is kmeans(x, centers), where x is a
numeric dataset (matrix or data frame) and centers is the number of clusters to

extract. The function returns the cluster memberships, centroids, sums of squares

(within, between, total), and cluster sizes.
 Because k-means cluster analysis starts with k randomly chosen centroids, a differ-

ent solution can be obtained each time the function is invoked. Use the set.seed()
function to guarantee that the results are reproducible. Additionally, this clustering
approach can be sensitive to the initial selection of centroids. The kmeans() function
has an nstart option that attempts multiple initial configurations and reports on the
best one. For example, adding nstart=25 generates 25 initial configurations. This
approach is often recommended.

 Unlike hierarchical clustering, k-means clustering requires that you specify in
advance the number of clusters to extract. Again, the NbClust package can be used as
a guide. Additionally, a plot of the total within-groups sums of squares against the
number of clusters in a k-means solution can be helpful. A bend in the graph (similar
to the bend in the Scree test described in section 14.2.1) can suggest the appropriate
number of clusters.

 The graph can be produced with the following function:

wssplot <- function(data, nc=15, seed=1234){
 wss <- (nrow(data)-1)*sum(apply(data,2,var))

(xij xkj) − −=ss(k)

n
2

 i =1

p

 j = 0

www.it-ebooks.info

http://www.it-ebooks.info/

380 CHAPTER 16 Cluster analysis

 for (i in 2:nc){
 set.seed(seed)
 wss[i] <- sum(kmeans(data, centers=i)$withinss)}
 plot(1:nc, wss, type="b", xlab="Number of Clusters",
 ylab="Within groups sum of squares")}

The data parameter is the numeric dataset to be analyzed, nc is the maximum num-

ber of clusters to consider, and seed is a random-number seed.

 Let’s apply k-means clustering to a dataset containing 13 chemical measurements

on 178 Italian wine samples. The data originally come from the UCI Machine Learn-

ing Repository (www.ics.uci.edu/~mlearn/MLRepository.html), but you’ll access

them here via the rattle package. In this dataset, the observations represent three

wine varietals, as indicated by the first variable (Type). You’ll drop this variable, per-

form the cluster analysis, and see if you can recover the known structure.

> data(wine, package="rattle")
> head(wine)

 Type Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids
1 1 14.23 1.71 2.43 15.6 127 2.80 3.06
2 1 13.20 1.78 2.14 11.2 100 2.65 2.76
3 1 13.16 2.36 2.67 18.6 101 2.80 3.24
4 1 14.37 1.95 2.50 16.8 113 3.85 3.49
5 1 13.24 2.59 2.87 21.0 118 2.80 2.69
6 1 14.20 1.76 2.45 15.2 112 3.27 3.39

> df <- scale(wine[-1])

 Nonflavanoids Proanthocyanins Color Hue Dilution Proline
1 0.28 2.29 5.64 1.04 3.92 1065
2 0.26 1.28 4.38 1.05 3.40 1050
3 0.30 2.81 5.68 1.03 3.17 1185
4 0.24 2.18 7.80 0.86 3.45 1480
5 0.39 1.82 4.32 1.04 2.93 735
6 0.34 1.97 6.75 1.05 2.85 1450

> wssplot(df)
> library(NbClust)
> set.seed(1234)
> devAskNewPage(ask=TRUE)
> nc <- NbClust(df, min.nc=2, max.nc=15, method="kmeans")
> table(nc$Best.n[1,])

 0 2 3 8 13 14 15
 2 3 14 1 2 1 1

> barplot(table(nc$Best.n[1,]),
 xlab="Number of Clusters", ylab="Number of Criteria",
 main="Number of Clusters Chosen by 26 Criteria")

> set.seed(1234)

Listing 16.4 K-means clustering of wine data

Standardizes
the datab

Determines the
number of clusters

c

www.it-ebooks.info

www.ics.uci.edu/~mlearn/MLRepository.html
http://www.it-ebooks.info/

381Partitioning cluster analysis

> fit.km <- kmeans(df, 3, nstart=25)
> fit.km$size

[1] 62 65 51

> fit.km$centers

 Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids Nonflavanoids
1 0.83 -0.30 0.36 -0.61 0.576 0.883 0.975 -0.561
2 -0.92 -0.39 -0.49 0.17 -0.490 -0.076 0.021 -0.033
3 0.16 0.87 0.19 0.52 -0.075 -0.977 -1.212 0.724
 Proanthocyanins Color Hue Dilution Proline
1 0.579 0.17 0.47 0.78 1.12
2 0.058 -0.90 0.46 0.27 -0.75
3 -0.778 0.94 -1.16 -1.29 -0.41

> aggregate(wine[-1], by=list(cluster=fit.km$cluster), mean)

 cluster Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids
1 1 14 1.8 2.4 17 106 2.8 3.0
2 2 12 1.6 2.2 20 88 2.2 2.0
3 3 13 3.3 2.4 21 97 1.6 0.7
 Nonflavanoids Proanthocyanins Color Hue Dilution Proline
1 0.29 1.9 5.4 1.07 3.2 1072
2 0.35 1.6 2.9 1.04 2.8 495
3 0.47 1.1 7.3 0.67 1.7 620

Because the variables vary in range, they’re standardized prior to clustering b. Next,

the number of clusters is determined using the wssplot() and NbClust() functions

c. Figure 16.4 indicates that there is a distinct drop in the within-groups sum of

squares when moving from one to three clusters. After three clusters, this decrease

drops off, suggesting that a three-cluster solution may be a good fit to the data. In fig-

ure 16.5, 14 of 24 criteria provided by the NbClust package suggest a three-cluster

solution. Note that not all 30 criteria can be calculated for every dataset.

 A final cluster solution is obtained with the kmeans() function, and the cluster cen-

troids are printed d. Because the centroids provided by the function are based on

Performs the k-means
cluster analysisd

2 4 6 8 10 12 14

1
0
0
0

1
5
0
0

2
0
0
0

Number of Clusters

W
it
h

in
 g

ro
u

p
s
 s

u
m

 o
f

s
q

u
a

re
s

Figure 16.4 Plotting the

within-groups sums of

squares vs. the number of

clusters extracted. The

sharp decreases from one

to three clusters (with little

decrease after) suggests a

three-cluster solution.

www.it-ebooks.info

http://www.it-ebooks.info/

382 CHAPTER 16 Cluster analysis

standardized data, the aggregate() function is used along with the cluster member-

ships to determine variable means for each cluster in the original metric.

 How well did k-means clustering uncover the actual structure of the data con-

tained in the Type variable? A cross-tabulation of Type (wine varietal) and cluster

membership is given by

> ct.km <- table(wine$Type, fit.km$cluster)
> ct.km
 1 2 3
 1 59 0 0
 2 3 65 3
 3 0 0 48

You can quantify the agreement between type and cluster using an adjusted Rand

index, provided by the flexclust package:

> library(flexclust)
> randIndex(ct.km)
[1] 0.897

The adjusted Rand index provides a measure of the agreement between two parti-

tions, adjusted for chance. It ranges from -1 (no agreement) to 1 (perfect agree-

ment). Agreement between the wine varietal type and the cluster solution is 0.9. Not

bad—shall we have some wine?

16.4.2 Partitioning around medoids

Because it’s based on means, the k-means clustering approach can be sensitive to out-

liers. A more robust solution is provided by partitioning around medoids (PAM).
Rather than representing each cluster using a centroid (a vector of variable means),

each cluster is identified by its most representative observation (called a medoid).

Whereas k-means uses Euclidean distances, PAM can be based on any distance mea-
sure. It can therefore accommodate mixed data types and isn’t limited to continuous

variables.

0 1 2 3 10 12 14 15

Number of Clusters Chosen by 26 Criteria

Number of Clusters

N
u

m
b

e
r

o
f

C
ri
te

ri
a

0
2

4
6

8
1
0

1
2

1
4

Figure 16.5

Recommended number

of clusters using 26

criteria provided by the

NbClust package

www.it-ebooks.info

http://www.it-ebooks.info/

383Partitioning cluster analysis

 The PAM algorithm is as follows:

1 Randomly select K observations (call each a medoid).

2 Calculate the distance/dissimilarity of every observation to each medoid.

3 Assign each observation to its closest medoid.

4 Calculate the sum of the distances of each observation from its medoid (total

cost).

5 Select a point that isn’t a medoid, and swap it with its medoid.

6 Reassign every point to its closest medoid.

7 Calculate the total cost.

8 If this total cost is smaller, keep the new point as a medoid.

9 Repeat steps 5–8 until the medoids don’t change.

A good worked example of the underlying math in the PAM approach can be found at

http://en.wikipedia.org/wiki/k-medoids (I don’t usually cite Wikipedia, but this is a

great example).

 You can use the pam() function in the cluster package to partition around

medoids. The format is pam(x, k, metric="euclidean", stand=FALSE), where x is a

data matrix or data frame, k is the number of clusters, metric is the type of distance/

dissimilarity measure to use, and stand is a logical value indicating whether the vari-

ables should be standardized before calculating this metric. PAM is applied to the wine

data in the following listing; see figure 16.6.

−4 −2 0 2 4

−
2

0
2

4

Bivariate Cluster Plot

Component 1

C
o

m
p

o
n

e
n

t
2

These two components explain 55.41 % of the point variability.

Figure 16.6 Cluster plot

for the three-group PAM

clustering of the Italian

wine data

www.it-ebooks.info

http://en.wikipedia.org/wiki/k-medoids
http://www.it-ebooks.info/

384 CHAPTER 16 Cluster analysis

> library(cluster)
> set.seed(1234)
> fit.pam <- pam(wine[-1], k=3, stand=TRUE)
> fit.pam$medoids

 Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids
[1,] 13.5 1.81 2.41 20.5 100 2.70 2.98
[2,] 12.2 1.73 2.12 19.0 80 1.65 2.03
[3,] 13.4 3.91 2.48 23.0 102 1.80 0.75
 Nonflavanoids Proanthocyanins Color Hue Dilution Proline
[1,] 0.26 1.86 5.1 1.04 3.47 920
[2,] 0.37 1.63 3.4 1.00 3.17 510
[3,] 0.43 1.41 7.3 0.70 1.56 750

> clusplot(fit.pam, main="Bivariate Cluster Plot")

Note that the medoids are actual observations contained in the wine dataset. In this

case, they’re observations 36, 107, and 175, and they have been chosen to represent

the three clusters. The bivariate plot is created by plotting the coordinates of each

observation on the first two principal components (see chapter 14) derived from the

13 assay variables. Each cluster is represented by an ellipse with the smallest area con-

taining all its points.

 Also note that PAM didn’t perform as well as k-means in this instance:

> ct.pam <- table(wine$Type, fit.pam$clustering)

 1 2 3
 1 59 0 0
 2 16 53 2
 3 0 1 47

> randIndex(ct.pam)
[1] 0.699

The adjusted Rand index has decreased from 0.9 (for k-means) to 0.7.

16.5 Avoiding nonexistent clusters

Before I finish this discussion, a word of caution is in order. Cluster analysis is a meth-

odology designed to identify cohesive subgroups in a dataset. It’s very good at doing

this. In fact, it’s so good, it can find clusters where none exist.

 Consider the following code:

library(fMultivar)
set.seed(1234)
df <- rnorm2d(1000, rho=.5)
df <- as.data.frame(df)
plot(df, main="Bivariate Normal Distribution with rho=0.5")

The rnorm2d() function in the fMultivar package is used to sample 1,000 observa-

tions from a bivariate normal distribution with a correlation of 0.5. The resulting

graph is displayed in figure 16.7. Clearly there are no clusters in this data.

Listing 16.5 Partitioning around medoids for the wine data

Clusters standardized data

Prints the
medoids

Plots the
 cluster
solution

www.it-ebooks.info

http://www.it-ebooks.info/

385Avoiding nonexistent clusters

The wssplot() and NbClust() functions are then used to determine the number of

clusters present:

wssplot(df)
library(NbClust)
nc <- NbClust(df, min.nc=2, max.nc=15, method="kmeans")
dev.new()
barplot(table(nc$Best.n[1,]),
 xlab="Number of Clusters", ylab="Number of Criteria",
 main="Number of Clusters Chosen by 26 Criteria")

The results are plotted in figures 16.8 and 16.9.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Bivariate Normal Distribution with rho=0.5

V1

V
2

Figure 16.7 Bivariate normal

data (n = 1000). There are no

clusters in this data.

2 4 6 8 10 12 14

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Number of Clusters

W
it
h

in
 g

ro
u

p
s
 s

u
m

 o
f

s
q

u
a

re
s

Figure 16.8 Plot of

within-groups sums of

squares vs. number of

k-means clusters for

bivariate normal data

www.it-ebooks.info

http://www.it-ebooks.info/

386 CHAPTER 16 Cluster analysis

The wssplot() function suggest that there are three clusters, whereas many of the cri-

teria returned by NbClust() suggest between two and three clusters. If you carry out a

two-cluster analysis with PAM,

library(ggplot2)
library(cluster)
fit <- pam(df, k=2)
df$clustering <- factor(fit$clustering)
ggplot(data=df, aes(x=V1, y=V2, color=clustering, shape=clustering)) +
 geom_point() + ggtitle("Clustering of Bivariate Normal Data")

you get the two-cluster plot shown in figure 16.10. (The ggplot() statement is part of

the comprehensive graphics package ggplot2. Chapter 19 covers ggplot2 in detail.)

0 1 2 3 4 5 8 10 12 13

Number of Clusters Chosen by 26 Criteria

Number of Clusters

N
u

m
b

e
r

o
f

C
ri
te

ri
a

0
2

4
6

8

Figure 16.9 Number of

clusters recommended for

bivariate normal data by

criteria in the NbClust

package. Two or three

clusters are suggested.

−2

0

2

−2 0 2

V1

V
2

Clustering

1

2

Clustering of Bivariate Normal Data

Figure 16.10 PAM cluster analysis of

bivariate normal data, extracting two

clusters. Note that the clusters are an

arbitrary division of the data.

www.it-ebooks.info

http://www.it-ebooks.info/

387Summary

Clearly the partitioning is artificial. There are no real clusters here. How can you

avoid this mistake? Although it isn’t foolproof, I have found that the Cubic Cluster

Criteria (CCC) reported by NbClust can often help to uncover situations where no

structure exists. The code is

plot(nc$All.index[,4], type="o", ylab="CCC",
 xlab="Number of clusters", col="blue")

and the resulting graph is displayed in figure 16.11. When the CCC values are all nega-

tive and decreasing for two or more clusters, the distribution is typically unimodal.

 The ability of cluster analysis (or your interpretation of it) to find erroneous clus-

ters makes the validation step of cluster analysis important. If you’re trying to identify

clusters that are “real” in some sense (rather than a convenient partitioning), be sure

the results are robust and repeatable. Try different clustering methods, and replicate

the findings with new samples. If the same clusters are consistently recovered, you can

be more confident in the results.

16.6 Summary

In this chapter, we reviewed some of the most common approaches to clustering

observations into cohesive groups. First we reviewed the general steps for a compre-

hensive cluster analysis. Next, common methods for hierarchical and partitioning

clustering were described. Finally, I reinforced the need to validate the resulting clus-

ters in situations where you seek more than convenient partitioning.

 Cluster analysis is a broad topic, and R has some of the most comprehensive facili-

ties for applying this methodology currently available. To learn more about these

capabilities, see the CRAN Task View for Cluster Analysis & Finite Mixture Models

(http://cran.r-project.org/web/views/Cluster.html). Additionally, Tan, Steinbach, &

Kumar (2006) have an excellent book on data-mining techniques. It contains a lucid

2 4 6 8 10 12 14

−
1
8

−
1
6

−
1
4

−
1
2

−
1
0

−
8

Number of clusters

C
C

C

Figure 16.11 CCC plot for bivariate normal data. It correctly suggests that no

clusters are present.

www.it-ebooks.info

http://cran.r-project.org/web/views/Cluster.html
http://www.it-ebooks.info/

388 CHAPTER 16 Cluster analysis

chapter on cluster analysis that you can freely downloaded (www-users.cs.umn.edu/

~kumar/dmbook/ch8.pdf). Finally, Everitt, Landau, Leese, & Stahl (2011) have writ-

ten a practical and highly regarded textbook on this subject.

 Cluster analysis is a methodology for discovering cohesive subgroups of observa-

tions in a dataset. In the next chapter, we’ll consider situations where the groups have

already been defined and your goal is to find an accurate method of classifying obser-

vations into them.

www.it-ebooks.info

www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf
www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf
http://www.it-ebooks.info/

389

Classification

Data analysts are frequently faced with the need to predict a categorical outcome

from a set of predictor variables. Some examples include

■ Predicting whether an individual will repay a loan, given their demographics

and financial history
■ Determining whether an ER patient is having a heart attack, based on their

symptoms and vital signs
■ Deciding whether an email is spam, given the presence of key words, images,

hypertext, header information, and origin

Each of these cases involves the prediction of a binary categorical outcome (good

credit risk/bad credit risk, heart attack/no heart attack, spam/not spam) from a

set of predictors (also called features). The goal is to find an accurate method of

classifying new cases into one of the two groups.

This chapter covers

■ Classifying with decision trees

■ Ensemble classification with random forests

■ Creating a support vector machine

■ Evaluating classification accuracy

www.it-ebooks.info

http://www.it-ebooks.info/

390 CHAPTER 17 Classification

 The field of supervised machine learning offers numerous classification methods

that can be used to predict categorical outcomes, including logistic regression, deci-

sion trees, random forests, support vector machines, and neural networks. The first

four are discussed in this chapter. Neural networks are beyond the scope of this book.

 Supervised learning starts with a set of observations containing values for both the

predictor variables and the outcome. The dataset is then divided into a training sample

and a validation sample. A predictive model is developed using the data in the training

sample and tested for accuracy using the data in the validation sample. Both samples

are needed because classification techniques maximize prediction for a given set of

data. Estimates of their effectiveness will be overly optimistic if they’re evaluated using

the same data that generated the model. By applying the classification rules developed

on a training sample to a separate validation sample, you can obtain a more realistic

accuracy estimate. Once you’ve created an effective predictive model, you can use it to

predict outcomes in situations where only the predictor variables are known.

 In this chapter, you’ll use the rpart, rpart.plot, and party packages to create

and visualize decision trees; the randomForest package to fit random forests; and the

e1071 package to build support vector machines. Logistic regression will be fit with

the glm() function in the base R installation. Before starting, be sure to install the

necessary packages:

pkgs <- c("rpart", "rpart.plot", "party",
 "randomForest", "e1071")
install.packages(pkgs, depend=TRUE)

The primary example used in this chapter comes from the Wisconsin Breast Cancer

data originally posted to the UCI Machine Learning Repository. The goal will be to

develop a model for predicting whether a patient has breast cancer from the charac-

teristics of a fine-needle tissue aspiration (a tissue sample taken with a thin hollow

needle from a lump or mass just under the skin).

17.1 Preparing the data

The Wisconsin Breast Cancer dataset is available as a comma-delimited text file on the

UCI Machine Learning Server (http://archive.ics.uci.edu/ml). The dataset contains

699 fine-needle aspirate samples, where 458 (65.5%) are benign and 241 (34.5%) are

malignant. The dataset contains a total of 11 variables and doesn’t include the vari-

able names in the file. Sixteen samples have missing data and are coded in the text file

with a question mark (?).

 The variables are as follows:

■ ID

■ Clump thickness
■ Uniformity of cell size
■ Uniformity of cell shape
■ Marginal adhesion

www.it-ebooks.info

http://archive.ics.uci.edu/ml
http://www.it-ebooks.info/

391Preparing the data

■ Single epithelial cell size
■ Bare nuclei
■ Bland chromatin
■ Normal nucleoli
■ Mitoses
■ Class

The first variable is an ID variable (which you’ll drop), and the last variable (class)

contains the outcome (coded 2=benign, 4=malignant).

 For each sample, nine cytological characteristics previously found to correlate with

malignancy are also recorded. These variables are each scored from 1 (closest to

benign) to 10 (most anaplastic). But no one predictor alone can distinguish between

benign and malignant samples. The challenge is to find a set of classification rules

that can be used to accurately predict malignancy from some combination of these

nine cell characteristics. See Mangasarian and Wolberg (1990) for details.

 In the following listing, the comma-delimited text file containing the data is down-

loaded from the UCI repository and randomly divided into a training sample (70%)

and a validation sample (30%).

loc <- "http://archive.ics.uci.edu/ml/machine-learning-databases/"
ds <- "breast-cancer-wisconsin/breast-cancer-wisconsin.data"
url <- paste(loc, ds, sep="")

breast <- read.table(url, sep=",", header=FALSE, na.strings="?")
names(breast) <- c("ID", "clumpThickness", "sizeUniformity",
 "shapeUniformity", "maginalAdhesion",
 "singleEpithelialCellSize", "bareNuclei",
 "blandChromatin", "normalNucleoli", "mitosis", "class")

df <- breast[-1]
df$class <- factor(df$class, levels=c(2,4),
 labels=c("benign", "malignant"))

set.seed(1234)
train <- sample(nrow(df), 0.7*nrow(df))
df.train <- df[train,]
df.validate <- df[-train,]
table(df.train$class)
table(df.validate$class)

The training sample has 499 cases (329 benign, 160 malignant), and the validation

sample has 210 cases (129 benign, 81 malignant).

 The training sample will be used to create classification schemes using logistic

regression, a decision tree, a conditional decision tree, a random forest, and a support

vector machine. The validation sample will be used to evaluate the effectiveness of

these schemes. By using the same example throughout the chapter, you can compare

the results of each approach.

Listing 17.1 Preparing the breast cancer data

www.it-ebooks.info

http://www.it-ebooks.info/

392 CHAPTER 17 Classification

17.2 Logistic regression

Logistic regression is a type of generalized linear model that is often used to predict a

binary outcome from a set of numeric variables (see section 13.2 for details). The

glm() function in the base R installation is used for fitting the model. Categorical pre-

dictors (factors) are automatically replaced with a set of dummy coded variables. All

the predictors in the Wisconsin Breast Cancer data are numeric, so dummy coding is

unnecessary. The next listing provides a logistic regression analysis of the data.

> fit.logit <- glm(class~., data=df.train, family=binomial())
> summary(fit.logit)

Call:
glm(formula = class ~ ., family = binomial(), data = df.train)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.7581 -0.1060 -0.0568 0.0124 2.6432

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.4276 1.4760 -7.06 1.6e-12 ***
clumpThickness 0.5243 0.1595 3.29 0.0010 **
sizeUniformity -0.0481 0.2571 -0.19 0.8517
shapeUniformity 0.4231 0.2677 1.58 0.1141
maginalAdhesion 0.2924 0.1469 1.99 0.0465 *
singleEpithelialCellSize 0.1105 0.1798 0.61 0.5387
bareNuclei 0.3357 0.1072 3.13 0.0017 **
blandChromatin 0.4235 0.2067 2.05 0.0405 *
normalNucleoli 0.2889 0.1399 2.06 0.0390 *
mitosis 0.6906 0.3983 1.73 0.0829 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> prob <- predict(fit.logit, df.validate, type="response")
> logit.pred <- factor(prob > .5, levels=c(FALSE, TRUE),
 labels=c("benign", "malignant"))
> logit.perf <- table(df.validate$class, logit.pred,
 dnn=c("Actual", "Predicted"))
> logit.perf

 Predicted
Actual benign malignant
 benign 118 2
 malignant 4 76

First, a logistic regression model is fit using class as the dependent variable and the

remaining variables as predictors b. The model is based on the cases in the df.train

data frame. The coefficients for the model are displayed next c. Section 13.2 pro-

vides guidelines for interpreting logistic model coefficients.

Listing 17.2 Logistic regression with glm()

Fits the logistic
regressionb

Examines the modelc

Classifies
new cases

d

Evaluates the
predictive accuracy

e

www.it-ebooks.info

http://www.it-ebooks.info/

393Decision trees

 Next, the prediction equation developed on the df.train dataset is used to classify
cases in the df.validate dataset. By default, the predict() function predicts the log
odds of having a malignant outcome. By using the type="response" option, the prob-
ability of obtaining a malignant classification is returned instead d. In the next line,
cases with probabilities greater than 0.5 are classified into the malignant group and
cases with probabilities less than or equal to 0.5 are classified as benign.

 Finally, a cross-tabulation of actual status and predicted status (called a confusion

matrix) is printed e. It shows that 118 cases that were benign were classified as
benign, and 76 cases that were malignant were classified as malignant. Ten cases in the
df.validate data frame had missing predictor data and could not be included in the
evaluation.

 The total number of cases correctly classified (also called the accuracy) was
(76 + 118) / 200 or 97% in the validation sample. Statistics for evaluating the accuracy
of a classification scheme are discussed more fully in section 17.4.

 Before moving on, note that three of the predictor variables (sizeUniformity, sha-
peUniformity, and singleEpithelialCellSize) have coefficients that don’t differ from
zero at the p < .10 level. What, if anything, should you do with predictor variables that
have nonsignificant coefficients?

 In a prediction context, it’s often useful to remove such variables from the final
model. This is especially important in situations where a large number of non-infor-
mative predictor variables are adding what is essentially noise to the system.

 In this case, stepwise logistic regression can be used to generate a smaller model
with fewer variables. Predictor variables are added or removed in order to obtain a
model with a smaller AIC value. In the current context, you could use

logit.fit.reduced <- step(fit.logit)

to obtain a more parsimonious model. The reduced model excludes the three vari-
ables mentioned previously. When used to predict outcomes in the validation dataset,
this reduced model makes fewer errors. Try it out.

 The next approach we’ll consider involves the creation of decision or classification
trees.

17.3 Decision trees

Decision trees are popular in data-mining contexts. They involve creating a set of
binary splits on the predictor variables in order to create a tree that can be used to
classify new observations into one of two groups. In this section, we’ll look at two types
of decision trees: classical trees and conditional inference trees.

17.3.1 Classical decision trees

The process of building a classical decision tree starts with a binary outcome variable
(benign/malignant in this case) and a set of predictor variables (the nine cytology
measurements). The algorithm is as follows:

1 Choose the predictor variable that best splits the data into two groups such that

the purity (homogeneity) of the outcome in the two groups is maximized (that

www.it-ebooks.info

http://www.it-ebooks.info/

394 CHAPTER 17 Classification

is, as many benign cases in one group and malignant cases in the other as possi-

ble). If the predictor is continuous, choose a cut-point that maximizes purity for

the two groups created. If the predictor variable is categorical (not applicable in

this case), combine the categories to obtain two groups with maximum purity.

2 Separate the data into these two groups, and continue the process for each sub-

group.

3 Repeat steps 1 and 2 until a subgroup contains fewer than a minimum number

of observations or no splits decrease the impurity beyond a specified threshold.

The subgroups in the final set are called terminal nodes. Each terminal node is

classified as one category of the outcome or the other based on the most fre-

quent value of the outcome for the sample in that node.

4 To classify a case, run it down the tree to a terminal node, and assign it the

modal outcome value assigned in step 3.

Unfortunately, this process tends to produce a tree that is too large and suffers from

overfitting. As a result, new cases aren’t classified well. To compensate, you can prune

back the tree by choosing the tree with the lowest 10-fold cross-validated prediction

error. This pruned tree is then used for future predictions.

 In R, decision trees can be grown and pruned using the rpart() and prune()

functions in the rpart package. The following listing creates a decision tree for classi-

fying the cell data as benign or malignant.

> library(rpart)
> set.seed(1234)
> dtree <- rpart(class ~ ., data=df.train, method="class",
 parms=list(split="information"))
> dtree$cptable

 CP nsplit rel error xerror xstd
1 0.800000 0 1.00000 1.00000 0.06484605
2 0.046875 1 0.20000 0.30625 0.04150018
3 0.012500 3 0.10625 0.20625 0.03467089
4 0.010000 4 0.09375 0.18125 0.03264401

> plotcp(dtree)

> dtree.pruned <- prune(dtree, cp=.0125)

> library(rpart.plot)
> prp(dtree.pruned, type = 2, extra = 104,
 fallen.leaves = TRUE, main="Decision Tree")

> dtree.pred <- predict(dtree.pruned, df.validate, type="class")
> dtree.perf <- table(df.validate$class, dtree.pred,
 dnn=c("Actual", "Predicted"))
> dtree.perf

Listing 17.3 Creating a classical decision tree with rpart()

Grows the treeb

Prunes the treec

Classifies
new casesd

www.it-ebooks.info

http://www.it-ebooks.info/

395Decision trees

 Predicted
Actual benign malignant
 benign 122 7
 malignant 2 79

First the tree is grown using the rpart() function b. You can use print(dtree) and

summary(dtree) to examine the fitted model (not shown here). The tree may be too

large and need to be pruned.

 In order to choose a final tree size, examine the cptable component of the list

returned by rpart(). It contains data about the prediction error for various tree sizes.

The complexity parameter (cp) is used to penalize larger trees. Tree size is defined by

the number of branch splits (nsplit). A tree with n splits has n + 1 terminal nodes.

The rel error column contains the error rate for a tree of a given size in the training

sample. The cross-validated error (xerror) is based on 10-fold cross validation (also

using the training sample). The xstd column contains the standard error of the cross-

validation error.

 The plotcp() function plots the cross-validated error against the complexity

parameter (see figure 17.1). A good choice for the final tree size is the smallest tree

whose cross-validated error is within one standard error of the minimum cross-

validated error value.

 The minimum cross-validated error is 0.18 with a standard error of 0.0326. In this

case, the smallest tree with a cross-validated error within 0.18 ± 0.0326 (that is,

between 0.15 and 0.21) is selected. Looking at the cptable table in listing 17.3, a tree

with three splits (cross-validated error = 0.20625) fits this requirement. Equivalently,

cp

X
−

va
l
R

e
la

ti
ve

 E
rr

o
r

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Inf 0.19 0.024 0.011

1 2 4 5

size of tree

Figure 17.1 Complexity parameter vs. cross-validated error. The dotted line is

the upper limit of the one standard deviation rule (0.18 + 1 * 0.0326 = .21). The

plot suggests selecting the tree with the leftmost cp value below the line.

www.it-ebooks.info

http://www.it-ebooks.info/

396 CHAPTER 17 Classification

you can select the tree size associated with the largest complexity parameter below the

line in figure 17.1. Results again suggest a tree with three splits (four terminal nodes).

 The prune() function uses the complexity parameter to cut back a tree to the

desired size. It takes the full tree and snips off the least important splits based on the

desired complexity parameter. From the cptable in listing 17.3, a tree with three

splits has a complexity parameter of 0.0125, so the statement prune(dtree,

cp=0.0125) returns a tree with the desired size c.

 The prp() function in the rpart.plot package is used to draw an attractive plot of

the final decision tree (see figure 17.2). The prp() function has many options (see

?prp for details). The type=2 option draws the split labels below each node. The

extra=104 parameter includes the probabilities for each class, along with the percent-

age of observations in each node. The fallen.leaves=TRUE option displays the termi-

nal nodes at the bottom of the graph. To classify an observation, start at the top of the

tree, moving to the left branch if a condition is true or to the right otherwise. Con-

tinue moving down the tree until you hit a terminal node. Classify the observation

using the label of the node.

Decision Tree

sizeUnif < 3.5

bareNucl < 2.5

shapeUni < 2.5

benign
.67 .33
100%

benign
.93 .07

71%

benign
.99 .01

62%

malignant
.48 .52

9%

benign
.78 .22

5%

malignant
.14 .86

4%

malignant
.05 .95

29%

yes no

Figure 17.2 Traditional (pruned) decision tree for predicting cancer status. Start

at the top of the tree, moving left if a condition is true or right otherwise. When an

observation hits a terminal node, it’s classified. Each node contains the probability

of the classes in that node, along with the percentage of the sample.

www.it-ebooks.info

http://www.it-ebooks.info/

397Decision trees

 Finally, the predict() function is used to classify each observation in the valida-

tion sample d. A cross-tabulation of the actual status against the predicted status is

provided. The overall accuracy was 96% in the validation sample. Unlike the logistic

regression example, all 210 cases in the validation sample could be classified by the

final tree. Note that decision trees can be biased toward selecting predictors that have

many levels or many missing values.

17.3.2 Conditional inference trees

Before moving on to random forests, let’s look at an important variant of the tradi-

tional decision tree called a conditional inference tree. Conditional inference trees are

similar to traditional trees, but variables and splits are selected based on significance

tests rather than purity/homogeneity measures. The significance tests are permuta-

tion tests (discussed in chapter 12).

 In this case, the algorithm is as follows:

1 Calculate p-values for the relationship between each predictor and the outcome

variable.

2 Select the predictor with the lowest p-value.

3 Explore all possible binary splits on the chosen predictor and dependent vari-

able (using permutation tests), and pick the most significant split.

4 Separate the data into these two groups, and continue the process for each

subgroup.

5 Continue until splits are no longer significant or the minimum node size is

reached.

Conditional inference trees are provided by the ctree() function in the party pack-

age. In the next listing, a conditional inference tree is grown for the breast cancer

data.

library(party)

fit.ctree <- ctree(class~., data=df.train)

plot(fit.ctree, main="Conditional Inference Tree")

> ctree.pred <- predict(fit.ctree, df.validate, type="response")

> ctree.perf <- table(df.validate$class, ctree.pred,

 dnn=c("Actual", "Predicted"))

> ctree.perf

 Predicted

Actual benign malignant

 benign 122 7

 malignant 3 78

Note that pruning isn’t required for conditional inference trees, and the process is

somewhat more automated. Additionally, the party package has attractive plotting

Listing 17.4 Creating a conditional inference tree with ctree()

www.it-ebooks.info

http://www.it-ebooks.info/

398 CHAPTER 17 Classification

options. The conditional inference tree is plotted in figure 17.3. The shaded area of

each node represents the proportion of malignant cases in that node.

The decision trees grown by the traditional and conditional methods can differ sub-

stantially. In the current example, the accuracy of each is similar. In the next section, a

large number of decision trees are grown and combined in order to classify cases into

groups.

Displaying an rpart() tree with a ctree()-like graph

If you create a classical decision tree using rpart(), but you’d like to display the
resulting tree using a plot like the one in figure 17.3, the partykit package can help.
After installing and loading the package, you can use the statement plot(as.par-
ty(an.rpart.tree)) to create the desired graph. For example, try creating a graph
like figure 17.3 using the dtree.pruned object created in listing 17.3, and compare
the results to the plot presented in figure 17.2.

Conditional Inference Tree

sizeUniformity
p < 0.001

1

≤ 3 > 3

bareNuclei
p < 0.001

2

≤ 5 > 5

normalNucleoli
p < 0.001

3

≤ 3 > 3

bareNuclei
p < 0.001

4

≤ 2 > 2

Node 5 (n = 297)

m
a

lig
n

a
n

t
b

e
n

ig
n

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 20)

m
a

lig
n

a
n

t
b

e
n

ig
n

0

0.2

0.4

0.6

0.8

1
Node 7 (n = 13)

m
a

lig
n

a
n

t
b

e
n

ig
n

0

0.2

0.4

0.6

0.8

1
Node 8 (n = 17)

m
a

lig
n

a
n

t
b

e
n

ig
n

0

0.2

0.4

0.6

0.8

1
Node 9 (n = 142)

m
a

lig
n

a
n

t
b

e
n

ig
n

0

0.2

0.4

0.6

0.8

1

Figure 17.3 Conditional inference tree for the breast cancer data

www.it-ebooks.info

http://www.it-ebooks.info/

399Random forests

17.4 Random forests

A random forest is an ensemble learning approach to supervised learning. Multiple pre-

dictive models are developed, and the results are aggregated to improve classification

rates. You can find a comprehensive introduction to random forests, written by Leo

Breiman and Adele Cutler, at http://mng.bz/7Nul.

 The algorithm for a random forest involves sampling cases and variables to create a

large number of decision trees. Each case is classified by each decision tree. The most

common classification for that case is then used as the outcome.

 Assume that N is the number of cases in the training sample and M is the number

of variables. Then the algorithm is as follows:

1 Grow a large number of decision trees by sampling N cases with replacement

from the training set.

2 Sample m < M variables at each node. These variables are considered candi-

dates for splitting in that node. The value m is the same for each node.

3 Grow each tree fully without pruning (the minimum node size is set to 1).

4 Terminal nodes are assigned to a class based on the mode of cases in that node.

5 Classify new cases by sending them down all the trees and taking a vote—major-

ity rules.

An out-of-bag (OOB) error estimate is obtained by classifying the cases that aren’t

selected when building a tree, using that tree. This is an advantage when a validation

sample is unavailable. Random forests also provide a natural measure of variable

importance, as you’ll see.

 Random forests are grown using the randomForest() function in the random-

Forest package. The default number of trees is 500, the default number of variables

sampled at each node is sqrt(M), and the minimum node size is 1.

 The following listing provides the code and results for predicting malignancy sta-

tus in the breast cancer data.

> library(randomForest)
> set.seed(1234)
> fit.forest <- randomForest(class~., data=df.train,
 na.action=na.roughfix,
 importance=TRUE)
> fit.forest

Call:
 randomForest(formula = class ~ ., data = df.train,
 importance = TRUE, na.action = na.roughfix)
 Type of random forest: classification
 Number of trees: 500
No. of variables tried at each split: 3

 OOB estimate of error rate: 3.68%

Listing 17.5 Random forest

Grows the forestb

www.it-ebooks.info

http://mng.bz/7Nul
http://www.it-ebooks.info/

400 CHAPTER 17 Classification

Confusion matrix:
 benign malignant class.error
benign 319 10 0.0304
malignant 8 152 0.0500

> importance(fit.forest, type=2)

 MeanDecreaseGini
clumpThickness 12.50
sizeUniformity 54.77
shapeUniformity 48.66
maginalAdhesion 5.97
singleEpithelialCellSize 14.30
bareNuclei 34.02
blandChromatin 16.24
normalNucleoli 26.34
mitosis 1.81

> forest.pred <- predict(fit.forest, df.validate)
> forest.perf <- table(df.validate$class, forest.pred,
 dnn=c("Actual", "Predicted"))
> forest.perf

 Predicted
Actual benign malignant
 benign 117 3
 malignant 1 79

First, the randomForest() function is used to grow 500 traditional decision trees by

sampling 489 observations with replacement from the training sample and sampling 3

variables at each node of each tree b. The na.action=na.roughfix option replaces

missing values on numeric variables with column medians, and missing values on cate-

gorical variables with the modal category for that variable (breaking ties at random).

 Random forests can provide a natural measure of variable importance, requested

with the information=TRUE option, and printed with the importance() function c.

The relative importance measure specified by the type=2 option is the total decrease

in node impurities (heterogeneity) from splitting on that variable, averaged over all

trees. Node impurity is measured with the Gini coefficient. sizeUniformity is the most

important variable and mitosis is the least important.

 Finally, the validation sample is classified using the random forest and the predic-

tive accuracy is calculated d. Note that cases with missing values in the validation sam-

ple aren’t classified. The prediction accuracy (98% overall) is good.

 Whereas the randomForest package provides forests based on traditional decision

trees, the cforest() function in the party package can be used to generate random

forests based on conditional inference trees. If predictor variables are highly corre-

lated, a random forest using conditional inference trees may provide better

predictions.

 Random forests tend to be very accurate compared with other classification meth-
ods. Additionally, they can handle large problems (many observations and variables),

can handle large amounts of missing data in the training set, and can handle cases in

Determines variable
importancec

Classifies new casesd

www.it-ebooks.info

http://www.it-ebooks.info/

401Support vector machines

which the number of variables is much greater than the number of observations. The

provision of OOB error rates and measures of variable importance are also significant
advantages.

 A significant disadvantage is that it’s difficult to understand the classification rules

(there are 500 trees!) and communicate them to others. Additionally, you need to
store the entire forest in order to classify new cases.

 The final classification model we’ll consider here is the support vector machine,

described next.

17.5 Support vector machines

Support vector machines (SVMs) are a group of supervised machine-learning models that

can be used for classification and regression. They’re popular at present, in part
because of their success in developing accurate prediction models, and in part

because of the elegant mathematics that underlie the approach. We’ll focus on the

use of SVMs for binary classification.
 SVMs seek an optimal hyperplane for separating two classes in a multidimensional

space. The hyperplane is chosen to maximize the margin between the two classes’ clos-

est points. The points on the boundary of the margin are called support vectors (they
help define the margin), and the middle of the margin is the separating hyperplane.

 For an N-dimensional space (that is, with N predictor variables), the optimal hyper-

plane (also called a linear decision surface) has N – 1 dimensions. If there are two vari-

ables, the surface is a line. For three variables, the surface is a plane. For 10 variables,
the surface is a 9-dimensional hyperplane. Trying to picture it will give you headache.

 Consider the two-dimensional example shown in figure 17.4. Circles and triangles

represent the two groups. The margin is the gap, represented by the distance between

−2 −1 0 1 2

−
4

−
2

0
2

4

x1

x
2

Linear Separable Features

Figure 17.4 Two-group classification problem where the two groups are

linearly separable. The separating hyperplane is indicated by the solid black

line. The margin is the distance from the line to the dashed line on either side.

The filled circles and triangles are the support vectors.

www.it-ebooks.info

http://www.it-ebooks.info/

402 CHAPTER 17 Classification

the two dashed lines. The points on the dashed lines (filled circles and triangles) are

the support vectors. In the two-dimensional case, the optimal hyperplane is the black
line in the middle of the gap. In this idealized example, the two groups are linearly

separable—the line can completely separate the two groups without errors.

 The optimal hyperplane is identified using quadratic programming to optimize

the margin under the constraint that the data points on one side have an outcome

value of +1 and the data on the other side has an outcome value of -1. If the data

points are “almost” separable (not all the points are on one side or the other), a

penalizing term is added to the optimization in order to account for errors, and “soft”

margins are produced.

 But the data may be fundamentally nonlinear. Consider the example in figure

17.5. There is no line that can correctly separate the circles and triangles. SVMs use

kernel functions to transform the data into higher dimensions, in the hope that they

will become more linearly separable. Imagine transforming the data in figure 17.5 in

such a way that the circles lift off the page. One way to do this is to transform the two-

dimensional data into three dimensions using

(X,Y) → (X 2, XY,Y 2) → (Z1, Z2, Z2)

Then you can separate the triangles from the circles using a rigid sheet of paper (that

is, a two-dimensional plane in what is now a three-dimensional space).

 The mathematics of SVMs is complex and well beyond the scope of this book. Stat-

nikov, Aliferis, Hardin, & Guyon (2011) offer a lucid and intuitive presentation of

SVMs that goes into quite a bit of conceptual detail without getting bogged down in

higher math.

2

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Features are not Linearly Separable

X

Y

Figure 17.5 Two-group classification problem where the two groups aren’t

linearly separable. The groups can’t be separated with a hyperplane (line).

www.it-ebooks.info

http://www.it-ebooks.info/

403Support vector machines

SVMs are available in R using the ksvm() function in the kernlab package and the

svm() function in the e1071 package. The former is more powerful, but the latter is a

bit easier to use. The example in the next listing uses the latter (easy is good) to

develop an SVM for the Wisconsin breast cancer data.

> library(e1071)
> set.seed(1234)
> fit.svm <- svm(class~., data=df.train)
> fit.svm

Call:
svm(formula = class ~ ., data = df.train)

Parameters:
 SVM-Type: C-classification
 SVM-Kernel: radial
 cost: 1
 gamma: 0.1111

Number of Support Vectors: 76

> svm.pred <- predict(fit.svm, na.omit(df.validate))
> svm.perf <- table(na.omit(df.validate)$class,
 svm.pred, dnn=c("Actual", "Predicted"))
> svm.perf

 Predicted
Actual benign malignant
 benign 116 4
 malignant 3 77

Because predictor variables with larger variances typically have a greater influence on

the development of SVMs, the svm() function scales each variable to a mean of 0 and

standard deviation of 1 before fitting the model by default. As you can see, the predic-

tive accuracy is good, but not quite as good as that found for the random forest

approach in section 17.2. Unlike the random forest approach, the SVM is also unable

to accommodate missing predictor values when classifying new cases.

17.5.1 Tuning an SVM

By default, the svm() function uses a radial basis function (RBF) to map samples into a

higher-dimensional space (the kernel trick). The RBF kernel is often a good choice

because it’s a nonlinear mapping that can handle relations between class labels and

predictors that are nonlinear.

 When fitting an SVM with the RBF kernel, two parameters can affect the results:

gamma and cost. Gamma is a kernel parameter that controls the shape of the separat-

ing hyperplane. Larger values of gamma typically result in a larger number of support

vectors. Gamma can also be thought of as a parameter that controls how widely a

Listing 17.6 A support vector machine

www.it-ebooks.info

http://www.it-ebooks.info/

404 CHAPTER 17 Classification

training sample “reaches,” with larger values meaning far and smaller values meaning

close. Gamma must be greater than zero.

 The cost parameter represents the cost of making errors. A large value severely

penalizes errors and leads to a more complex classification boundary. There will be

less misclassifications in the training sample, but over-fitting may result in poor predic-

tive ability in new samples. Smaller values lead to a flatter classification boundary but

may result in under-fitting. Like gamma, cost is always positive.

 By default, the svm() function sets gamma to 1 / (number of predictors) and cost

to 1. But a different combination of gamma and cost may lead to a more effective

model. You can try fitting SVMs by varying parameter values one at a time, but a grid

search is more efficient. You can specify a range of values for each parameter using

the tune.svm() function. tune.svm() fits every combination of values and reports on

the performance of each. An example is given next.

> set.seed(1234)
> tuned <- tune.svm(class~., data=df.train,
 gamma=10^(-6:1),
 cost=10^(-10:10))
> tuned

- sampling method: 10-fold cross validation

- best parameters:
 gamma cost
 0.01 1

- best performance: 0.02904

> fit.svm <- svm(class~., data=df.train, gamma=.01, cost=1)
> svm.pred <- predict(fit.svm, na.omit(df.validate))
> svm.perf <- table(na.omit(df.validate)$class,
 svm.pred, dnn=c("Actual", "Predicted"))
> svm.perf

 Predicted
Actual benign malignant
 benign 117 3
 malignant 3 77

First, an SVM model is fit with an RBF kernel and varying values of gamma and cost b.

Eight values of gamma (ranging from 0.000001 to 10) and 21 values of cost (ranging

from .01 to 10000000000) are specified. In all, 168 models (8 × 21) are fit and com-

pared. The model with the fewest 10-fold cross validated errors in the training sample

has gamma = 0.01 and cost = 1.

 Using these parameter values, a new SVM is fit to the training sample d. The model

is then used to predict outcomes in the validation sample e, and the number of errors

is displayed. Tuning the model c decreased the number of errors slightly (from seven

to six). In many cases, tuning the SVM parameters will lead to greater gains.

Listing 17.7 Tuning an RBF support vector machine

Varies the parametersb

Prints the best modelc

Fits the model with
these parameters

d

Evaluates the
cross-validation
performance

e

www.it-ebooks.info

http://www.it-ebooks.info/

405Choosing a best predictive solution

 As stated previously, SVMs are popular because they work well in many situations.

They can also handle situations in which the number of variables is much larger than

the number of observations. This has made them popular in the field of biomedicine,

where the number of variables collected in a typical DNA microarray study of gene

expressions may be one or two orders of magnitude larger than the number of cases

available.

 One drawback of SVMs is that, like random forests, the resulting classification rules

are difficult to understand and communicate. They’re essentially a black box. Addi-

tionally, SVMs don’t scale as well as random forests when building models from large

training samples. But once a successful model is built, classifying new observations

does scale well.

17.6 Choosing a best predictive solution

In sections 17.1 through 17.3, fine-needle aspiration samples were classified as malig-

nant or benign using several supervised machine-learning techniques. Which

approach was most accurate? To answer this question, we need to define the term

accurate in a binary classification context.

 The most commonly reported statistic is the accuracy, or how often the classifier is

correct. Although informative, the accuracy is insufficient by itself. Additional infor-

mation is also needed to evaluate the utility of a classification scheme.

 Consider a set of rules for classifying individuals as schizophrenic or non-schizo-

phrenic. Schizophrenia is a rare disorder, with a prevalence of roughly 1% in the gen-

eral population. If you classify everyone as non-schizophrenic, you’ll be right 99% of

time. But this isn’t a good classifier because it will also misclassify every schizophrenic

as non-schizophrenic. In addition to the accuracy, you should ask these questions:

■ What percentage of schizophrenics are correctly identified?

■ What percentage of non-schizophrenics are correctly identified?

■ If a person is classified as schizophrenic, how likely is it that this classification

will be correct?

■ If a person is classified as non-schizophrenic, how likely is it that this classifica-

tion is correct?

These are questions pertaining to a classifier’s sensitivity, specificity, positive predictive

power, and negative predictive power. Each is defined in table 17.1.

Table 17.1 Measures of predictive accuracy

Statistic Interpretation

Sensitivity Probability of getting a positive classification when the true outcome is posi-

tive (also called true positive rate or recall)

Specificity Probability of getting a negative classification when the true outcome is neg-

ative (also called true negative rate)

www.it-ebooks.info

http://www.it-ebooks.info/

406 CHAPTER 17 Classification

A function for calculating these statistics is provided next.

performance <- function(table, n=2){
 if(!all(dim(table) == c(2,2)))
 stop("Must be a 2 x 2 table")
 tn = table[1,1]
 fp = table[1,2]
 fn = table[2,1]
 tp = table[2,2]
 sensitivity = tp/(tp+fn)
 specificity = tn/(tn+fp)
 ppp = tp/(tp+fp)
 npp = tn/(tn+fn)
 hitrate = (tp+tn)/(tp+tn+fp+fn)
 result <- paste("Sensitivity = ", round(sensitivity, n) ,
 "\nSpecificity = ", round(specificity, n),
 "\nPositive Predictive Value = ", round(ppp, n),
 "\nNegative Predictive Value = ", round(npp, n),
 "\nAccuracy = ", round(hitrate, n), "\n", sep="")
 cat(result)
}

The performance() function takes a table containing the true outcome (rows) and

predicted outcome (columns) and returns the five accuracy measures. First, the num-

ber of true negatives (benign tissue identified as benign), false positives (benign tissue

identified as malignant), false negatives (malignant tissue identified as benign), and

true positives (malignant tissue identified as malignant) are extracted b. Next, these

counts are used to calculate the sensitivity, specificity, positive and negative predictive

values, and accuracy c. Finally, the results are formatted and printed d.

 In the following listing, the performance() function is applied to each of the five

classifiers developed in this chapter.

> performance(logit.perf)
Sensitivity = 0.95
Specificity = 0.98
Positive Predictive Value = 0.97

Positive predictive value Probability that an observation with a positive classification is correctly iden-

tified as positive (also called precision)

Negative predictive value Probability that an observation with a negative classification is correctly

identified as negative

Accuracy Proportion of observations correctly identified (also called ACC)

Listing 17.8 Function for assessing binary classification accuracy

Listing 17.9 Performance of breast cancer data classifiers

Table 17.1 Measures of predictive accuracy (continued)

Statistic Interpretation

Extracts frequenciesb

Calculates statisticsc

Prints resultsd

www.it-ebooks.info

http://www.it-ebooks.info/

407Choosing a best predictive solution

Negative Predictive Value = 0.97
Accuracy = 0.97

> performance(dtree.perf)
Sensitivity = 0.98
Specificity = 0.95
Positive Predictive Power = 0.92
Negative Predictive Power = 0.98
Accuracy = 0.96

> performance(ctree.perf)
Sensitivity = 0.96
Specificity = 0.95
Positive Predictive Value = 0.92
Negative Predictive Value = 0.98
Accuracy = 0.95

> performance(forest.perf)
Sensitivity = 0.99
Specificity = 0.98
Positive Predictive Value = 0.96
Negative Predictive Value = 0.99
Accuracy = 0.98

> performance(svm.perf)
Sensitivity = 0.96
Specificity = 0.98
Positive Predictive Value = 0.96
Negative Predictive Value = 0.98
Accuracy = 0.97

Each of these classifiers (logistic regression, traditional decision tree, conditional

inference tree, random forest, and support vector machine) performed exceedingly

well on each of the accuracy measures. This won’t always be the case!

 In this particular instance, the award appears to go to the random forest model

(although the differences are so small, they may be due to chance). For the random

forest model, 99% of malignancies were correctly identified, 98% of benign samples

were correctly identified, and the overall percent of correct classifications is 99%. A

diagnosis of malignancy was correct 96% of the time (for a 4% false positive rate), and

a benign diagnosis was correct 99% of the time (for a 1% false negative rate). For

diagnoses of cancer, the specificity (proportion of malignant samples correctly identi-

fied as malignant) is particularly important.

 Although it’s beyond the scope of this chapter, you can often improve a classifica-

tion system by trading specificity for sensitivity and vice versa. In the logistic regression

model, predict() was used to estimate the probability that a case belonged in the

malignant group. If the probability was greater than 0.5, the case was assigned to that

group. The 0.5 value is called the threshold or cutoff value. If you vary this threshold, you

can increase the sensitivity of the classification model at the expense of its specificity.

predict() can generate probabilities for decision trees, random forests, and SVMs as

well (although the syntax varies by method).

www.it-ebooks.info

http://www.it-ebooks.info/

408 CHAPTER 17 Classification

 The impact of varying the threshold value is typically assessed using a receiver

operating characteristic (ROC) curve. A ROC curve plots sensitivity versus specificity

for a range of threshold values. You can then select a threshold with the best balance

of sensitivity and specificity for a given problem. Many R packages generate ROC

curves, including ROCR and pROC. Analytic functions in these packages can help you to

select the best threshold values for a given scenario or to compare the ROC curves pro-

duced by different classification algorithms in order to choose the most useful

approach. To learn more, see Kuhn & Johnson (2013). A more advanced discussion is

offered by Fawcett (2005).

 Until now, each classification technique has been applied to data by writing and

executing code. In the next section, we’ll look at a graphical user interface that lets

you develop and deploy predictive models using a visual interface.

17.7 Using the rattle package for data mining

Rattle (R Analytic Tool to Learn Easily) offers a graphic user interface (GUI) for data

mining in R. It gives the user point-and-click access to many of the R functions you’ve

been using in this chapter, as well as other unsupervised and supervised data models

not covered here. Rattle also supports the ability to transform and score data, and it

offers a number of data-visualization tools for evaluating models.

 You can install the rattle package from CRAN using

install.packages("rattle")

This installs the rattle package, along with several additional packages. A full installa-

tion of Rattle and all the packages it can access would require downloading and install-

ing hundreds of packages. To save time and space, a basic set of packages is installed by

default. Other packages are installed when you first request an analysis that requires

them. In this case, you’ll be prompted to install the missing package(s), and if you reply

Yes, the required package will be downloaded and installed from CRAN.

 Depending on your operating system and current software, you may have to install

additional software. In particular, Rattle requires access to the GTK+ Toolkit. If you

have difficulty, follow the OS-specific installation directions and troubleshooting sug-

gestions offered at http://rattle.togaware.com.

 Once rattle is installed, launch the interface using

library(rattle)
rattle()

The GUI (see figure 17.6) should open on top of the R console.

 In this section, you’ll use Rattle to develop a conditional inference tree for predict-

ing diabetes. The data also comes from the UCI Machine Learning Repository. The

Pima Indians Diabetes dataset contains 768 cases originally collected by the National

Institute of Diabetes and Digestive and Kidney Disease. The variables are as follows:

■ Number of times pregnant
■ Plasma glucose concentration at 2 hours in an oral glucose tolerance test

www.it-ebooks.info

http://rattle.togaware.com
http://www.it-ebooks.info/

409Using the rattle package for data mining

■ Diastolic blood pressure (mm Hg)
■ Triceps skin fold thickness (mm)
■ 2-hour serum insulin (mu U/ml)
■ Body mass index (weight in kg/(height in m)^2)
■ Diabetes pedigree function
■ Age (years)
■ Class variable (0 = non-diabetic or 1 = diabetic)

Thirty-four percent of the sample was diagnosed with diabetes.

 To access this data in Rattle, use the following code:

loc <- "http://archive.ics.uci.edu/ml/machine-learning-databases/"
ds <- "pima-indians-diabetes/pima-indians-diabetes.data"
url <- paste(loc, ds, sep="")
diabetes <- read.table(url, sep=",", header=FALSE)
names(diabetes) <- c("npregant", "plasma", "bp", "triceps",
 "insulin", "bmi", "pedigree", "age", "class")
diabetes$class <- factor(diabetes$class, levels=c(0,1),
 labels=c("normal", "diabetic"))
library(rattle)
rattle()

This downloads the data from the UCI repository, names the variables, adds labels to

the outcome variable, and opens Rattle. You should be presented with the tabbed dia-

log box in figure 17.6.

Figure 17.6 Opening Rattle screen

www.it-ebooks.info

http://www.it-ebooks.info/

410 CHAPTER 17 Classification

To access the diabetes dataset, click the R Dataset radio button, and select Diabetes
from the drop-down box that appears. Then click the Execute button in the upper-left
corner. This opens the window shown in figure 17.7.

 This window provides a description of each variable and allows you to specify the
role each will play in the analyses. Here, variables 1–9 are input (predictor) variables,
and class is the target (or predicted) outcome, so no changes are necessary.

 You can also specify the percentage of cases to be used as a training sample, valida-
tion sample, and testing sample. Analysts frequently build models with a training sam-
ple, fine-tune parameters with a validation sample, and evaluate the results with a
testing sample. By default, Rattle uses a 70/15/15 split and a seed value of 42.

 You’ll divide the data into training and validation samples, skipping the test sam-
ple. Therefore, enter 70/30/0 in the Partition text box and 1234 in the Seed text box,
and click Execute again.

 Now let’s fit a prediction model. To generate a conditional inference tree, select
the Model tab. Be sure the Tree radio button is selected (the default); and for Algo-
rithm, choose the Conditional radio button. Clicking Execute builds the model using
the ctree() function in the party package and displays the results in the bottom of
the window (see figure 17.8).

 Clicking the Draw button produces an attractive graph (see figure 17.9). (Hint:
specifying Use Cairo Graphics in the Settings menu before clicking Draw often pro-
duces a more attractive plot.)

Figure 17.7 Data tab with options to specify the role of each variable

www.it-ebooks.info

http://www.it-ebooks.info/

411Using the rattle package for data mining

Figure 17.8 Model tab with options to build decision trees, random forests, support vector

machines, and more. Here, a conditional inference tree has been fitted to the training data.

plasma
p < 0.001

1

≤ 123 > 123

npregant
p < 0.001

2

≤ 6 > 6

age
p = 0.001

3

≤ 34 > 34

Node 4 (n = 216)

d
ia

b
e
ti
c

n
o
rm

a
l

0

0.2

0.4

0.6

0.8

1
Node 5 (n = 46)

d
ia

b
e
ti
c

n
o
rm

a
l

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 50)

d
ia

b
e
ti
c

n
o
rm

a
l

0

0.2

0.4

0.6

0.8

1

plasma
p < 0.001

7

≤ 157 > 157

Node 8 (n = 148)

d
ia

b
e
ti
c

n
o
rm

a
l

0

0.2

0.4

0.6

0.8

1

age
p = 0.012

9

≤ 59 > 59

Node 10 (n = 68)

d
ia

b
e
ti
c

n
o
rm

a
l

0

0.2

0.4

0.6

0.8

1
Node 11 (n = 9)

d
ia

b
e
ti
c

n
o
rm

a
l

0

0.2

0.4

0.6

0.8

1

Figure 17.9 Tree diagram for the conditional inference tree using the diabetes training

sample

www.it-ebooks.info

http://www.it-ebooks.info/

412 CHAPTER 17 Classification

To evaluate the fitted model, select the Evaluate tab. Here you can specify a number of

evaluative criteria and the sample (training, validation) to use. By default, the error

matrix (also called a confusion matrix in this chapter) is selected. Clicking Execute pro-

duces the results shown in figure 17.10.

 You can import the error matrix into the performance() function to obtain the

accuracy statistics:

> cv <- matrix(c(145, 50, 8, 27), nrow=2)
> performance(as.table(cv))

Sensitivity = 0.35
Specificity = 0.95
Positive Predictive Value = 0.77
Negative Predictive Value = 0.74
Accuracy = 0.75

Although the overall accuracy (75%) isn’t terrible, only 35% of diabetics were cor-

rectly identified. Try to develop a better classification scheme using random forests or

support vector machines—it can be done.

 A significant advantage of using Rattle is the ability to fit multiple models to the

same dataset and compare each model directly on the Evaluate tab. Check each

method on this tab that you want to compare, and click Execute. Additionally, all the

Figure 17.10 Evaluation tab with the error matrix for the conditional inference tree

calculated on the validation sample

www.it-ebooks.info

http://www.it-ebooks.info/

413Summary

R code executed during the data-mining session can be viewed in the Log tab and

exported to a text file for reuse.

 To learn more, visit the Rattle homepage (http://rattle.togaware.com/), and see

Graham J. Williams’ overview article in the R journal (http://mng.bz/D16Q). Data

Mining with Rattle and R, also by Williams (2011), is the definitive book on Rattle.

17.8 Summary

This chapter presented a number of machine-learning techniques for classifying

observations into one of two groups. First, the use of logistic regression as a classifica-

tion tool was described. Next, traditional decision trees were described, followed by

conditional inference trees. The ensemble random forest approach was considered

next. Finally, the increasingly popular support vector machine approach was

described. The last section introduced Rattle, a graphic user interface for data min-

ing, which allows the user point-and-click access to these functions. Rattle can be par-

ticularly useful for comparing the results of various classification techniques. Because

it generates reusable R code in a log file, it can also be a useful tool for learning the

syntax of many of R’s predictive analytics functions.

 The techniques described in this chapter vary in complexity. Data miners typically

try some of the simpler approaches (logistic regression, decision trees) and more

complex, black-box approaches (random forests, support vector machines). If the

black-box approaches don’t provide a significant improvement over the simpler meth-

ods, the simpler methods are usually selected for deployment.

 The examples in this chapter (cancer and diabetes diagnosis) both came from the

field of medicine, but classification techniques are used widely in other disciplines,

including computer science, marketing, finance, economics, and the behavioral sci-

ences. Although the examples involved a binary classification (malignant/benign, dia-

betic/non-diabetic), modifications are available that allow these techniques to be

used with multigroup classification problems.

 To learn more about the functions in R that support classification, look in the

CRAN Task View for Machine Learning and Statistical Learning (http://mng.bz/

I1Lm). Other good resources include books by Kuhn & Johnson (2013) and Torgo

(2010).

www.it-ebooks.info

http://rattle.togaware.com/
http://mng.bz/D16Q
http://mng.bz/I1Lm
http://mng.bz/I1Lm
http://www.it-ebooks.info/

414

Advanced methods
for missing data

In previous chapters, we focused on analyzing complete datasets (that is, datasets

without missing values). Although doing so helps simplify the presentation of statis-

tical and graphical methods, in the real world, missing data are ubiquitous.

 In some ways, the impact of missing data is a subject that most of us want to

avoid. Statistics books may not mention it or may limit discussion to a few para-

graphs. Statistical packages offer automatic handling of missing data using meth-

ods that may not be optimal. Even though most data analyses (at least in social

sciences) involve missing data, this topic is rarely mentioned in the methods and

results sections of journal articles. Given how often missing values occur, and the

degree to which their presence can invalidate study results, it’s fair to say that the

subject has received insufficient attention outside of specialized books and courses.

This chapter covers

■ Identifying missing data

■ Visualizing missing data patterns

■ Complete-case analysis

■ Multiple imputation of missing data

www.it-ebooks.info

http://www.it-ebooks.info/

415Steps in dealing with missing data

 Data can be missing for many reasons. Survey participants may forget to answer

one or more questions, refuse to answer sensitive questions, or grow fatigued and fail

to complete a long questionnaire. Study participants may miss appointments or drop

out of a study prematurely. Recording equipment may fail, internet connections may

be lost, or data may be miscoded. Analysts may even plan for some data to be missing.

For example, to increase study efficiency or reduce costs, you may choose not to col-

lect all data from all participants. Finally, data may be lost for reasons that you’re

never able to ascertain.

 Unfortunately, most statistical methods assume that you’re working with complete

matrices, vectors, and data frames. In most cases, you have to eliminate missing data

before you address the substantive questions that led you to collect the data. You can

eliminate missing data by (1) removing cases with missing data or (2) replacing miss-

ing data with reasonable substitute values. In either case, the end result is a dataset

without missing values.

 In this chapter, we’ll look at both traditional and modern approaches for dealing

with missing data. We’ll primarily use the VIM and mice packages. The command

install.packages(c("VIM", "mice")) will download and install both.

 To motivate the discussion, we’ll look at the mammal sleep dataset (sleep) pro-

vided in the VIM package (not to be confused with the sleep dataset describing the

impact of drugs on sleep provided in the base installation). The data come from a

study by Allison and Chichetti (1976) that examined the relationship between sleep

and ecological and constitutional variables for 62 mammal species. The authors were

interested in why animals’ sleep requirements vary from species to species. The sleep

variables served as the dependent variables, whereas the ecological and constitutional

variables served as the independent or predictor variables.

 Sleep variables included length of dreaming sleep (Dream), nondreaming sleep

(NonD), and their sum (Sleep). The constitutional variables included body weight in

kilograms (BodyWgt), brain weight in grams (BrainWgt), life span in years (Span),

and gestation time in days (Gest). The ecological variables included degree to which

species were preyed upon (Pred), degree of their exposure while sleeping (Exp), and

overall danger (Danger) faced. The ecological variables were measured on 5-point rat-

ing scales that ranged from 1 (low) to 5 (high).

 In their original article, Allison and Chichetti limited their analyses to the species

that had complete data. We’ll go further, analyzing all 62 cases using a multiple impu-

tation approach.

18.1 Steps in dealing with missing data

If you’re new to the study of missing data, you’ll find a bewildering array of

approaches, critiques, and methodologies. The classic text in this area is Little and

Rubin (2002). Excellent, accessible reviews can be found in Allison (2001); Schafer

www.it-ebooks.info

http://www.it-ebooks.info/

416 CHAPTER 18 Advanced methods for missing data

and Graham (2002); and Schlomer, Bauman, and Card (2010). A comprehensive

approach usually includes the following steps:

1 Identify the missing data.

2 Examine the causes of the missing data.

3 Delete the cases containing missing data, or replace (impute) the missing val-

ues with reasonable alternative data values.

Unfortunately, identifying missing data is usually the only unambiguous step. Learn-

ing why data are missing depends on your understanding of the processes that gener-

ated the data. Deciding how to treat missing values will depend on your estimation of

which procedures will produce the most reliable and accurate results.

A classification system for missing data

Statisticians typically classify missing data into one of three types. These types are
usually described in probabilistic terms, but the underlying ideas are straightforward.
We’ll use the measurement of dreaming in the sleep study (where 12 animals have
missing values) to illustrate each type in turn:

■ Missing completely at random—If the presence of missing data on a variable is
unrelated to any other observed or unobserved variable, then the data are miss-
ing completely at random (MCAR). If there’s no systematic reason why dream
sleep is missing for these 12 animals, the data are said to be MCAR. Note that
if every variable with missing data is MCAR, you can consider the complete
cases to be a simple random sample from the larger dataset.

■ Missing at random—If the presence of missing data on a variable is related to
other observed variables but not to its own unobserved value, the data are miss-
ing at random (MAR). For example, if animals with smaller body weights are
more likely to have missing values for dream sleep (perhaps because it’s harder
to observe smaller animals), and the “missingness” is unrelated to an animal’s
time spent dreaming, the data are considered MAR. In this case, the presence
or absence of dream sleep data is random, once you control for body weight.

■ Not missing at random—If the missing data for a variable are neither MCAR nor
MAR, the data are not missing at random (NMAR). For example, if animals that
spend less time dreaming are also more likely to have a missing dream value
(perhaps because it’s harder to measure shorter events), the data are consid-
ered NMAR.

Most approaches to missing data assume that the data are either MCAR or MAR. In
this case, you can ignore the mechanism producing the missing data and (after re-
placing or deleting the missing data) model the relationships of interest directly.

Data that are NMAR can be difficult to analyze properly. When data are NMAR, you
have to model the mechanisms that produced the missing values, as well as the re-
lationships of interest. (Current approaches to analyzing NMAR data include the use
of selection models and pattern mixtures. The analysis of NMAR data can be complex
and is beyond the scope of this book.)

www.it-ebooks.info

http://www.it-ebooks.info/

417Identifying missing values

There are many methods for dealing with missing data—and no guarantee that they’ll

produce the same results. Figure 18.1 describes an array of methods used for handling

incomplete data and the R packages that support them.

 A complete review of missing-data methodologies would require a book in itself. In

this chapter, we’ll review methods for exploring missing-values patterns and focus on

the three most popular methods for dealing with incomplete data (a rational

approach, listwise deletion, and multiple imputation). We’ll end the chapter with a

brief discussion of other methods, including those that are useful in special circum-

stances.

18.2 Identifying missing values

To begin, let’s review the material introduced in section 4.5, and expand on it. R rep-

resents missing values using the symbol NA (not available) and impossible values using

the symbol NaN (not a number). In addition, the symbols Inf and -Inf represent pos-

itive infinity and negative infinity, respectively. The functions is.na(), is.nan(), and

is.infinite() can be used to identify missing, impossible, and infinite values, respec-

tively. Each returns either TRUE or FALSE. Examples are given in table 18.1.

Table 18.1 Examples of return values for the is.na(), is.nan(), and is.infinite() functions

x is.na(x) is.nan(x) is.infinite(x)

x <- NA TRUE FALSE FALSE

x <- 0 / 0 TRUE TRUE FALSE

x <- 1 / 0 FALSE FALSE TRUE

Identify Missing Values
is.na()

!complete.cases()

VIM package

Delete Missing Values Maximum Likelihood

Estimation

mvmle package

Impute Missing Values

Casewise (Listwise)
omit.na()

Available Case

(Pairwise)

Option available for

some functions

Single (simple)

Imputation

Hmisc Package

Multiple Imputation
mi package

mice package

amelia package

mitools package

Figure 18.1 Methods for handling incomplete data, along with the R packages that support them

www.it-ebooks.info

http://www.it-ebooks.info/

418 CHAPTER 18 Advanced methods for missing data

These functions return an object that’s the same size as its argument, with each ele-

ment replaced by TRUE if the element is of the type being tested or FALSE otherwise.

For example, let y <- c(1, 2, 3, NA). Then is.na(y) will return the vector

c(FALSE, FALSE, FALSE, TRUE).

 The function complete.cases() can be used to identify the rows in a matrix or

data frame that don’t contain missing data. It returns a logical vector with TRUE for

every row that contains complete cases and FALSE for every row that has one or more

missing values.

 Let’s apply this to the sleep dataset:

load the dataset
data(sleep, package="VIM")

list the rows that do not have missing values
sleep[complete.cases(sleep),]

list the rows that have one or more missing values
sleep[!complete.cases(sleep),]

Examining the output reveals that 42 cases have complete data and 20 cases have one

or more missing values.

 Because the logical values TRUE and FALSE are equivalent to the numeric values 1

and 0, the sum() and mean() functions can be used to obtain useful information

about missing data. Consider the following:

> sum(is.na(sleep$Dream))
[1] 12
> mean(is.na(sleep$Dream))
[1] 0.19
> mean(!complete.cases(sleep))
[1] 0.32

The results indicate that 12 values are missing for the variable Dream. Nineteen per-

cent of the cases have a missing value on this variable. In addition, 32% of the cases in

the dataset have one or more missing values.

 There are two things to keep in mind when identifying missing values. First, the

complete.cases() function only identifies NA and NaN as missing. Infinite values (Inf

and –Inf) are treated as valid values. Second, you must use missing-values functions,

like those in this section, to identify the missing values in R data objects. Logical com-

parisons such as myvar == NA are never true.

 Now that you know how to identify missing values programmatically, let’s look at

tools that help you explore possible patterns in the occurrence of missing data.

18.3 Exploring missing-values patterns

Before deciding how to deal with missing data, you’ll find it useful to determine which

variables have missing values, in what amounts, and in what combinations. In this sec-

tion, we’ll review tabular, graphical, and correlational methods for exploring missing

www.it-ebooks.info

http://www.it-ebooks.info/

419Exploring missing-values patterns

values patterns. Ultimately, you want to understand why the data are missing. The

answer will have implications for how you proceed with further analyses.

18.3.1 Tabulating missing values

You’ve already seen a rudimentary approach to identifying missing values. You can use

the complete.cases() function from section 18.2 to list cases that are complete or,

conversely, list cases that have one or more missing values. As the size of a dataset
grows, though, it becomes a less attractive approach. In this case, you can turn to

other R functions.

 The md.pattern() function in the mice package produces a tabulation of the miss-
ing data patterns in a matrix or data frame. Applying this function to the sleep dataset,

you get the following:

> library(mice)
> data(sleep, package="VIM")
> md.pattern(sleep)
 BodyWgt BrainWgt Pred Exp Danger Sleep Span Gest Dream NonD
42 1 1 1 1 1 1 1 1 1 1 0
 2 1 1 1 1 1 1 0 1 1 1 1
 3 1 1 1 1 1 1 1 0 1 1 1
 9 1 1 1 1 1 1 1 1 0 0 2
 2 1 1 1 1 1 0 1 1 1 0 2
 1 1 1 1 1 1 1 0 0 1 1 2
 2 1 1 1 1 1 0 1 1 0 0 3
 1 1 1 1 1 1 1 0 1 0 0 3
 0 0 0 0 0 4 4 4 12 14 38

The 1s and 0s in the body of the table indicate the missing-values patterns, with a 0

indicating a missing value for a given column variable and a 1 indicating a non-

missing value. The first row describes the pattern of “no missing values” (all elements
are 1). The second row describes the pattern “no missing values except for Span.” The

first column indicates the number of cases in each missing data pattern, and the last

column indicates the number of variables with missing values present in each pattern.
Here you can see that there are 42 cases without missing data and 2 cases that are

missing Span alone. Nine cases are missing both NonD and Dream values. The dataset

has a total of (42 × 0) + (2 × 1) + … + (1 × 3) = 38 missing values. The last row gives the
total number of missing values on each variable.

18.3.2 Exploring missing data visually

Although the tabular output from the md.pattern() function is compact, I often find
it easier to discern patterns visually. Luckily, the VIM package provides numerous func-

tions for visualizing missing-values patterns in datasets. In this section, we’ll review sev-

eral, including aggr(), matrixplot(), and scattMiss().
 The aggr() function plots the number of missing values for each variable alone

and for each combination of variables. For example, the code

library("VIM")
aggr(sleep, prop=FALSE, numbers=TRUE)

www.it-ebooks.info

http://www.it-ebooks.info/

420 CHAPTER 18 Advanced methods for missing data

produces the graph in figure 18.2. (The VIM package opens a GUI interface. You can

close it; you’ll be using code to accomplish the tasks in this chapter.)

 You can see that the variable NonD has the largest number of missing values (14),

and that two mammals are missing NonD, Dream, and Sleep scores. Forty-two mam-

mals have no missing data.

 The statement aggr(sleep, prop=TRUE, numbers=TRUE) produces the same plot,

but proportions are displayed instead of counts. The option numbers=FALSE (the

default) suppresses the numeric labels.

 The matrixplot() function produces a plot displaying the data for each case. A

graph created using matrixplot(sleep) is displayed in figure 18.3. Here, the

numeric data are rescaled to the interval [0, 1] and represented by grayscale colors,

with lighter colors representing lower values and darker colors representing larger val-

ues. By default, missing values are represented in red. Note that in figure 18.3, red has

been replaced with crosshatching by hand, so that the missing values are viewable in

grayscale. It will look different when you create the graph yourself.

 The graph is interactive: clicking a column re-sorts the matrix by that variable. The
rows in figure 18.3 are sorted in descending order by BodyWgt. A matrix plot allows

N
u

m
b

e
r

o
f

M
is

s
in

g
s

0
2

4
6

8
1
0

1
2

1
4

B
o
d
y
W

g
t

B
ra

in
W

g
t

N
o
n
D

D
re

a
m

S
le

e
p

S
p

a
n

G
e
s
t

P
re

d
E

x
p

D
a
n
g
e
r

C
o

m
b

in
a

ti
o

n
s

B
o
d
y
W

g
t

B
ra

in
W

g
t

N
o
n
D

D
re

a
m

S
le

e
p

S
p
a
n

G
e
s
t

P
re

d

E
x
p

D
a
n
g
e
r

42

9

3

2

2

2

1

1

Figure 18.2 aggr()-produced plot of missing-values patterns for the sleep dataset

www.it-ebooks.info

http://www.it-ebooks.info/

421Exploring missing-values patterns

you to see if the fact that values are missing on one or more variables is related to the
actual values of other variables. Here, you can see that there are no missing values on

sleep variables (Dream, NonD, Sleep) for low values of body or brain weight (Body-

Wgt, BrainWgt).
 The marginplot() function produces a scatter plot between two variables with

information about missing values shown in the plot’s margins. Consider the relation-

ship between the amount of dream sleep and the length of a mammal’s gestation. The
statement

marginplot(sleep[c("Gest","Dream")], pch=c(20),
 col=c("darkgray", "red", "blue"))

produces the graph in figure 18.4. The pch and col parameters are optional and pro-
vide control over the plotting symbols and colors used.

 The body of the graph displays the scatter plot between Gest and Dream (based on

complete cases for the two variables). In the left margin, box plots display the distribu-

tion of Dream for mammals with (dark gray) and without (red) Gest values. (Note that
in grayscale, red is the darker shade.) Four red dots represent the values of Dream for

mammals missing Gest scores. In the bottom margin, the roles of Gest and Dream are

Figure 18.3 Matrix plot of actual and missing values by case (row) for the sleep

dataset. The matrix is sorted by BodyWgt.

www.it-ebooks.info

http://www.it-ebooks.info/

422 CHAPTER 18 Advanced methods for missing data

reversed. You can see that a negative relationship exists between length of gestation and

dream sleep and that dream sleep tends to be higher for mammals that are missing a
gestation score. The number of observations missing values on both variables at the

same time is printed in blue at the intersection of both margins (bottom left).

 The VIM package has many graphs that can help you understand the role of miss-

ing data in a dataset and is well worth exploring. There are functions to produce scat-

ter plots, box plots, histograms, scatter plot matrices, parallel plots, rug plots, and

bubble plots that incorporate information about missing values.

18.3.3 Using correlations to explore missing values

Before moving on, there’s one more approach worth noting. You can replace the data

in a dataset with indicator variables, coded 1 for missing and 0 for present. The result-

ing matrix is sometimes called a shadow matrix. Correlating these indicator variables

with each other and with the original (observed) variables can help you to see which

variables tend to be missing together, as well as relationships between a variable’s

“missingness” and the values of the other variables.

 Consider the following code:

x <- as.data.frame(abs(is.na(sleep)))

The elements of data frame x are 1 if the corresponding element of sleep is missing

and 0 otherwise. You can see this by viewing the first few rows of each:

> head(sleep, n=5)
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
1 6654.000 5712.0 NA NA 3.3 38.6 645 3 5 3

12

40

0 100 200 300 400 500 600

0
1

2
3

4
5

6

Gest

D
re

a
m

Figure 18.4 Scatter plot

between amount of dream

sleep and length of gestation,

with information about

missing data in the margins

www.it-ebooks.info

http://www.it-ebooks.info/

423Exploring missing-values patterns

2 1.000 6.6 6.3 2.0 8.3 4.5 42 3 1 3
3 3.385 44.5 NA NA 12.5 14.0 60 1 1 1
4 0.920 5.7 NA NA 16.5 NA 25 5 2 3
5 2547.000 4603.0 2.1 1.8 3.9 69.0 624 3 5 4

> head(x, n=5)
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
1 0 0 1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 1 1 0 0 0 0 0 0
4 0 0 1 1 0 1 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0

The statement

y <- x[which(apply(x,2,sum)>0)]

extracts the variables that have some (but not all) missing values, and

cor(y)

gives you the correlations among these indicator variables:

 NonD Dream Sleep Span Gest
NonD 1.000 0.907 0.486 0.015 -0.142
Dream 0.907 1.000 0.204 0.038 -0.129
Sleep 0.486 0.204 1.000 -0.069 -0.069
Span 0.015 0.038 -0.069 1.000 0.198
Gest -0.142 -0.129 -0.069 0.198 1.000

Here, you can see that Dream and NonD tend to be missing together (r = 0.91). To a

lesser extent, Sleep and NonD tend to be missing together (r = 0.49) and Sleep and

Dream tend to be missing together (r = 0.20).

 Finally, you can look at the relationship between missing values in a variable and

the observed values on other variables:

> cor(sleep, y, use="pairwise.complete.obs")
 NonD Dream Sleep Span Gest
BodyWgt 0.227 0.223 0.0017 -0.058 -0.054
BrainWgt 0.179 0.163 0.0079 -0.079 -0.073
NonD NA NA NA -0.043 -0.046
Dream -0.189 NA -0.1890 0.117 0.228
Sleep -0.080 -0.080 NA 0.096 0.040
Span 0.083 0.060 0.0052 NA -0.065
Gest 0.202 0.051 0.1597 -0.175 NA
Pred 0.048 -0.068 0.2025 0.023 -0.201
Exp 0.245 0.127 0.2608 -0.193 -0.193
Danger 0.065 -0.067 0.2089 -0.067 -0.204
Warning message:
In cor(sleep, y, use = "pairwise.complete.obs") :
 the standard deviation is zero

In this correlation matrix, the rows are observed variables, and the columns are indi-

cator variables representing missingness. You can ignore the warning message and NA

values in the correlation matrix; they’re artifacts of our approach.

www.it-ebooks.info

http://www.it-ebooks.info/

424 CHAPTER 18 Advanced methods for missing data

 From the first column of the correlation matrix, you can see that nondreaming

sleep scores are more likely to be missing for mammals with higher body weight (r =

0.227), gestation period (r = 0.202), and sleeping exposure (r = 0.245). Other col-

umns are read in a similar fashion. None of the correlations in this table are particu-

larly large or striking, which suggests that the data deviate minimally from MCAR and

may be MAR.

 Note that you can never rule out the possibility that the data are NMAR, because

you don’t know what the values would have been for data that are missing. For exam-

ple, you don’t know if there’s a relationship between the amount of dreaming a mam-

mal engages in and the probability of a value being missing on this variable. In the

absence of strong external evidence to the contrary, we typically assume that data are

either MCAR or MAR.

18.4 Understanding the sources and impact of missing data

You can identify the amount, distribution, and pattern of missing data in order to eval-

uate the potential mechanisms leading to the missing data and the impact of the miss-

ing data on your ability to answer substantive questions. In particular, you want to

answer the following questions:

■ What percentage of the data is missing?
■ Are the missing data concentrated in a few variables or widely distributed?
■ Do the missing values appear to be random?
■ Does the covariation of missing data with each other or with observed data sug-

gest a possible mechanism that’s producing the missing values?

Answers to these questions help determine which statistical methods are most appro-

priate for analyzing your data. For example, if the missing data are concentrated in a

few relatively unimportant variables, you may be able to delete these variables and con-

tinue your analyses normally. If a small amount of data (say, less than 10%) is randomly

distributed throughout the dataset (MCAR), you may be able to limit your analyses to

cases with complete data and still get reliable and valid results. If you can assume that

the data are either MCAR or MAR, you may be able to apply multiple imputation meth-

ods to arrive at valid conclusions. If the data are NMAR, you can turn to specialized

methods, collect new data, or go into an easier and more rewarding profession.

 Here are some examples:

■ In a recent survey employing paper questionnaires, I found that several items

tended to be missing together. It became apparent that these items clustered

together because participants didn’t realize that the third page of the question-

naire had a reverse side—which contained the items. In this case, the data

could be considered MCAR.

■ In another study, an education variable was frequently missing in a global sur-

vey of leadership styles. Investigation revealed that European participants were

more likely to leave this item blank. It turned out that the categories didn’t

www.it-ebooks.info

http://www.it-ebooks.info/

425Rational approaches for dealing with incomplete data

make sense for participants in certain countries. In this case, the data were most

likely MAR.

■ Finally, I was involved in a study of depression in which older patients were more

likely to omit items describing depressed mood when compared with younger

patients. Interviews revealed that older patients were loath to admit to such symp-

toms because doing so violated their values about keeping a “stiff upper lip.”

Unfortunately, it was also determined that severely depressed patients were more

likely to omit these items due to a sense of hopelessness and difficulties with con-

centration. In this case, the data had to be considered NMAR.

As you can see, identifying patterns is only the first step. You need to bring your

understanding of the research subject matter and the data collection process to bear

in order to determine the source of the missing values.

 Now that we’ve considered the source and impact of missing data, let’s see how

standard statistical approaches can be altered to accommodate them. We’ll focus on

three popular approaches: a rational approach for recovering data, a traditional

approach that involves deleting missing data, and a modern approach that uses simu-

lation. Along the way, we’ll briefly look at methods for specialized situations and meth-

ods that have become obsolete and should be retired. The goal will remain constant:

to answer, as accurately as possible, the substantive questions that led you to collect

the data, given the absence of complete information.

18.5 Rational approaches for dealing with incomplete data

In a rational approach, you use mathematical or logical relationships among variables

to attempt to fill in or recover missing values. A few examples will help clarify this

approach.

 In the sleep dataset, the variable Sleep is the sum of the Dream and NonD vari-

ables. If you know a mammal’s scores on any two, you can derive the third. Thus, if

some observations were missing only one of the three variables, you could recover the

missing information through addition or subtraction.

 As a second example, consider research that focuses on work/life balance differ-

ences between generational cohorts (for example, Silents, Early Boomers, Late Boom-

ers, Xers, Millennials), where cohorts are defined by their birth year. Participants are

asked both their date of birth and their age. If date of birth is missing, you can recover

their birth year (and therefore their generational cohort) by knowing their age and

the date they completed the survey.

 An example that uses logical relationships to recover missing data comes from a set

of leadership studies in which participants were asked if they were a manager (yes/

no) and the number of their direct reports (integer). If they left the manager ques-

tion blank but indicated that they had one or more direct reports, it would be reason-

able to infer that they were a manager.

 As a final example, I frequently engage in gender research that compares the lead-

ership styles and effectiveness of men and women. Participants complete surveys that

www.it-ebooks.info

http://www.it-ebooks.info/

426 CHAPTER 18 Advanced methods for missing data

include their name (first and last), their gender, and a detailed assessment of their

leadership approach and impact. If participants leave the gender question blank, I

have to impute the value in order to include them in the research. In one recent study

of 66,000 managers, 11,000 (17%) were missing a value for gender.

 To remedy the situation, I employed the following rational process. First, I cross-

tabulated first name with gender. Some first names were associated with males, some

with females, and some with both. For example, “William” appeared 417 times and

was always a male. Conversely, the name “Chris” appeared 237 times but was some-

times a male (86%) and sometimes a female (14%). If a first name appeared more

than 20 times in the dataset and was always associated with males or with females (but

never both), I assumed that the name represented a single gender. I used this assump-

tion to create a gender-lookup table for gender-specific first names. Using this lookup

table for participants with missing gender values, I was able to recover 7,000 cases

(63% of the missing responses).

 A rational approach typically requires creativity and thoughtfulness, along with a

degree of data-management skill. Data recovery may be exact (as in the sleep exam-

ple) or approximate (as in the gender example). In the next section, we’ll explore an

approach that creates complete datasets by removing observations.

18.6 Complete-case analysis (listwise deletion)

In complete-case analysis, only observations containing valid data values on every vari-

able are retained for further analysis. Practically, this involves deleting any row with

one or more missing values, and is also known as listwise, or case-wise, deletion. Most

popular statistical packages employ listwise deletion as the default approach for han-

dling missing data. In fact, it’s so common that many analysts carrying out analyses

like regression or ANOVA may not even realize that there’s a “missing-values problem”

to be dealt with!

 The function complete.cases() can be used to save the cases (rows) of a matrix

or data frame without missing data:

newdata <- mydata[complete.cases(mydata),]

The same result can be accomplished with the na.omit function:

newdata <- na.omit(mydata)

In both statements, any rows that are missing data are deleted from mydata before the

results are saved to newdata.

 Suppose you’re interested in the correlations among the variables in the sleep

study. Applying listwise deletion, you’d delete all mammals with missing data prior to

calculating the correlations:

> options(digits=1)
> cor(na.omit(sleep))
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
BodyWgt 1.00 0.96 -0.4 -0.07 -0.3 0.47 0.71 0.10 0.4 0.26
BrainWgt 0.96 1.00 -0.4 -0.07 -0.3 0.63 0.73 -0.02 0.3 0.15

www.it-ebooks.info

http://www.it-ebooks.info/

427Complete-case analysis (listwise deletion)

NonD -0.39 -0.39 1.0 0.52 1.0 -0.37 -0.61 -0.35 -0.6 -0.53
Dream -0.07 -0.07 0.5 1.00 0.7 -0.27 -0.41 -0.40 -0.5 -0.57
Sleep -0.34 -0.34 1.0 0.72 1.0 -0.38 -0.61 -0.40 -0.6 -0.60
Span 0.47 0.63 -0.4 -0.27 -0.4 1.00 0.65 -0.17 0.3 0.01
Gest 0.71 0.73 -0.6 -0.41 -0.6 0.65 1.00 0.09 0.6 0.31
Pred 0.10 -0.02 -0.4 -0.40 -0.4 -0.17 0.09 1.00 0.6 0.93
Exp 0.41 0.32 -0.6 -0.50 -0.6 0.32 0.57 0.63 1.0 0.79
Danger 0.26 0.15 -0.5 -0.57 -0.6 0.01 0.31 0.93 0.8 1.00

The correlations in this table are based solely on the 42 mammals that have complete

data on all variables. (Note that the statement cor(sleep, use="complete.obs")

would have produced the same results.)

 If you wanted to study the impact of life span and length of gestation on the

amount of dream sleep, you could employ linear regression with listwise deletion:

> fit <- lm(Dream ~ Span + Gest, data=na.omit(sleep))
> summary(fit)

Call:
lm(formula = Dream ~ Span + Gest, data = na.omit(sleep))

Residuals:
 Min 1Q Median 3Q Max
-2.333 -0.915 -0.221 0.382 4.183

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.480122 0.298476 8.31 3.7e-10 ***
Span -0.000472 0.013130 -0.04 0.971
Gest -0.004394 0.002081 -2.11 0.041 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Residual standard error: 1 on 39 degrees of freedom
Multiple R-squared: 0.167, Adjusted R-squared: 0.125
F-statistic: 3.92 on 2 and 39 DF, p-value: 0.0282

Here you see that mammals with shorter gestation periods have more dream sleep

(controlling for life span) and that life span is unrelated to dream sleep when control-

ling for gestation period. The analysis is based on 42 cases with complete data.

 In the previous example, what would have happened if data=na.omit(sleep) had

been replaced with data=sleep? Like many R functions, lm() uses a limited defini-

tion of listwise deletion. Cases with any missing data on the variables fitted by the func-

tion (Dream, Span, and Gest in this case) would have been deleted. The analysis

would have been based on 44 cases.

 Listwise deletion assumes that the data are MCAR (that is, the complete observa-

tions are a random subsample of the full dataset). In the current example, we’ve

assumed that the 42 mammals used are a random subsample of the 62 mammals col-

lected. To the degree that the MCAR assumption is violated, the resulting regression

parameters will be biased. Deleting all observations with missing data can also reduce

statistical power by reducing the available sample size. In the current example, listwise

www.it-ebooks.info

http://www.it-ebooks.info/

428 CHAPTER 18 Advanced methods for missing data

deletion reduced the sample size by 32%. Next, we’ll consider an approach that

employs the entire dataset (including cases with missing data).

18.7 Multiple imputation

Multiple imputation (MI) provides an approach to missing values that’s based on

repeated simulations. MI is frequently the method of choice for complex missing-val-

ues problems. In MI, a set of complete datasets (typically 3 to 10) is generated from an

existing dataset that’s missing values. Monte Carlo methods are used to fill in the miss-

ing data in each of the simulated datasets. Standard statistical methods are applied to

each of the simulated datasets, and the outcomes are combined to provide estimated

results and confidence intervals that take into account the uncertainty introduced by

the missing values. Good implementations are available in R through the Amelia,

mice, and mi packages.

 In this section, we’ll focus

on the approach provided by

the mice (multivariate impu-

tation by chained equations)

package. To understand how

the mice package operates,

consider the diagram in figure

18.5.

 The function mice() starts

with a data frame that’s miss-

ing data and returns an

object containing several

complete datasets (the default is five). Each complete dataset is created by imputing

values for the missing data in the original data frame. There’s a random component

to the imputations, so each complete dataset is slightly different. The with() function

is then used to apply a statistical model (for example, a linear or generalized linear

model) to each complete dataset in turn. Finally, the pool() function combines the

results of these separate analyses into a single set of results. The standard errors and

p-values in this final model correctly reflect the uncertainty produced by both the

missing values and the multiple imputations.

How does the mice() function impute missing values?

Missing values are imputed by Gibbs sampling. By default, each variable with missing
values is predicted from all other variables in the dataset. These prediction equations
are used to impute plausible values for the missing data. The process iterates until
convergence over the missing values is achieved. For each variable, you can choose
the form of the prediction model (called an elementary imputation method) and the
variables entered into it.

with()

pool()

Final result

Imputed datasets Analysis results

Data frame

mice()

Figure 18.5 Steps in applying multiple imputation to missing

data via the mice approach

www.it-ebooks.info

http://www.it-ebooks.info/

429Multiple imputation

An analysis based on the mice package typically conforms to the following structure

library(mice)
imp <- mice(data, m)
fit <- with(imp, analysis)
pooled <- pool(fit)
summary(pooled)

where

■ data is a matrix or data frame containing missing values.
■ imp is a list object containing the m imputed datasets, along with information

on how the imputations were accomplished. By default, m = 5.
■ analysis is a formula object specifying the statistical analysis to be applied to

each of the m imputed datasets. Examples include lm() for linear regression

models, glm() for generalized linear models, gam() for generalized additive

models, and nbrm() for negative binomial models. Formulas within the paren-
theses give the response variables on the left of the ~ and the predictor variables

(separated by + signs) on the right.
■ fit is a list object containing the results of the m separate statistical analyses.
■ pooled is a list object containing the averaged results of these m statistical analyses.

Let’s apply multiple imputation to the sleep dataset. You’ll repeat the analysis from

section 18.6, but this time use all 62 mammals. Set the seed value for the random

number generator to 1,234 so that your results will match the following:

> library(mice)
> data(sleep, package="VIM")
> imp <- mice(sleep, seed=1234)

 [...output deleted to save space...]

> fit <- with(imp, lm(Dream ~ Span + Gest))
> pooled <- pool(fit)
> summary(pooled)
 est se t df Pr(>|t|) lo 95
(Intercept) 2.58858 0.27552 9.395 52.1 8.34e-13 2.03576
Span -0.00276 0.01295 -0.213 52.9 8.32e-01 -0.02874
Gest -0.00421 0.00157 -2.671 55.6 9.91e-03 -0.00736
 hi 95 nmis fmi
(Intercept) 3.14141 NA 0.0870
Span 0.02322 4 0.0806
Gest -0.00105 4 0.0537

By default, predictive mean matching is used to replace missing data on continuous
variables, whereas logistic or polytomous logistic regression is used for target vari-
ables that are dichotomous (factors with two levels) or polytomous (factors with more
than two levels), respectively. Other elementary imputation methods include Bayesian
linear regression, discriminant function analysis, two-level normal imputation, and ran-
dom sampling from observed values. You can supply your own methods as well.

www.it-ebooks.info

http://www.it-ebooks.info/

430 CHAPTER 18 Advanced methods for missing data

Here, you see that the regression coefficient for Span isn’t significant (p ≅ 0.08), and

the coefficient for Gest is significant at the p < 0.01 level. If you compare these results

with those produced by a complete case analysis (section 18.6), you see that you’d

come to the same conclusions in this instance. Length of gestation has a (statistically)

significant, negative relationship with amount of dream sleep, controlling for life

span. Although the complete-case analysis was based on the 42 mammals with com-

plete data, the current analysis is based on information gathered from the full set of

62 mammals. By the way, the fmi column reports the fraction of missing information

(that is, the proportion of variability that is attributable to the uncertainty introduced

by the missing data).

 You can access more information about the imputation by examining the objects

created in the analysis. For example, let’s view a summary of the imp object:

> imp

Multiply imputed data set
Call:
mice(data = sleep, seed = 1234)
Number of multiple imputations: 5
Missing cells per column:
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred
 0 0 14 12 4 4 4 0
 Exp Danger
 0 0
Imputation methods:
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred
 "" "" "pmm" "pmm" "pmm" "pmm" "pmm" ""
 Exp Danger
 "" ""
VisitSequence:
 NonD Dream Sleep Span Gest
 3 4 5 6 7
PredictorMatrix:
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
BodyWgt 0 0 0 0 0 0 0 0 0 0
BrainWgt 0 0 0 0 0 0 0 0 0 0
NonD 1 1 0 1 1 1 1 1 1 1
Dream 1 1 1 0 1 1 1 1 1 1
Sleep 1 1 1 1 0 1 1 1 1 1
Span 1 1 1 1 1 0 1 1 1 1
Gest 1 1 1 1 1 1 0 1 1 1
Pred 0 0 0 0 0 0 0 0 0 0
Exp 0 0 0 0 0 0 0 0 0 0
Danger 0 0 0 0 0 0 0 0 0 0
Random generator seed value: 1234

From the resulting output, you can see that five synthetic datasets were created and

that the predictive mean matching (pmm) method was used for each variable with miss-

ing data. No imputation ("") was needed for BodyWgt, BrainWgt, Pred, Exp, or Dan-

ger, because they had no missing values. The visit sequence tells you that variables

www.it-ebooks.info

http://www.it-ebooks.info/

431Multiple imputation

were imputed from right to left, starting with NonD and ending with Gest. Finally, the

predictor matrix indicates that each variable with missing data was imputed using all

the other variables in the dataset. (In this matrix, the rows represent the variables

being imputed, the columns represent the variables used for the imputation, and

1s/0s indicate used/not used).

 You can view the imputations by looking at subcomponents of the imp object. For

example,

> impimpDream

 1 2 3 4 5

1 0.5 0.5 0.5 0.5 0.0

3 2.3 2.4 1.9 1.5 2.4

4 1.2 1.3 5.6 2.3 1.3

14 0.6 1.0 0.0 0.3 0.5

24 1.2 1.0 5.6 1.0 6.6

26 1.9 6.6 0.9 2.2 2.0

30 1.0 1.2 2.6 2.3 1.4

31 5.6 0.5 1.2 0.5 1.4

47 0.7 0.6 1.4 1.8 3.6

53 0.7 0.5 0.7 0.5 0.5

55 0.5 2.4 0.7 2.6 2.6

62 1.9 1.4 3.6 5.6 6.6

displays the 5 imputed values for each of the 12 mammals with missing data on the

Dream variable. A review of these matrices helps you determine whether the imputed

values are reasonable. A negative value for length of sleep might give you pause (or

nightmares).

 You can view each of the m imputed datasets via the complete() function. The for-

mat is

complete(imp, action=#)

where # specifies one of the m synthetically complete datasets. For example,

> dataset3 <- complete(imp, action=3)

> dataset3

 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger

1 6654.00 5712.0 2.1 0.5 3.3 38.6 645 3 5 3

2 1.00 6.6 6.3 2.0 8.3 4.5 42 3 1 3

3 3.38 44.5 10.6 1.9 12.5 14.0 60 1 1 1

4 0.92 5.7 11.0 5.6 16.5 4.7 25 5 2 3

5 2547.00 4603.0 2.1 1.8 3.9 69.0 624 3 5 4

6 10.55 179.5 9.1 0.7 9.8 27.0 180 4 4 4

[...output deleted to save space...]

displays the third (out of five) complete dataset created by the multiple imputation

process.

 Due to space limitations, we’ve only briefly considered the MI implementation

provided in the mice package. The mi and Amelia packages also contain valuable

www.it-ebooks.info

http://www.it-ebooks.info/

432 CHAPTER 18 Advanced methods for missing data

approaches. If you’re interested in the multiple imputation approach to missing data,

I recommend the following resources:

■ The multiple imputation FAQ page (www.stat.psu.edu/~jls/mifaq.html)
■ Articles by Van Buuren and Groothuis-Oudshoorn (2010) and Yu-Sung, Gel-

man, Hill, and Yajima (2010)
■ Amelia II: A Program for Missing Data (http://gking.harvard.edu/amelia)

Each can help to reinforce and extend your understanding of this important, but

underutilized, methodology.

18.8 Other approaches to missing data

R supports several other approaches for dealing with missing data. Although not as

broadly applicable as the methods described thus far, the packages described in table

18.2 offer functions that can be useful in specialized circumstances.

Finally, there are two methods for dealing with missing data that are still in use but

should be considered obsolete: pairwise deletion and simple imputation.

18.8.1 Pairwise deletion

Pairwise deletion is often considered an alternative to listwise deletion when working

with datasets that are missing values. In pairwise deletion, observations are deleted

only if they’re missing data for the variables involved in a specific analysis. Consider

the following code:

> cor(sleep, use="pairwise.complete.obs")
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
BodyWgt 1.00 0.93 -0.4 -0.1 -0.3 0.30 0.7 0.06 0.3 0.13
BrainWgt 0.93 1.00 -0.4 -0.1 -0.4 0.51 0.7 0.03 0.4 0.15

Table 18.2 Specialized methods for dealing with missing data

Package Description

mvnmle Maximum-likelihood estimation for multivariate normal data with

missing values

cat Analysis of categorical-variable datasets with missing values

arrayImpute,

arrayMissPattern, and SeqKnn
Useful functions for dealing with missing microarray data

longitudinalData Utility functions, including interpolation routines for imputing

missing time-series values

kmi Kaplan-Meier multiple imputation for survival analysis with miss-

ing data

mix Multiple imputation for mixed categorical and continuous data

pan Multiple imputation for multivariate panel or clustered data

www.it-ebooks.info

www.stat.psu.edu/~jls/mifaq.html
http://gking.harvard.edu/amelia
http://www.it-ebooks.info/

433Summary

NonD -0.38 -0.37 1.0 0.5 1.0 -0.38 -0.6 -0.32 -0.5 -0.48
Dream -0.11 -0.11 0.5 1.0 0.7 -0.30 -0.5 -0.45 -0.5 -0.58
Sleep -0.31 -0.36 1.0 0.7 1.0 -0.41 -0.6 -0.40 -0.6 -0.59
Span 0.30 0.51 -0.4 -0.3 -0.4 1.00 0.6 -0.10 0.4 0.06
Gest 0.65 0.75 -0.6 -0.5 -0.6 0.61 1.0 0.20 0.6 0.38
Pred 0.06 0.03 -0.3 -0.4 -0.4 -0.10 0.2 1.00 0.6 0.92
Exp 0.34 0.37 -0.5 -0.5 -0.6 0.36 0.6 0.62 1.0 0.79
Danger 0.13 0.15 -0.5 -0.6 -0.6 0.06 0.4 0.92 0.8 1.00

In this example, correlations between any two variables use all available observations

for those two variables (ignoring the other variables). The correlation between

Kaplan-Meier multiple is based on all 62 mammals (the number of mammals with

data on both variables). The correlation between Kaplan-Meier multiple is based on

42 mammals, and the correlation between Kaplan-Meier multiple is based on 46 mam-

mals.

 Although pairwise deletion appears to use all available data, in fact each calcula-

tion is based on a different subset of the data. This can lead to distorted and difficult-

to-interpret results. I recommend staying away from this approach.

18.8.2 Simple (nonstochastic) imputation

In simple imputation, the missing values in a variable are replaced with a single value

(for example, mean, median, or mode). Using mean substitution, you could replace miss-

ing values on Kaplan-Meier multiple with the value 1.97 and missing values on Kaplan-

Meier multiple with the value 8.67 (the means on Kaplan-Meier multiple, respectively).

Note that the substitution is nonstochastic, meaning that random error isn’t introduced

(unlike with multiple imputation).

 An advantage of simple imputation is that it solves the missing-values problem

without reducing the sample size available for analyses. Simple imputation is, well,

simple, but it produces biased results for data that isn’t MCAR. If moderate to large

amounts of data are missing, simple imputation is likely to underestimate standard

errors, distort correlations among variables, and produce incorrect p-values in statisti-

cal tests. Like pairwise deletion, I recommend avoiding this approach for most miss-

ing-data problems.

18.9 Summary

Most statistical methods assume that the input data are complete and don't include

missing values (such as, NA, NaN, or Inf). But most datasets in real-world settings con-

tain missing values. Therefore, you must either delete the missing values or replace

them with reasonable substitute values before continuing with the desired analyses.

Often, statistical packages provide default methods for handling missing data, but

these approaches may not be optimal. Therefore, it’s important that you understand

the various approaches available and the ramifications of using each.

 In this chapter, we examined methods for identifying missing values and exploring

patterns of missing data. The goal was to understand the mechanisms that led to the

missing data and their possible impact on subsequent analyses. We then reviewed

www.it-ebooks.info

http://www.it-ebooks.info/

434 CHAPTER 18 Advanced methods for missing data

three popular methods for dealing with missing data: a rational approach, listwise

deletion, and the use of multiple imputation.

 Rational approaches can be used to recover missing values when there are redun-

dancies in the data or when external information can be brought to bear on the prob-

lem. The listwise deletion of missing data is useful if the data are MCAR and the

subsequent sample size reduction doesn’t seriously impact the power of statistical

tests. Multiple imputation is rapidly becoming the method of choice for complex miss-

ing-data problems when you can assume that the data are MCAR or MAR. Although

many analysts may be unfamiliar with multiple imputation strategies, user-contributed

packages (mice, mi, and Amelia) make them readily accessible. I believe we’ll see

rapid growth in their use over the next few years.

 I ended the chapter by briefly mentioning R packages that provide specialized

approaches for dealing with missing data, and singled out general approaches for

handling missing data (pairwise deletion, simple imputation) that should be avoided.

 In the next chapter, we’ll explore advanced graphical methods, using the ggplot2

package to create innovative multivariate plots.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 5

Expanding your skills

In this final section, we consider advanced topics that will enhance your skills
as an R programmer. Chapter 19 completes our discussion of graphics with a

presentation of one of R’s most powerful approaches to visualizing data. Based

on a comprehensive grammar of graphics, the ggplot2 package provides a set of

tools that allow you visualize complex data sets in new and creative ways. You’ll
be able to easily create attractive and informative graphs that would be difficult

or impossible to create using R’s base graphics system.

 Chapter 20 provides a review of the R language at a deeper level. This
includes a discussion of R’s object-oriented programming features, working with

environments, and advanced function writing. Tips for writing efficient code

and debugging programs are also described. Although chapter 20 is more tech-
nical than the other chapters in this book, it provides extensive practical advice

for developing more useful programs.

 Throughout this book, you’ve used packages to get work done. In chapter 21,
you’ll learn to write your own packages. This can help you organize and docu-

ment your work, create more complex and comprehensive software solutions,

and share your creations with others. Sharing a useful package of functions with
others can also be a wonderful way to give back to the R community (while

spreading your fame far and wide).

 Chapter 22 is all about report writing. R provides compressive facilities for
generating attractive reports dynamically from data. In this last chapter, you’ll

learn how to create reports as web pages, PDF documents, and word processor

documents (including Microsoft Word documents).

 After completing part 5, you’ll have a much deeper appreciation of how R
works and the tools it offers for creating more sophisticated graphics, software,

and reports.

www.it-ebooks.info

http://www.it-ebooks.info/

436 CHAPTER

www.it-ebooks.info

http://www.it-ebooks.info/

437

Advanced graphics
with ggplot2

In previous chapters, you created a wide variety of general and specialized graphs

(and had lots of fun in the process). Most were produced using R’s base graphics

system. Given the diversity of methods available in R, it may not surprise you to

learn that four separate and complete graphics systems are currently available.

 In addition to base graphics, graphics systems are provided by the grid, lat-

tice, and ggplot2 packages. Each is designed to expand on the capabilities of, and

correct for deficiencies in, R’s base graphics system.

 The grid graphics system provides low-level access to graphic primitives, giving

programmers a great deal of flexibility in the creation of graphic output. The

lattice package provides an intuitive approach for examining multivariate

This chapter covers

■ An introduction to the ggplot2 package

■ Using shape, color, and size to visualize
multivariate data

■ Comparing groups with faceted graphs

■ Customizing ggplot2 plots

www.it-ebooks.info

http://www.it-ebooks.info/

438 CHAPTER 19 Advanced graphics with ggplot2

relationships through conditional one-, two-, or three-dimensional graphs called trellis

graphs. The ggplot2 package provides a method of creating innovative graphs based

on a comprehensive graphical “grammar.”

 In this chapter, we’ll start with a brief overview of the four graphic systems. Then

we’ll focus on graphs that can be generated with the ggplot2 package. ggplot2 greatly

expands the range and quality of the graphs you can produce in R. It allows you to visu-

alize datasets with many variables using a comprehensive and consistent syntax, and eas-

ily generate graphs that would be difficult to create using base R graphics.

19.1 The four graphics systems in R

As stated earlier, there are currently four graphical systems available in R. The base

graphics system, written by Ross Ihaka, is included in every R installation. Most of the

graphs produced in previous chapters rely on base graphics functions.

 The grid graphics system, written by Paul Murrell (2011), is implemented through

the grid package. grid graphics offer a lower-level alternative to the standard graph-

ics system. The user can create arbitrary rectangular regions on graphics devices,

define coordinate systems for each region, and use a rich set of drawing primitives to

control the arrangement and appearance of graphic elements.

 This flexibility makes grid graphics a valuable tool for software developers. But the

grid package doesn’t provide functions for producing statistical graphics or complete

plots. Because of this, the package is rarely used directly by data analysts and won’t be

discussed further. If you’re interested in learning more about grid, visit Dr. Murrell’s

Grid website (http://mng.bz/C86p) for details.

 The lattice package, written by Deepayan Sarkar (2008), implements trellis

graphs, as outlined by Cleveland (1985, 1993). Basically, trellis graphs display the dis-

tribution of a variable or the relationship between variables, separately for each level

of one or more other variables. Built using the grid package, the lattice package has

grown beyond Cleveland’s original approach to visualizing multivariate data and now

provides a comprehensive alternative system for creating statistical graphics in R. A

number of packages described in this book (effects, flexclust, Hmisc, mice, and

odfWeave) use functions in the lattice package to produce graphs.

 Finally, the ggplot2 package, written by Hadley Wickham (2009a), provides a sys-

tem for creating graphs based on the grammar of graphics described by Wilkinson

(2005) and expanded by Wickham (2009b). The intention of the ggplot2 package is

to provide a comprehensive, grammar-based system for generating graphs in a unified

and coherent manner, allowing users to create new and innovative data visualizations.

The power of this approach has led ggplot2 to become an important tool for visualiz-

ing data using R.

 Access to the four systems differs, as outlined in table 19.1. Base graphic functions

are automatically available. To access grid and lattice functions, you must load the

appropriate package explicitly (for example, library(lattice)). To access ggplot2

functions, you have to download and install the package (install.packages

("ggplot2")) before first use and then load it (library(ggplot2)).

www.it-ebooks.info

http://mng.bz/C86p
http://www.it-ebooks.info/

439An introduction to the ggplot2 package

The lattice and ggplot2 packages overlap in functionality but approach the cre-

ation of graphs differently. Analysts tend to rely on one package or the other when

plotting multivariate data. Given its power and popularity, the remainder of this chap-

ter will focus on ggplot2. If you would like to learn more about the lattice package,

I’ve created a supplementary chapter that you can download (www.statmethods

.net/RiA/lattice.pdf) or from the publisher’s website at www.manning.com/

RinActionSecondEdition.

 This chapter uses three datasets to illustrate the use of ggplot2. The first is a data

frame called singer that comes from the lattice package; it contains the heights and

voice parts of singers in the New York Choral Society. The second is the mtcars data

frame that you’ve used throughout this book; it contains automotive details on 32

automobiles. The final data frame is called Salaries and is included with the car

package described in chapter 8. Salaries contains salary information for university

professors and was collected to explore gender discrepancies in income. Together,

these datasets offer a variety of visualization challenges.

 Before continuing, be sure the ggplot2 and car packages are installed. You’ll also

want to install the gridExtra package. It allows you to place multiple ggplot2 graphs

into a single plot (see section 19.7.4).

19.2 An introduction to the ggplot2 package

The ggplot2 package implements a system for creating graphics in R based on a com-

prehensive and coherent grammar. This provides a consistency to graph creation

that’s often lacking in R and allows you to create graph types that are innovative and

novel. In this section, we’ll start with an overview of ggplot2 grammar; subsequent

sections dive into the details.

 In ggplot2, plots are created by chaining together functions using the plus (+)

sign. Each function modifies the plot created up to that point. It’s easiest to see with

an example (the graph is given in figure 19.1):

library(ggplot2)
ggplot(data=mtcars, aes(x=wt, y=mpg)) +
 geom_point() +
 labs(title="Automobile Data", x="Weight", y="Miles Per Gallon")

Table 19.1 Access to graphic systems

System Included in base installation? Must be explicitly loaded?

base Yes No

grid Yes Yes

lattice Yes Yes

ggplot2 No Yes

www.it-ebooks.info

www.statmethods.net/RiA/lattice.pdf
www.statmethods.net/RiA/lattice.pdf
www.manning.com/RinActionSecondEdition
www.manning.com/RinActionSecondEdition
http://www.it-ebooks.info/

440 CHAPTER 19 Advanced graphics with ggplot2

Let’s break down how the plot was produced. The ggplot() function initializes the

plot and specifies the data source (mtcars) and variables (wt, mpg) to be used. The

options in the aes() function specify what role each variable will play. (aes stands for

aesthetics, or how information is represented visually.) Here, the wt values are mapped

to distances along the x-axis, and mpg values are mapped to distances along the y-axis.

 The ggplot() function sets up the graph but produces no visual output on its own.

Geometric objects (called geoms for short), which include points, lines, bars, box plots,

and shaded regions, are added to the graph using one or more geom functions. In this

example, the geom_point() function draws points on the graph, creating a scatter-

plot. The labs() function is optional and adds annotations (axis labels and a title).

 There are many functions in ggplot2, and most can include optional parameters.

Expanding on the previous example, the code

library(ggplot2)
ggplot(data=mtcars, aes(x=wt, y=mpg)) +
 geom_point(pch=17, color="blue", size=2) +
 geom_smooth(method="lm", color="red", linetype=2) +
 labs(title="Automobile Data", x="Weight", y="Miles Per Gallon")

produces the graph in figure 19.2.

 Options to geom_point() set the point shape to triangles (pch=17), double the

points’ size (size=2), and render them in blue (color="blue"). The geom_smooth()

function adds a “smoothed” line. Here a linear fit is requested (method="lm") and a red

10

15

20

25

30

35

2 3 4 5

Weight

M
ile

s
 P

e
r

G
a

llo
n

Automobile Data

Figure 19.1 Scatterplot of

automobile weight by mileage

www.it-ebooks.info

http://www.it-ebooks.info/

441An introduction to the ggplot2 package

(color="red") dashed (linetype=2) line of size 1 (size=1) is produced. By default,

the line includes 95% confidence intervals (the darker band). We’ll go into more detail

about modeling relationships with linear and nonlinear fits in section 19.6.

 The ggplot2 package provides methods for grouping and faceting. Grouping dis-

plays two or more groups of observations in a single plot. Groups are usually differen-

tiated by color, shape, or shading. Faceting displays groups of observations in separate,

side-by-side plots. The ggplot2 package uses factors when defining groups or facets.

 You can see both grouping and faceting with the mtcars data frame. First, trans-
form the am, vs, and cyl variables into factors:

mtcars$am <- factor(mtcars$am, levels=c(0,1),
 labels=c("Automatic", "Manual"))
mtcars$vs <- factor(mtcars$vs, levels=c(0,1),
 labels=c("V-Engine", "Straight Engine"))
mtcars$cyl <- factor(mtcars$cyl)

Next, generate a plot using the following code:

library(ggplot2)

ggplot(data=mtcars, aes(x=hp, y=mpg,

 shape=cyl, color=cyl)) +

 geom_point(size=3) +

 facet_grid(am~vs) +

 labs(title="Automobile Data by Engine Type",

 x="Horsepower", y="Miles Per Gallon")

10

20

30

2 3 4 5

Weight

M
ile

s
 P

e
r

G
a

llo
n

Automobile Data

Figure 19.2 Scatterplot of

automobile weight by gas

mileage, with a superimposed

line of best fit and 95%

confidence region

www.it-ebooks.info

http://www.it-ebooks.info/

442 CHAPTER 19 Advanced graphics with ggplot2

The resulting graph (see figure 19.3) contains separate scatterplots for each combina-

tion of transmission type (automatic vs. manual) and engine arrangement (V-engine

vs. straight engine). The color and shape of each point indicates the number of

engine cylinders in that car. In this case, am and vs are the faceting variables, and cyl is

the grouping variable.

 The ggplot2 package is powerful and can be used to create a wide array of infor-

mative graphs. It’s popular among seasoned R analysts and programmers; and, based

on postings in R blogs and discussion groups, that popularity is growing.

 Unfortunately, with power comes complexity. Unlike other R packages, ggplot2

can be thought of as a comprehensive graphical programming language in its own

right. It has its own learning curve, and at times that curve can be steep. Hang in

there—the effort is worth it. Luckily, there are function defaults and language simpli-

fications designed to make your introduction to this package easier. With practice,

V−Engine Straight Engine

10

15

20

25

30

35

10

15

20

25

30

35

A
u

to
m

a
tic

M
a
n
u
a
l

100 200 300 100 200 300

Horsepower

M
ile

s
 P

e
r

G
a

llo
n

cyl

4

6

8

Automobile Data by Engine Type

Figure 19.3 A scatterplot showing the relationship between horsepower and

gas mileage separately for transmission and engine type. The number of cylinders

in each automobile engine is represented by both shape and color.

www.it-ebooks.info

http://www.it-ebooks.info/

443Specifying the plot type with geoms

you’ll be able to create a wide variety of interesting and useful plots with just a few

lines of code.

 Let’s start with a description of geom functions and the type of graphs they can

create. Then we’ll look at the aes() function in more detail and how you can use it

to group data. Next, we’ll consider faceting and the creation of trellis graphs. Finally,

we’ll look at ways to tweak the appearance of ggplot2 graphs, including modifying

axes and legends, changing color schemes, and adding annotations. The chapter will

end with pointers to resources that can help you master the ggplot2 approach

more fully.

19.3 Specifying the plot type with geoms

Whereas the ggplot() function specifies the data source and variables to be plotted,

the geom functions specify how these variables are to be visually represented (using

points, bars, lines, and shaded regions). Currently, 37 geoms are available. Table 19.2

lists the more common ones, along with frequently used options. The options are

described more fully in table 19.3.

Most of the graphs described in this book can be created using the geoms in table

19.2. For example, the code

data(singer, package="lattice")
ggplot(singer, aes(x=height)) + geom_histogram()

Table 19.2 Geom functions

Function Adds Options

geom_bar() Bar chart color, fill, alpha

geom_boxplot() Box plot color, fill, alpha, notch, width

geom_density() Density plot color, fill, alpha, linetype

geom_histogram() Histogram color, fill, alpha, linetype, binwidth

geom_hline() Horizontal lines color, alpha, linetype, size

geom_jitter() Jittered points color, size, alpha, shape

geom_line() Line graph colorvalpha, linetype, size

geom_point() Scatterplot color, alpha, shape, size

geom_rug() Rug plot color, side

geom_smooth() Fitted line method, formula, color, fill, linetype, size

geom_text() Text annotations Many; see the help for this function

geom_violin() Violin plot color, fill, alpha, linetype

geom_vline() Vertical lines color, alpha, linetype, size

www.it-ebooks.info

http://www.it-ebooks.info/

444 CHAPTER 19 Advanced graphics with ggplot2

produces the histogram in figure 19.4, and

ggplot(singer, aes(x=voice.part, y=height)) + geom_boxplot()

produces the box plot in figure 19.5.

 From figure 19.5, it appears that basses tend to be taller and sopranos tend to be

shorter. Although gender wasn’t measured, it probably accounts for much of the vari-

ation you see.

0

10

20

30

60 65 70 75
height

c
o

u
n

t

Figure 19.4 Histogram of singer heights

60

65

70

75

Bass 2 Bass 1 Tenor 2 Tenor 1 Alto 2 Alto 1 Soprano 2 Soprano 1

voice.part

h
e

ig
h

t

Figure 19.5 Box plot of singer heights by voice part

www.it-ebooks.info

http://www.it-ebooks.info/

445Specifying the plot type with geoms

 Note that only the x variable was specified when creating a histogram, but both an

x and a y variable were specified for the box plot. The geom_histogram() function

defaults to counts on the y-axis when no y variable is specified. See the documentation

for each function for details and additional examples.

 Each geom function has a set of options that can be used to modify its representa-

tion. Common options are listed in table 19.3.

You can examine the use of many of these options using the Salaries dataset. The

code

data(Salaries, package="car")
library(ggplot2)
ggplot(Salaries, aes(x=rank, y=salary)) +
 geom_boxplot(fill="cornflowerblue",
 color="black", notch=TRUE)+
 geom_point(position="jitter", color="blue", alpha=.5)+
 geom_rug(side="l", color="black")

produces the plot in figure 19.6. The figure displays notched box plots of salary by

academic rank. The actual observations (teachers) are overlaid and given some trans-

parency so they don’t obscure the box plots. They’re also jittered to reduce their over-

lap. Finally, a rug plot is provided on the left to indicate the general spread of salaries.

Table 19.3 Common options for geom functions

Option Specifies

color Color of points, lines, and borders around filled regions.

fill Color of filled areas such as bars and density regions.

alpha Transparency of colors, ranging from 0 (fully transparent) to 1 (opaque).

linetype Pattern for lines (1 = solid, 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash,

6 = twodash).

size Point size and line width.

shape Point shapes (same as pch, with 0 = open square, 1 = open circle, 2 = open triangle,

and so on). See figure 3.4 for examples.

position Position of plotted objects such as bars and points. For bars, "dodge" places grouped

bar charts side by side, "stacked" vertically stacks grouped bar charts, and "fill"

vertically stacks grouped bar charts and standardizes their heights to be equal. For

points, "jitter" reduces point overlap.

binwidth Bin width for histograms.

notch Indicates whether box plots should be notched (TRUE/FALSE).

sides Placement of rug plots on the graph ("b" = bottom, "l" = left, "t" = top, "r" = right,

"bl" = both bottom and left, and so on).

width Width of box plots.

www.it-ebooks.info

http://www.it-ebooks.info/

446 CHAPTER 19 Advanced graphics with ggplot2

From figure 19.6, you can see that the salaries of assistant, associate, and full profes-

sors differ significantly from each other (there is no overlap in the box plot notches).

Additionally, the variance in salaries increases with greater rank, with a large range of

salaries for full professors. In fact, at least one full professor earns less than assistant

professors. There are also three full professors whose salaries are so large as to make

them outliers (as indicated by the black dots in the Prof box plot). Having been a full

professor earlier in my career, the data suggests to me that I was clearly underpaid.

 The real power of the ggplot2 package is realized when geoms are combined to

form new types of plots. Returning to the singer dataset, the code

library(ggplot2)
data(singer, package="lattice")
ggplot(singer, aes(x=voice.part, y=height)) +
 geom_violin(fill="lightblue") +
 geom_boxplot(fill="lightgreen", width=.2)

combines box plots with violin plots to create a new type of graph (displayed in figure

19.7). The box plots show the 25th, 50th, and 75th percentile scores for each voice part

in the singer dataframe, along with any outliers. The violin plots provide more visual

cues as to the distribution of scores over the range of heights for each voice part.

●

●
●

●●

50000

100000

150000

200000

AsstProf AssocProf Prof

rank

s
a

la
ry

Figure 19.6 Notched box plots with superimposed points describing the salaries

of college professors by rank. A rug plot is provided on the vertical axis.

www.it-ebooks.info

http://www.it-ebooks.info/

447Grouping

In the remainder of this chapter, you’ll use geoms to create a wide range of graph

types. Let’s start with grouping—the representation of more than one group of obser-

vations in a single graph.

19.4 Grouping

In order to understand data, it’s often helpful to plot two or more groups of observa-

tions on the same graph. In R, the groups are usually defined as the levels of a categor-

ical variable (factor). Grouping is accomplished in ggplot2 graphs by associating one
or more grouping variables with visual characteristics such as shape, color, fill, size, and

line type. The aes() function in the ggplot() statement assigns variables to roles

(visual characteristics of the plot), so this is a natural place to assign grouping variables.
 Let’s use grouping to explore the Salaries dataset. The dataframe contains infor-

mation on the salaries of university professors collected during the 2008–2009 aca-

demic year. Variables include rank (AsstProf, AssocProf, Prof), sex (Female, Male),
yrs.since.phd (years since Ph.D.), yrs.service (years of service), and salary (nine-month

salary in dollars).

 First, you can ask how salaries vary by academic rank. The code

data(Salaries, package="car")
library(ggplot2)
ggplot(data=Salaries, aes(x=salary, fill=rank)) +
 geom_density(alpha=.3)

60

65

70

75

Bass 2 Bass 1 Tenor 2 Tenor 1 Alto 2 Alto 1 Soprano 2 Soprano 1

voice.part

h
e

ig
h

t

Figure 19.7 A combined

violin and box plot graph

of singer heights by

voice part

www.it-ebooks.info

http://www.it-ebooks.info/

448 CHAPTER 19 Advanced graphics with ggplot2

plots three density curves in the same graph (one for each level of academic rank)

and distinguishes them by fill color. The fills are set to be somewhat transparent

(alpha) so that the overlapping curves don’t obscure each other. The colors also com-

bine to improve visualization in join areas. The plot is given is figure 19.8. Note that a

legend is produced automatically. In section 19.7.2, you’ll learn how to customize the

legend generated for grouped data.

 Salary increases by rank, but there is significant overlap, with some associate and

full professors earning the same as assistant professors. As rank increases, so does the

range of salaries. This is especially true for full professors, who have wide variation in

their incomes. Placing all three distributions in the same graph facilitates compari-

sons among the groups.

 Next, let’s plot the relationship between years since Ph.D. and salary, grouping by

sex and rank:

ggplot(Salaries, aes(x=yrs.since.phd, y=salary, color=rank,
 shape=sex)) + geom_point()

In the resulting graph (figure 19.9), academic rank is represented by point color

(assistant professors in red, associate professors in green, and full professors in blue).

Additionally, sex is indicated by point shape (circles are females and triangles are

men). If you’re looking at a greyscale image, the color differences can be difficult to

see; try running the code yourself. Note that reasonable legends are again produced

0e+00

1e−05

2e−05

3e−05

4e−05

50000 100000 150000 200000

salary

d
e

n
s
it
y

rank

AsstProf

AssocProf

Prof

Figure 19.8 Density plots

of university salaries, grouped

by academic rank

www.it-ebooks.info

http://www.it-ebooks.info/

449Grouping

automatically. Here you can see that income increases with years since graduation, but

the relationship is by no means linear.

 Finally, you can visualize the number of professors by rank and sex using a

grouped bar chart. The following code provides three bar-chart variations, displayed

in figure 19.10:

ggplot(Salaries, aes(x=rank, fill=sex)) +
 geom_bar(position="stack") + labs(title='position="stack"')

ggplot(Salaries, aes(x=rank, fill=sex)) +
 geom_bar(position="dodge") + labs(title='position="dodge"')

ggplot(Salaries, aes(x=rank, fill=sex)) +
 geom_bar(position="fill") + labs(title='position="fill"')

Each of the plots in figure 19.10 emphasizes different aspects of the data. It’s clear

from the first two graphs that there are many more full professors than members of

other ranks. Additionally, there are more female full professors than female assistant

or associate professors. The third graph indicates that the relative percentage of

women to men in the full-professor group is less than in the other two groups, even

though the total number of women is greater.

50000

100000

150000

200000

0 20 40

yrs.since.phd

s
a

la
ry

rank

AsstProf

AssocProf

Prof

sex

Female

Male

Figure 19.9 Scatterplot of

years since graduation and

salary. Academic rank is

represented by color, and sex

is represented by shape.

www.it-ebooks.info

http://www.it-ebooks.info/

450 CHAPTER 19 Advanced graphics with ggplot2

Note that the label on the y-axis for the third graph isn’t correct. It should say Propor-

tion rather than count. You can correct this by adding y="Proportion" to the labs()

function.

 Options can be used in different ways, depending on whether they occur inside or

outside the aes() function. Look at the following examples and try to guess what

they do:

ggplot(Salaries, aes(x=rank, fill=sex))+ geom_bar()
ggplot(Salaries, aes(x=rank)) + geom_bar(fill="red")
ggplot(Salaries, aes(x=rank, fill="red")) + geom_bar()

In the first example, sex is a variable represented by fill color in the bar graph. In the

second example, each bar is filled with the color red. In the third example, ggplot2

assumes that "red" is the name of a variable, and you get unexpected (and undesir-

able) results. In general, variables should go inside aes(), and assigned constants

should go outside aes().

19.5 Faceting

Sometimes relationships are clearer if groups appear in side-by-side graphs rather

than overlapping in a single graph. You can create trellis graphs (called faceted graphs

in ggplot2) using the facet_wrap() and facet_grid() functions. The syntax is given

in table 19.4, where var, rowvar, and colvar are factors.

Table 19.4 ggplot2 facet functions

Syntax Results

facet_wrap(~var, ncol=n) Separate plots for each level of var arranged into n columns

facet_wrap(~var, nrow=n) Separate plots for each level of var arranged into n rows

0

100

200

AsstProf AssocProf Prof

rank

c
o

u
n

t

position="stack"

0

50

100

150

200

250

AsstProf AssocProf Prof

rank

c
o

u
n

t

position="dodge"

0.00

0.25

0.50

0.75

1.00

AsstProf AssocProf Prof

rank

c
o

u
n

t

sex

Female

Male

position="fill"

Figure 19.10 Three versions of a grouped bar chart. Each displays the number of professors by academic

rank and sex.

www.it-ebooks.info

http://www.it-ebooks.info/

451Faceting

Going back to the choral example, you can a faceted graph using the following code:

data(singer, package="lattice")
library(ggplot2)
ggplot(data=singer, aes(x=height)) +
 geom_histogram() +
 facet_wrap(~voice.part, nrow=4)

The resulting plot (figure 19.11) displays the distribution of singer heights by voice

part. Separating the eight distributions into their own small, side-by-side plots makes

them easier to compare.

 As a second example, let’s create a graph that has faceting and grouping:

library(ggplot2)
ggplot(Salaries, aes(x=yrs.since.phd, y=salary, color=rank,
 shape=rank)) + geom_point() + facet_grid(.~sex)

facet_grid(rowvar~colvar) Separate plots for each combination of rowvar and colvar,

where rowvar represents rows and colvar represents columns

facet_grid(rowvar~.) Separate plots for each level of rowvar, arranged as a single

column

facet_grid(.~colvar) Separate plots for each level of colvar, arranged as a single row

Table 19.4 ggplot2 facet functions

Syntax Results

Bass 2 Bass 1

Tenor 2 Tenor 1

Alto 2 Alto 1

Soprano 2 Soprano 1

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

60 65 70 75 60 65 70 75

height

c
o

u
n

t

Figure 19.11 Faceted graph

showing the distribution

(histogram) of singer heights

by voice part

www.it-ebooks.info

http://www.it-ebooks.info/

452 CHAPTER 19 Advanced graphics with ggplot2

The resulting graph is presented in 19.12. It contains the same information, but sepa-

rating the plot into facets makes it somewhat easier to read.

 Finally, try displaying the height distribution of choral members in the singer

dataset separately for each voice part, using kernel-density plots arranged horizontally.

Give each a different color. One solution is as follows:

data(singer, package="lattice")
library(ggplot2)
ggplot(data=singer, aes(x=height, fill=voice.part)) +
 geom_density() +
 facet_grid(voice.part~.)

The result is displayed in fig-

ure 19.13.

 Note that the horizontal

arrangement facilitates com-

parisons among the groups.

The colors aren’t strictly nec-

essary, but they can aid in dis-

tinguishing the plots. (If

you’re viewing this in

greyscale, be sure to try the

example yourself.)

Figure 19.13 Faceted density

plots for singer heights

by voice part

Female Male

50000

100000

150000

200000

0 20 40 0 20 40

yrs.since.phd

s
a

la
ry

rank

AsstProf

AssocProf

Prof

Figure 19.12 Scatterplot

of years since graduation

and salary. Academic rank

is represented by color and

shape, and sex is faceted.

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

B
a

s
s
 2

B
a

s
s
 1

Te
n

o
r 2

Te
n

o
r 1

A
lto

 2
A

lto
 1

S
o

p
ra

n
o

 2
S

o
p

ra
n

o
 1

60 65 70 75

height

d
e

n
s
it
y

voice.part

Bass 2

Bass 1

Tenor 2

Tenor 1

Alto 2

Alto 1

Soprano 2

Soprano 1

www.it-ebooks.info

http://www.it-ebooks.info/

453Adding smoothed lines

NOTE You may wonder why the legend for the density plots includes a black
diagonal line through each box. Because you can control both the fill color of
the density plots and their border colors (black by default), the legend dis-
plays both.

19.6 Adding smoothed lines

The ggplot2 package contains a wide range of functions for calculating statistical

summaries that can be added to graphs. These include functions for binning data and

calculating densities, contours, and quantiles. This section looks at methods for add-

ing smoothed lines (linear, nonlinear, and nonparametric) to scatter plots.

 You can use the geom_smooth() function to add a variety of smoothed lines and

confidence regions. An example of a linear regression with confidence limits was

given in figure 19.2. The parameters for the function are given in table 19.5.

Using the Salaries dataset, let’s first examine the relationship between years since

obtaining a Ph.D. and faculty salaries. In this example, you’ll use a nonparametric

smoothed line (loess) with 95% confidence limits. Ignore sex and rank for now. The

code is as follows, and the graph is shown in figure 19.14:

data(Salaries, package="car")
library(ggplot2)
ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary)) +
 geom_smooth() + geom_point()

The plot suggests that the relationship between experience and salary isn’t linear, at

least when considering faculty who graduated many years ago.

Table 19.5 geom_smooth() options

Option Description

method= Smoothing function to use. Allowable values include lm, glm, smooth, rlm, and

gam, for linear, generalized linear, loess, robust linear, and generalized additive

modeling, respectively. smooth is the default.

formula= Formula to use in the smoothing function. Examples include y~x (the default),

y~log(x), y~poly(x,n) for an nth degree polynomial fit, and y~ns(x,n) for a

spline fit with n degrees of freedom.

se Plots confidence intervals (TRUE/FALSE). TRUE is the default.

level Level of confidence interval to use (95% by default).

fullrange Specifies whether the fit should span the full range of the plot (TRUE) or just the

data (FALSE). FALSE is the default.

www.it-ebooks.info

http://www.it-ebooks.info/

454 CHAPTER 19 Advanced graphics with ggplot2

Next, let’s fit a quadratic polynomial regression (one bend) separately by gender:

ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary,
 linetype=sex, shape=sex, color=sex)) +
 geom_smooth(method=lm, formula=y~poly(x,2),
 se=FALSE, size=1) +
 geom_point(size=2)

The confidence lim-

its are suppressed to
simplify the graph

(se=FALSE). Genders

are differentiated by

color, symbol shape,
and line type. The

plot is displayed in

figure 19.15.

Figure 19.15 Scatterplot

of years since graduation

vs. salary with separate

fitted quadratic regression

lines for men and women

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

50000

100000

150000

200000

0 20 40

yrs.since.phd

s
a

la
ry

Figure 19.14 Scatterplot of years

since doctorate and current faculty

salary. A fitted loess smoothed line

with 95% confidence limits has been

added.

50000

100000

150000

200000

0 20 40

yrs.since.phd

s
a

la
ry sex

Female

Male

www.it-ebooks.info

http://www.it-ebooks.info/

455Modifying the appearance of ggplot2 graphs

 The curve for males appears to increase from 0 to about 30 years and then

decrease. The curve for women rises from 0 to 40 years. No women in the dataset
received their degree more than 40 years ago. For most of the range where both gen-

ders have data, men have received higher salaries.

19.7 Modifying the appearance of ggplot2 graphs

In chapter 3, you saw how to customize base graphics using graphical parameters

placed in the par() function or specific plotting functions. Unfortunately, changing
base graphics parameters has no effect on ggplot2 graphs. Instead, the ggplot2 pack-

age offers specific functions for changing the appearance of its graphs.

 In this section, we’ll look at several functions that allow you to customize the
appearance of ggplot2 graphs. You’ll learn how to customize the appearance of axes

(limits, tick marks, and tick mark labels), the placement and content of legends, and

the colors used to represent variable values. You’ll also learn how to create custom
themes (allowing you to add a consistent look and feel to your graphs) and arrange

several plots into a single graph.

19.7.1 Axes

The ggplot2 package automatically creates plot axes with tick marks, tick mark labels,
and axis labels. Often they look fine, but occasionally you’ll want to take greater con-
trol over their appearance. You’ve already seen how to use the labs() function to add
a title and change the axis labels. In this section, you’ll customize the axes themselves.
Table 19.6 contains functions that are useful for customizing axes.

Stat functions

In this section, you’ve added smoothed lines to scatter plots. The ggplot2 package
contains a wide range of statistical functions (called stat functions) for calculating the
quantities necessary to produce a variety of data visualizations. Typically, geom func-
tions call the stat functions implicitly, and you won’t need to deal with them directly.
But it’s useful to know they exist. Each stat function has help pages that can aid you
in understanding how the geoms work.

For example, the geom_smooth() function relies on the stat_smooth() function to
calculate the quantities needed to plot a fitted line and its confidence limits. The help
page for geom_smooth() is sparse, but the help page for stat_smooth() contains
a wealth of useful information. When exploring how a geom works and what options
are available, be sure to check out both the geom function and its related stat
function(s).

Table 19.6 Functions that control the appearance of axes and tick marks

Function Options

scale_x_continuous(),

scale_y_continuous()
breaks= specifies tick marks, labels= specifies labels for tick marks,

and limits= controls the range of the values displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

456 CHAPTER 19 Advanced graphics with ggplot2

As you can see, ggplot2 functions distinguish between the x- and y-axes and whether
an axis represents a continuous or discrete (factor) variable.

 Let’s apply these functions to a graph with grouped box plots for faculty salaries by
rank and sex. The code is as follows:

data(Salaries,package="car")
library(ggplot2)
ggplot(data=Salaries, aes(x=rank, y=salary, fill=sex)) +
 geom_boxplot() +
 scale_x_discrete(breaks=c("AsstProf", "AssocProf", "Prof"),
 labels=c("Assistant\nProfessor",
 "Associate\nProfessor",
 "Full\nProfessor")) +
 scale_y_continuous(breaks=c(50000, 100000, 150000, 200000),
 labels=c("$50K", "$100K", "$150K", "$200K")) +
 labs(title="Faculty Salary by Rank and Sex", x="", y="")

The resulting graph is provided in figure 19.16.
 Clearly, average income goes up with rank, and men make more than women

within each teaching rank. (For a more complete picture, try controlling for years
since Ph.D.)

scale_x_discrete(),

scale_y_discrete()
breaks= places and orders the levels of a factor, labels= specifies

the labels for these levels, and limits= indicates which levels should

be displayed.

coord_flip() Reverses the x and y axes.

Table 19.6 Functions that control the appearance of axes and tick marks (continued)

Function Options

$50K

$100K

$150K

$200K

Assistant
Professor

Associate
Professor

Full
Professor

sex

Female

Male

Faculty Salary by Rank and Sex

Figure 19.16 Box plots of

faculty salaries grouped by

academic rank and sex. The axis

text has been customized.

www.it-ebooks.info

http://www.it-ebooks.info/

457Modifying the appearance of ggplot2 graphs

19.7.2 Legends

Legends are guides that indicate how visual characteristics like color, shape, and size

represent qualities of the data. The ggplot2 package generates legends automatically,

and in many cases they suffice quite well. At other times, you may want to customize

them. The title and placement are the most commonly customized characteristics.

 When modifying a legend’s title, you have to take into account whether the legend

is based on color, fill, size, shape, or a combination. In figure 19.16, the legend repre-

sents the fill aesthetic (as you can see in the aes() function), so you can change the

title by adding fill="mytitle" to the labs() function.

 The placement of the legend is controlled by the legend.position option in the

theme() function. Possible values include "left", "top", "right" (the default), and

"bottom". Alternatively, you can specify a two-element vector that gives the position

within the graph. Let’s modify the graph in figure 19.16 so that the legend appears in

the upper-left corner and the title is changed from sex to Gender. This can be accom-

plished with the following code:

data(Salaries,package="car")
library(ggplot2)
ggplot(data=Salaries, aes(x=rank, y=salary, fill=sex)) +
 geom_boxplot() +
 scale_x_discrete(breaks=c("AsstProf", "AssocProf", "Prof"),
 labels=c("Assistant\nProfessor",
 "Associate\nProfessor",
 "Full\nProfessor")) +
 scale_y_continuous(breaks=c(50000, 100000, 150000, 200000),
 labels=c("$50K", "$100K", "$150K", "$200K")) +
 labs(title="Faculty Salary by Rank and Gender",
 x="", y="", fill="Gender") +
 theme(legend.position=c(.1,.8))

The results are shown in

figure 19.17.

Figure 19.17 Box plots of

faculty salaries grouped by

academic rank. The axis text

has been customized, along

with the legend title and position. $50K

$100K

$150K

$200K

Assistant
Professor

Associate
Professor

Full
Professor

Gender

Female

Male

Faculty Salary by Rank and Gender

www.it-ebooks.info

http://www.it-ebooks.info/

458 CHAPTER 19 Advanced graphics with ggplot2

In this example, the upper-left corner of the legend was placed 10% from the left

edge and 80% from the bottom edge of the graph. If you want to omit the legend, use

legend.position="none". The theme() function can change many aspects of a

ggplot2 graph’s appearance; other examples are given in section 19.7.4.

19.7.3 Scales

The ggplot2 package uses scales to map observations from the data space to the visual

space. Scales apply to both continuous and discrete variables. In figure 19.15, a con-

tinuous scale was used to map the numeric values of the yrs.since.phd variable to

distances along the x-axis and map the numeric values of the salary variable to dis-

tances along the y-axis.

 Continuous scales can map numeric variables to other characteristics of the plot.

Consider the following code:

ggplot(mtcars, aes(x=wt, y=mpg, size=disp)) +
 geom_point(shape=21, color="black", fill="cornsilk") +
 labs(x="Weight", y="Miles Per Gallon",
 title="Bubble Chart", size="Engine\nDisplacement")

The aes() parameter size=disp generates a scale for the continuous variable disp

(engine displacement) and uses it to control the size of the points. The result is the

bubble chart presented in figure 19.18. The graph shows that auto mileage decreases

with both weight and engine displacement.

10

15

20

25

30

35

2 3 4 5

Weight

M
ile

s
 P

e
r

G
a
llo

n Engine
Displacement

100

200

300

400

Bubble Chart

Figure 19.18 Bubble chart

of auto weight by mileage,

with point size representing

engine displacement

www.it-ebooks.info

http://www.it-ebooks.info/

459Modifying the appearance of ggplot2 graphs

In the discrete case, you can use a scale to associate visual cues (for example, color,

shape, line type, size, and transparency) with the levels of a factor. The code

data(Salaries, package="car")
ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary, color=rank)) +
 scale_color_manual(values=c("orange", "olivedrab", "navy")) +
 geom_point(size=2)

uses the scale_color_manual() function to set the point colors for the three aca-

demic ranks. The results are displayed in figure 19.19.

 If you’re color challenged like I am (does purple go with orange?), you can use

color presets via the scale_color_brewer() and scale_fill_brewer() functions to

specify attractive color sets. For example, try the code

ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary, color=rank)) +
 scale_color_brewer(palette="Set1") + geom_point(size=2)

and see what you get. Replacing palette="Set1" with another value (such as "Set2",

"Set3", "Pastel1", "Pastel2", "Paired", "Dark2", or "Accent") will result in a dif-

ferent color scheme. To see the available color sets, use

library(RColorBrewer)
display.brewer.all()

to generate a display. For more information, see help(scale_color_brewer) and the

ColorBrewer homepage (http://colorbrewer2.org).

50000

100000

150000

200000

0 20 40

yrs.since.phd

s
a

la
ry

rank

AsstProf

AssocProf

Prof

Figure 19.19 Scatterplot

of salary vs. experience for

assistant, associate, and full

professors. Point colors have

been specified manually.

www.it-ebooks.info

http://colorbrewer2.org
http://www.it-ebooks.info/

460 CHAPTER 19 Advanced graphics with ggplot2

 The concept of scales is general in ggplot2. Although we won’t cover this further,

you can control the characteristics of scales. See the functions that have scale_ in

their name for more details.

19.7.4 Themes

You’ve seen several methods for modifying specific visual elements of ggplot2 graphs.

Themes allow you to control the overall appearance of these graphs. Options in the

theme() function let you change fonts, backgrounds, colors, gridlines, and more.

Themes can be used once or saved and applied to many graphs. Consider the following:

data(Salaries, package="car")
library(ggplot2)
mytheme <- theme(plot.title=element_text(face="bold.italic",
 size="14", color="brown"),
 axis.title=element_text(face="bold.italic",
 size=10, color="brown"),
 axis.text=element_text(face="bold", size=9,
 color="darkblue"),
 panel.background=element_rect(fill="white",
 color="darkblue"),
 panel.grid.major.y=element_line(color="grey",
 linetype=1),
 panel.grid.minor.y=element_line(color="grey",
 linetype=2),
 panel.grid.minor.x=element_blank(),
 legend.position="top")

ggplot(Salaries, aes(x=rank, y=salary, fill=sex)) +
 geom_boxplot() +
 labs(title="Salary by Rank and Sex", x="Rank", y="Salary") +
 mytheme

Adding + mytheme to the plot-

ting statements generates the

graph shown in figure 19.20.

Figure 19.20 Box plots

with a customized theme

sex Female Male

Salary by Rank and Sex

Rank

S
a

la
ry

50000

100000

150000

200000

AsstProf AssocProf Prof

www.it-ebooks.info

http://www.it-ebooks.info/

461Modifying the appearance of ggplot2 graphs

The theme, mytheme, specifies that plot titles should be printed in brown, 14-point,

bold italics; axis titles should be printed in brown, 10-point, bold italics; axis labels

should be printed in dark blue, 9-point bold; the plot area should have a white fill and

dark blue borders; major horizontal grids should be gray solid lines; minor horizontal

grids should be grey dashed lines; vertical grids should be suppressed; and the legend

should appear at the top of the graph. The theme() function gives you great control

over the look of the finished product. See help(theme) to learn more about these

options.

19.7.5 Multiple graphs per page

In section 3.5, you used the graphic parameter mfrow and the base function layout()

to combine two or more base graphs into a single plot. Again, this approach won’t work

with plots created with the ggplot2 package. The easiest way to place multiple ggplot2

graphs in a single figure is to use the grid.arrange() function in the gridExtra pack-

age. You’ll need to install it (install.packages(gridExtra)) before first use.

 Let’s create three ggplot2 graphs and place them in a single graph. The code is

given in the following listing:

data(Salaries, package="car")
library(ggplot2)
p1 <- ggplot(data=Salaries, aes(x=rank)) + geom_bar()
p2 <- ggplot(data=Salaries, aes(x=sex)) + geom_bar()
p3 <- ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary)) + geom_point()

library(gridExtra)
grid.arrange(p1, p2, p3, ncol=3)

The resulting graph is shown in figure 19.21. Each graph is saved as an object and

then arranged into a single plot with the grid.arrange() function.

0

100

200

AsstProf AssocProf Prof

rank

c
o
u
n
t

0

100

200

300

Female Male

sex

c
o
u
n
t

50000

100000

150000

200000

0 20 40

yrs.since.phd

s
a
la

ry

Figure 19.21

Placing three

ggplot2 plots in

a single graph

www.it-ebooks.info

http://www.it-ebooks.info/

462 CHAPTER 19 Advanced graphics with ggplot2

Note the difference between faceting and multiple graphs. Faceting creates an array

of plots based on one or more categorical variables. In this section, you’re arranging

completely independent plots into a single graph.

19.8 Saving graphs

You can save the graphs created by ggplot2 using the standard methods discussed in

section 1.3.4. But a convenience function named ggsave() can be particularly useful.

Options include which plot to save, where to save it, and in what format. For example,

myplot <- ggplot(data=mtcars, aes(x=mpg)) + geom_histogram()
ggsave(file="mygraph.png", plot=myplot, width=5, height=4)

saves myplot as a 5-inch by 4-inch PNG file named mygraph.png in the current work-

ing directory. You can save the graph in a different format by setting the file extension

to ps, tex, jpeg, pdf, jpeg, tiff, png, bmp, svg, or wmf. The wmf format is only available

on Windows machines.

 If you omit the plot= option, the most recently created graph is saved. The code

ggplot(data=mtcars, aes(x=mpg)) + geom_histogram()
ggsave(file="mygraph.pdf")

is valid and saves the graph to disk. See help(ggsave) for additional details.

19.9 Summary

This chapter reviewed the ggplot2 package, which provides advanced graphical meth-

ods based on a comprehensive grammar of graphics. The package is designed to pro-

vide you with a complete and comprehensive alternative to the native graphics

provided with R. It offers methods for creating attractive and meaningful visualiza-

tions of data that are difficult to generate in other ways.

 The ggplot2 package can be difficult to learn, but a wealth of material is available

to help you on your journey (I promised myself that I would never use that word, but

learning ggplot2 can certainly feel like one). A list of all ggplot2 functions, along

with examples, can be found at http://docs.ggplot2.org. To learn about the theory

underlying ggplot2, see the original book by Wickham (2009). Finally, Chang (2013)

has written a very practical book, chock full of useful examples. Chang’s book is defi-

nitely where I would start.

 You should now have a firm grasp of the many ways that R allows you to create

visual representations of data. If a picture is worth a thousand words, and R provides a

thousand ways to create a picture, then R must be worth a million words (or some-

thing to that effect). In the next chapter two chapters, you’ll delve deeper into R as a

programming language.

www.it-ebooks.info

http://docs.ggplot2.org
http://www.it-ebooks.info/

463

Advanced programming

Previous chapters introduced various topics that are important for application

development, including data types (section 2.2), control flow (section 5.4), and

function creation (section 5.5). This chapter will review these aspects of R as a pro-

gramming language—but from a more advanced and detailed perspective. By the

end of this chapter, you’ll have a better idea of how the R language works.

 We’ll start with a review of objects, data types, and control flow before moving

on to details of function creation, including the role of scope and environments.

The chapter introduces R’s approach to object-oriented programming and dis-

cusses the creation of generic functions. Finally, we’ll go over tips for writing effi-

cient code-generating and debugging applications. A mastery of these topics will

help you to understand the code in other people’s applications and aid you in

This chapter covers

■ A deeper dive into the R language

■ Using R’s OOP features to create generic
functions

■ Tweaking code to run more efficiently

■ Finding and correcting programming errors

www.it-ebooks.info

http://www.it-ebooks.info/

464 CHAPTER 20 Advanced programming

creating new applications. In chapter 21, you’ll have an opportunity to put these skills

into practice by creating a useful package from start to finish.

20.1 A review of the language

R is an object-oriented, functional, array programming language in which objects are

specialized data structures, stored in RAM, and accessed via names or symbols. Names

of objects consist of uppercase and lowercase letters, the digits 0–9, the period, and

the underscore. Names are case-sensitive and can’t start with a digit, and a period is

treated as a simple character without special meaning.

 Unlike in languages such as C and C++, you can’t access memory locations directly.

Data, functions, and just about everything else that can be stored and named are

objects. Additionally, the names and symbols themselves are objects that can be

manipulated. All objects are stored in RAM during program execution, which has sig-

nificant implications for the analysis of massive datasets.

 Every object has attributes: meta-information describing the characteristics of the

object. Attributes can be listed with the attributes() function and set with the

attr() function. A key attribute is an object’s class. R functions use information about

an object’s class in order to determine how the object should be handled. The class of

an object can be read and set with the class() function. Examples will be given

throughout this chapter and the next.

20.1.1 Data types

There are two fundamental data types: atomic vectors and generic vectors. Atomic vectors

are arrays that contain a single data type. Generic vectors, also called lists, are collec-

tions of atomic vectors. Lists are recursive in that they can also contain other lists. This

section considers both types in some detail.

 Unlike in many languages, you don’t have to declare an object’s data type or allo-

cate space for it. The type is determined implicitly from the object’s contents, and the

size grows or shrinks automatically depending on the type and number of elements

the object contains.

ATOMIC VECTORS

Atomic vectors are arrays that contain a single data type (logical, real, complex, char-

acter, or raw). For example, each of the following is a one-dimensional atomic vector:

passed <- c(TRUE, TRUE, FALSE, TRUE)
ages <- c(15, 18, 25, 14, 19)
cmplxNums <- c(1+2i, 0+1i, 39+3i, 12+2i)
names <- c("Bob", "Ted", "Carol", "Alice")

Vectors of type "raw" hold raw bytes and aren’t discussed here.

 Many R data types are atomic vectors with special attributes. For example, R

doesn’t have a scalar type. A scalar is an atomic vector with a single element. So k <- 2

is a shortcut for k <- c(2).

www.it-ebooks.info

http://www.it-ebooks.info/

465A review of the language

 A matrix is an atomic vector that has a dimension attribute, dim, containing two ele-

ments (number of rows and number of columns). For example, start with a one-

dimensional numeric vector x:

> x <- c(1,2,3,4,5,6,7,8)
> class(x)
[1] "numeric"
> print(x)
{1] 1 2 3 4 5 6 7 8

Then add a dim attribute:

> attr(x, "dim") <- c(2,4)

The object x is now a 2 × 3 matrix of class matrix:

> print(x)
 [,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

> class(x)
[1] "matrix"
> attributes(x)
$dim
[1] 2 2

Row and column names can be attached by adding a dimnames attribute:

> attr(x, "dimnames") <- list(c("A1", "A2"),
 c("B1", "B2", "B3", "B4"))
> print(x)
 B1 B2 B3 B4
A1 1 3 5 7
A2 2 4 6 8

Finally, the matrix can be returned to a one-dimensional vector by removing the dim

attribute:

> attr(x, "dim") <- NULL
> class(x)
[1] "numeric"
> print(x)
[1] 1 2 3 4 5 6 7 8

An array is an atomic vector with a dim attribute that has three or more elements.

Again, you set the dimensions with the dim attribute, and you can attach labels with

the dimnames attribute. Like one-dimensional vectors, matrices and arrays can be of

type logical, numeric, character, complex, or raw. But you can’t mix types in a single

matrix or array.

 The attr() function allows you to create arbitrary attributes and associate them

with an object. Attributes store additional information about an object and can be

used by functions to determine how they’re processed.

www.it-ebooks.info

http://www.it-ebooks.info/

466 CHAPTER 20 Advanced programming

 There are a number of special functions for setting attributes, including dim(),

dimnames(), names(), row.names(), class(), and tsp(). The latter is used to create

time series objects. These special functions have restrictions on the values that can be

set. Unless you’re creating custom attributes, it’s always a good idea to use these spe-

cial functions. Their restrictions and the error messages they produce make coding

errors less likely and more obvious.

GENERIC VECTORS OR LISTS

Lists are collections of atomic vectors and/or other lists. Data frames are a special

type of list, where each atomic vector in the collection has the same length. Consider

the iris data frame that comes with the base R installation. It describes four physical

measures taken on each of 150 plants, along with their species (setosa, versicolor, or

virginica):

> head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

This data frame is actually a list containing five atomic vectors. It has a names attribute

(a character vector of variable names), a row.names attribute (a numeric vector identi-

fying individual plants), and a class attribute with the value "data.frame". Each vec-

tor represents a column (variable) in the data frame. This can be easily seen by

printing the data frame with the unclass() function and obtaining the attributes with

the attributes() function:

unclass(iris)
attributes(iris)

The output is omitted here to save space.

 It’s important to understand lists because R functions frequently return them as

values. Let’s look at an example using a cluster-analysis technique from chapter 16.

Cluster analysis uses a family of methods to identify naturally occurring groupings of

observations.

 You’ll apply k-means cluster analysis (section 16.3.1) to the iris data. Assume that

there are three clusters present in the data, and observe how the observations (rows)

become grouped. You’ll ignore the species variable and use only the physical mea-

sures of each plant to form the clusters. The required code is

set.seed(1234)
fit <- kmeans(iris[1:4], 3)

What information is contained in the object fit? The help page for kmeans() indi-

cates that the function returns a list with seven components. The str() function dis-

plays the object’s structure, and the unclass() function can be used to examine the

www.it-ebooks.info

http://www.it-ebooks.info/

467A review of the language

object’s contents directly. The length() function indicates how many components the

object contains, and the names() function provides the names of these components.

You can use the attributes() function to examine the attributes of the object. The

contents of the object returned by kmeans() are explored here:

 > names(fit)
[1] "cluster" "centers" "totss" "withinss"
[5] "tot.withinss" "betweenss" "size" "iter"
[9] "ifault"

> unclass(fit)
$cluster
 [1] 1
 [29] 1 2 2 3 2 2 2
 [57] 2 3 2 2 2 2 2 2
 [85] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 3 3 3
[113] 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3
[141] 3 3 2 3 3 3 2 3 3 2

$centers
 Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.006 3.428 1.462 0.246
2 5.902 2.748 4.394 1.434
3 6.850 3.074 5.742 2.071

$totss
[1] 681.4

$withinss
[1] 15.15 39.82 23.88

$tot.withinss
[1] 78.85

$betweenss
[1] 602.5

$size
[1] 50 62 38

$iter
[1] 2

$ifault
[1] 0

 Executing sapply(fit, class) returns the class of each component in the object:

> sapply(fit, class)
 cluster centers totss withinss tot.withinss
 "integer" "matrix" "numeric" "numeric" "numeric"
 betweenss size iter ifault
 "numeric" "integer" "integer" "integer"

In this example, cluster is an integer vector containing the cluster memberships, and
centers is a matrix containing the cluster centroids (means on each variable for each

www.it-ebooks.info

http://www.it-ebooks.info/

468 CHAPTER 20 Advanced programming

cluster). The size component is an integer vector containing the number of plants in
each of the three clusters. To learn about the other components, see the Value sec-
tion of help(kmeans).

INDEXING

Learning to unpack the information in a list is a critical R programming skill. The ele-
ments of any data object can be extracted via indexing. Before diving into a list, let’s
look at extracting elements from an atomic vector.

 Elements are extracted using object[index], where object is the vector and
index is an integer vector. If the elements of the atomic vector have been named,
index can also be a character vector with these names. Note that in R, indices start
with 1, not 0 as in many other languages.

 Here is an example, using this approach for an atomic vector without named
elements:

> x <- c(20, 30, 40)
> x[3]
[1] 40
> x[c(2,3)]
[1] 30 40

For an atomic vector with named elements, you could use

> x <- c(A=20, B=30, C=40)
> x[c(2,3)]
 B C
30 40
> x[c("B", "C")]
 B C
30 40

For lists, components (atomic vectors or other lists) can be extracted using
object[index], where index is an integer vector. The following uses the fit object
from the kmeans example that appears a little later, in listing 20.1:

> fit[c(2,7)]
$centers
 Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.006 3.428 1.462 0.246
2 5.902 2.748 4.394 1.434
3 6.850 3.074 5.742 2.071

$size
[1] 50 62 38

Note that components are returned as a list.

 To get just the elements in the component, use object[[integer]]:

> fit[2]
$centers
 Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.006 3.428 1.462 0.246
2 5.902 2.748 4.394 1.434
3 6.850 3.074 5.742 2.071

www.it-ebooks.info

http://www.it-ebooks.info/

469A review of the language

> fit[[2]]
 Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.006 3.428 1.462 0.246
2 5.902 2.748 4.394 1.434
3 6.850 3.074 5.742 2.071

In the first case, a list is returned. In second case, a matrix is returned. The difference

can be important, depending on what you do with the results. If you want to pass the

results to a function that requires a matrix as input, you would want to use the double-

bracket notation.

 To extract a single named component, you can use the $ notation. In this case,

object[[integer]] and object$name are equivalent:

> fit$centers
 Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.006 3.428 1.462 0.246
2 5.902 2.748 4.394 1.434
3 6.850 3.074 5.742 2.071

This also explains why the $ notation works with data frames. Consider the iris data

frame. The data frame is a special case of a list, where each variable is represented as a

component. This is why iris$Sepal.Length returns the 150-element vector of sepal

lengths.

 Notations can be combined to obtain the elements within components. For example,

> fit[[2]][1,]
Sepal.Length Sepal.Width Petal.Length Petal.Width
 5.006 3.428 1.462 0.246

extracts the second component of fit (a matrix of means) and returns the first row

(the means for the first cluster on each of the four variables).

 By extracting the components and elements of lists returned by functions, you can

take the results and go further. For example, to plot the cluster centroids with a line

graph, you can use the following code.

> set.seed(1234)
> fit <- kmeans(iris[1:4], 3)
> means <- fit$centers
> library(reshape2)
> dfm <- melt(means)
> names(dfm) <- c("Cluster", "Measurement", "Centimeters")
> dfm$Cluster <- factor(dfm$Cluster)
> head(dfm)

 Cluster Measurement Centimeters
1 1 Sepal.Length 5.006
2 2 Sepal.Length 5.902
3 3 Sepal.Length 6.850
4 1 Sepal.Width 3.428
5 2 Sepal.Width 2.748
6 3 Sepal.Width 3.074

Listing 20.1 Plotting the centroids from a k-means cluster analysis

Obtains the cluster meansb

Reshapes the data
to long form

c

www.it-ebooks.info

http://www.it-ebooks.info/

470 CHAPTER 20 Advanced programming

library(ggplot2)
ggplot(data=dfm,
 aes(x=Measurement, y=Centimeters, group=Cluster)) +
 geom_point(size=3, aes(shape=Cluster, color=Cluster)) +
 geom_line(size=1, aes(color=Cluster)) +
 ggtitle("Profiles for Iris Clusters")

First, the matrix of cluster centroids is extracted (rows are clusters, and columns are

variable means) b. The matrix is then reshaped into long format using the reshape

package (see section 5.6.2) c. Finally the data is plotted using the ggplot2 package

(see section 18.3) d. The resulting graph is displayed in figure 20.1.

 This type of graph is possible because all the variables plotted use the same units of

measurement (centimeters). If the cluster analysis involved variables on different

scales, you would need to standardize the data before plotting and label the y-axis

something like Standardized Scores. See section 16.1 for details.

 Now that you can represent data in structures and unpack the results, let’s look at

flow control.

20.1.2 Control structures

When the R interpreter processes code, it reads sequentially, line by line. If a line isn’t

a complete statement, it reads additional lines until a fully formed statement can be

constructed. For example, if you wanted to add 3 + 2 + 5,

> 3 + 2 + 5
[1] 10

Plots a
line graph

d

0

2

4

6

Sepal.Length Sepal.Width Petal.Length Petal.Width

Measurement

C
e

n
ti
m

e
te

rs

Cluster

1

2

3

Profiles for Iris Clusters

Figure 20.1 A plot of the centroids (means) for three clusters extracted from the

Iris dataset using k-means clustering

www.it-ebooks.info

http://www.it-ebooks.info/

471A review of the language

will work. So will

> 3 + 2 +
 5
[1] 10

The + sign at the end of the first line indicates that the statement isn’t complete. But

> 3 + 2

[1] 5

> + 5

[1] 5

obviously doesn’t work, because 3 + 2 is interpreted as a complete statement.

 Sometimes you need to process code nonsequentially. You may want to execute

code conditionally or repeat one or more statements multiple times. This section

describes three control-flow functions that are particularly useful in writing functions:

for(), if(), and ifelse().

FOR LOOPS

The for() function allows you to execute a statement repeatedly. The syntax is

for(var in seq){
 statements
}

where var is a variable name and seq is an expression that evaluates to a vector. If

there is only one statement, the curly braces are optional:

> for(i in 1:5) print(1:i)

[1] 1

[1] 1 2

[1] 1 2 3

[1] 1 2 3 4

[1] 1 2 3 4 5

> for(i in 5:1)print(1:i)

[1] 1 2 3 4 5

[1] 1 2 3 4

[1] 1 2 3

[1] 1 2

[1] 1

Note that var continues to exist after the function exits. Here, i equals 1.

IF() AND ELSE

The if() function allows you to execute statements conditionally. The syntax for the

if() construct is

if(condition){
 statements
} else {
 statements
}

www.it-ebooks.info

http://www.it-ebooks.info/

472 CHAPTER 20 Advanced programming

The condition should be a one-element logical vector (TRUE or FALSE) and can’t be

missing (NA). The else portion is optional. If there is only one statement, the curly

braces are also optional.

 As an example, consider the following code fragment:

if(interactive()){
 plot(x, y)
} else {
 png("myplot.png")
 plot(x, y)
 dev.off()
}

If the code is being run interactively, the interactive() function returns TRUE and a

plot is sent to the screen. Otherwise, the plot is saved to disk. You’ll use the if() func-

tion extensively in chapter 21.

IFELSE()

The ifelse() function is a vectorized version of if(). Vectorization allows a function to

process objects without explicit looping. The format of ifelse() is

ifelse(test, yes, no)

where test is an object that has been coerced to logical mode, yes returns values for

true elements of test, and no returns values for false elements of test.

 Let’s say that you have a vector of p-values that you have extracted from a statistical

analysis that involved six statistical tests, and you want to flag the tests that are signifi-

cant at the p < .05 level. This can be accomplished with the following code:

> pvalues <- c(.0867, .0018, .0054, .1572, .0183, .5386)
> results <- ifelse(pvalues <.05, "Significant", "Not Significant")
> results

[1] "Not Significant" "Significant" "Significant"
[4] "Not Significant" "Significant" "Not Significant"

The ifelse() function loops through the vector pvalues and returns a character vec-

tor containing the value "Significant" or "Not Significant" depending on

whether the corresponding element of pvalues is greater than .05.

 The same result can be accomplished with explicit loops using

pvalues <- c(.0867, .0018, .0054, .1572, .0183, .5386)
results <- vector(mode="character", length=length(pvalues))
for(i in 1:length(pvalues)){
 if (pvalues[i] < .05) results[i] <- "Significant"
 else results[i] <- "Not Significant"
}

The vectorized version is faster and more efficient.

 There are other control structures, including while(), repeat(), and switch(),

but the ones presented here are the most commonly used. Now that you have data

structures and control structures, we can talk about creating functions.

www.it-ebooks.info

http://www.it-ebooks.info/

473A review of the language

20.1.3 Creating functions

Almost everything in R is a function. Even arithmetic operators like +, -, /, and * are

actually functions. For example, 2 + 2 is equivalent to "+"(2, 2). This section

describes function syntax. Scope is considered in section 20.2.

FUNCTION SYNTAX

The syntax of a function is

functionname <- function(parameters){

 statements

 return(value)

}

If there is more than one parameter, the parameters are separated by commas.

 Parameters can be passed by keyword, by position, or both. Additionally, parame-

ters can have default values. Consider the following function:

f <- function(x, y, z=1){

 result <- x + (2*y) + (3*z)

 return(result)

}

> f(2,3,4)

[1] 20

> f(2,3)

[1] 11

> f(x=2, y=3)

[1] 11

> f(z=4, y=2, 3)

[1] 19

In the first case, the parameters are passed by position (x = 2, y = 3, z = 4). In the sec-

ond case, the parameters are passed by position, and z defaults to 1. In the third case,

the parameters are passed by keyword, and z again defaults to 1. In the final case, y

and z are passed by keyword, and x is assumed to be the first parameter not explicitly

specified (x = 3). This also demonstrates that parameters passed by keyword can

appear in any order.

 Parameters are optional, but you must include the parentheses even if no values

are being passed. The return() function returns the object produced by the function.

It’s also optional, and if it’s missing, the results of the last statement in the function

are returned.

 You can use the args() function to view the parameter names and default values:

> args(f)
 function (x, y, z = 0)
 NULL

The args() function is designed for interactive viewing. If you need to obtain the

parameter names and default values programmatically, use the formals() function. It

returns a list with the necessary information.

www.it-ebooks.info

http://www.it-ebooks.info/

474 CHAPTER 20 Advanced programming

 Parameters are passed by value, not by reference. Consider this function state-

ment:

result <- lm(height ~ weight, data=women)

The dataset women isn’t accessed directly. A copy is made and passed to the function.

If the women dataset was very large, RAM could be used up quickly. This can become an

issue when you’re dealing with big data problems, and you may need to use special

techniques (see appendix G).

OBJECT SCOPE

The scope of the objects in R (how names are resolved to produce contents) is a com-

plex topic. In the typical case,

■ Objects created outside of any function are global (can be resolved within any

function). Objects created within a function are local (available only within the

function).

■ Local objects are discarded at the end of function execution. Only objects

passed back via the return() function (or assigned using an operator like <<-)

are accessible after the function finishes executing.

■ Global objects can be accessed (read) from within a function but not altered

(again, unless the <<- operator is used).

■ Objects passed to a function through parameters aren’t altered by the function.

Copies of the objects are passed, not the objects themselves.

Here is a simple example:

> x <- 2

> y <- 3

> z <- 4

> f <- function(w){

 z <- 2

 x <- w*y*z

 return(x)

 }

> f(x)

[1] 12

> x

[1] 2

> y

[1] 3

> z

[1] 4

In this example, a copy of x is passed to the function f(), but the original isn’t

altered. The value of y is obtained from the environment. Even though z exists in the

environment, the value set in the function is used and doesn’t alter the value in the

environment.

 To understand scoping rules better, we need to discuss environments.

www.it-ebooks.info

http://www.it-ebooks.info/

475Working with environments

20.2 Working with environments

An environment in R consists of a frame and enclosure. A frame is set of symbol-value

pairs (object names and their contents), and an enclosure is a pointer to an enclosing

environment. The enclosing environment is also called the parent environment. R allows

you to manipulate environments from within the language, resulting in fine-grained

control over scope and the segregation of functions and data.

 In an interactive session, when you first see the R prompt, you’re in the global envi-

ronment. You can create a new environment with the new.env() function and create

assignments in that environment with the assign() function. Object values can be

retrieved from an environment using the get() function. Here’s an example:

> x <- 5
> myenv <- new.env()
> assign("x", "Homer", env=myenv)
> ls()
[1] "myenv" "x"
> ls(myenv)
[1] "x"
> x
[1] 5
> get("x", env=myenv)
[1] "Homer"

An object called x exists in the global environment and has the value 5. An object also

called x exists in the environment myenv and has the value “Homer”.

 In addition to using the assign() and get() functions, you can use the $ notation.

For example,

> myenv <- new.env()
> myenv$x <- "Homer"
> myenv$x
[1] "Homer"

produces the same results.

 The parent.env() function displays the parent environment. Continuing the

example, the parent environment for myenv is the global environment:

> parent.env(myenv)
<environment: R_GlobalEnv>

The parent environment for the global environment is the empty environment. See

help(environment) for details.

 Because functions are objects, they also have environments. This is important when

considering function closures (functions that are packaged with the state that existed

when they were created). Consider a function that is created by another function:

trim <- function(p){
 trimit <- function(x){
 n <- length(x)
 lo <- floor(n*p) + 1

www.it-ebooks.info

http://www.it-ebooks.info/

476 CHAPTER 20 Advanced programming

 hi <- n + 1 - lo
 x <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi]
 }
 trimit
}

The trim(p) function returns a function that trims p percent of the high and low val-

ues from a vector:

> x <- 1:10
> trim10pct <- trim(.1)
> y <- trim10pct(x)
> y
[1] 2 3 4 5 6 7 8 9
> trim20pct <- trim(.2)
> y <- trim20pct(x)
> y
 [1] 3 4 5 6 7 8

This works because the value of p is in the environment of the trimit() function and

is saved with the function:

> ls(environment(trim10pct))
[1] "p" "trimit"
> get("p", env=environment(trim10pct))
[1] 0.1

The lesson here is that, in R, functions include the objects that existed in their envi-

ronment when they were created. This fact helps to explain the following behavior:

> makeFunction <- function(k){
 f <- function(x){
 print(x + k)
 }
 }

> g <- makeFunction(10)
> g (4)
[1] 14
> k <- 2
> g (5)
[1] 15

The g() function uses k=3 no matter what value k has in the global environment,

because k equaled 3 when the function was created. Again, you can see this with

> ls(environment(g))
[1] "f" "k"
> environment(g)$k
[1] 10

In general, the value of an object is obtained from its local environment. If the object
isn’t found in its local environment, R searches in the parent environment, then the

parent’s parent environment, and so on, until the object is found. If R reaches the

empty environment and still hasn’t found the object, it throws an error. This is called

lexical scoping.

www.it-ebooks.info

http://www.it-ebooks.info/

477Object-oriented programming

 To learn more about environments and lexical scoping, see “Environments in R”

by Christopher Bare (http://mng.bz/uPYM) and “Lexical Scope and Function Clo-

sures in R” by Darren Wilkinson (http://mng.bz/R286).

20.3 Object-oriented programming

R is an object-oriented programming (OOP) language that’s based on the use of

generic functions. Each object has a class attribute that is used to determine what

code to run when a copy of the object is passed to a generic function such as print(),

plot(), or summary().

 R has two separate OOP models. The S3 model is older, simpler, and less struc-

tured. The S4 model is newer and more structured. The S3 approach is easier to use,

and most applications in R use this model. We’ll primarily focus on the S3 model

here. The section ends with a brief discussion of the limitations of the S3 model and

how the S4 model attempts to address them.

20.3.1 Generic functions

R uses the class of an object to determine what action to take when a generic function

is called. Consider the following code:

summary(women)
fit <- lm(weight ~ height, data=women)
summary(fit)

In the first instance, the summary() function produces descriptive statistics for each

variable in the data frame women. In the second instance, summary() produces a

description of a linear regression model. How does this happen?

 Let’s look at the code for summary():

> summary
function (object, ...) UseMethod("summary")

Now let’s look at the class for the women data frame and the fit object:

> class(women)
[1] "data.frame"
> class(fit)
[1] "lm"

The function call summary(women) executes the function summary.data.frame

(women) if it exists, or summary.default(women) otherwise. Similarly, summary(fit)

executes the function summary.lm(fit) if it exists, or summary.default(fit) other-

wise. The UseMethod() function dispatches the object to the generic function that has

an extension matching the object’s class.

 To list all S3 generic functions available, use the methods() function:

> methods(summary)
 [1] summary.aov summary.aovlist
 [3] summary.aspell* summary.connection
 [5] summary.data.frame summary.Date

www.it-ebooks.info

http://mng.bz/uPYM
http://mng.bz/R286
http://www.it-ebooks.info/

478 CHAPTER 20 Advanced programming

 [7] summary.default summary.ecdf*
 ...output omitted...
[31] summary.table summary.tukeysmooth*
[33] summary.wmc*

 Non-visible functions are asterisked

The number of functions returned depends on the packages you have installed on

your machine. On my computer, separate summary() functions have been defined for

33 classes!

 You can view the code for the functions in the previous example by typing their

names without the parentheses (summary.data.frame, summary.lm, and summary

.default). Non-visible functions (functions in the methods list followed by asterisks)

can’t be viewed this way. In these cases, you can use the getAnywhere() function to

view their code. To see the code for summary.ecdf(), type getAnywhere(summary

.ecdf). Viewing existing code is a great way to get ideas for your own functions.

 You’ve seen classes such as numeric, matrix, data.frame, array, lm, glm, and

table, but the class of an object can be any arbitrary string. Additionally, a generic

function doesn’t have to be print(), plot(), or summary(). Any function can be

generic. The following listing defines a generic function called mymethod().

> mymethod <- function(x, ...) UseMethod("mymethod")
> mymethod.a <- function(x) print("Using A")
> mymethod.b <- function(x) print("Using B")

> mymethod.default <- function(x) print("Using Default")

> x <- 1:5

> y <- 6:10

> z <- 10:15
> class(x) <- "a"

> class(y) <- "b"

> mymethod(x)

[1] "Using A"

> mymethod(y)
[1] "Using B"

> mymethod(z)

[1] "Using Default"

> class(z) <- c("a", "b")

> mymethod(z)
[1] "Using A"

> class(z) <- c("c", "a", "b")
> mymethod(z)

[1] "Using A"

In this example, mymethod() generic functions are defined for objects of classes a and

b. A default() function is also defined b. The objects x, y, and z are then defined,

Listing 20.2 An example of an arbitrary generic function

Defines a generic
function

b

Assigns classes to objectsc

Applies the generic
function to the objects

d

Applies the generic function
to an object with two classes

e

Generic function has no
default for class "c"

f

www.it-ebooks.info

http://www.it-ebooks.info/

479Writing efficient code

and a class is assigned to x and y c. Next, mymethod() is applied to each object, and

the appropriate function is called d. The default method is used for object z because
the object has class integer and no mymethod.integer() function has been defined.

 An object can be assigned to more than one class (for example, building, resi-

dential, and commercial). How does R determine which generic function to call in
such a case? When z is assigned two classes e, the first class is used to determine

which generic function to call. In the final example f, there is no mymethod.c()

function, so the next class in line (a) is used. R searches the class list from left to right,
looking for the first available generic function.

20.3.2 Limitations of the S3 model

The primarily limitation of the S3 object model is the fact that any class can be

assigned to any object. There are no integrity checks. In this example,

> class(women) <- "lm"
> summary(women)
Error in if (p == 0) { : argument is of length zero

the data frame women is assigned class lm, which is nonsensical and leads to errors.
 The S4 OOP model is more formal and rigorous and designed to avoid the difficul-

ties raised by the S3 method’s less structured approach. In the S4 approach, classes are

defined as abstract objects that have slots containing specific types of information

(that is, typed variables). Object and method construction are formally defined, with
rules that are enforced. But programming using the S4 model is more complex and

less interactive. To learn more about the S4 OOP model, see “A (Not So) Short Intro-

duction to S4” by Chistophe Genolini (http://mng.bz/1VkD).

20.4 Writing efficient code

There is a saying among programmers: “A power user is someone who spends an hour

tweaking their code so that it runs a second faster.” R is a spritely language, and most
R users don’t have to worry about writing efficient code. The easiest way to make your

code run faster is to beef up your hardware (RAM, processor speed, and so on). As a

general rule, it’s more important to write code that is understandable and easy to
maintain than it is to optimize its speed. But when you’re working with large datasets

or highly repetitive tasks, speed can become an issue.

 Several coding techniques can help to make your programs more efficient:

■ Read in only the data you need.
■ Use vectorization rather than loops whenever possible.
■ Create objects of the correct size, rather than resizing repeatedly.
■ Use parallelization for repetitive, independent tasks.

Let’s look at each one in turn.

EFFICIENT DATA INPUT

When you’re reading data from a delimited text file via the read.table() function, you

can achieve significant speed gains by specifying which variables are needed and their

www.it-ebooks.info

http://mng.bz/1VkD
http://www.it-ebooks.info/

480 CHAPTER 20 Advanced programming

types. This can be accomplished by including a colClasses parameter. For example,

suppose you want to access 3 numeric variables and 2 character variables in a comma-

delimited file with 10 variables per line. The numeric variables are in positions 1, 2, and

5, and the character variables are in positions 3 and 7. In this case, the code

my.data.frame <- read.table(mytextfile, header=TRUE, sep=',',
 colClasses=c("numeric", "numeric", "character",
 NULL, "numeric", NULL, "character", NULL,
 NULL, NULL))

will run faster than

my.data.frame <- read.table(mytextfile, header=TRUE, sep=',')

Variables associated with a NULL colClasses value are skipped. As the number of rows

and columns in the text file increases, the speed gain becomes more significant.

VECTORIZATION

Use vectorization rather than loops whenever possible. Here, vectorization means using

R functions that are designed to process vectors in a highly optimized manner. Exam-

ples in the base installation include ifelse(), colSums(), colMeans(), rowSums(),

and rowMeans(). The matrixStats package offers optimized functions for many addi-

tional calculations, including counts, sums, products, measures of central tendency

and dispersion, quantiles, ranks, and binning. Packages such as plyr, dplyr,

reshape2, and data.table also provide functions that are highly optimized.

 Consider a matrix with 1 million rows and 10 columns. Let’s calculate the column

sums using loops and again using the colSums() function. First, create the matrix:

set.seed(1234)
mymatrix <- matrix(rnorm(10000000), ncol=10)

Next, create a function called accum() that uses for loops to obtain the column sums:

accum <- function(x){
 sums <- numeric(ncol(x))
 for (i in 1:ncol(x)){
 for(j in 1:nrow(x)){
 sums[i] <- sums[i] + x[j,i]
 }
 }
}

The system.time() function can be used to determine the amount of CPU and real

time needed to run the function:

> system.time(accum(mymatrix))
 user system elapsed
 25.67 0.01 25.75

Calculating the same sums using the colSums() function produces

> system.time(colSums(mymatrix))
 user system elapsed
 0.02 0.00 0.02

www.it-ebooks.info

http://www.it-ebooks.info/

481Writing efficient code

On my machine, the vectorized function ran more than 1,200 times faster. Your mile-

age may vary.

CORRECTLY SIZING OBJECTS

It’s more efficient to initialize objects to their required final size and fill in the values

than it is to start with a smaller object and grow it by appending values. Let’s say you

have a vector x with 100,000 numeric values. You want to obtain a vector y with the

squares of these values:

> set.seed(1234)

> k <- 100000

 > x <- rnorm(k)

One approach is as follows:

> y <- 0

> system.time(for (i in 1:length(x)) y[i] <- x[i]^2)

 user system elapsed

 10.03 0.00 10.03

y starts as a one-element vector and grows to be a 100,000-element vector containing

the squared values of x. It takes about 10 seconds on my machine.

 If you first initialize y to be a vector with 100,000 elements,

> y <- numeric(length=k)

> system.time(for (i in 1:k) y[i] <- x[i]^2)

 user system elapsed

 0.23 0.00 0.24

the same calculations take less than a second. You avoid the considerable time it takes

R to continually resize the object.

 If you use vectorization,

> y <- numeric(length=k)

> system.time(y <- x^2)

 user system elapsed

 0 0 0

the process is even faster. Note that operations like exponentiation, addition, multipli-

cation, and the like are also vectorized functions.

PARALLELIZATION

Parallelization involves chunking up a task, running the chunks simultaneously on two

or more cores, and combining the results. The cores might be on the same computer

or on different machines in a cluster. Tasks that require the repeated independent

execution of a numerically intensive function are likely to benefit from parallelization.

This includes many Monte Carlo methods, including bootstrapping.

 Many packages in R support parallelization (see “CRAN Task View: High-Perfor-

mance and Parallel Computing with R” by Dirk Eddelbuettel, http://mng.bz/65sT).

In this section, you’ll use the foreach and doParallel packages to see parallelization

on a single computer. The foreach package supports the foreach looping construct

www.it-ebooks.info

http://mng.bz/65sT
http://www.it-ebooks.info/

482 CHAPTER 20 Advanced programming

(iterating over the elements in a collection) and facilitates executing loops in parallel.

The doParallel package provides a parallel back end for the foreach package.
 In principal components and factor analysis, a critical step is identifying the appro-

priate number of components or factors to extract from the data (see section 14.2.1).

One approach involves repeatedly performing an eigenanalysis of correlation matrices
derived from random data that have the same number of rows and columns as the

original data. The analysis is demonstrated in listing 20.3. Parallel and non-parallel

versions of this analysis are compared in the listing. To execute this code, you’ll need
to install both packages and know how many cores your computer has.

> library(foreach)
> library(doParallel)
> registerDoParallel(cores=4)

> eig <- function(n, p){
 x <- matrix(rnorm(100000), ncol=100)
 r <- cor(x)
 eigen(r)$values
 }
> n <- 1000000
> p <- 100
> k <- 500

> system.time(
 x <- foreach(i=1:k, .combine=rbind) %do% eig(n, p)
)
 user system elapsed
 10.97 0.14 11.11

> system.time(
 x <- foreach(i=1:k, .combine=rbind) %dopar% eig(n, p)
)
 user system elapsed
 0.22 0.05 4.24

First the packages are loaded and the number of cores (four on my machine) is regis-

tered b. Next, the function for the eigenanalysis is defined c. Here 100,000 × 100
random data matrices are analyzed c. The eig() function is executed 500 times

using foreach and %do%. d. The %do% operator runs the function sequentially, and

the .combine=rbind option appends the results to object x as rows. Finally, the func-
tion is run in parallel using the %dopar% operator e. In this case, parallel execution

was about 2.5 times faster than sequential execution.

 In this example, each iteration of the eig() function was numerically intensive,
didn’t require access to other iterations, and didn’t involve disk I/0. This is the type of

situation that benefits the most from parallelization. The downside of parallelization

is that it can make the code less portable—there is no guarantee that others will have

the same hardware configuration that you do.

Listing 20.3 Parallelization with foreach and doParallel

Loads packages and registers
the number of cores

b

Defines the functionc

Executes normallyd

Executes
in parallel

e

www.it-ebooks.info

http://www.it-ebooks.info/

483Debugging

 The four efficiency measures described in this section can help with everyday cod-

ing problems. But they only go so far in helping you to process really large datasets

(for example, datasets in the terabyte range). When you’re working with big datasets,

methods like those described in appendix G are required.

Efficiency is little comfort when a program won’t execute or gives nonsensical results.

Methods for uncovering programming errors are considered next.

20.5 Debugging

Debugging is the process of finding and reducing the number of errors or defects in a

program. It would be wonderful if programs worked the first time. It would also be won-

derful if unicorns lived in my neighborhood. In all but the simplest programs, errors

occur. Determining the cause of these errors and fixing them is a time-consuming

process. In this section, we’ll look at common sources of error and tools that can help

to uncover errors.

20.5.1 Common sources of errors

The following are some common reasons functions fail in R:

■ An object name is misspelled, or the object doesn’t exist.
■ There is a misspecification of the parameters in a function call.
■ The contents of an object aren’t what the user expects. In particular, errors are

often caused by passing objects that are NULL or contain NaN or NA values to a

function that can’t handle them.

The third reason is more common than you may think. It results from R’s terse

approach to errors and warnings.

 Consider the following example. For the mtcars dataset in the base installation,

you want to provide the variable am (transmission type) with a more informative title

and labels. Next, you want to compare the gas mileage of cars with automatic transmis-

sions to those with manual transmissions:

> mtcars$Transmission <- factor(mtcars$a,
 levels=c(1,2),
 labels=c("Automatic", "Manual"))
> aov(mpg ~ Transmission, data=mtcars)
Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) :
 contrasts can be applied only to factors with 2 or more levels

Locating bottlenecks

“Why is my code taking so long?” R provides tools for profiling programs in order to
identify the most time-consuming functions. Place the code to be profiled between
Rprof() and Rprof(NULL). Then execute summaryRprof() to get a summary of the
time spent executing each function. See ?Rprof and ?summaryRprof for details.

www.it-ebooks.info

http://www.it-ebooks.info/

484 CHAPTER 20 Advanced programming

Yikes! (Embarrassing, but this is actually what I said.) What happened?

 You didn’t get an “Object xxx not found” error, so you probably didn’t misspell a
function, data frame, or variable name. Let’s look at the data that was passed to the

aov() function:

> head(mtcars[c("mpg", "Transmission")])
 mpg Transmission
Mazda RX4 21.0 Automatic
Mazda RX4 Wag 21.0 Automatic
Datsun 710 22.8 Automatic
Hornet 4 Drive 21.4 <NA>
Hornet Sportabout 18.7 <NA>
Valiant 18.1 <NA>

> table(mtcars$Transmission)

Automatic Manual
 13 0

There are no cars with a manual transmission. Looking back at the original dataset,

the variable am is coded 0=automatic, 1=manual (not 1=automatic, 2=manual).
 The factor() function happily did what you asked without warnings or errors. It

set all cars with manual transmissions to automatic and all cars with automatic trans-

missions to missing. With only one group available, the analysis of variance failed.

Confirming that each input to a function contains the expected data can save you
hours of frustrating detective work.

20.5.2 Debugging tools

Although examining object names, function parameters, and function inputs will
uncover many sources of error, sometimes you have to delve into the inner workings of

functions and functions that call functions. In these cases, the internal debugger that

comes with R can be useful. Some helpful debugging functions are listed table 20.1.

Table 20.1 Built-in debugging functions

Function Action

debug() Marks a function for debugging.

undebug() Unmarks a function for debugging.

browser() Allows single-stepping through the execution of a function. While you’re debugging,

typing n or pressing <RET> (the Enter key) executes the current statement and

moves on to the next. Typing c continues execution to the end of the function without

single-stepping. Typing where displays the call stack, and Q halts execution and

jumps to the top level immediately. Other R commands like ls(), print(), and

assignment statements can also be submitted at the debugger prompt.

trace() Modifies a function to allow debug code to be temporarily inserted.

untrace() Cancels tracing and removes the temporary code.

traceback() Prints the sequence of function calls that led to the last uncaught error.

www.it-ebooks.info

http://www.it-ebooks.info/

485Debugging

The debug() function marks a function for debugging. When the function is exe-

cuted, the browser() function is called and allows you to step through the function’s

execution one line at a time. The undebug() function turns this off, allowing the func-

tion to execute normally. You can temporarily insert debugging code into a function

with the trace() function. This is particularly useful when you’re debugging base

functions and CRAN-contributed functions that can’t be edited directly.

 If a function calls other functions, it can be hard to determine where an error has

occurred. In this case, executing the traceback() function immediately after an error

will list the sequence of function calls that led to the error. The last call is the one that

produced the error.

 Let’s look at an example. The mad() function calculates the median absolute devi-

ation for a numeric vector. You’ll use debug() to explore how this function works.

The debugging session is displayed in the following listing.

> args(mad)
function (x, center = median(x), constant = 1.4826,
 na.rm = FALSE, low = FALSE, high = FALSE)
NULL
> debug(mad)
> mad(1:10)
debugging in: mad(x)
debug: {
 if (na.rm)
 x <- x[!is.na(x)]
 n <- length(x)
 constant * if ((low || high) && n%%2 == 0) {
 if (low && high)
 stop("'low' and 'high' cannot be both TRUE")
 n2 <- n%/%2 + as.integer(high)
 sort(abs(x - center), partial = n2)[n2]
 }
 else median(abs(x - center))
}
Browse[2]> ls()
[1] "center" "constant" "high" "low" "na.rm" "x"
Browse[2]> center
[1] 5.5
Browse[2]> constant
[1] 1.4826
Browse[2]> na.rm
[1] FALSE
Browse[2]> x
 [1] 1 2 3 4 5 6 7 8 9 10
Browse[2]> n
debug: if (na.rm) x <- x[!is.na(x)]
Browse[2]> n
debug: n <- length(x)
Browse[2]> n
debug: constant * if ((low || high) && n%%2 == 0) {

Listing 20.4 A sample debugging session

Views the formal
argumentsb

Sets the function
to debugc

Lists objectsd

Single-steps
through the codee

www.it-ebooks.info

http://www.it-ebooks.info/

486 CHAPTER 20 Advanced programming

 if (low && high)
 stop("'low' and 'high' cannot be both TRUE")
 n2 <- n%/%2 + as.integer(high)
 sort(abs(x - center), partial = n2)[n2]
} else median(abs(x - center))
Browse[2]> print(n)
[1] 10
Browse[2]> where
where 1: mad(x)
Browse[2]> c
exiting from: mad(x)
[1] 3.7065
> undebug(mad)

First, the arg() function is used to display the argument names and default values for
the mad() function b. The debug flag is then set using debug(mad) c. Now, whenever

mad() is called, the browser() function is executed, allowing you to step through the

function a line at a time.
 When mad() is called, the session goes into browser() mode. The code for the

function is listed but not executed. Additionally, the prompt changes to Browse[n]>,

where n indicates the browser level. The number increments with each recursive call.
 In browser() mode, other R commands can be executed. For example, ls() lists

the objects in existence at a given point during the function’s execution d. Typing an

object’s name displays its contents. If an object is named n, c, or Q, you must use

print(n), print(c), or print(Q) to view its contents. You can change the values of
objects by typing assignment statements.

 You step through the function and execute the statements one at a time by enter-

ing the letter n or pressing the Return or Enter key e. The where statement indicates
where you are in the stack of function calls being executed. With a single function,

this isn’t very interesting; but if you have functions that call other functions, it can be

helpful.
 Typing c moves out of single-step mode and executes the remainder of the current

function f. Typing Q exits the function and returns you to the R prompt.

 The debug() function is useful when you have loops and want to see how values
are changing. You can also embed the browser() function directly in code in order to

help locate a problem. Let’s say that you have a variable X that should never be nega-

tive. Adding the code

if (X < 0) browser()

allows you to explore the current state of the function when the problem occurs. You
can take out the extra code when the function is sufficiently debugged. (I originally

wrote “fully debugged,” but this almost never happens, so I changed it to “sufficiently

debugged” to reflect a programmer’s reality.)

20.5.3 Session options that support debugging

When you have functions that call functions, two session options can help in the

debugging process. Normally, when R encounters an error, it prints an error message

Resumes continuous
executionf

www.it-ebooks.info

http://www.it-ebooks.info/

487Debugging

and exits the function. Setting options(error=traceback) prints the call stack (the

sequence of function calls that led to the error) as soon as an error occurs. This can

help you to determine which function generated the error.

 Setting options(error=recover) also prints the call stack when an error occurs.

In addition, it prompts you to select one of the functions on the list and then invokes

browser() in the corresponding environment. Typing c returns you to the list, and

typing 0 quits back to the R prompt.

 Using this recover() mode lets you explore the contents of any object in any func-

tion chosen from the sequence of functions called. By selectively viewing the contents

of objects, you can frequently determine the origin of the problem. To return to R’s

default state, set options(error=NULL). A toy example is given next.

f <- function(x, y){

 z <- x + y

 g(z)

}

g <- function(x){

 z <- round(x)

 h(z)

}

h <- function(x){

 set.seed(1234)

 z <- rnorm(x)

 print(z)

}

> options(error=recover)

> f(2,3)

[1] -1.207 0.277 1.084 -2.346 0.429

> f(2, -3)

Error in rnorm(x) : invalid arguments

Enter a frame number, or 0 to exit

1: f(2, -3)

2: #3: g(z)

3: #3: h(z)

4: #3: rnorm(x)

Selection: 4

Called from: rnorm(x)

Browse[1]> ls()

[1] "mean" "n" "sd"

Browse[1]> mean

[1] 0

Browse[1]> print(n)

[1] -1

Browse[1]> c

Enter a frame number, or 0 to exit

Listing 20.5 Sample debugging session with recover()

Creates functions

Enters values
that cause an error

Examines rnorm()

www.it-ebooks.info

http://www.it-ebooks.info/

488 CHAPTER 20 Advanced programming

1: f(2, -3)
2: #3: g(z)
3: #3: h(z)
4: #3: rnorm(x)

Selection: 3
Called from: h(z)
Browse[1]> ls()
[1] "x"
Browse[1]> x
[1] -1
Browse[1]> c

Enter a frame number, or 0 to exit

1: f(2, -3)
2: #3: g(z)
3: #3: h(z)
4: #3: rnorm(x)

Selection: 2
Called from: g(z)
Browse[1]> ls()
[1] "x" "z"
Browse[1]> x
[1] -1
Browse[1]> z
[1] -1
Browse[1]> c

Enter a frame number, or 0 to exit

1: f(2, -3)
2: #3: g(z)
3: #3: h(z)
4: #3: rnorm(x)

Selection: 1
Called from: f(2, -3)
Browse[1]> ls()
[1] "x" "y" "z"
Browse[1]> x
[1] 2
Browse[1]> y
[1] -3
Browse[1]> z
[1] -1
Browse[1]> print(f)
function(x, y){
 z <- x + y
 g(z)
}
Browse[1]> c

Enter a frame number, or 0 to exit

Examines h(z)

Examines g(z)

Examines f(2, -3)

www.it-ebooks.info

http://www.it-ebooks.info/

489Going further

1: f(2, -3)
2: #3: g(z)
3: #3: h(z)
4: #3: rnorm(x)

Selection: 0

> options(error=NULL)

The code first creates a series of functions. Function f() calls function g(). Function

g() calls function h(). Executing f(2, 3) works fine, but f(2, -3) throws an error.

Because of options(error=recover), the interactive session is immediately moved

into recover mode. The function call stack is listed, and you can choose which func-

tion to examine in browser() mode.

 Typing 4 moves you into the rnorm() function, where ls() lists the objects; you

can see that n = -1, which isn’t allowed in rnorm(). This is clearly the problem, but to

see how n became -1, you move up the stack.

 Typing c returns you to the menu, and typing 3 moves you into the h(z) function,

where x = -1. Typing c and 2 moves you into the g(z) function. Here both x and z are

-1. Finally, moving up to the f(2, -3) function reveals that z is -1 because x = 2 and

y = -3.

 Note the use of print() to view the function code. This is useful when you’re

debugging code that you didn’t write. Normally you can type the function name to

view the code. In this example, f is a reserved word in browser mode that means “fin-

ish execution of the current loop or function”; the print() function is used explicitly

to escape this special meaning.

 Finally, c takes you back to the menu and 0 returns you to the normal R prompt.

Alternatively, typing Q at any time returns you to the R prompt.

 To learn more debugging in general and recover mode in particular, see Roger

Peng’s excellent “An Introduction to the Interactive Debugging Tools in R” (http://

mng.bz/GPR6).

20.6 Going further

There are a number of excellent sources of information on advanced programming

in R. The R Language Definition (http://mng.bz/U4Cm) is a good place to start.

“Frames, Environments, and Scope in R and S-PLUS” by John Fox (http://mng.bz/

Kkbi) is a great article for gaining a better understanding of scope. “How R Searches

and Finds Stuff,” by Suraj Gupta (http://mng.bz/2o5B), is a blog article that can help

you understand just what the title implies. To learn more about efficient coding, see

“FasteR! HigheR! StrongeR!—A Guide to Speeding Up R Code for Busy People,” by

Noam Ross (http://mng.bz/Iq3i). Finally, R Programming for Bioinformatics (2009) by

Robert Gentleman is a comprehensive yet highly accessible text for programmers that

want to look under the hood. I highly recommend it for anyone who wants to become

a more effective R programmer.

www.it-ebooks.info

http://mng.bz/GPR6
http://mng.bz/GPR6
http://mng.bz/U4Cm
http://mng.bz/Kkbi
http://mng.bz/Kkbi
http://mng.bz/2o5B
http://mng.bz/Iq3i
http://www.it-ebooks.info/

490 CHAPTER 20 Advanced programming

20.7 Summary

In this chapter, we’ve taken a deeper dive into the R language from a programmer’s

point of view. Objects, data types, functions, environments, and scope were each

described in greater detail. You learned about the S3 object-oriented approach along

with its primary limitation. Finally, methods for writing efficient code and debugging

troublesome programs were illustrated.

 At this point you have all the tools you need to create a more complex application.

In the next chapter, you'll have an opportunity to build a package from start to finish.

Packages allow you to organize your programs and share them with others.

www.it-ebooks.info

http://www.it-ebooks.info/

491

Creating a package

In previous chapters, you completed most tasks by using functions that were pro-

vided by others. The functions came from packages in the base R installation or

from contributed packages downloaded from CRAN.

 Installing a new package extends R’s functionality. For example, installing the

mice package provides you with new ways of dealing with missing data. Installing

the ggplot2 packages provides you with new ways of visualizing data. Many of R’s

most powerful capabilities come from contributed packages.

 Technically, a package is simply a set of functions, documentation, and data,

saved in a standardized format. A package allows you to organize your functions in

a well-defined and fully documented manner and facilitates sharing your programs

with others.

 There are several reasons why you might want to create a package:

■ To make a set of frequently used functions easily accessible, along with the

documentation on how to use them

This chapter covers

■ Creating the functions for a package

■ Adding package documentation

■ Building the package and sharing it with others

www.it-ebooks.info

http://www.it-ebooks.info/

492 CHAPTER 21 Creating a package

■ To create a set of examples and datasets that can be distributed to students in a

classroom
■ To create a program (a set of interrelated functions) that can be used to solve a

significant analytic problem (such as imputing missing values)

Creating a useful package is also a great way of introducing yourself to others and giv-

ing back to the R community. Packages can be shared directly or through online

repositories such as CRAN and GitHub.

 In this chapter, you’ll have an opportunity to develop a package from start to fin-

ish. By the end of the chapter, you’ll be able to build your own R packages (and enjoy

the smug self-satisfaction and bragging rights that attend such a feat).

 The package you’ll develop is called npar. It provides functions for nonparametric

group comparisons. This is a set of analytic techniques that can be used to compare

two or more groups on an outcome variable that’s not normally distributed, or in situ-

ations where the variance of the outcome variable differs markedly across groups. This

is a common problem facing analysts.

 Before continuing, install the package using the following code:

pkg <- "npar_1.0.tar.gz"
loc <- "http://www.statmethods.net/RiA"
url <- paste(loc, pkg, sep="/")
download.file(url, pkg)
install.packages(pkg, repos=NULL, type="source")

This downloads the package from the statmethods.net website and saves it in your cur-

rent working directory. It then installs the package in your default R library.

 In section 21.1, you’ll take the npar package for a test drive. Its features and func-

tions are described and demonstrated. Then in section 22.2, you’ll build the package

from scratch.

21.1 Nonparametric analysis and the npar package

Nonparametric methods are a data-analytic approach that is particularly useful when the

assumptions of traditional parametric methods (such as normality and constant vari-

ance) can’t be met. Here, we’ll focus on methods for comparing two or more inde-

pendent groups on a numeric outcome variable.

 Consider the life dataset that comes with the npar package. It contains the healthy

life expectancy (HLE), or the estimated number of years of healthy living remaining, at

age 65, for each American state from 2007 to 2009. Estimates are reported separately

for men (hlem) and women (hlef). The HLE data were obtained from a Centers for Dis-

ease Control and Prevention publication (http://mng.bz/HTGD).

 The dataset also contains a variable named region, dividing the states into North-

east, North Central, South, and West. I added this variable from the state.region

data frame included in the base R installation.

 Suppose you wanted to know whether HLE estimates for women vary significantly

by region. One approach would be to use a one-way analysis of variance (ANOVA) as

www.it-ebooks.info

http://mng.bz/HTGD
http://www.it-ebooks.info/

493Nonparametric analysis and the npar package

described in chapter 9. But ANOVA assumes that the outcome variable is normally dis-

tributed and has a constant variance across each of the four country regions. Let’s

examine both assumptions.

 The distribution of HLE scores for women can be visualized using a histogram:

library(npar)
hist(life$hlef, xlab="Healthy Life Expectancy (years) at Age 65",
 main="Distribution of Healthy Life Expectancy for Women",
 col="grey", breaks=10)

The plot is displayed in figure 21.1. Clearly the outcome variable is negatively skewed,

with fewer scores at the low end.

 The variance of HLE scores across regions can be visualized using a side-by-side dot

chart (see chapter 19 for details):

library(ggplot2)
ggplot(data=life, aes(x=region, y=hlef)) +
 geom_point(size=3, color="darkgrey") +
 labs(title="Distribution of HLE Estimates by Region",
 x="US Region", y="Healthy Life Expectancy at Age 65") +
 theme_bw()

The results are displayed in figure 21.2, where each dot represents a state. Variances

differ by region, with the greatest differences occurring between the Northeast and

South.

Distribution of Healthy Life Expectancy for Women

Healthy Life Expectancy (years) at Age 65

F
re

q
u

e
n

c
y

11 12 13 14 15 16 17

0
2

4
6

8
1

0
1
2

Figure 21.1 Distribution

of healthy life expectancies

at age 65 for women in the

United States (2007–

2009). The scores are

negatively skewed (fewer

scores at the low end).

www.it-ebooks.info

http://www.it-ebooks.info/

494 CHAPTER 21 Creating a package

Because the data violates two important ANOVA assumptions (normality and homoge-

neity of variance), you need a different approach. Unlike ANOVA, nonparametric

methods don’t assume normality or equal variances. In the current case, you would

only need to assume that the data are ordinal—that higher scores indicate greater

healthy life expectancy. This makes a nonparametric approach a reasonable alterna-

tive for the current problem.

21.1.1 Comparing groups with the npar package

You can use the npar package to compare independent groups on a numeric outcome

variable that is at least ordinal. Given a numerical dependent variable and a categori-

cal grouping variable, it provides

■ An omnibus Kruskal–Wallis test that the groups don’t differ.
■ Descriptive statistics for each group.
■ Post-hoc comparisons (Wilcoxon rank-sum tests) comparing groups two at a

time. The test p-values can be adjusted to take multiple testing into account.
■ Annotated side-by-side box plots for visualizing group differences.

The following listing demonstrates use of the npar package with the HLE estimates by

region for women.

> library(npar)
> results <- oneway(hlef ~ region, life)
> summary(results)

Listing 21.1 Comparison of HLE estimates with the npar package

12

14

16

North Central Northeast South West

US Region

H
e

a
lt
h

y
 L

if
e

 E
x
p

e
c
ta

n
c
y
 a

t
A

g
e

 6
5

Distribution of HLE Estimates by Region

Figure 21.2 Dot chart of healthy life expectancies by region. The variability of HLE

estimates differs across the four regions (compare the Northeast with the South).

www.it-ebooks.info

http://www.it-ebooks.info/

495Nonparametric analysis and the npar package

data: hlef on region

Omnibus Test
Kruskal-Wallis chi-squared = 17.8749, df = 3, p-value = 0.0004668

Descriptive Statistics
 South North Central West Northeast
n 16.000 12.00 13.0000 9.000
median 13.000 15.40 15.6000 15.700
mad 1.483 1.26 0.7413 0.593

Multiple Comparisons (Wilcoxon Rank Sum Tests)
Probability Adjustment = holm
 Group.1 Group.2 W p
1 South North Central 28.0 0.008583 **
2 South West 27.0 0.004738 **
3 South Northeast 17.0 0.008583 **
4 North Central West 63.5 1.000000
5 North Central Northeast 42.0 1.000000
6 West Northeast 54.5 1.000000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> plot(results, col="lightblue", main="Multiple Comparisons",
 xlab="US Region",
 ylab="Healthy Life Expectancy (years) at Age 65")

First, a Kruskal–Wallis test is performed b. This is an overall test of whether there are

HLE differences between the regions. The small p-value (.00005) suggests that there are.

 Next, descriptive statistics (sample size, median, and median absolute deviation)

are provided for each region c. The HLE estimates are highest for the Northeast

(median = 15.7 years) and lowest for the South (median = 13.0 years). The smallest

variability among the states occurs in the Northeast (mad = 0.59), and the largest

occurs in the South (mad = 1.48).

 Although the Kruskal–Wallis test indicates that there are HLE differences among

the regions, it doesn’t indicate where the differences lie. To determine this, you com-

pare the groups two at a time using a Wilcoxon rank-sum test d. With four groups,

there are 4 × (4 – 1) / 2 or 6 pairwise comparisons.

 The difference between the South and the North Central regions is statistically sig-

nificant (p = 0.009), whereas the difference between the Northeast and North Central

regions isn’t (p = 1.0). In fact, the South differs from each of the other regions, but

the other regions don’t differ from each other.

 When computing multiple comparisons, you have to be concerned with alpha infla-

tion: an increase in the probability of declaring groups to be significantly different

when in fact they aren’t. For six independent comparisons, the chances of finding at

least one erroneous difference by chance is 1 – (1 – .05)6 or 0.26.

 With a chance of finding at least one false pairwise difference hovering around

one in four, you’ll want to adjust the p-value for each comparison upward (make each

test more stringent and less likely to declare a difference). Doing so keeps the overall

Overall test of
group differences

b

Summary statisticc

Pairwise
group
comparisons

d

Annotated
box plots

e

www.it-ebooks.info

http://www.it-ebooks.info/

496 CHAPTER 21 Creating a package

family-wise error rate (the probability of finding one or more erroneous differences in

a set of comparisons) at a reasonable level (say, .05).

 The oneway() function accomplishes this by calling the p.adjust() function in the

base R installation. The p.adjust() function adjusts p-values to account for multiple

comparisons using one of several methods. The Bonferonni correction is perhaps the

most well-known, but the Holm correction is more powerful and thus set as the default.

 Differences among the groups are easiest to see with a graph. The plot() state-

ment e produces the side-by-side box plots in figure 21.3. The plot is annotated with

a key that indicates the median and sample size for each group. A dotted horizontal

line indicates the overall median for all observations combined.

 It’s clear from these analyses that women in the South can expect fewer years of

health past age 65. This has implications for the distribution and focus of health ser-

vices. You might want to analyze the HLE estimates for males and see if you reach a

similar conclusion.

 The next section describes the code files for the npar package. You can download

them (and save yourself some typing) from www.statmethods.net/RiA/nparFiles.zip.

21.2 Developing the package

The npar package consists of four functions: oneway(), print.oneway(), summary

.oneway(), and plot.oneway(). The first is the primary function that computes the

statistics, and the others are S3 object-oriented generic functions (see section 20.3.1)

South North Central West Northeast

1
2

1
3

1
4

1
5

1
6

1
7

Multiple Comparisons

US Region

H
e

a
lt
h
y
 L

ife
 E

x
p

e
c
ta

n
c
y
 (

ye
a

rs
)

a
t

A
g

e
 6

5

md=13
n=16

md=15.4
n=12

md=15.6
n=13

md=15.7
n=9

Figure 21.3 Annotated box plots displaying group differences. The plot is

annotated with the medians and sample sizes for each group. The dotted vertical

line represents the overall median.

www.it-ebooks.info

www.statmethods.net/RiA/nparFiles.zip
http://www.it-ebooks.info/

497Developing the package

used to print and plot the results. Here, oneway indicates that there is a single group-

ing factor.

 It’s a good idea to place each function in a separate text file with a .R extension.
This isn’t strictly necessary, but it makes organizing the work easier. Additionally, it

isn’t necessary for the names of the functions and the names of the files to match, but

again, it’s good coding practice. The files are provided in listings 21.2 through 21.5.
 Each file has a header consisting of a set of comments that start with the characters

#'. The R interpreter ignores these lines, but you’ll use the roxygen2 package to turn

the comments into your package documentation. These header comments will be dis-
cussed in section 21.3.

 The oneway() function computes the statistics, and the print(), summary(), and

plot() functions display the results. In the next section, you’ll develop the oneway()
function.

21.2.1 Computing the statistics

The oneway() function in the oneway.R text file performs all the statistical computa-

tions required.

#' @title Nonparametric group comparisons
#'
#' @description
#' \code{oneway} computes nonparametric group comparisons, including an
#' omnibus test and post-hoc pairwise group comparisons.
#'
#' @details
#' This function computes an omnibus Kruskal-Wallis test that the
#' groups are equal, followed by all pairwise comparisons using
#' Wilcoxon Rank Sum tests. Exact Wilcoxon tests can be requested if
#' there are no ties on the dependent variable. The p-values are
#' adjusted for multiple comparisons using the \code{\link{p.adjust}}
#' function.
#'
#' @param formula an object of class formula, relating the dependent
#' variable to the grouping variable.
#' @param data a data frame containing the variables in the model.
#' @param exact logical. If \code{TRUE}, calculate exact Wilcoxon tests.
#' @param sort logical. If \code{TRUE}, sort groups by median dependent
#' variable values.
#' @param method method for correcting p-values for multiple comparisons.
#' @export
#' @return a list with 7 elements:
#' \item{CALL}{function call}
#' \item{data}{data frame containing the depending and grouping variable}
#' \item{sumstats}{data frame with descriptive statistics by group}
#' \item{kw}{results of the Kruskal-Wallis test}
#' \item{method}{method used to adjust p-values}
#' \item{wmc}{data frame containing the multiple comparisons}
#' \item{vnames}{variable names}
#' @author Rob Kabacoff <rkabacoff@@statmethods.net>

Listing 21.2 Contents of the oneway.R file

www.it-ebooks.info

http://www.it-ebooks.info/

498 CHAPTER 21 Creating a package

#' @examples
#' results <- oneway(hlef ~ region, life)
#' summary(results)
#' plot(results, col="lightblue", main="Multiple Comparisons",
#' xlab="US Region", ylab="Healthy Life Expectancy at Age 65")
oneway <- function(formula, data, exact=FALSE, sort=TRUE,
 method=c("holm", "hochberg", "hommel", "bonferroni",
 "BH", "BY", "fdr", "none")){

 if (missing(formula) || class(formula) != "formula" ||
 length(all.vars(formula)) != 2)
 stop("'formula' is missing or incorrect")

 method <- match.arg(method)

 df <- model.frame(formula, data)
 y <- df[[1]]
 g <- as.factor(df[[2]])
 vnames <- names(df)

 if(sort) g <- reorder(g, y, FUN=median)
 groups <- levels(g)
 k <- nlevels(g)

 getstats <- function(x)(c(N = length(x), Median = median(x),
 MAD = mad(x)))
 sumstats <- t(aggregate(y, by=list(g), FUN=getstats)[2])
 rownames(sumstats) <- c("n", "median", "mad")
 colnames(sumstats) <- groups

 kw <- kruskal.test(formula, data)
 wmc <- NULL
 for (i in 1:(k-1)){
 for (j in (i+1):k){
 y1 <- y[g==groups[i]]
 y2 <- y[g==groups[j]]
 test <- wilcox.test(y1, y2, exact=exact)
 r <- data.frame(Group.1=groups[i], Group.2=groups[j],
 W=test$statistic[[1]], p=test$p.value)
 # note the [[]] to return a single number
 wmc <- rbind(wmc, r)
 }
 }
 wmc$p <- p.adjust(wmc$p, method=method)

 data <- data.frame(y, g)
 names(data) <- vnames
 results <- list(CALL = match.call(),
 data=data,
 sumstats=sumstats, kw=kw,
 method=method, wmc=wmc, vnames=vnames)
 class(results) <- c("oneway", "list")
 return(results)
}

The header contains comments starting with #' that will be used by the roxygen2

package to create package documentation (see section 21.3). Next you see the

Function
call

b

Checks argumentsc

Sets up data d

Reorders factor levelse

Summary
statistics

f

Statistical
tests

g

Returns resultsh

www.it-ebooks.info

http://www.it-ebooks.info/

499Developing the package

function argument list b. The user provides a formula of the form dependent vari-

able~grouping variable and a data frame containing the data. By default, approximate

p-values are computed, and the groups are ordered by their median dependent vari-

able values. The user can choose from among eight adjustment methods, with the

holm method (the first option in the list) chosen by default.

 Once the user enters the arguments, they’re scanned for errors c. The if() func-

tion tests that the formula isn’t missing, that it’s a formula (variables ~ variables), and

that there is only one variable on each side of the tilde (~). If any of these three condi-

tions isn’t true, the stop() function halts execution, prints an error message, and

returns the user to the R prompt. For debugging purposes, you can alter the error

action with the options(error=) function. See section 20.5.3 for details.

 The match.arg(arg, choices) function ensures that the user has entered an argu-

ment that matches one of the strings in the choices character vector. If a match isn’t

found, an error is thrown, and, again, oneway() exits.

 Next, the model.frame() function is used to create a data frame containing the

dependent variable as the first column and the grouping variable as the second col-

umn d. In general, model.frame() returns a data frame containing all the variables

in a formula. From this data frame, you create a numeric vector (y) containing the

dependent variable and a factor vector (g) containing the grouping variable. The

character vector vnames contains the variable names.

 If sort=TRUE, you use the reorder() function to reorder the levels of the grouping

variable g by the median dependent variable values y e. This is the default. The char-

acter vector groups contains the names of the groups, and the value k contains the

number of groups.

 Next, a numeric matrix (sumstats) is created, containing the sample size, median,

and median absolute deviation for each group f. The aggregate() function uses the

getstats() function to calculate the summary statistics, and the remaining code for-

mats the table so that groups are columns and statistics are rows (I thought this was

more attractive).

 The statistical tests are then computed g. The results of the Kruskal–Wallis test

are saved to a list called kw. The for() functions calculate every pairwise Wilcoxon

test. The results of these pairwise tests are saved in the wmc data frame:

 Group.1 Group.2 W p
1 South North Central 28.0 0.008583
2 South West 27.0 0.004738
3 South Northeast 17.0 0.008583
4 North Central West 63.5 1.000000
5 North Central Northeast 42.0 1.000000
6 West Northeast 54.5 1.000000

Here, Group.1 and Group.2 indicate the groups being compared to each other, W is

the Wilcoxon statistic, and p is the (adjusted) p-value for each comparison.

 Finally, the results are bundled up and returned as a list h. The list contains seven

components, which are summarized in table 21.1. Additionally, you set the class of the

www.it-ebooks.info

http://www.it-ebooks.info/

500 CHAPTER 21 Creating a package

list to c("wmc", "list"). This is a critical step in creating generic functions for han-

dling the object.

Although the list provides all the information required, you’d rarely access the com-
ponents directly. Instead, you can create generic print(), summary(), and plot()

functions to present this information in more concise and meaningful ways. These

generic functions are considered next.

21.2.2 Printing the results

Most analytic functions of any breadth come with generic print() and summary()

functions. print() provides basic or raw information about an object, and summary()

provides more detailed or processed (summarized) information. A plot()function is
frequently included when a plot makes sense in the given context.

 Following the S3 OOP guidelines described in section 20.3.1, if an object has the

class attribute "foo", then print(x) executes print.foo(x) if it exists or
print.default(x) otherwise. The same goes for summary() and plot(). Because the

oneway() function returns an object of class "oneway", you need to define print

.oneway(), summary.oneway(), and plot.oneway() functions. The print.oneway()
function is given in listing 21.3.

 For the life data, print(results) produces basic information about the multiple

comparisons:

data: hlef by region

Multiple Comparisons (Wilcoxon Rank Sum Tests)
Probability Adjustment = holm
 Group.1 Group.2 W p
1 South North Central 28.0 0.008583
2 South West 27.0 0.004738
3 South Northeast 17.0 0.008583
4 North Central West 63.5 1.000000
5 North Central Northeast 42.0 1.000000
6 West Northeast 54.5 1.000000

Table 21.1 List object returned by the wmc() function

Component Description

CALL Function call

data Data frame containing the dependent and grouping variable

sumstats Data frame with groups as columns and n, median, and mad as rows

kw Five-component list containing the results of the Kruskal–Wallis test

method One-element character vector containing the method used to adjust p-values for

multiple comparisons

wmc Four-column data frame containing the multiple comparisons

vnames Variable names

www.it-ebooks.info

http://www.it-ebooks.info/

501Developing the package

An informative header is printed, followed by Wilcoxon statistics and adjusted

p-values for each pair of groups (Group.1 with Group.2).

#' @title Print multiple comparisons
#'
#' @description
#' \code{print.oneway} prints pairwise group comparisons.
#'
#' @details
#' This function prints Wilcoxon pairwise multiple comparisons created
#' by the \code{\link{oneway}} function.
#'
#' @param x an object of class \code{oneway}.
#' @param ... additional arguments passed to the function.
#' @method print oneway
#' @export
#' @return the input object is returned silently.
#' @author Rob Kabacoff <rkabacoff@@statmethods.net>
#' @examples
#' results <- oneway(hlef ~ region, life)
#' print(results)
print.oneway <- function(x, ...){
 if (!inherits(x, "oneway"))
 stop("Object must be of class 'oneway'")

 cat("data:", x$vnames[1], "by", x$vnames[2], "\n\n")
 cat("Multiple Comparisons (Wilcoxon Rank Sum Tests)\n")
 cat(paste("Probability Adjustment = ", x$method, "\n", sep=""))

 print(x$wmc, ...)
}

The header contains comments starting with #' that will be used by the roxygen2

package to create package documentation (see section 21.3). The inherits() func-

tion is used to make sure the submitted object has class "oneway" b. A set of cat()

functions prints a description of the analysis c. (This could have been written as a

single cat() function, but I thought the current code was easier to read.) Finally,

print.default() is called to print the multiple comparisons d. The summary

.oneway() function is considered next.

21.2.3 Summarizing the results

The summary() function produces more comprehensive and processed output than
the print() function. For the healthy life-expectancy data, the summary(results)
statement produces the following:

data: hlef on region

Omnibus Test
Kruskal-Wallis chi-squared = 17.8749, df = 3, p-value = 0.0004668

Listing 21.3 Contents of the print.R file

Checks inputb

Prints the
header

c

Prints the tabled

www.it-ebooks.info

http://www.it-ebooks.info/

502 CHAPTER 21 Creating a package

Descriptive Statistics
 South North Central West Northeast
n 16.000 12.00 13.0000 9.000
median 13.000 15.40 15.6000 15.700
mad 1.483 1.26 0.7413 0.593

Multiple Comparisons (Wilcoxon Rank Sum Tests)
Probability Adjustment = holm
 Group.1 Group.2 W p
1 South North Central 28.0 0.008583 **
2 South West 27.0 0.004738 **
3 South Northeast 17.0 0.008583 **
4 North Central West 63.5 1.000000
5 North Central Northeast 42.0 1.000000
6 West Northeast 54.5 1.000000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output includes the results of the Kruskal–Wallis test, descriptive statistics (sam-

ple sizes, median, and median absolute deviations) for each group, and the multiple

comparisons. In addition, the multiple-comparison table is annotated with stars to

highlight significant results. The code for the summary.oneway() function is given in

the following listing.

#' @title Summarize oneway nonparametric analyses
#'
#' @description
#' \code{summary.oneway} summarizes the results of a oneway
#' nonparametric analysis.
#'
#' @details
#' This function prints a summary of analyses produced by
#' the \code{\link{oneway}} function. This includes descriptive
#' statistics by group, an omnibus Kruskal-Wallis test, and
#' Wilcoxon pairwise multiple comparisons.
#'
#' @param object an object of class \code{oneway}.
#' @param ... additional parameters.
#' @method summary oneway
#' @export
#' @return the input object is returned silently.
#' @author Rob Kabacoff <rkabacoff@@statmethods.net>
#' @examples
#' results <- oneway(hlef ~ region, life)
#' summary(results)
summary.oneway <- function(object, ...){
 if (!inherits(object, "oneway"))
 stop("Object must be of class 'oneway'")

 if(!exists("digits")) digits <- 4L

 kw <- object$kw
 wmc <- object$wmc

Listing 21.4 Contents of the summary.R file

www.it-ebooks.info

http://www.it-ebooks.info/

503Developing the package

 cat("data:", object$vnames[1], "on", object$vnames[2], "\n\n")

 cat("Omnibus Test\n")

 cat(paste("Kruskal-Wallis chi-squared = ",

 round(kw$statistic,4),

 ", df = ", round(kw$parameter, 3),

 ", p-value = ",

 format.pval(kw$p.value, digits = digits),

 "\n\n", sep=""))

 cat("Descriptive Statistics\n")

 print(object$sumstats, ...)

 wmc$stars <- " "

 wmc$stars[wmc$p < .1] <- "."

 wmc$stars[wmc$p < .05] <- "*"

 wmc$stars[wmc$p < .01] <- "**"

 wmc$stars[wmc$p < .001] <- "***"

 names(wmc)[which(names(wmc)=="stars")] <- " "

 cat("\nMultiple Comparisons (Wilcoxon Rank Sum Tests)\n")
 cat(paste("Probability Adjustment = ", object$method, "\n", sep=""))
 print(wmc, ...)
 cat("---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '

1\n")
}

The class of the object passed to the function must be "oneway" or an error is

thrown. Notice that the input parameter in the print.oneway() function is called x,

but in the summary() function it’s called object. I chose these names to be consistent

with the argument names in the print.default() and summary.default() functions

provided by the base R installation. After the informational details, the results of the

Kruskal–Wallis test are printed b. The format.pval() function formats the p-value in

the output.

 Next, you print the descriptive statistics (n, median, mad) for each group c.

Before printing the data frame of pairwise multiple comparisons, a column of stars is

added d. This column serves as an annotation for the table and indicates the level of

significance each test would achieve (.1, .05, .01, or .001). Nonsignificant results are

represented by a blank (empty string). The statement

names(wmc)[which(names(wmc)==”stars”)] <- “ “

removes the column name for the annotation column. You could have used the

statement

names(wmc)[5] <- " "

but that would break if the column order was changed in the future. The annotated

results are printed e, and a key describing the meaning of the annotations is printed

below the table.

Kruskal–Wallis
test

b

Descriptive statisticsc

Table annotationd

Pairwise
multiple

comparisons

e

www.it-ebooks.info

http://www.it-ebooks.info/

504 CHAPTER 21 Creating a package

21.2.4 Plotting the results

The final function, plot(), visualizes the results returned by the oneway() function:

plot(results, col="lightblue", main="Multiple Comparisons",
 xlab="US Region",
 ylab="Healthy Life Expectancy (years) at Age 65")

The resulting plot is provided in figure 21.3.

 Unlike standard box plots, this plot provides annotations that indicate the median

and sample size for each group, and a dashed line indicating the overall group

median. The code for the plot.oneway() function is given next.

#' @title Plot nonparametric group comparisons
#'
#' @description
#' \code{plot.oneway} plots nonparametric group comparisons.
#'
#' @details
#' This function plots nonparametric group comparisons
#' created by the \code{\link{oneway}} function using
#' annotated side by side boxplots. Medians and
#' sample sizes are placed at the top of the chart.
#' The overall median is represented by a horizontal
#' dashed line.
#'
#' @param x an object of class \code{oneway}.
#' @param ... additional arguments passed to the
#' \code{\link{boxplot}} function.
#' @method plot oneway
#' @export
#' @return NULL
#' @author Rob Kabacoff <rkabacoff@@statmethods.net>
#' @examples
#' results <- oneway(hlef ~ region, life)
#' plot(results, col="lightblue", main="Multiple Comparisons",
#' xlab="US Region", ylab="Healthy Life Expectancy at Age 65")
plot.oneway <- function(x, ...){

 if (!inherits(x, "oneway"))
 stop("Object must be of class 'oneway'")
 data <- x$data
 y <- data[,1]
 g <- data[,2]
 stats <- x$sumstats
 lbl <- paste("md=", stats[2,], "\nn=", stats[1,], sep="")
 opar <- par(no.readonly=TRUE)
 par(mar=c(5,4,8,2))
 boxplot(y~g, ...)
 abline(h=median(y), lty=2, col="darkgrey")
 axis(3, at=1:length(lbl), labels=lbl, cex.axis=.9)
 par(opar)
}

Listing 21.5 Contents of the plot.R file

Checks inputb

Generates the
box plots

c

Annotates the plotd

www.it-ebooks.info

http://www.it-ebooks.info/

505Developing the package

Again, you check the class of the object passed to the function b. Next, the original

data are extracted and the box plots are produced c. Annotations (medians, sample

sizes, overall median line) are then added d. You use the abline() function to add

the overall median line and the axis() function to add the medians and sample sizes

at the top of the graph.

 Now that the functions have been created, it’s time to add data to test them.

21.2.5 Adding sample data to the package

When you’re creating a package, it’s a good idea to include one or more datasets that

can be used to try out the included functions. For the npar package, this involves add-

ing the life data frame, as shown in the next listing. You add data frames to a package

as .rda files.

region <- c(rep("North Central", 12), rep("Northeast", 9),
 rep("South", 16), rep("West", 13))
state <- c("IL","IN","IA","KS","MI","MN","MO","NE","ND","OH","SD","WI",
 "CT","ME","MA","NH","NJ","NY","PA","RI","VT","AL","AR","DE",
 "FL","GA","KY","LA","MD","MS","NC","OK","SC","TN","TX","VA",
 "WV","AK","AZ","CA","CO","HI","ID","MT","NV","NM","OR","UT",
 "WA","WY")
hlem <- c(12.6,12.2,13.4,13.1,12.8,14.3,11.7,13.1,12.9,12.2,13.3,13.4,
 14.3,13.5,13.8,14,12.9,13.6,12.8,13.1,13.9,10.3,11.6,13.5,
 14.3,11.6,10.2,11.6,13.3,10.1,11.7,10.8,12,11.2,12.2,13.3,
 10.3,13.3,13.7,13.8,14.3,15,13.1,13.4,12.8,13.1,13.9,14.3,14,
 13.7)
hlef <- c(14.3,14.1,15.9,15.1,14.7,16.7,14,15.7,16,14,16.4,16.1,16.7,
 15.7,15.9,16,14.8,15.3,14.8,15.6,16.2,11.7,12.7,15.7,16.4,
 13.1,11.6,12.3,15.3,11.4,13.5,12.9,13.6,12.5,13.4,14.9,11.6,
 14.9,16.3,15.5,16.2,17.3,15.1,15.6,14.5,14.7,16,15.7,16,15.2)

life <- data.frame(region=factor(region), state=factor(state), hlem, hlef)

save(life, file='life.rda')

The save() function saves the data frame life.rda in the current working directory.

When you build the final package in section 21.4, you’ll move this file to a data subdi-

rectory in the package file tree.

 You also need to create a .R file that documents the data frame. The code is given

next.

#' @title Healthy Life Expectancy at Age 65
#'
#' @description A dataset containing the healthy life expectancy (expected
#' years of life in good health) at age 65, by US state in 2007-2009.
#' Estimates are reported separately for men and women.
#'
#' @docType data

Listing 21.6 Creating the life data frame

Listing 21.7 Contents of the life.R file

www.it-ebooks.info

http://www.it-ebooks.info/

506 CHAPTER 21 Creating a package

#' @keywords datasets
#' @name life
#' @usage life
#' @format A data frame with 50 rows and 4 variables. The variables
#' are as follows:
#' \describe{
#' \item{region}{A factor with 4 levels (North Central, Northeast,
#' South, West)}
#' \item{state}{A factor with the 2-letter ISO codes for the 50 US
#' states}
#' \item{hlem}{Healthy life expectancy for men in years}
#' \item{hlef}{Healthy life expectancy for women in years}
#' }
#' @source The \code{hlem} and \code{hlef} data were obtained from
#' the Center for Disease Control and Prevention
#' \emph{Morbidity and Mortality Weekly Report} at \url{
#' http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6228a1.htm?s_cid=mm6228a1_w}.
#' The \code{region} variable was added from the
#' \code{\link[datasets]{state.region}} dataset.
NULL

Note that the code in listing 21.7 consists entirely of comments. In the next section,

you’ll process all the comments in the .R files in this section to create the package’s

documentation. R requires that rigorous and structured documentation be included

with any package.

21.3 Creating the package documentation

Every R package follows the same set of enforced guidelines for documentation. Each

function in a package must be documented in the same fashion using LaTeX, a docu-

ment markup language and typesetting system. Each function is placed in a separate

.R file, and the documentation for that function (written in LaTeX) is placed in a .Rd

file. Both the .R and .Rd files are text files.

 There are two limitations to this approach. First, the documentation is stored sepa-

rately from the functions it describes. If you change the function code, you have to

search out the documentation and change it as well. Second, the user has to learn

LaTeX. If you thought R has a steep learning curve, wait until you start working with

LaTeX!

 The roxygen2 package can dramatically simplify the creation of documentation.

You place comments in the head of each .R file that will serve as the function’s docu-

mentation. Then, the documentation is created using a simple markup language.

When the file is processed by Roxygen2, lines that start with #' are used to generate

the LaTeX documentation (.Rd file) automatically.

 Look at the file contents in listings 21.4–21.7. The comments at the head of each

file use the tags described in table 21.2. The tags (called roclets) are fundamental to

how Roxygen2 creates LaTeX documentation.

 To see what the resulting documentation looks like, be sure the npar package has

been loaded, and request help on each of the functions (help(oneway), help

(print.oneway), help(summary.oneway), and help(plot.oneway)). The help(life)

www.it-ebooks.info

http://www.it-ebooks.info/

507Creating the package documentation

statement should provide information about the dataset. See help(rd_roclet) for

more details about these tags.

A few additional markup elements are useful to know as you create documentation.

The tag \code{text} prints text in code font, and \link{function} generates a hyper-

text link to an R function in the current package or elsewhere. Finally, \item{text}

generates an itemized list. This is particularly useful for describing the results

returned by a function.

 There is a documentation task that is optional, but useful. As described so far,

when a user installs the npar package, no help is available for ?npar. How is the user to

know what functions are available? One way would be to type help(package="npar"),

but you can make it easier for them by adding another file to the documentation; see

the following listing.

#' Functions for nonparametric group comparisons.
#'
#' npar provides tools for calculating and visualizing
#' nonparametric differences among groups.
#'
#' @docType package
#' @name npar-package
#' @aliases npar
NULL
... this file must end with a blank line after the NULL...

Table 21.2 Tags for use with Roxygen2

Tag Description

@title Function title

@description One-line function description

@details Multiline function description (indent after the first line)

@parm Function parameter

@export Adds the function to the NAMESPACE

@method generic class Documents a generic S3 method

@return Value returned by the function

@author Author(s) and contact address(es)

@examples Examples using the function

@note Any notes about the operation of the function

@aliases Additional aliases through which users can find documentation

@references References concerning the methodology employed by function

Listing 21.8 Contents of the npar.R file

www.it-ebooks.info

http://www.it-ebooks.info/

508 CHAPTER 21 Creating a package

Note that the last line of this file must be blank. When the package is built, a call to

?npar will now produce a description of the package, with a clickable link to an index

of functions.

 Finally, create a text file named DESCRIPTION that describes the package. Follow-

ing is a sample.

Package: npar
Type: Package
Title: Nonparametric group comparisons
Version: 1.0
Date: 2015-01-26
Author: Rob Kabacoff
Maintainer: Robert Kabacoff <robk@statmethods.net>
Description: This package assesses group differences using nonparametric
 statistics. Currently a one-way layout is supported. Kruskal-Wallis
 test followed by pairwise Wilcoxon tests are provided. p-values are
 adjusted for multiple comparisons using the p.adjust() function.
 Results are plotted via annotated boxplots.
LazyData: yes
License: GPL-3

The Description: section can be span several lines but must be indented after the

first line. The LazyData: yes statement indicates that the datasets in the package

(life, in this case) should be available as soon as the package is loaded. If this was set
to no, the user would have to use data(life) to access the dataset.

 The final line indicates the license under which the package is being released.

Common license types include MIT, GPL-2, and GPL-3. See www.r-project.org/Licenses
for license descriptions. Of course, when creating your own package, don’t use my

name (unless the package is really good!).

 The roxygen2 package will be used in the next section, when you build the final
npar package. To learn more about roxygen2, see Hadley Wickham’s description at

http://mng.bz/K26J.

21.4 Building the package

It’s finally time to build the package. (Really, I promise.) The developer’s bible for cre-

ating packages is Writing R Extensions by the R Core Team (http://cran.r-project.org/

doc/manuals/R-exts.pdf). Friedrich Leishch also has produced a nice tutorial on cre-

ating packages (http://mng.bz/Ks84).

 In this section, you’ll follow a streamlined process for building a package. Specifi-

cally, you’ll use Hadley Wickham’s roxygen2 package to simplify documentation cre-

ation. I’m building the package on a Windows machine, but the steps will work on

Mac and Linux platforms as well:

1 Install the necessary tools. Download and install the roxygen2 packages using

install.packages("roxygen2", depend=TRUE). If you’re using a Windows plat-

form, you’ll also need to install Rtools.exe (http://cran.r-project.org/bin/

Listing 21.9 Contents of the DESCRIPTION file

www.it-ebooks.info

http://mng.bz/K26J
http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/manuals/R-exts.pdf
http://mng.bz/Ks84
http://cran.r-project.org/bin/windows/Rtools
www.r-project.org/Licenses
http://www.it-ebooks.info/

509Building the package

windows/Rtools) and MiKTeX (http://miktex.org). If you’re using a Mac, install

MacTeX (www.tug.org/mactex). Rtools, MiKTeX, and MacTeX are applications

rather than packages. Therefore, you’ll need to install them outside of R.

2 Set up the directories. In your home

directory (the current working direc-

tory when you start R), create a subdi-

rectory named npar. In this directory,

create two subdirectories named R

and data (see figure 21.4). Place the

DESCRIPTION file in the npar direc-

tory and the source files (oneway.R,

print.R, summary.R, plot.R, life.R,

and npar.R) in the R subdirectory.

Place the life.rda file in the data sub-

directory. Your setup should look like

figure 21.4.

From this point on, I’ll assume

that you’re in your R home directory.

If not, enter the full path to the pack-

age (for example, c:/applications/

npar) instead of just its name (npar).

3 Generate the documentation. Load the roxygen2 package, and use the roxygen-

ize() function to process the documentation headers in each code file:

> library(roxygen2)
> roxygenize("npar")

Updating namespace directives
Writing oneway.Rd
Writing plot.oneway.Rd
Writing print.oneway.Rd
Writing summary.oneway.Rd
Writing life.Rd
Writing npar-package.Rd

The roxygenize() function creates a new subdirectory, called man, that con-

tains the .Rd documentation file for each function. The markup from the com-

ments at the top of each code file is used to build these documentation files.

roxygenize() also adds information to the DESCRIPTION file and creates a

NAMESPACE file. The NAMESPACE file that is created for npar is as follows.

S3method(plot,oneway)
S3method(print,oneway)
S3method(summary,oneway)
export(oneway)

Listing 21.10 Contents of the NAMESPACE file

home

npar

R DESCRIPTION

oneway.R

print.R

summary.R

plot.R

npar.R

life.R

data

life.rda

Figure 21.4 Initial directory structure for

the npar package

www.it-ebooks.info

http://cran.r-project.org/bin/windows/Rtools
http://miktex.org
www.tug.org/mactex
http://www.it-ebooks.info/

510 CHAPTER 21 Creating a package

The NAMESPACE file controls the visibility of your functions (are all functions

available to the package user directly, or are some used internally by other func-

tions?). In the current case, all functions are available to the user. To learn

more about namespaces, see http://adv-r.had.co.nz/Namespaces.html.

The new directory structure is given in figure 21.5.

4 Build the package. Build the package using the following system commands:

> system("R CMD build npar")
... informational messages omitted ...

This creates the file npar_1.0.tar.gz in the current working directory. The ver-

sion number in the name is taken from the DESCRIPTION file. The package is

now in a format that can be distributed to others.

To create a binary .zip file for use on Windows platforms, execute this code:

> system("Rcmd INSTALL --build npar")
... informational messages omitted ...
packaged installation of 'npar' as npar_1.0.zip
* DONE (npar)

This creates the npar_1.0.zip file in the current working directory. Note that

you can only create a Windows binary file this way if you’re working on a Win-

dows platform. If you want to build a binary file for Windows but you don’t have

access to a Windows machine running R, you can use the online service pro-

vided at http://win-builder.r-project.org/.

5 Check the package (optional). To run extensive consistency checks on the package,

execute this statement:

system("R CMD check npar")

home

npar

R DESCRIPTION

oneway.R

print.R

summary.R

plot.R

npar.R

life.R

NAMESPACE

man

oneway.Rd

print.oneway.Rd

summary.oneway.Rd

plot.oneway.Rd

npar - package.Rd

life.Rd

data

life.rda

Figure 21.5 Directory structure for the npar package after running the

roxygenize() function

www.it-ebooks.info

http://adv-r.had.co.nz/Namespaces.html
http://win-builder.r-project.org/
http://www.it-ebooks.info/

511Building the package

This creates a folder call npar.Rcheck in the current working directory. The

folder contains the file 00.check.log, which describes the results of the checks.

There must be no errors or warnings if you want to contribute the package

to CRAN.

The directory also contains a file called npar-EX.R containing the code from

any examples listed in the documentation. The text output produced by execut-

ing the example code is contained in the file npar-EX.out. If the examples cre-

ated graphs (true in this case), they’re placed in npar-Ex.pdf.

6 Create a PDF manual (optional). Executing the statement

system("R CMD Rd2pdf npar")

generates a PDF reference manual like those you see on CRAN. If you ran step 5,

you already have this document in the npar.Rcheck folder.

7 Install the package locally (optional). Executing

system("R CMD INSTALL npar")

installs the package on your machine and makes it available for use. Another

way to install the package locally is to use

install.packages(paste(getwd(),"/npar_1.0.tar.gz",sep=""),
 repos=NULL, type="source")

You can see that the package has been installed by typing library(). After you

type library(npar), the package will be available for use.

During the development cycle, you may want to delete a package from your

local machine so that you can install a new version. In this case, use

detach(package:npar, unload=TRUE)
remove.packages("npar")

to get a fresh start.

8 Upload the package to CRAN (optional). If you would like to share your package

with others by adding it to the CRAN repository, follow these three steps:

■ Read the CRAN Repository Policy (http://cran.r-project.org/web/packages/

policies.html).
■ Make sure the package passes all checks in step 5 without errors or warnings.

Otherwise the package will be rejected.
■ Submit the package. To do so via web form, use the submission form at

http://cran.r-project.org/submit.html. You’ll be sent an automated confir-

mation email that needs to be accepted.

To do so via FTP, upload the packageName_version.tar.gz file via anonymous

FTP to ftp://cran.r-Project.org/incoming. Then send a plain-text email to

CRAN@R-project.org from the maintainer email address listed in the pack-

age. Use the subject line “CRAN submission PACKAGE VERSION” without the

quotes, where PACKAGE and VERSION are the package name and the version,

www.it-ebooks.info

http://cran.r-project.org/web/packages/policies.html
http://cran.r-project.org/web/packages/policies.html
http://cran.r-project.org/submit.html
http://www.it-ebooks.info/

512 CHAPTER 21 Creating a package

respectively. For new submissions, confirm in the body of the email that you

have read and agree to CRAN’s policies.

But please don’t upload the npar package you just created to CRAN! You now have the

tools to create your own packages.

21.5 Going further

In this chapter, all the code used to create the npar package was R code. In fact, most

packages contain code that is written entirely in R. But you can also call compiled C,

C++, Fortran, and Java code from R. External code is typically included when doing so

will improve execution speed or when the author wants to use existing external librar-

ies from within their R code.

 There are several methods for including compiled external code. Useful functions

include .C(), .Fortran(), .External(), and .Call(). Several packages have also

been written to facilitate the process, including inline (C, C++, Fortran), Rcpp (C++),

and rJava (Java).

 Adding external compiled code to an R package is beyond the scope of this book.

The Writing R Extensions manual (http://cran.r-project.org/doc/manuals/R-exts

.html), along with the help files for these functions and packages, should provide you

with enough details to get started. Stack Overflow (http://stackoverflow.com) is a great

place to ask questions if you get stuck.

21.6 Summary

R packages are a great way to organize your frequently used functions, develop com-

plete applications, and share your results with others. In this chapter, you created a

complete R package that can be used for carrying out nonparametric group compari-

sons. These object-oriented techniques can be applied to many other data-manage-

ment and data-analytic tasks. Although packages seem complicated at first, they’re

pretty easy to create once you have the process down. Now, get to work! And remem-

ber, have fun out there.

www.it-ebooks.info

http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://stackoverflow.com
http://www.it-ebooks.info/

513

Creating dynamic reports

Welcome to the final chapter! You’ve accessed your data, cleaned it up, described

its characteristics, modeled the relationships, and visualized the results. The next

step is to

A Relax and perhaps go to Disney World.

B Communicate the results to others.

If you chose A, please take me with you. If you chose B, welcome to the real world.

 Research doesn’t end when the last statistical analysis or graph is finished. You’ll

almost always have to communicate the results to others. This means incorporating

the analyses into a report of some kind.

This chapter covers

■ Publishing results to the web

■ Incorporating R results into Microsoft Word or
Open Document reports

■ Creating dynamic reports, where changing the
data changes the report

■ Creating publication quality documents with R,
Markdown, and LaTeX

www.it-ebooks.info

http://www.it-ebooks.info/

514 CHAPTER 22 Creating dynamic reports

 There are three common report scenarios. In the first, you create a report that
includes your code and the results, so that you can remember what you did six months
from now. It’s easier to reconstruct what was done from a single comprehensive docu-
ment than from a set of related files.

 In the second scenario, you have to generate a report for a teacher, a supervisor, a
client, a government agency, an internet audience, or a journal editor. Clarity and
attractiveness matter, and the report may only need to be created once.

 In the third scenario, you need to generate a specific type of report on a regular
basis. It may be a monthly report on product or resource usage, a weekly financial
analysis, or a report on web traffic that’s updated hourly. In any case, the data
changes, but the analyses and the structure of the report remain the same.

 One approach to incorporating R output into a report involves running the analyses,
cutting and pasting each graph and text table into a word-processing document, and
reformatting the results. This approach is usually time consuming, inefficient, and frus-
trating. Although R creates state-of-the-art graphics, its text output is woefully retro—
tables of monospaced text with columns lined up using spaces. Reformatting them is no
easy task. And if the data changes, you have to go through the entire process again!

 Given these limitations, you may feel that R won’t work for you. Have no fear. (OK,
have a little fear—it’s an important survival mechanism.) R offers several elegant solu-
tions for incorporating R code and results into reports. Additionally, the data can be
tied to the report so that changing the data changes the report. These dynamic
reports can be saved as

■ Web pages
■ Microsoft Word documents
■ Open Document files
■ Publication-ready PDF or PostScript documents

For example, say you’re using regression analysis to study the relationship between
weight and height in a sample of women. R allows you to take the monospaced output
generated by the lm() function

> lm(weight ~ height, data=women)

Call:
lm(formula = weight ~ height, data = women)

Residuals:
 Min 1Q Median 3Q Max
-1.7333 -1.1333 -0.3833 0.7417 3.1167

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -87.51667 5.93694 -14.74 1.71e-09 ***
height 3.45000 0.09114 37.85 1.09e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.525 on 13 degrees of freedom
Multiple R-squared: 0.991, Adjusted R-squared: 0.9903
F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14

www.it-ebooks.info

http://www.it-ebooks.info/

515A template approach to reports

and turn it into a web page like the one in figure 22.1. In this chapter, you’ll

learn how.

22.1 A template approach to reports

The majority of this chapter employs a template approach to report generation. A

report starts with a template file. The template contains the report text, formatting

syntax, and R code chunks.

 The template file is processed, the R code is run, the formatting syntax is applied,

and a report is generated. How R output is included in the report is controlled by

Dynamic documents and reproducible research

There is a powerful movement growing within the academic community in support of
reproducible research. The goal of reproducible research is to facilitate the replication
of scientific findings by including the data and software code necessary to reproduce
findings with the publications that report them. This allows readers to verify the findings
for themselves and gives them an opportunity to build on the results more directly in
their own work. The techniques described in this chapter, including the embedding of
data and source code with documents, directly support this effort.

Figure 22.1 Regression

analysis saved to a web page

www.it-ebooks.info

http://www.it-ebooks.info/

516 CHAPTER 22 Creating dynamic reports

options. A simple example using an R Markdown template to create a web page is

given in figure 22.2.

 The template file (example.Rmd) is a plain text file containing three components:

■ Report text—Any explanatory phrases and text. Here, the report text is Report,
Here is some data, Plots, and Here is a plot.

■ Formatting syntax—The tags that control report formatting. In this file, Mark-

down tags are used to format the results. Markdown is a simple markup lan-

guage than can be used to convert plain text files to structurally valid HTML or
XHTML. The pound symbol # in the first line isn’t a comment. It produces a

level-1 header. ## produces a level-2 header, and so on.
■ R code—R statements to be executed. In R Markdown documents, R code

chunks are surrounded by ```{r} and ```. The first code chunk lists the first
six rows of the dataset, and the second code chunk produces a scatter plot. In

this example, both the code and the results are output to the report, but

options allow you to control what’s printed on a chunk-by-chunk basis.

The template file is passed to the render() function in the rmarkdown package, and a

web page named example.html is created. The web page contains both the report text

and R results.

Report

Here is some data.

```{r}

head(women)

```

Plots

Here is a plot.

```{r fig.width=4, fig.height=4}

with(women, plot(weight, height))

```

library(rmarkdown)

render(example.Rmd, "html_document")

example.Rmd

example.html

Figure 22.2 Creating a web page from a text file that includes Markdown syntax, report

text, and R code chunks

www.it-ebooks.info

http://www.it-ebooks.info/

517Creating dynamic reports with R and Markdown

 The examples in this chapter are based on descriptive statistics, regression, and
ANOVA problems. None of them represent full analyses of the data. The goal in this
chapter is to learn how to incorporate the R results into various types of reports. Feel
free to jump around in this chapter, reading the sections that are most relevant to you.

 Depending on the template file you start with and the functions used to process it,
different report formats (HTML web pages, Microsoft Word documents, OpenOffice
Writer documents, PDF reports, articles, and books) are created. The reports are
dynamic in the sense that changing the data and reprocessing the template file will
result in a new report.

 In this chapter, you’ll work with four types of templates: an R Markdown template,
an ODT template, a DOCX template, and a LaTeX template. R Markdown templates
can be used to create HTML, PDF, and MS Word documents. ODT and DOCX tem-
plates are used to create Open Document and Microsoft Word documents, respec-
tively. LaTeX templates are used to create publication-quality PDF documents,
including reports, articles, and books. Let’s consider each in turn.

22.2 Creating dynamic reports with R and Markdown

In this section, you’ll use the rmarkdown package to create documents generated from
Markdown syntax and R code. When the document is processed, the R code is executed,
and the output is formatted and embedded in the finished document. You can use this
approach to generate reports as HTML, Word, or PDF documents. Here are the steps:

1 Install the rmarkdown package (install.packages("rmarkdown")). This will
install several other packages including knitr. If you’re using a recent version of
RStudio, you can skip this step because you already have the necessary packages.

2 Install the xtable package (install.packages("xtable")). The xtable()
function in this package attractively formats data frames and matrices for inclu-
sion in reports. xtable() can also format objects produced by the lm(), glm(),
aov(), table(), ts(), and coxph() functions. After loading the package, use
methods(xtable) to view a comprehensive list of the objects it can format.

3 Install Pandoc (http://johnmacfarlane.net/pandoc/index.html). Pandoc is a
free application available for Windows, Mac OS X, and Linux. It converts files
from one markup format to another. Again, RStudio users can skip this step.

4 If you want to create PDF documents, install a LaTeX compiler. A LaTeX com-
piler converts a LaTeX document into a high-quality typeset PDF document. I
recommend MiKTeX (www.miktex.org) for Windows, MacTeX for Macs (http://
tug.org/mactex), and TeX Live for Linux (www.tug.org/texlive).

With the software set up, you’re ready to go.
 To incorporate R output (values, tables, graphs) in a document using Markdown

syntax, first create a text document that contains

■ Report text
■ Markdown syntax
■ R code chunks (R code surrounded by delimiters)

www.it-ebooks.info

http://johnmacfarlane.net/pandoc/index.html
http://tug.org/mactex
http://tug.org/mactex
www.miktex.org
www.tug.org/texlive
http://www.it-ebooks.info/

518 CHAPTER 22 Creating dynamic reports

By convention, the text file has the filename extension .Rmd.

 A sample file (named women.Rmd) is provided in listing 22.1. To generate an

HTML document, process this file using

library(rmarkdown)
render("women.Rmd", "html_document")

The results are displayed in figure 22.1.

Regression Report

```{r echo=FALSE, results='hide'}                                  
n <- nrow(women)                                 
fit <- lm(weight ~ height, data=women)
sfit <- summary(fit)
b <- coefficients(fit)
```                                   

Linear regression was used to model the relationship between
weights and height in a sample of `r n` women. The equation

weight = `r b[[1]]` + `r b[[2]]` * height
accounted for `r round(sfit$r.squared,2)`% of the variance
in weights. The ANOVA table is given below.

```{r echo=FALSE, results='asis'}     
library(xtable)
options(xtable.comment=FALSE)                             
print(xtable(sfit), type="html", html.table.attributes="border=0")
```

The regression is plotted in the following figure.

```{r echo=FALSE, fig.width=5, fig.height=4}
library(ggplot2)
ggplot(data=women, aes(x=height, y=weight)) +
      geom_point() + geom_smooth(method="lm")
```

The report starts with a first-level header b. It indicates that “Regression Report”

should be printed in a large, bold font. Examples of other Markdown syntax are given

in table 22.1.

Listing 22.1 women.Rmd: a Markdown template with embedded R code

Table 22.1 Markdown code and the resulting output

Markdown syntax Resulting HTML output

Heading 1
Heading 2
...
Heading 6

<h1>Heading 1</h1>
<h2>Heading 2</h2>
...
<h6>Heading 2</h6>

One or more blank lines between text Separates text into paragraphs

Markdown syntaxb

R code chunkc

R inline code d

Formats output
with xtable

e

www.it-ebooks.info

http://www.it-ebooks.info/

519Creating dynamic reports with R and Markdown

Next comes an R code chunk. R code in Markdown documents is delimited by ```{r

options} and ``` c. When the file is processed, the R code is executed and the

results are inserted. Code chunk options are described in table 22.2.

Simple R output (a number or string) can also be placed directly within report text.

This inline R code allows you to customize the text in individual sentences. Inline

code is placed between `r and ` tags d. In the regression example, the sample size,

prediction equation, and R-squared value are embedded in the first paragraph.

 Finally, you use the xtable() function to format the regression results e. The

statement options(xtable.comment=FALSE) suppresses superfluous messages. The

type="html" option in the print() function outputs the xtable object as an HTML

table. By default, this table has an unattractive 1-pixel border that’s removed by

Two or more spaces at the end of a line Adds a line break

I mean it I mean it

I really mean it I really mean it

* item 1
* item 2

 item 1
 item 2

1. item 1
2. item 2

 item 1
 item 2

[Google](http://google.com) Google

![My text](path to image)

Table 22.2 Code chunk options

Option Description

echo Whether to include the R source code in the output (TRUE) or not (FALSE)

results Whether to output raw results (asis) or hide the results (hide)

warning Whether to include warnings in the output (TRUE) or not (FALSE)

message Whether to include informational messages in the output (TRUE) or not (FALSE)

error Whether to include error messages in in the output (TRUE) or not (FALSE)

fig.width Figure width for plots (inches)

fig.height Figure height for plots (inches)

Table 22.1 Markdown code and the resulting output

Markdown syntax Resulting HTML output

www.it-ebooks.info

http://www.it-ebooks.info/

520 CHAPTER 22 Creating dynamic reports

adding html.table.attributes="border=0". See help(print.xtable) for addi-

tional formatting options.

 To render the file as a PDF document, you only have to make one change. Replace

print(xtable(sfit), type="html", html.table.attributes="border=0")

with

print(xtable(sfit), type="latex")

Then process the file using

library(rmarkdown)
render("women.Rmd", "pdf_document")

to get a nicely formatted PDF document.

 Unfortunately, the xtable() function doesn’t work for Word documents. You’ll

have to get a bit more creative to render statistical output in an attractive fashion. One

possibility is to replace xtable() with the kable() function in the knitr package. It

can render matrices and data frames in a simple and appealing manner.

 Replace

library(xtable)
options(xtable.comment=FALSE)
print(xtable(sfit), type="html", html.table.attributes="border=0")

with

library(knitr)
kable(sfit$coefficients)

Then render the file using

library(rmarkdown)
render("women.Rmd", "word_document")

The result is an attractive Word document that you can edit using Word. Note that you

had to replace the sfit object with sfit$coefficients. The xtable() function can

handle lm() objects, but the kable() function can only handle matrices and data

frames. Therefore, you have to extract the parts you want to print from more compli-

cated objects. See help(kable) for more details.

Using RStudio to create and process R Markdown documents

Throughout this book, I’ve tried to keep the presentation independent of the interface
used to access R. Each of the techniques described will work in the basic R Console.
But there are several other options, including RStudio (see appendix A). RStudio makes
it particularly easy to render reports from Markdown documents.

If you choose File > New File > R Markdown from the GUI menu, you’ll see the dialog
box shown next.

www.it-ebooks.info

http://www.it-ebooks.info/

521Creating dynamic reports with R and Markdown

Choose the type of report you want to generate, and RStudio will create a skeleton
file for you. Edit it with your text and code, and then select the rendering option from
the Knit drop-down list. That’s it!

RStudio has many useful features for programmers. It’s by far my favorite way to work
in R.

Markdown syntax is convenient for creating simple documents quickly. To learn more
about Markdown, visit the homepage at http://daringfireball.net/projects/markdown
and the rmarkdown documentation at http://rmarkdown.rstudio.com. If you want to
create complex documents such as publication-quality articles and books, then you
may want to look at using LaTeX as your markup language. In the next section, you’ll
use LaTeX and the knitr package to create high-quality typeset documents.

Dialog box for creating a new

R Markdown document in

RStudio

Drop-down menu for gener-

ating an HTML, PDF, or

Word report from an R

Markdown document

www.it-ebooks.info

http://daringfireball.net/projects/markdown
http://rmarkdown.rstudio.com
http://www.it-ebooks.info/

522 CHAPTER 22 Creating dynamic reports

22.3 Creating dynamic reports with R and LaTeX

LaTeX is a document-preparation system for high-quality typesetting that’s freely avail-

able for Windows, Mac, and Linux platforms. LaTeX allows you to create beautiful,

complex, multipart documents, and it can convert from one type of document (such

as an article) to another type of document (such as a report) by changing just a few

lines of code. It’s extraordinarily powerful software and, as such, has a significant

learning curve.

 If you’re unfamiliar with LaTeX, you may want to read “The Not So Short Intro-

duction to LaTeX 2e” by Tobias Oetiker et al. (http://mng.bz/45vP) or LaTeX Tutori-

als: A Primer by the Indian TEX Users Group (http://mng.bz/2c0O) before

continuing. The language is definitely worth learning, but it will take some time and

patience to master. Once you’re familiar with LaTeX, creating a dynamic report is a

straightforward process.

 The knitr package allows you to embed R code within the LaTeX document using

techniques that are analogous to the ones used previously for creating web pages. If

you installed rmarkdown or are using RStudio, you already have knitr. If not, install it

now (install.packages("knitr")). Additionally, you’ll need a LaTeX compiler; see

section 22.2 for details.

 In this section, you’ll create a report describing patients’ reactions to various

drugs, using data from the multcomp package. If you didn’t install it in chapter 9, be

sure to run install.packages("multcomp") before continuing.

 To generate a report using R and LaTeX, you first create a text file (typically with

the filename extension .Rnw) containing the report text, LaTeX markup code, and R

code chunks. An example is given in listing 22.2. Each R code chunk starts with the

delimiter <<options>>= and ends with the delimiter @. The code chunk options are

listed in table 22.3. Inline R code is included using the \Sexpr{R code} syntax. When

the R code is evaluated, the number or string is inserted at that point in the text.

 The file is then processed by the knit() function:

library(knitr)
knit("drugs.Rnw")

During this step, the R code chunks are processed and, depending on the options,

replaced with LaTeX-formatted R code and output. By default, knit("drugs.Rnw")

inputs the file drugs.Rnw and outputs the file drugs.tex. The .tex file is then run

through a LaTeX compiler, creating a PDF, PostScript, or DVI file.

 As a simpler alternative, you can use the knit2pdf() helper function in the knitr

package:

library(knitr)
knit2pdf("drugs.Rnw")

The function generates the .tex file and converts it to a finished PDF document

named drugs.pdf. The resulting PDF document is displayed in figure 22.3.

www.it-ebooks.info

http://mng.bz/45vP
http://mng.bz/2c0O
http://www.it-ebooks.info/

523Creating dynamic reports with R and LaTeX

\documentclass[11pt]{article}
\title{Sample Report}
\author{Robert I. Kabacoff, Ph.D.}
\usepackage{float}
\usepackage[top=.5in, bottom=.5in, left=1in, right=1in]{geometry}
\begin{document}
\maketitle
<<echo=FALSE, results='hide', message=FALSE>>=
library(multcomp)
library(xtable)
df <- cholesterol
@

\section{Results}

Cholesterol reduction was assessed in a study
that randomized \Sexpr{nrow(df)} patients
to one of \Sexpr{length(unique(df$trt))} treatments.
Summary statistics are provided in
Table \ref{table:descriptives}.

<<echo=FALSE, results='asis'>>=
descTable <- data.frame("Treatment" = sort(unique(df$trt)),
 "N" = as.vector(table(df$trt)),
 "Mean" = tapply(df$response, list(df$trt), mean, na.rm=TRUE),
 "SD" = tapply(df$response, list(df$trt), sd, na.rm=TRUE)
)
print(xtable(descTable, caption = "Descriptive statistics
for each treatment group", label = "table:descriptives"),
caption.placement = "top", include.rownames = FALSE)
@

The analysis of variance is provided in Table \ref{table:anova}.

<<echo=FALSE, results='asis'>>=
fit <- aov(response ~ trt, data=df)
print(xtable(fit, caption = "Analysis of variance",
 label = "table:anova"), caption.placement = "top")
@

\noindent and group differences are plotted in Figure \ref{figure:tukey}.

\begin{figure}[H]\label{figure:tukey}
\begin{center}

<<echo=FALSE, fig.width=4, fig.height=3>>=
par(mar=c(3,3,1,3))
boxplot(response ~ trt, data=df, col="lightgrey",
 xlab="Treatment", ylab="Response")
@

\caption{Distribution of response times by treatment.}
\end{center}
\end{figure}
\end{document}

Listing 22.2 drugs.Rnw: a sample LaTeX template with embedded R code

www.it-ebooks.info

http://www.it-ebooks.info/

524 CHAPTER 22 Creating dynamic reports

Sample Report

Robert I. Kabacoff, Ph.D.

March 23, 2015

1 Results

Cholesterol reduction was assessed in a study that randomized 50 patients to one of 5 treatments.

Summary statistics are provided in Table 1.

Table 1: Descriptive statistics for each treatment group

Treatment N Mean SD

1time 10 5.78 2.88

2times 10 9.22 3.48

4times 10 12.37 2.92

drugD 10 15.36 3.45

drugE 10 20.95 3.35

The analysis of variance is provided in Table 2.

Table 2: Analysis of variance

Df Sum Sq Mean Sq F value Pr(> F)

trt 4 1351.37 337.84 32.43 0.0000

Residuals 45 468.75 10.42

and group differences are plotted in Figure 1.

1time 4times drugE

5
1
0

1
5

2
0

2
5

Figure 1: Distribution of response times by treatment.

1

Figure 22.3 The text file drugs.Rnw is processed through the knit2pdf() function, resulting

in a typeset PDF document (drugs.pdf).

www.it-ebooks.info

http://www.it-ebooks.info/

525Creating dynamic reports with R and Open Document

The knitr package is documented at http://yihui.name/knitr and in Yihui Xie’s book

Dynamic Documents with R and knitr (Chapman and Hall/CRC, 2013). To learn more

about LaTeX, check out the tutorials mentioned earlier and visit www.latex-project.org.

22.4 Creating dynamic reports with R and Open Document

Although LaTeX is powerful, it requires significant study to use effectively and creates

documents in formats (PDF, DVI, PS) that can’t be edited. You can also output R results

to a word-processing document. Two of the most popular formats are Microsoft Word

(.docx) and Open Document (.odf).

 Open Document Format for Office Applications (ODF) is an open source, XML-

based file format that’s compatible with many software suites. Two popular and freely

available office suites are OpenOffice (www.openoffice.org) and LibreOffice

(www.libreoffice.org). Both are available for Windows, Mac OS X, and Linux environ-

ments, and either can be used in this section.

 The odfWeave package provides a mechanism for embedding R code and output

in an Open Document file. In this section, you’ll create a report exploring salary dif-

ferences between male and female professors.

 After installing OpenOffice (or LibreOffice) and the odfWeave package, create a

document named salaryTemplate.odt (see figure 22.4). The document contains for-

matted text and R code chunks. The text is formatted using the OpenOffice (or Libre-

Office) GUI. The code chunks are delimited as follows:

<<options>>=

R statements

@

Code chunk options are given in table 22.3. Inline R code results (numbers or strings)

are included using \Sexpr{R code}.

Once the document is saved, process it using odfWeave() in the odfWeave package:

library(odfWeave)
infile <- "salaryTemplate.odt"
outfile <- "salaryReport.odf"
odfWeave(infile, outfile)

This takes the salaryTemplate.odt file displayed in figure 22.4 and produces the salary-

Report.odf file displayed in figure 22.5.

Table 22.3 R code chunk options in odfWeave

Option Action

echo Includes R code in the output file (TRUE/FALSE)

results Outputs results as is (verbatim), as XML code (xml), or suppress output (hide)

fig Code chunk produces graphical output (TRUE/FALSE)

www.it-ebooks.info

http://yihui.name/knitr
www.latex-project.org
www.openoffice.org
www.libreoffice.org
http://www.it-ebooks.info/

526 CHAPTER 22 Creating dynamic reports

Figure 22.4

OpenOffice Writer file

(salaryTemplate.odt) with

embedded R code chunks.

After the file is processed

by the odfWeave()

function, the report in figure

22.7 (salaryReport.odf) is

produced.

Figure 22.5 Final

report in ODF format

(salaryReport.odf)

www.it-ebooks.info

http://www.it-ebooks.info/

527Creating dynamic reports with R and Microsoft Word

By default, odfWeave renders data frames, matrices, and vectors in an attractive table

format. The odfTable() function can be used to format tables with a higher degree

of precision and control. The function produces XML code, so be sure to specify

result=xml in code chunks employing this function. Unfortunately, the xtable()

function doesn’t work with odfWeave.

 Once you have your report in ODF format, you can continue to edit it, tighten up

the formatting, and save the results to the ODT, HTML, DOC, or DOCX file format. To

learn more, read the odfWeave manual and vignette. Additional information, includ-

ing a tutorial on document formatting with odfWeave, can be found in the Examples

folder installed in the odfWeave directory in your R library. (The function

.libPaths() will display your library location.)

22.5 Creating dynamic reports with R and Microsoft Word

For good or ill, Microsoft Word is the standard for report writing in corporate settings.

You’ve already seen how to create a Word document from a Markdown file using

rmarkdown (section 22.2). In this section, we’ll look at a method for creating dynamic

reports by embedding R code directly into Word documents using the R2wd package.

The methods in the section will only work on Windows platforms (sorry, Mac and

Linux users).

 To follow the examples in this section, you’ll need to install the R2wd package

(install.packages("R2wd")). R2wd also requires the RDCOMClient package, available

from the Omega Project for Statistical Computing.

 At the time of this writing, RDCOMClient must be installed from source. First be sure

Rtools is installed (http://cran.r-project.org/bin/windows/Rtools). Next, download

the source file (RDCOMClient_0.93-0.tar.gz) from www.omegahat.org/RDCOMClient.

Note that the version numbers are likely to change over time. Finally, install the pack-

age using

install.packages(RDCOMClient_0.93-0.tar.gz, repos = NULL, type = "source")

The R2wd package provides functions that allow you to create a blank Word docu-

ment; insert sections and titles; insert text, tables, and graphs; add formatting; and

save the results. Although the package is versatile, building and formatting Word doc-

uments programmatically can be time-consuming.

 The easiest way to create a dynamic report in Word using the R2wd package is a

two-step process:

1 Create a Word document that contains bookmarks indicating where you want

your R results to be placed.

2 Create an R script that inserts the results in the Word document at the book-

marked locations and saves the finished document.

Let’s try this approach.

 Open a new Word document, and call it salaryTemplate2.docx. Add the text and

bookmarks displayed in figure 22.6. (In reality, the bookmarks in figure 22.6 aren’t

www.it-ebooks.info

http://cran.r-project.org/bin/windows/Rtools
www.omegahat.org/RDCOMClient
http://www.it-ebooks.info/

528 CHAPTER 22 Creating dynamic reports

visible. I’ve annotated the image, adding the bookmark names with a bold colored

background, so that you can see where each should go.)

 To insert a bookmark, place the cursor where you want the bookmark, choose

Insert > Bookmark, give the bookmark a name, and click Add. The bookmarks in this

example are named n, aovTable, and effectsPlot.

TIP Selecting Options > Advanced > Show Bookmarks in Microsoft Word will
help you see where bookmarks are placed.

Next, create the R script given in listing 22.3. When the script is executed, it produces

the necessary analyses, inserts them into the Word document, and saves the final doc-

ument to disk. The script uses the functions listed in table 22.4.

Table 22.4 R2wd functions

Function Use

wdGet() Returns a handle to a Word document. If Word isn’t running, it’s started, a

blank document is opened, and a handle is returned.

wdGoToBookmark() Places the cursor at a bookmark.

wdWrite() Writes text at the cursor.

wdTable() Writes a data frame or an array as a Word table at the current cursor location.

wdPlot() Creates an R plot, and pastes it into Word at the current cursor location.

wdSave() Saves the Word document. If no file name is given, Word prompts the user for

one.

wdQuit() Closes Word, and removes the handle.

Sample Report

Introduction
A two-way analysis of variance was employed to investigate the relationship between gender,

academic rank, and annual salary in dollars. Data were collected from n professors in 2008. The

ANOVA table is given in Table 1.

aovTable

The interaction between gender and rank is plotted in Figure 1.

effectsPlot

Figure 22.6 A Microsoft Word document named salaryTemplate2.docx containing text and

bookmarks. The file is processed by the script salary.R (listing 22.3), results are inserted at the

bookmark locations, and the document is saved as salaryReport2.docx (figure 22.7). Note that

the bookmarks (in bold shaded text) aren’t actually visible on the page; the image has been

annotated so that you can see where to place them.

www.it-ebooks.info

http://www.it-ebooks.info/

529Creating dynamic reports with R and Microsoft Word

require(R2wd)
require(car)

df <- Salaries
n <- nrow(df)
fit <- lm(salary ~ rank*sex, data=df)
aovTable <- Anova(fit, type=3)
aovTable <- round(as.data.frame(aovTable), 3)
aovTable[is.na(aovTable)] <- ""

wdGet("salaryTemplate2.docx", method="RDCOMClient")
wdGoToBookmark("n")
wdWrite(n)

wdGoToBookmark("aovTable")
wdTable(aovTable, caption="Two-way Analysis of Variance",
 caption.pos="above", pointsize=12, autoformat=4)

wdGoToBookmark("effectsPlot")
myplot <- function(){
 require(effects)
 par(mar=c(2,2,2,2))
 plot(allEffects(fit), main="")
}
wdPlot(plotfun=myplot, caption="Mean Effects Plot",

 height=4, width=5, method="metafile")
wdSave("SalaryReport2.docx")
wdQuit()

First, the salary2Template.docx file is opened. If Word isn’t running, it’s automatically

launched b. Next, the data analyses are performed. The cursor then is moved to the

bookmark named n, and the sample size is inserted c.

 Next, the cursor is moved to the bookmark named aovTable and the ANOVA

results are inserted as a Word table d. Because R2wd doesn’t support the xtable()

function, it’s important that the table be an R data frame, a matrix, or an array.

Options can control the text and location of the table caption, font size, and table for-

matting. Try autoformat = 1, 2, 3, and so on, to see the various formats available. Cur-

rently there is no way to suppress the caption.

 Two of the statements in the ANOVA code require additional explanation. The

aovTable object is a data frame containing the two-way ANOVA results. The round()

function is used to limit the number of decimal places printed in the table. The

statement

aovTable[is.na(aovTable)] <- ""

is a trick that replaces NAs with blanks. This is necessary because there are no values in

the F and Pr(>F) columns for the Residuals row, and you don’t want NA to print in

these cells of the table.

Listing 22.3 salary.R: R script for inserting results in salary.docx

Opens the documentb

Inserts textc

Inserts a tabled

Inserts a plote

Saves and quitsf

www.it-ebooks.info

http://www.it-ebooks.info/

530 CHAPTER 22 Creating dynamic reports

 The cursor next moves to the bookmark named effectsPlot. The wdPlot() func-

tion requires that the user specify a plotting function. Here, the myplot() function

produces an effects plot via the allEffects() function in the effects package e.

 The wdPlot() function supports method="bitmap" and method="metafile". Use

metafile whenever possible—it looks better in a Word document. Unfortunately, the

metafile option doesn’t support transparency, so you have to use the bitmap option

when transparency is present. You’re most likely to encounter transparency when

using the ggplot2 package to produce graphs.

 When the code in salary.R is executed, it runs the R code, inserts the results into

salaryTemplate2.docx, and saves the finished Word document as salaryReport2.docx

f. Then the Microsoft Word application quits. The resulting document is displayed

in figure 22.7.

Sample Report

Introduction
A two-way analysis of variance was employed to investigate the relationship between gender,

academic rank, and annual salary in dollars. Data were collected from 397 professors in 2008.

The ANOVA table is given in Table 1.

Table 1 Two-way Analysis of Variance

Sum Sq Df F value Pr(>F)

(Intercept) 67009671400 1 119.538 0

rank 15266607695 2 13.617 0

sex 97803720 1 0.174 0.676

rank:sex 43603063 2 0.039 0.962

Residuals 219184457146 391

The interaction between gender and rank is plotted in Figure 1.

Figure 1 Mean Effects Plot

rank

s
a
la

ry

 70000

 80000

 90000

100000

110000

120000

130000

AsstProf AssocProf Prof

 : sex Female

AsstProf AssocProf Prof

 : sex Male

Figure 22.7 Final report in DOCX format (salaryReport2.docx)

www.it-ebooks.info

http://www.it-ebooks.info/

531Summary

Note that unlike previous approaches, this approach to dynamic report generation

involves two files—the Word template and an R script. The R code isn’t directly

embedded in the Word document.

 In this section, you’ve used the R2wd package, but others are available. The

ReporteRs package (http://davidgohel.github.io/ReporteRs) is a serious contender

for dynamically creating Microsoft Office documents from R. In general, technologies

that connect R with Microsoft Office are developing rapidly, so you can expect new

options in the future.

22.6 Summary

In this chapter, you’ve seen several ways that R results can be incorporated into

reports. The reports are dynamic in the sense that changing the data and reprocess-

ing the code results in an updated report. You learned methods for creating web

pages, typeset documents, Open Document Format reports, and Microsoft Word doc-

uments.

 There are several advantages to the template approach described in this chapter.

By embedding the code needed to perform statistical analyses directly into the report

template, you can see exactly how the results were calculated. Six months from now,

you can easily see what was done. You can also modify the statistical analyses or add

new data and immediately regenerate the report with minimum effort. Additionally,

you avoid the need to cut and paste and reformat the results. This by itself is worth the

price of admission.

 The templates in this chapter are static in the sense that their structure is fixed.

Although not covered here, you can also use these methods to create a variety of

expert reporting systems. For example, the output of an R code chunk can depend on

the data submitted. If numeric variables are submitted, a scatterplot matrix can be

produced. Alternatively, if categorical variables are submitted, a mosaic plot can be

produced. In a similar fashion, the explanatory text that is generated can depend on

the results of the analyses. Using R’s if/then construct makes the possibilities for cus-

tomization endless. You can use this approach to create a sophisticated expert system.

 In this book, we’ve talked about getting your data into R, cleaning it up, analyzing

it, graphing it, and presenting it to others. We’ve discussed a great many topics. The

afterword considers where you may want to go next.

www.it-ebooks.info

http://davidgohel.github.io/ReporteRs
http://www.it-ebooks.info/

532

afterword
 Into the rabbit hole

We’ve covered a broad range of topics in the book, including major ones like the R

development environment, data management, traditional statistical models, and

statistical graphics. We’ve also examined hidden gems like resampling statistics,
missing values imputation, and interactive graphics. The great (or perhaps infuriat-

ing) thing about R is that there’s always more to learn.

 R is a large, robust, and evolving statistical platform and programming lan-
guage. With so many new packages, frequent updates, and new directions, how can

you stay current? Happily, many websites support this active community and pro-

vide coverage of platform and package changes, new methodologies, and a wealth
of tutorials. I’ve listed some of my favorite sites next:

■ The R Project (www.r-project.org)

The official R website and your first stop for all things R. The site includes

extensive documentation, including “An Introduction to R,” “The R Lan-
guage Definition,” “Writing R Extensions,” “R Data Import/Export,” “R

Installation and Administration,” and “The R FAQ.”

■ The R Journal (http://journal.r-project.org)

A freely accessible, refereed journal containing articles on the R project and

contributed packages.

■ R Bloggers (www.r-bloggers.com)

A central hub (blog aggregator) that collects content from bloggers writing

about R. It contains new articles daily. I’m addicted to it.

■ Planet R (http://planetr.stderr.org)

Another good site aggregator, including information from a wide range of

sources. Updated daily.

www.it-ebooks.info

http://davidgohel.github.io/ReporteRs
www.r-bloggers.com
http://planetr.stderr.org
www.r-project.org
http://www.it-ebooks.info/

533

■ CRANberries (http://dirk.eddelbuettel.com/cranberries)

A site that aggregates information about new and updated packages and con-

tains links to CRAN for each.

■ Journal of Statistical Software (www.jstatsoft.org)

A freely accessible, refereed journal containing articles, book reviews, and code

snippets on statistical computing. Contains frequent articles about R.

■ Revolutions (http://blog.revolution-computing.com)

A popular, well-organized blog dedicated to news and information about R.

■ CRAN Task Views (http://cran.r-project.org/web/views)

Task views are guides to the use of R in different academic and research fields.

They include a description of the packages and methods available for a given

area. Currently, 33 task views are available (see the following table).

CRAN task views

Bayesian Inference Natural Language Processing

Chemometrics and Computational Physics Numerical Mathematics

Clinical Trial Design, Monitoring, and Analysis Official Statistics & Survey Methodology

Cluster Analysis & Finite Mixture Models Optimization and Mathematical Programming

Differential Equations Analysis of Pharmacokinetic Data

Probability Distributions Phylogenetics, Especially Comparative Methods

Computational Econometrics Psychometric Models and Methods

Analysis of Ecological and Environmental Data Reproducible Research

Design of Experiments (DoE) & Analysis of Experi-

mental Data

Robust Statistical Methods

Empirical Finance Statistics for the Social Sciences

Statistical Genetics Analysis of Spatial Data

Graphic Displays & Dynamic Graphics & Graphic

Devices & Visualization

Handling and Analyzing Spatio-Temporal Data

High-Performance and Parallel Computing with R Survival Analysis

Machine Learning & Statistical Learning Time Series Analysis

Medical Image Analysis Web Technologies and Services

Meta-Analysis gRaphical Models in R

Multivariate Statistics

AFTERWORD Into the rabbit hole

www.it-ebooks.info

http://dirk.eddelbuettel.com/cranberries
www.jstatsoft.org
http://blog.revolution-computing.com
http://cran.r-project.org/web/views
http://www.it-ebooks.info/

534 AFTERWORD Into the rabbit hole

■ R-Help main R mailing list (https://stat.ethz.ch/mailman/listinfo/r-help)

This electronic mailing list is the best place to ask questions about R. The

archives are also searchable. Be sure to read the FAQ before posting questions.

■ Cross Validated (http://stats.stackexchange.com)

A question and answer site for people interested in statistics and data science.

This is a good place to post questions about R and see what other people are

asking.

■ Quick-R (www.statmethods.net)

This is my R website. It’s stocked with more than 80 brief tutorials on R topics.

False modesty forbids me from saying more.

The R community is a helpful, vibrant, and exciting lot. Welcome to Wonderland.

www.it-ebooks.info

https://stat.ethz.ch/mailman/listinfo/r-help
http://stats.stackexchange.com
www.statmethods.net
http://www.it-ebooks.info/

535

appendix A
Graphical user interfaces

You turned here first, didn’t you? By default, R provides a simple command-line

interface (CLI). The user enters statements at a command-line prompt (> by

default), and each command is executed one at a time. For many data analysts, the

CLI is one of R’s most significant limitations.

 There have been a number of attempts to create more graphical interfaces,

ranging from code editors that interact with R (such as RStudio), to GUIs for spe-

cific functions or packages (such as BiplotGUI), to full-blown GUIs that allow you to

construct analyses through interactions with menus and dialog boxes (such as R

Commander).

 Several of the more useful code editors are listed in table A.1.

These code editors let you edit and execute R code and include syntax highlight-

ing, statement completion, object exploration, project organization, and online

help. A screenshot of RStudio is shown in figure A.1.

Table A.1 Integrated development environments and syntax editors

Name URL

RStudio www.rstudio.com/products/RStudio

Eclipse with StatET plug-in www.eclipse.org and www.walware.de/goto/statet

Architect www.openanalytics.eu/architect

ESS (Emacs Speaks Statistics) http://ess.r-project.org

JGR http://jgr.markushelbig.org/JGR.html

Tinn-R (Windows only) http://nbcgib.uesc.br/lec/software/editores/tinn-r/en

Notepad++ with NppToR (Windows only) http://notepad-plus-plus.org and

http://sourceforge.net/projects/npptor

www.it-ebooks.info

www.rstudio.com/products/RStudio
www.eclipse.org
www.walware.de/goto/statet
www.openanalytics.eu/architect
http://ess.r-project.org
http://jgr.markushelbig.org/JGR.html
http://nbcgib.uesc.br/lec/software/editores/tinn-r/en
http://notepad-plus-plus.org
http://sourceforge.net/projects/npptor
http://www.it-ebooks.info/

536 APPENDIX A Graphical user interfaces

Several promising, full-blown GUIs for R are listed in table A.2. The GUIs available for

R are less comprehensive and mature than those offered by SAS or IBM SPSS, but

they’re developing rapidly.

My favorite GUI for introductory statistics courses is R Commander (shown in figure A.2).

 Finally, a number of applications allow you to create GUI wrappers for R functions

(including user-written functions). These include the R GUI Generator (RGG)

Table A.2 Comprehensive GUIs for R

Name URL

JGR/Deducer www.deducer.org

R Analytic Flow www.ef-prime.com/products/ranalyticflow_en

Rattle (for data mining) http://rattle.togaware.com

R Commander http://socserv.mcmaster.ca/jfox/Misc/Rcmdr

Rkward http://rkward.sourceforge.net

Figure A.1 RStudio IDE

www.it-ebooks.info

www.deducer.org
www.ef-prime.com/products/ranalyticflow_en
http://rattle.togaware.com
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr
http://rkward.sourceforge.net
http://www.it-ebooks.info/

537APPENDIX A Graphical user interfaces

(http://rgg.r-forge.r-project.org) and the fgui and twiddler packages available from

CRAN. The most comprehensive approach is currently Shiny (http://shiny.rstudio

.com/). Shiny lets you easily create web applications with interactive access to R

functions.

Figure A.2 R Commander GUI

www.it-ebooks.info

http://rgg.r-forge.r-project.org
http://shiny.rstudio.com/
http://shiny.rstudio.com/
http://www.it-ebooks.info/

538

appendix B
Customizing the startup

environment

One of the first things that programmers like to do is customize their startup envi-

ronment to conform to their preferred way of working. Customizing the startup

environment allows you to set R options, specify a working directory, load com-

monly used packages, load user-written functions, set a default CRAN download

site, and perform any number of housekeeping tasks.

 You can customize the R environment through either a site-initialization file

(Rprofile.site) or a directory-initialization file (.Rprofile). These are text files con-

taining R code to be executed at startup.

 At startup, R will source the file Rprofile.site from the R_HOME/etc directory,

where R_HOME is an environment value. It will then look for an .Rprofile file to

source in the current working directory. If R doesn’t find this file, it will look for it

in the user’s home directory. You can use Sys.getenv("R_HOME"), Sys.getenv

("HOME"), and getwd() to identify the location of R_HOME, HOME, and current work-

ing directory, respectively.

 You can place two special functions in these files. The .First() function is exe-

cuted at the start of each R session, and the .Last() function is executed at the

end of each session. An example of an Rprofile.site file is shown in listing B.1.

options(papersize="a4")
options(editor="notepad")
options(tab.width = 2)
options(width = 130)
options(digits=4)
options(stringsAsFactors=FALSE)
options(show.signif.stars=FALSE)

Listing B.1 Sample Rprofile.site file

Sets common options

www.it-ebooks.info

http://www.it-ebooks.info/

539APPENDIX B Customizing the startup environment

grDevices::windows.options(record=TRUE)
options(prompt="> ")
options(continue="+ ")
.libPaths("C:/my_R_library")
local({r <- getOption("repos")
 r["CRAN"] <- "http://cran.case.edu/"
 options(repos=r)})

 .First <- function(){
 library(lattice)
 library(Hmisc)
 source("C:/mydir/myfunctions.R")
 cat("\nWelcome at", date(), "\n")
}
.Last <- function(){
 cat("\nGoodbye at ", date(), "\n")
}

There are several things you should note about this file:

■ Setting a .libPaths value allows you to create a local library for packages out-

side of the R directory tree. This can be useful for retaining packages during an

upgrade.

■ Setting a default CRAN mirror site frees you from having to choose one each

time you issue an install.packages() command.

■ The .First() function is an excellent place to load libraries that you use often,

as well as source text files containing user-written functions that you apply fre-

quently.

■ The .Last() function is an excellent place for any cleanup activities, including

archiving command histories, program output, and data files.

There are other ways to customize the startup environment, including the use of com-

mand-line options and environment variables. See help(Startup) and appendix B in

the “Introduction to R” manual (http://cran.r-project.org/doc/manuals/R-intro.pdf)

for more details.

Sets R interactive prompt

Sets path
for local
library Sets CRAN mirror default

Startup function

Session end function

www.it-ebooks.info

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.it-ebooks.info/

540

appendix C
Exporting data from R

In chapter 2, we reviewed a wide range of methods for importing data into R. But

sometimes you’ll want to go the other way—exporting data from R—so that data

can be archived or imported into external applications. In this appendix, you’ll

learn how to output an R object to a delimited text file, an Excel spreadsheet, or a

statistical application (such as SPSS, SAS, or Stata).

Delimited text file

You can use the write.table() function to output an R object to a delimited text

file. The format is

write.table(x, outfile, sep=delimiter, quote=TRUE, na="NA")

where x is the object and outfile is the target file. For example, the statement

write.table(mydata, "mydata.txt", sep=",")

saves the dataset mydata to a comma-delimited file named mydata.txt in the current

working directory. Include a path (for example, "c:/myprojects/mydata.txt") to

save the output file elsewhere. Replacing sep="," with sep="\t" saves the data in a

tab-delimited file. By default, strings are enclosed in quotes ("") and missing values

are written as NA.

Excel spreadsheet

The write.xlsx() function in the xlsx package can be used to save an R data

frame to an Excel 2007 workbook. The format is

library(xlsx)
write.xlsx(x, outfile, col.Names=TRUE, row.names=TRUE,
 sheetName="Sheet 1", append=FALSE)

www.it-ebooks.info

http://www.it-ebooks.info/

541APPENDIX C Exporting data from R

For example, the statements

library(xlsx)
write.xlsx(mydata, "mydata.xlsx")

export the data frame mydata to a worksheet (Sheet 1 by default) in an Excel work-

book named mydata.xlsx in the current working directory. By default, the variable

names in the dataset are used to create column headings in the spreadsheet, and row

names are placed in the first column of the spreadsheet. If mydata.xlsx already exists,

it’s overwritten.

 The xlsx package is a powerful tool for manipulating Excel 2007 workbooks. See

the package documentation for more details.

Statistical applications

The write.foreign() function in the foreign package can be used to export a data

frame to an external statistical application. Two files are created: a free-format text file

containing the data, and a code file containing instructions for reading the data into

the external statistical application. The format is

write.foreign(dataframe, datafile, codefile, package=package)

For example, the code

library(foreign)
write.foreign(mydata, "mydata.txt", "mycode.sps", package="SPSS")

exports the dataframe mydata into a free-format text file named mydata.txt in the cur-

rent working directory and an SPSS program named mycode.sps that can be used to

read the text file. Other values of package include "SAS" and "Stata".

 To learn more about exporting data from R, see the “R Data Import/Export” doc-

umentation, available from http://cran.r-project.org/doc/manuals/R-data.pdf.

www.it-ebooks.info

http://cran.r-project.org/doc/manuals/R-data.pdf
http://www.it-ebooks.info/

542

appendix D
Matrix algebra in R

Many of the functions described in this book operate on matrices. The manipula-

tion of matrices is built deeply into the R language. Table D.1 describes operators

and functions that are particularly important for solving linear algebra problems.

In the table, A and B are matrices, x and b are vectors, and k is a scalar.

Table D.1 R functions and operators for matrix algebra

Operator or function Description

+ - * / ^ Element-wise addition, subtraction, multiplication, division, and exponentia-

tion, respectively.

A %*% B Matrix multiplication.

A %o% B Outer product: AB'.

cbind(A, B, …) Combines matrices or vectors horizontally. Returns a matrix.

chol(A) Choleski factorization of A. If R <- chol(A), then chol(A) contains the

upper triangular factor, such that R'R = A.

colMeans(A) Returns a vector containing the column means of A.

crossprod(A) Returns A'A.

crossprod(A,B) Returns A'B.

colSums(A) Returns a vector containing the column sums of A.

diag(A) Returns a vector containing the elements of the principal diagonal.

diag(x) Creates a diagonal matrix with elements of x in the principal diagonal.

diag(k) If k is a scalar, this creates a k × k identity matrix. Go figure.

eigen(A) Eigenvalues and eigenvectors of A. If y <- eigen(A) then
■ y$val are the eigenvalues of A.
■ y$vec are the eigenvectors of A.

www.it-ebooks.info

http://cran.r-project.org/web/packages/matlab/index.html
http://cran.r-project.org/web/packages/matlab/index.html
http://cran.r-project.org/web/packages/matlab/index.html
http://www.it-ebooks.info/

543APPENDIX D Matrix algebra in R

Several user-contributed packages are particularly useful for matrix algebra. The mat-

lab package contains wrapper functions and variables used to replicate MATLAB func-

tion calls as closely as possible. These functions can help you port MATLAB

applications and code to R. There’s also a useful cheat sheet for converting MATLAB

statements to R statements at http://mathesaurus.sourceforge.net/octave-r.html.

 The Matrix package contains functions that extend R in order to support highly

dense or sparse matrices. It provides efficient access to BLAS (Basic Linear Algebra

Subroutines), Lapack (dense matrix), TAUCS (sparse matrix), and UMFPACK (sparse

matrix) routines.

 Finally, the matrixStats package provides methods for operating on the rows and

columns of matrices, including functions that calculate counts, sums, products, cen-

tral tendency, dispersion, and more. Each is optimized for speed and efficient mem-

ory use.

ginv(A) Moore-Penrose Generalized Inverse of A. (Requires the MASS package.)

qr(A) QR decomposition of A. If y <- qr(A), then
■ y$qr has an upper triangle that contains the decomposition and a lower

triangle that contains information on the decomposition.
■ y$rank is the rank of A.
■ y$qraux is a vector which contains additional information on Q.
■ y$pivot contains information on the pivoting strategy used.

rbind(A, B, …) Combines matrices or vectors vertically. Returns a matrix.

rowMeans(A) Returns a vector containing the row means of A.

rowSums(A) Returns a vector containing the row sums of A.

solve(A) Inverse of A where A is a square matrix.

solve(A, b) Solves for vector x in the equation b = Ax.

svd(A) Single-value decomposition of A. If y <- svd(A), then
■ y$d is a vector containing the singular values of A.
■ y$u is a matrix with columns containing the left singular vectors of A.
■ y$v is a matrix with columns containing the right singular vectors of A.

t(A) Transpose of A.

Table D.1 R functions and operators for matrix algebra

Operator or function Description

www.it-ebooks.info

http://mathesaurus.sourceforge.net/octave-r.html
http://cran.r-project.org/web/packages/Matrix/index.html
http://www.it-ebooks.info/

544

appendix E
Packages used in this book

R derives much of its breadth and power from the contributions of selfless authors.

Table E.1 lists the user-contributed packages described in this book, along with the

chapter(s) in which they appear.

Table E.1 Contributed packages used in this book

Package Authors Description Chapter(s)

AER Christian Kleiber and Achim

Zeileis

Functions, data sets, examples,

demos, and vignettes from the

book Applied Econometrics with R

by Christian Kleiber and Achim

Zeileis (Springer, 2008)

13

Amelia James Honaker, Gary King, and

Matthew Blackwell

Amelia II: a program for missing

data via multiple imputation

18

arrayImpute Eun-kyung Lee, Dankyu Yoon, and

Taesung Park

Missing imputation for microarray

data

18

arrayMiss-
Pattern

Eun-kyung Lee and Taesung

Park

Exploratory analysis of missing pat-

terns for microarray data

18

boot S original by Angelo Canty. R port

by Brian Ripley

Bootstrap functions 12

ca Michael Greenacre and Oleg

Nenadic

Simple, multiple, and joint corre-

spondence analysis

7

car John Fox and Sanford Weisberg Companion to Applied

Regression

1, 8, 9,

10, 11,

19, 22

cat Ported to R by Ted Harding and

Fernando Tusell; original by

Joseph L. Schafer

Analysis of categorical-variable

datasets with missing values

15

www.it-ebooks.info

http://www.it-ebooks.info/

545APPENDIX E Packages used in this book

coin Torsten Hothorn, Kurt Hornik,

Mark A. van de Wiel, and

Achim Zeileis

Conditional inference procedures in

a permutation test framework

12

corrgram Kevin Wright Plots a corrgram 11

corrperm Douglas M. Potter Permutation tests of correlation

with repeated measurements

12

doBy Søren Højsgaard with contribu-

tions from Kevin Wright and Ales-

sandro A. Leidi

Group-wise computations of sum-

mary statistics, general linear con-

trasts and other utilities

7

doParallel Revolution Analytics, Steve

Weston

foreach parallel adaptor for the

parallel package

20

effects John Fox and Jangman Hong Effect displays for linear, general-

ized linear, multinomial-logit, and

proportional-odds logit models

8, 9

FactoMineR Francois Husson, Julie Josse,

Sebastien Le, and Jeremy Mazet

Multivariate exploratory data analy-

sis and data mining with R

14

FAiR Ben Goodrich Factor analysis using a genetic

algorithm

14

fCalendar Diethelm Wuertz and Yohan

Chalabi

Functions for chronological and

calendrical objects

4

flexclust Friedrich Leish and Evgenia

Dimnitriadou

Flexible cluster algorithms 16

forecast Rob J. Hyndman with contribu-

tions from George Athanasopou-

los, Slava Razbash, Drew Schmidt,

Zhenyu Zhou, Yousaf Khan, Chris-

toph Bergmeir, and Earo Wang

Methods and tools for displaying

and analyzing univariate time series

forecasts, including exponential

smoothing via state space models

and automatic ARIMA modeling

15

foreach Revolution Analytics, Steve

Weston

foreach looping construct for R 20

foreign R Core members Saikat DebRoy,

Roger Bivand, and others

Reads data stored by Minitab, S,

SAS, SPSS, Stata, Systat, dBase,

and others

2

gclus Catherine Hurley Clustering graphics 1, 11

ggplot2 Hadley Wickam An implementation of the Grammar

of Graphics

19, 20

glmPerm Wiebke Werft and Douglas M.

Potter

Permutation test for inference in

generalized linear models

12

Table E.1 Contributed packages used in this book (continued)

Package Authors Description Chapter(s)

www.it-ebooks.info

http://www.it-ebooks.info/

546 APPENDIX E Packages used in this book

gmodels Gregory R. Warnes. Includes R

source code and/or documenta-

tion contributed by Ben Bolker,

Thomas Lumley, and Randall C.

Johnson. Contributions from Ran-

dall C. Johnson are copyright

(2005) SAIC-Frederick, Inc.

Various R programming tools for

model fitting

7

gplots Gregory R. Warnes. Includes R

source code and/or documenta-

tion contributed by Ben Bolker,

Lodewijk Bonebakker, Robert

Gentleman, Wolfgang Huber, Andy

Liaw, Thomas Lumley, Martin

Maechler, Arni Magnusson,

Steffen Moeller, Marc Schwartz,

and Bill Venables.

Various R programming tools for

plotting data

6, 9

grid Paul Murrell A rewrite of the graphics layout

capabilities, plus some support for

interaction

19

gridExtra Baptiste Auguie Functions for grid graphics 19

gvlma Edsel A. Pena and Elizabeth H.

Slate

Global validation of linear models

assumptions

8

rhdf5 Bernd Fisher and Gregoire Paue Interface to the NCSA HDF5 library 2

roxygen2 Hadley Wickham A Doxygen-like in-source documen-

tation system

21

hexbin Dan Carr, ported by Nicholas

Lewin-Koh and Martin Maechler

Hexagonal binning routines 11

HH Richard M. Heiberger Support software for Statistical

Analysis and Data Display by Hei-

berger and Holland (Springer, 2004)

9

kernlab Alexandros Karatzoglou, Alex

Smola, and Kurt Hornik

Kernel-based machine learning lab 17

knitr Yihui Xie A general-purpose package for

dynamic report generation in R

22

Hmisc Frank E. Harrell Jr., with contribu-

tions from many other users

Harrell miscellaneous functions for

data analysis, high-level graphics,

utility operations, and more

2, 3, 7

kmi Arthur Allignol Kaplan-Meier multiple imputation

for the analysis of cumulative inci-

dence functions in the competing

risks setting

18

Table E.1 Contributed packages used in this book (continued)

Package Authors Description Chapter(s)

www.it-ebooks.info

http://www.it-ebooks.info/

547APPENDIX E Packages used in this book

lattice Deepayan Sarkar Lattice graphics 19

lavaan Yves Rosseel Functions for latent variable mod-

els, including confirmatory factor

analysis, structural equation model-

ing, and latent growth-curve models

14

lcda Michael Buecker Latent class-discriminant

analysis

14

leaps Thomas Lumley, using Fortran

code by Alan Miller

Regression subset selection,

including exhaustive search

8

lmPerm Bob Wheeler Permutation tests for linear models 12

logregperm Douglas M. Potter Permutation test for inference in

logistic regression

12

longitudinal-
Data

Christophe Genolini Tools for longitudinal data 18

lsa Fridolin Wild Latent semantic analysis 14

ltm Dimitris Rizopoulos Latent trait models under item

response theory

14

lubridate Garrett Grolemund and Hadley

Wickham

Functions to identify and parse

date-time data, extract and modify

components of a date-time, per-

form accurate math on date-times,

and handle time zones and Daylight

Savings Time

4

MASS S original by Venables and

Ripley. R port by Brian Ripley,

following earlier work by Kurt

Hornik and Albrecht Gebhardt.

Functions and datasets to support

Venables’ and Ripley’s Modern

Applied Statistics with S, 4th edition

(Springer, 2003)

4, 5, 7, 8,

9, 12

mlogit Yves Croissant Estimation of the multinomial logit

model

13

multcomp Torsten Hothorn, Frank Bretz,

Peter Westfall, Richard M.

Heiberger, and Andre Schuetzen-

meister

Simultaneous tests and confi-

dence intervals for general linear

hypotheses in parametric models,

including linear, generalized linear,

linear mixed effects, and survival

models

9, 12

mvnmle Kevin Gross, with help from

Douglas Bates

ML estimation for multivariate nor-

mal data with missing values

18

mvoutlier Moritz Gschwandtner and Peter

Filzmoser

Multivariate outlier detection based

on robust methods

9

Table E.1 Contributed packages used in this book (continued)

Package Authors Description Chapter(s)

www.it-ebooks.info

http://www.it-ebooks.info/

548 APPENDIX E Packages used in this book

NbClustv Malika Charrad, Nadia Ghazzali,

Veronique Boiteau, and Azam

Niknafs

An examination of indices for deter-

mining the number of clusters

16

ncdf, ncdf4 David Pierce Interface to Unidata netCDF data

files

2

nFactors Gilles Raiche Parallel analysis and non-

graphical solutions to the Cattell

scree test

14

OpenMx Steven Boker, Michael Neale,

Hermine Maes, Michael Wilde,

Michael Spiegel, Timothy R. Brick,

Jeffrey Spies, Ryne Estabrook,

Sarah Kenny, Timothy Bates,

Paras Mehta, and John Fox

Advanced structural equation

modeling.

14

odfWeave Max Kuhn, with contributions from

Steve Weston, Nathan Coulter,

Patrick Lenon, Zekai Otles, and

the R Core Team

Sweave processing of Open

Document Format (ODF) files

22

pastecs Frederic Ibanez, Philippe Gros-

jean, and Michele Etienne

Package for the analysis of

space-time ecological series

7

party Torsten Hothorn, Kurt Hornik,

Carolin Strobl, and Achim Zeileis

A laboratory for recursive

partitioning

17

poLCA Drew Linzer and Jeffrey Lewis Polytomous variable latent-class

analysis

14

psych William Revelle Procedures for psychological, psy-

chometric, and personality research

7, 14

pwr Stephane Champely Basic functions for power analysis 10

qcc Luca Scrucca Quality-control charts 13

randomLCA Ken Beath Random effects latent-class

analysis

14

randomForest Fortran original by Leo Breiman

and Adele Cutler, R port by Andy

Liaw and Matthew Wiener

Breiman and Cutler's random

forests for classification and

regression

17

R2wd Christian Ritter Writes MS-Word documents from R 22

rattle Graham Williams, Mark Vere Culp,

Ed Cox, Anthony Nolan, Denis

White, Daniele Medri, Akbar

Waljee (OOB AUC for Random

Forest), and Brian Ripley (original

author of print.summary.nnet)

Graphical user interface for data

mining in R

16, 17

Table E.1 Contributed packages used in this book (continued)

Package Authors Description Chapter(s)

www.it-ebooks.info

http://www.it-ebooks.info/

549APPENDIX E Packages used in this book

Rcmdr John Fox, with contributions from

Liviu Andronic, Michael Ash,

Theophilius Boye, Stefano Calza,

Andy Chang, Philippe Grosjean,

Richard Heiberger, G. Jay Kerns,

Renaud Lancelot, Matthieu

Lesnoff, Uwe Ligges, Samir

Messad, Martin Maechler,

Robert Muenchen, Duncan

Murdoch, Erich Neuwirth, Dan

Putler, Brian Ripley, Miroslav

Ristic, and Peter Wolf

R Commander, a platform-

independent, basic-statistics

graphical user interface for R,

based on the tcltk package

Appendix A

reshape2 Hadley Wickham Flexibly reshape data 4, 5, 7, 20

rgl Daniel Adler and Duncan Murdoch 3D visualization device system

(OpenGL)

11

RJDBC Simon Urbanek Provides access to databases

through the JDBC interface

2

rms Frank E. Harrell, Jr. Regression modeling strategies:

about 225 functions that assist

with and streamline regression

modeling, testing, estimations,

validation, graphics, prediction,

and typesetting

13

robust Jiahui Wang, Ruben Zamar, Alfio

Marazzi, Victor Yohai, Matias

Salibian-Barrera, Ricardo

Maronna, Eric Zivot, David Rocke,

Doug Martin, Martin Maechler,

and Kjell Konis

A package of robust methods 13

RODBC Brian Ripley and Michael Lapsley ODBC database access 2

rpart Terry Therneau, Beth Atkinson,

and Brian Ripley (author of the

initial R port)

Recursive partitioning and regres-

sion trees

17

ROracle David A. James and Jake Luciani Oracle database interface for R 2

rrcov Valentin Todorov Robust location and scatter

estimation, and robust multi-

variate analysis with a high

breakdown point

9

sampling Yves Tillé and Alina Matei Functions for drawing and calibrat-

ing samples

4

scatterplot3d Uwe Ligges Plots a three-dimensional (3D)

point cloud

11

Table E.1 Contributed packages used in this book (continued)

Package Authors Description Chapter(s)

www.it-ebooks.info

http://www.it-ebooks.info/

550 APPENDIX E Packages used in this book

sem John Fox, with contributions from

Adam Kramer and Michael

Friendly

Structural equation models 14

SeqKnn Ki-Yeol Kim and Gwan-Su Yi,

CSBio lab, Information and

Communications University

Sequential KNN imputation method 18

sm Adrian Bowman and Adelchi

Azzalini. Ported to R by B. D.

Ripley up to version 2.0, version

2.1 by Adrian Bowman and

Adelchi Azzalini, version 2.2 by

Adrian Bowman.

Smoothing methods for nonpara-

metric regression and density

estimation

6, 9

vcd David Meyer, Achim Zeileis, and

Kurt Hornik

Functions for visualizing categori-

cal data

1, 6, 7,

11, 12

vegan Jari Oksanen, F. Guillaume

Blanchet, Roeland Kindt, Pierre

Legendre, R. B. O’Hara, Gavin L.

Simpson, Peter Solymos,

M. Henry, H. Stevens, and

Helene Wagner

Ordination methods, diversity

analysis, and other functions for

community and vegetation

ecologists

9

VIM Matthias Templ, Andreas Alfons,

and Alexander Kowarik

Visualization and imputation of

missing values

18

xlsx Adrian A. Dragulescu Reads, writes, and formats Excel

2007 (.xlsx) files

2

XML Duncan Temple Lang Tools for parsing and generating

XML in R and S-Plus

2

Table E.1 Contributed packages used in this book (continued)

Package Authors Description Chapter(s)

www.it-ebooks.info

http://www.it-ebooks.info/

551

appendix F
Working with large datasets

R holds all of its objects in virtual memory. For most of us, this design decision has
led to a zippy interactive experience, but for analysts working with large datasets, it

can lead to slow program execution and memory-related errors.

 Memory limits depend primarily on the R build (32- versus 64-bit) and the OS

version involved. Error messages starting with “cannot allocate vector of size” typi-
cally indicate a failure to obtain sufficient contiguous memory, whereas error mes-

sages starting with “cannot allocate vector of length” indicate that an address limit

has been exceeded. When working with large datasets, try to use a 64-bit build if at
all possible. See ?Memory for more information.

 There are three issues to consider when working with large datasets: efficient

programming to speed execution, storing data externally to limit memory issues,
and using specialized statistical routines designed to efficiently analyze massive

amounts of data. First we’ll consider simple solutions for each. Then we’ll turn to

more comprehensive (and complex) solutions for working with big data.

F.1 Efficient programming

A number of programming tips can help you improve performance when working

with large datasets:

■ Vectorize calculations when possible. Use R’s built-in functions for manipu-
lating vectors, matrices, and lists (for example, ifelse, colMeans, and row-

Sums), and avoid loops (for and while) when feasible.

■ Use matrices rather than data frames (they have less overhead).

■ When using the read.table() family of functions to input external data into

data frames, specify the colClasses and nrows options explicitly, set com-

ment.char = "", and specify "NULL" for columns that aren’t needed. This
will decrease memory usage and speed up processing considerably. When

reading external data into a matrix, use the scan() function instead.

www.it-ebooks.info

http://www.it-ebooks.info/

552 APPENDIX F Working with large datasets

■ Correctly size objects initially, rather than growing them from smaller objects by

appending values.

■ Use parallelization for repetitive, independent, and numerically intensive tasks.

■ Test programs on a sample of the data, in order to optimize code and remove

bugs, before attempting a run on the full dataset.

■ Delete temporary objects and objects that are no longer needed. The call

rm(list=ls()) removes all objects from memory, providing a clean slate. Spe-

cific objects can be removed with rm(object). After removing large objects, a

call to gc() will initiate garbage collection, ensuring that the objects are

removed from memory.

■ Use the function .ls.objects() described in Jeromy Anglim’s blog entry

“Memory Management in R: A Few Tips and Tricks” (jeromyanglim.blogspot

.com) to list all workspace objects sorted by size (MB). This function will help

you find and deal with memory hogs.

■ Profile your programs to see how much time is being spent in each function.

You can accomplish this with the Rprof()and summaryRprof() functions. The

system.time() function can also help. The profr and prooftools packages

provide functions that can help in analyzing profiling output.

■ Use compiled external routines to speed up program execution. You can use

the Rcpp package to transfer R objects to C++ functions and back when more

optimized subroutines are needed.

Section 20.4 offers examples of vectorization, efficient data input, correctly sizing

objects, and parallelization.

 With large datasets, increasing code efficiency will only get you so far. When you

bump up against memory limits, you can also store your data externally and use spe-

cialized analysis routines.

F.2 Storing data outside of RAM

Several packages are available for storing data outside of R’s main memory. The strat-

egy involves storing data in external databases or in binary flat files on disk and then

accessing portions as needed. Several useful packages are described in table F.1.

Table F.1 R packages for accessing large datasets

Package Description

bigmemory Supports the creation, storage, access, and manipulation of massive

matrices. Matrices are allocated to shared memory and memory-mapped

files.

ff Provides data structures that are stored on disk but behave as if they’re

in RAM.

filehash Implements a simple key-value database where character string keys are

associated with data values stored on disk.

www.it-ebooks.info

http://www.it-ebooks.info/

553APPENDIX F Working with large datasets

These packages help overcome R’s memory limits on data storage. But you also need

specialized methods when you attempt to analyze large datasets in a reasonable length

of time. Some of the most useful are described next.

F.3 Analytic packages for out-of-memory data

R provides several packages for the analysis of large datasets:

■ The biglm and speedglm packages fit linear and generalized linear models to
large datasets in a memory-efficient manner. This offers lm() and glm() type

functionality when dealing with massive datasets.

■ Several packages offer analytic functions for working with the massive matrices

produced by the bigmemory package. The biganalytics package offers

k-means clustering, column statistics, and a wrapper to biglm. The bigrf pack-
age can be used to fit classification and regression forests. The bigtabulate

package provides table(), split(), and tapply() functionality, and the

bigalgebra package provides advanced linear algebra functions.
■ The biglars package offers least-angle regression, lasso, and stepwise regres-

sion for datasets that are too large to be held in memory, when used in conjunc-

tion with the ff package.

■ The data.table package provides an enhanced version of data.frame that

includes faster aggregation; faster ordered and overlapping range joins; and
faster column addition, modification, and deletion by reference by group (with-

out copies). You can use the data.table structure with large datasets (for

example, 100 GB in RAM), and it’s compatible with any R function expecting a
data frame.

Each of these packages accommodates large datasets for specific purposes and is rela-
tively easy to use. More comprehensive solutions for analyzing data in the terabyte

range are described next.

F.4 Comprehensive solutions for working with enormous datasets

At least five projects have been designed to facilitate the use of R with terabyte-class

datasets. Three are free and open source (RHIPE, RHadoop, and pbdr), and two are

commercial products (Revolution R Enterprise with RevoScaleR and Oracle R Enter-

prise). Each requires some familiarity with high-performance computing.
 The RHIPE package (www.datadr.org/) provides a programming environment that

deeply integrates R and Hadoop (a free Java-based software framework for the

ncdf, ncdf4 Provide an interface to Unidata netCDF data files.

RODBC, RMySQL, ROracle,

RPostgreSQL, RSQLite
Each provides access to external relational database management sys-

tems.

Table F.1 R packages for accessing large datasets

Package Description

www.it-ebooks.info

www.datadr.org/
http://www.it-ebooks.info/

554 APPENDIX F Working with large datasets

processing of large datasets in a distributed computing environment). Additional soft-

ware from the same authors provides “divide and recombine” methods and data visu-

alization for very large datasets.

 The RHadoop project offers a collection of R packages for managing and analyz-

ing data with Hadoop. The rmr package provides Hadoop MapReduce functionality

from within R, and the rhdfs and rhbase packages support access to HDFS file systems

and HBASE datastores. A Wiki (https://github.com/RevolutionAnalytics/RHadoop/

wiki) describes the project and provides tutorials. Note that RHadoop packages must

be installed from GitHub rather than CRAN.

 The pbdR (Programming with Big Data in R) project enables high-level data paral-

lelism in R through a simple interface to scalable, high-performance libraries (such as

MPI, ScaLAPACK, and netCDF4). The pbdR software also supports the single program,

multiple data (SPMD) model on large-scale computing clusters. See http://r-pbd.org/

for details.

 Revolution R Enterprise (www.revolutionanalytics.com) is a commercial version of

R that includes RevoScaleR, a package supporting scalable data analyses and high-

performance computing. RevoScaleR uses a binary XDF data file format to optimize

streaming data from disk to memory, and it provides a series of big-data algorithms for

common statistical analyses. You can perform data-management tasks and obtain sum-

mary statistics, cross tabulations, correlations and covariances, nonparametric statis-

tics, linear and generalized linear regression, stepwise regression, k-means clustering,

and classification and regression trees on terabyte-sized datasets. Additionally, Revolu-

tion R Enterprise can be integrated with Hadoop (via RHadoop packages) and IBM

Netezza (via a plug-in for IBM PureData System for Analytics). At the time of this writ-

ing, students and professors in academic settings can obtain a free software subscrip-

tion (excluding the IBM components).

 Finally, Oracle R Enterprise (www.oracle.com) is a commercial product that makes

the R environment available for use with massive datasets stored in Oracle databases

and Hadoop. Oracle R Enterprise is part of Oracle Advanced Analytics, and it requires

an installation of Oracle Database Enterprise Edition. Virtually all of R’s functionality,

including the thousands of contributed packages, can be applied to terabyte-sized

data problems using the Oracle R Enterprise interface. This is a relatively expensive

but comprehensive solution, and it will appeal primarily to large organizations with

deep pockets.

 Working with datasets in the gigabyte-to-terabyte range can be challenging in any

language. Each of these approaches comes with a significant learning curve. Of the

four, RevoScaleR is perhaps the easiest to learn and install. (Important disclaimer: I

teach Revolution R courses as an adjunct instructor and may be biased.)

 Additional information on the analysis of large datasets is available in the CRAN

task view “High-Performance and Parallel Computing with R” (http://cran.r-project

.org/web/views). This is an area of rapid change and development, so be sure to

check back often.

www.it-ebooks.info

https://github.com/RevolutionAnalytics/RHadoop/wiki
https://github.com/RevolutionAnalytics/RHadoop/wiki
http://r-pbd.org/
http://cran.r-project.org/web/views
http://cran.r-project.org/web/views
www.revolutionanalytics.com
www.oracle.com
http://www.it-ebooks.info/

555

appendix G
Updating an R installation

As consumers, we take for granted that we can update a piece of software via a

Check for Updates option. In chapter 1, I noted that the update.packages() func-

tion can be used to download and install the most recent version of a contributed

package. Unfortunately, updating the R installation itself can be more complicated.

 If you want to update an R installation from version 5.1.0 to 6.1.1, you must get

creative. (As I write this, the current version is actually 3.1.1, but I want this book to

appear hip and current for years to come.) Two methods are described here: an

automated method using the installr package and a manual method that works

on all platforms.

G.1 Automated installation (Windows only)

If you’re a Windows user, you can use the installr package to update an R installa-

tion. First install the package and load it:

install.packages("installr")
library(installr)

This adds an Update menu to the RGui (see figure G.1).

 The menu allows you to install a new version of R, update existing packages,

and install other useful software produces (such as RStudio). Currently, the

Figure G.1 Update menu added to Windows RGui by the installr package

www.it-ebooks.info

http://www.it-ebooks.info/

556 APPENDIX G Updating an R installation

installr package is only available for Windows platforms. For Mac users, or Windows

users that don’t want to use installr, updating R is usually a manual process.

G.2 Manual installation (Windows and Mac OS X)

Downloading and installing the latest version of R from CRAN (http://cran.r-project

.org/bin) is relatively straightforward. The complicating factor is that customizations

(including previously installed contributed packages) aren’t included in the new
installation. In my current setup, I have more than 500 contributed packages

installed. I really don’t want to have to write down their names and reinstall them by

hand the next time I upgrade my R installation!
 There has been much discussion on the web concerning the most elegant and effi-

cient way to update an R installation. The method described here is neither elegant

nor efficient, but I find that it works well on both Windows and Mac platforms.
 In this approach, you use the installed.packages() function to save a list of

packages to a location outside of the R directory tree, and then you use the list with

the install.packages() function to download and install the latest contributed
packages into the new R installation. Here are the steps:

1 If you have a customized Rprofile.site file (see appendix B), save a copy outside

of R.

2 Launch your current version of R, and issue the following statements

oldip <- installed.packages()[,1]
save(oldip, file="path/installedPackages.Rdata")

where path is a directory outside of R.

3 Download and install the newer version of R.

4 If you saved a customized version of the Rprofile.site file in step 1, copy it into

the new installation.

5 Launch the new version of R, and issue the following statements

load("path/installedPackages.Rdata")
newip <- installed.packages()[,1]
for(i in setdiff(oldip, newip)){
 install.packages(i)
}

where path is the location specified in step 2.

6 Delete the old installation (optional).

This approach will install only packages that are available from CRAN. It won’t find

packages obtained from other locations. You’ll have to find and download these sepa-
rately. Luckily, the process displays a list of packages that can’t be installed. During my

last installation, globaltest and Biobase couldn’t be found. Because I got them from

the Bioconductor site, I was able to install them via this code:

source("http://bioconductor.org/biocLite.R")
biocLite("globaltest")
biocLite("Biobase")

www.it-ebooks.info

http://bioconductor.org/biocLite.R
http://cran.r-project.org/bin
http://cran.r-project.org/bin
http://www.it-ebooks.info/

557APPENDIX G Updating an R installation

Step 6 involves the optional deletion of the old installation. On a Windows machine,

more than one version of R can be installed at a time. If desired, uninstall the older

version via Start > Control Panel > Uninstall a Program. On Mac platforms, the new

version of R will overwrite the older version. To delete any remnants on a Mac, use the

Finder to go to the /Library/Frameworks/R.frameworks/versions/ directory, and

delete the folder representing the older version.

 Clearly, manually updating an existing version of R is more involved than is desir-

able for such a sophisticated piece of software. I’m hopeful that someday this appen-

dix will simply say “Select the Check for Updates option” to update an R installation.

G.3 Updating an R installation (Linux)

The process of updating an R installation on a Linux platform is quite different from

the process used on Windows and Mac OS X machines. Additionally, it varies by Linux

distribution (Debian, Red Hat, SUSE, or Ubuntu). See http://cran.r-project.org/

bin/linux for details.

www.it-ebooks.info

http://cran.r-project.org/bin/linux
http://cran.r-project.org/bin/linux
http://www.it-ebooks.info/

558

references

 Allison, P. 2001. Missing Data. Thousand Oaks, CA: Sage.

 Allison, T. and D. Chichetti. 1976. “Sleep in Mammals: Ecological and Constitutional Correlates.”
Science 194 (4266): 732–734.

 Anderson, M. J. 2006. “Distance-Based Tests for Homogeneity of Multivariate Dispersions.” Biometrics
62:245–253.

 Baade, R. and R. Dye. 1990. “The Impact of Stadiums and Professional Sports on Metropolitan Area
Development.” Growth and Change 21:1–14.

 Bandalos, D. L. and M. R. Boehm-Kaufman. 2009. “Four Common Misconceptions in Exploratory
Factor Analysis.” In Statistical and Methodological Myths and Urban Legends, edited by C. E. Lance
and R. J. Vandenberg, 61–87. New York: Routledge.

 Bates, D. 2005. “Fitting Linear Mixed Models in R.” R News 5 (1): 27–30. www.r-project.org/doc/
Rnews/Rnews_2005-1.pdf.

 Breslow, N. and D. Clayton. 1993. “Approximate Inference in Generalized Linear Mixed Models.”
Journal of the American Statistical Association 88:9–25.

 Bretz, F., T. Hothorn, and P. Westfall. 2010. Multiple Comparisons Using R. Boca Raton, FL: Chapman &
Hall.

 Canty, A. J. 2002. “Resampling Methods in R: The boot Package.” R News 2 (3): 2–7. www.r-project
.org/doc/Rnews/Rnews_2002-3.pdf.

 Chambers, J. M. 2008. Software for Data Analysis: Programming with R. New York: Springer.

 Chang, W. 2013. R Graphics Cookbook. Sebastopol, California: O’Reilly.

 Cleveland, W. 1981. “LOWESS: A Program for Smoothing Scatter Plots by Robust Locally Weighted
Regression.” The American Statistician 35:54.

 _____. 1994. The Elements of Graphing Data. Monterey, CA: Wadsworth.

 _____. 1993. Visualizing Data. Summit, NJ: Hobart Press.

 Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillsdale, NJ: Lawrence
Erlbaum.

 Cowpertwait, P. S. and A. V. Metcalfe. 2009. Introductory Time Series with R. Auckland, New Zealand:
Springer.

 Coxe, S., S. West, and L. Aiken. 2009. “The Analysis of Count Data: A Gentle Introduction to Poisson
Regression and Its Alternatives.” Journal of Personality Assessment 91:121–136.

www.it-ebooks.info

www.r-project.org/doc/Rnews/Rnews_2005-1.pdf
www.r-project.org/doc/Rnews/Rnews_2005-1.pdf
www.r-project.org/doc/Rnews/Rnews_2002-3.pdf
www.r-project.org/doc/Rnews/Rnews_2002-3.pdf
http://www.it-ebooks.info/

REFERENCES 559

 Culbertson, W. and D. Bradford. 1991. “The Price of Beer: Some Evidence for Interstate Comparisons.”
International Journal of Industrial Organization 9:275–289.

 DiStefano, C., M. Zhu, and D. Mîndrila. 2009. “Understanding and Using Factor Scores: Considerations
for the Applied Researcher.” Practical Assessment, Research & Evaluation 14 (20). http://pareonline
.net/pdf/v14n20.pdf.

 Dobson, A. and A. Barnett. 2008. An Introduction to Generalized Linear Models, 3rd ed. Boca Raton, FL:
Chapman & Hall.

 Dunteman, G. and M-H Ho. 2006. An Introduction to Generalized Linear Models. Thousand Oaks, CA: Sage.

 Efron, B. and R. Tibshirani. 1998. An Introduction to the Bootstrap. New York: Chapman & Hall.

 Everitt, B. S., S. Landau, M. Leese, and D. Stahl. 2011. Cluster Analysis, 5th ed. London: Wiley.

 Fair, R. C. 1978. “A Theory of Extramarital Affairs.” Journal of Political Economy 86:45–61.

 Faraway, J. 2006. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric
Regression Models. Boca Raton, FL: Chapman & Hall.

 Fawcett, T. 2005. “An Introduction to ROC Analysis.” Pattern Recognition Letters 27:861–874.

 Fox, J. 2002. An R and S-Plus Companion to Applied Regression. Thousand Oaks, CA: Sage.

 _____. 2002. “Bootstrapping Regression Models.” http://mng.bz/pY9m.

 _____. 2008. Applied Regression Analysis and Generalized Linear Models. Thousand Oaks, CA: Sage.

 Fwa, T., ed. 2006. The Handbook of Highway Engineering, 2nd ed. Boca Raton, FL: CRC Press.

 Gentleman, R. 2009. R Programming for Bioinformatics. Boca Raton, FL: Chapman &Hall/CRC.

 Good, P. 2006. Resampling Methods: A Practical Guide to Data Analysis, 3rd ed. Boston: Birkhäuser.

 Gorsuch, R. L. 1983. Factor Analysis, 2nd ed. Hillsdale, NJ: Lawrence Erlbaum.

 Greene, W. H. 2003. Econometric Analysis, 5th ed. Upper Saddle River, NJ: Prentice Hall.

 Grissom, R. and J. Kim. 2005. Effect Sizes for Research: A Broad Practical Approach. Mahwah, NJ: Lawrence
Erlbaum.

 Groemping, U. 2009. “CRAN Task View: Design of Experiments (DoE) and Analysis of Experimental
Data.” http://cran.r-project.org/web/views/ExperimentalDesign.html.

 Hand, D. J. and C. C. Taylor. 1987. Multivariate Analysis of Variance and Repeated Measures. London:
Chapman & Hall.

 Harlow, L., S. Mulaik, and J. Steiger. 1997. What If There Were No Significance Tests? Mahwah, NJ: Lawrence
Erlbaum.

 Hartigan, J. A. and M. A. Wong. 1979. “A K-Means Clustering Algorithm.” Applied Statistics 28:100–108.

 Hayton, J. C., D. G. Allen, and V. Scarpello. 2004. “Factor Retention Decisions in Exploratory Factor
Analysis: A Tutorial on Parallel Analysis.” Organizational Research Methods 7:191–204.

 Hsu, S., M. Wen, and M. Wu. 2009. “Exploring User Experiences as Predictors of MMORPG Addiction.”
Computers and Education 53:990–999.

 Jacoby, W. G. 2006. “The Dot Plot: A Graphical Display for Labeled Quantitative Values.” Political Method-
ologist 14:6–14.

 Johnson, J. 2004. “Factors Affecting Relative Weights: The Influence of Sample and Measurement Error.”
Organizational Research Methods 7:283–299.

 Johnson, J. and J. Lebreton. 2004. “History and Use of Relative Importance Indices in Organizational
Research.” Organizational Research Methods 7:238–257.

 Koch, G. and S. Edwards. 1988. “Clinical Efficiency Trials with Categorical Data.” In Statistical Analysis
with Missing Data, 2nd ed., by R. J. A. Little and D. Rubin. Hoboken, NJ: John Wiley & Sons, 2002.

 Kuhn, M. and K. Johnson. 2013. Applied Predictive Modeling. New York: Springer.

∩

www.it-ebooks.info

http://pareonline.net/pdf/v14n20.pdf
http://pareonline.net/pdf/v14n20.pdf
http://mng.bz/pY9m
http://cran.r-project.org/web/views/ExperimentalDesign.html
http://www.it-ebooks.info/

REFERENCES560

 LeBreton, J. M and S. Tonidandel. 2008. “Multivariate Relative Importance: Extending Relative Weight
Analysis to Multivariate Criterion Spaces.” Journal of Applied Psychology 93:329–345.

 Lemon, J. and A. Tyagi. 2009. “The Fan Plot: A Technique for Displaying Relative Quantities and Differ-
ences.” Statistical Computing and Graphics Newsletter 20:8–10. http://stat-computing.org/newsletter/
issues/scgn-20-1.pdf.

 Licht, M. 1995. “Multiple Regression and Correlation.” In Reading and Understanding Multivariate
Statistics, edited by L. Grimm and P. Yarnold. Washington, DC: American Psychological Association,
19–64.

 Mangasarian, O. L. and W. H. Wolberg. 1990. “Cancer Diagnosis via Linear Programming.” SIAM News,
23:1–18.

 McCall, R. B. 2000. Fundamental Statistics for the Behavioral Sciences, 8th ed. New York: Wadsworth.

 McCullagh, P. and J. Nelder. 1989. Generalized Linear Models, 2nd ed. Boca Raton, FL: Chapman & Hall.

 Meyer, D., A. Zeileis, and K. Hornick. 2006. “The Strucplot Framework: Visualizing Multi-way Contin-
gency Tables with vcd.” Journal of Statistical Software 17 (3):1–48. www.jstatsoft.org/v17/i03/paper.

 Montgomery, D. C. 2007. Engineering Statistics. Hoboken, NJ: John Wiley & Sons.

 Mooney, C. and R. Duval. 1993. Bootstrapping: A Nonparametric Approach to Statistical Inference. Monterey,
CA: Sage.

 Mulaik, S. 2009. Foundations of Factor Analysis, 2nd ed. Boca Raton, FL: Chapman & Hall.

 Murrell, P. 2011. R Graphics, 2nd ed. Boca Raton, FL: Chapman & Hall/CRC.

 Nenadić, O. and M. Greenacre. 2007. “Correspondence Analysis in R, with Two- and Three-Dimensional
Graphics: The ca Package.” Journal of Statistical Software 20 (3). www.jstatsoft.org/v20/i03/paper.

 Peace, K. E., ed. 1987. Biopharmaceutical Statistics for Drug Development. New York: Marcel Dekker, 403–451.

 Pena, E. and E. Slate. 2006. “Global Validation of Linear Model Assumptions.” Journal of the American
Statistical Association 101:341–354.

 Pinheiro, J. C. and D. M. Bates. 2000. Mixed-Effects Models in S and S-PLUS. New York: Springer.

 Potvin, C., M. J. Lechowicz, and S. Tardif. 1990. “The Statistical Analysis of Ecophysiological Response
Curves Obtained from Experiments Involving Repeated Measures.” Ecology 71:1389–1400.

 Rosenthal, R., R. Rosnow, and D. Rubin. 2000. Contrasts and Effect Sizes in Behavioral Research: A Correla-
tional Approach. Cambridge, UK: Cambridge University Press.

 Sarkar, D. 2008. Lattice: Multivariate Data Visualization with R. New York: Springer.

 Schafer, J. and J. Graham. 2002. “Missing Data: Our View of the State of the Art.” Psychological Methods
7:147–177.

 Schlomer, G., S. Bauman, and N. Card. 2010. “Best Practices for Missing Data Management in Counsel-
ing Psychology.” Journal of Counseling Psychology 57:1–10.

 Shah, A. 2005. “Getting Started with the boot Package in R for Statistical Inference.” www.mayin.org/
ajayshah/KB/R/documents/boot.html.

 Shumway, R. H. and D. S. Stoffer. 2010. Time Series Analysis and Its Applications. New York: Springer.

 Silva, R. B., D. F. Ferreirra, and D. A. Nogueira. 2008. “Robustness of Asymptotic and Bootstrap Tests for
Multivariate Homogeneity of Covariance Matrices.” Ciênc. agrotec. 32:157–166.

 Simon, J. 1997. “Resampling: The New Statistics.” www.resample.com/intro-text-online/.

 Snedecor, G. W. and W. G. Cochran. 1988. Statistical Methods, 8th ed. Ames, IA: Iowa State University
Press.

 Statnikov, A., C. F. Aliferis, D. P. Hardin, and I. Guyon. 2011. A Gentle Introduction to Support Vector
Machines in Biomedicine (vol. 1: Theory and Methods). Hackensack, NJ: World Scientific Publishing.

 Torgo, L. 2010. Data Mining with R: Learning with Case Studies. Boca Raton, Florida: Chapman & Hall/
CRC.

www.it-ebooks.info

http://stat-computing.org/newsletter/issues/scgn-20-1.pdf
http://stat-computing.org/newsletter/issues/scgn-20-1.pdf
www.jstatsoft.org/v17/i03/paper
www.jstatsoft.org/v20/i03/paper
www.mayin.org/ajayshah/KB/R/documents/boot.html
www.mayin.org/ajayshah/KB/R/documents/boot.html
www.resample.com/intro-text-online/
http://www.it-ebooks.info/

REFERENCES 561

 UCLA: Academic Technology Services, Statistical Consulting Group. 2009. “Repeated Measures Analysis
with R.” http://mng.bz/a9c7.

 van Buuren, S. and K. Groothuis-Oudshoorn. 2010. “MICE: Multivariate Imputation by Chained Equa-
tions in R.” Journal of Statistical Software, forthcoming. http://mng.bz/3EH5.

 Venables, W. N. and B. D. Ripley. 1999. Modern Applied Statistics with S-PLUS, 3rd ed. New York: Springer.

 _____. 2000. S Programming. New York: Springer.

 Westfall, P. H., Y. Hochberg, D. Rom, R. Wolfinger, and R. Tobias. 1999. Multiple Comparisons and Multiple
Tests Using the SAS System. Cary, NC: SAS Institute.

 Wickham, H. 2009a. ggplot2: Elegant Graphics for Data Analysis. New York: Springer.

 _____. 2009b. “A Layered Grammar of Graphics.” Journal of Computational and Graphical Statistics 19:3–28.

 Williams, G. 2011. Data Mining with Rattle and R. New York: Springer.

 Wilkinson, L. 2005. The Grammar of Graphics. New York: Springer-Verlag.

 Yu, C. H. 2003. “Resampling Methods: Concepts, Applications, and Justification.” Practical Assessment,
Research & Evaluation, 8 (19). http://pareonline.net/getvn.asp?v=8&n=19.

 Yu-Sung, S., A. Gelman, J. Hill, and M. Yajima. 2011. “Multiple Imputation with Diagnostics (mi) in R:
Opening Windows into the Black Box.” Journal of Statistical Software 45 (2). www.jstatsoft.org/v45/
i02/paper.

 Zuur, A. F., E. Ieno, N. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed Effects Models and Extensions in
Ecology with R. New York: Springer.

www.it-ebooks.info

http://mng.bz/a9c7
http://mng.bz/3EH5
http://pareonline.net/getvn.asp?v=8&n=19
www.jstatsoft.org/v45/i02/paper
www.jstatsoft.org/v45/i02/paper
http://www.it-ebooks.info/

REFERENCES562

www.it-ebooks.info

http://www.it-ebooks.info/

563

index

Symbols

^ operator 175, 542
^ or ** operator 74
^ symbol 172
- operator 73, 542
- symbol 172
-1 symbol 172
: symbol 172
!= operator 75
! operator 75
?? function 11
. symbol 172
[[]] function, with lists 31
[] function

with data frames 25
with matrices 23
with vectors 23

{} brackets 27
* operator 74, 542
* symbol 172
/ operator 74, 542
\ character 16
& operator 75
character 32
symbol 8
%*% operator 542
%/% operator 74
%% operator 74
%A symbol 80
%a symbol 80
%B symbol 80
%b symbol 80
%d symbol 80
%m symbol 80
%o% operator 542

%Y symbol 80
%y symbol 80
+ operator 73, 542
+ symbol 172
± sign 153
< operator 75
<- symbol 7
<<- operator 28
<= operator 75
= symbol 8
== operator 75
> operator 75
>= operator 75
| operator 75
~ symbol 172
$ notation 26

Numerics

3D pie charts 124
3D scatter plots 263

spinning 265

A

abline() function 60, 257
abs(x) function 91
accuracy 406
accuracy, of classification 393
accuracy() function, forecast

package 342, 355
Acf() function, forecast

package 342, 360
acf() function, stats

package 360
acos() function 91

acosh() function 91
added variable plots 187, 196
addmargins() function 145,

147, 149
adf.test() function, tseries

package 343, 361
Adjusted R-squared 204
adjusted Rand index 382
adonis() function, vegan

package 236
AER package 544
aes() function, ggplot2

package 440, 450, 457
agglomerative hierarchical

clustering 374
aggr() function, VIM

package 419
aggregate() function 110–111,

142, 234, 382
aggregating data 110–111
agnes() function, cluster

package 373
AIC() function 173, 202
Akaike Information Criterion

(AIC) 202
all subsets regression 204–206
alpha inflation 495
alternative hypothesis 240
Amelia package 428, 431, 544
analyses, excluding missing val-

ues from 78–79
analytic packages, for large

datasets 553–554
ANCOVA (analysis of

covariance) 215, 223
one-way 223, 225–226, 289–290

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX564

ancova() function, HH
package 225

Anglim, Jeromy 552
annotating datasets 43

value labels 43
variable labels 43

annotations 61–64, 440
math 63–64

ANOVA (analysis of
variance) 212–238

as regression 236–238
common formulas 216
fitting models 215–218
in power analysis 245
MANOVA 232, 234–236
one-way 218–223, 289–290
one-way ANCOVA 223,

225–226
order of variables 217
repeated measures 229–232
terminology of 213–215
two-way 290
two-way factorial 226–229
Type I (sequential)

approach 217
Type II (hierarchical)

approach 217
Type III (marginal)

approach 217
anova() function 173, 202, 304
Anova() function, car

package 218, 232
aov() function 215–216

special symbols in
formulas 216

aovp() function, lmPerm
package 287, 290

APIs 38
apply() function 100–101, 139
apropos() function 11
aq.plot() function, mvoutlier

package 235
Architect 535
args() function 473
ARIMA (autoregressive inte-

grated moving average)
forecasting models 359,
361–367

guidelines for selecting 364
arima() function, stats

package 343, 364
arithmetic operators 73
ARMA models 361–366
arrayImpute package 432, 544

arrayMissPattern package 432,
544

arrays 24–25, 465
as.character() function 81–82
as.data.frame() function 82
as.Date() function 79, 81, 86
as.factor() function 82
as.logical() function 82
as.matrix() function 82, 373
as.numeric() function 82
as.vector() function 82
asin() function 91
asinh() function 91
assign() function 475
assignment symbol (<-) 7
association, measures of 152–

153
assocstats() function, vcd

package 152
assumptions

of MANOVA tests 234–235
of one-way ANCOVA tests 225
of one-way ANOVA tests

222–223
of regression 183

asypow package 253
atan() function 91
atanh() function 91
atomic vectors 464–466

arrays 465
indexing 468
matrixes 465
scalars 464

attach() function 27–28, 85
attr() function 464–465
attributes 464

setting 465
attributes() function 464
Augmented Dickey–Fuller

(ADF) test 361
auto.arima() function, forecast

package 343, 366
autocorrelation 360

partial 360
autocorrelation function (ACF)

plot 360
automated forecasting 358–359
avPlots() function, car

package 187, 197
axes 57–59

customizing for ggplot2 pack-
age graphs 455–456

minor tick marks 59
suppressing 58

axis() function 57

B

backslash character 12
backspace character 99
backward stepwise

regression 203
balanced design 213
bar plots 118–122

bar labels 121
creating with factor

variables 119
fitting labels in 121
font size 121
for mean values 120–121
options 118–119
spinograms 122
stacked and grouped 119–120
text spacing 121
tweaking 121–122

barplot() function 118, 120
barplot2() function 121
Bartlett’s test 222
base graphics system 438
batch processing 16–17
Bayesian linear regression 429
bds.test() function, tseries

package 343
beta distribution 94
bg graphical parameter 52
bigalgebra package 553
biganalytics package 553
biglars package 553
bigmemory package 552–553
bigrf package 553
bigtabulate package 553
binomial distribution 94
bivariate relationships 178
block comments 32
BMP file, outputting 13
bmp() function 13, 48
Bonferroni adjusted p-value 194
Bonferroni correction 496
Bonferroni outlier test 187
boot package 544

bootstrapping with 292–298
boot.ci() function, boot

package 292
parameters 293

boot() function, boot
package 292

elements of object returned
by 293

parameters 293
bootstrap package 207
bootstrapping 87, 291–298

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 565

number of replications 297
procedure 292
sample size 297
with the boot package 292–298

bootstrapping a statistic 294–295
bootstrapping multiple

statistics 296–298
bottlenecks, locating 483
box plots 129–133

notched 130
parallel 129–132
violin variation of 132–133

Box-Tidwell
transformations 200

Box.test() function, stats
package 343, 365

Box’s M test 235
box() function 127
boxplot.stats() function 129
boxplot() function 48, 231
boxTidwell() function, car

package 200
Brown–Forsythe test 223
browser levels 486
browser() function 484
browser() mode 486
bubble plots 266–268
by() function 142
bzfile() function 37

C

c() function 9, 22, 44
ca package 337, 544
call stack 487
car package 218, 232, 257, 260,

544
functions for regression

diagnostics 187
case identifiers 22, 28

specifying 28
case-wise deletion 426–428
case, using correctly 16
casting 112–114
cat package 432, 544
cat() function 99
categorical variables 22
Cattell Scree test 323
Cauchy distribution 94
cbind() function 44, 83,

103–104, 234, 357, 542
ceiling() function 91
cex graphical parameter 51, 53
cex.axis graphical parameter 53
cex.lab graphical parameter 53

cex.main graphical
parameter 53

cex.sub graphical parameter 53
CFA (confirmatory factor

analysis) 337
cforest() function, party

package 400
chaining 374
character functions 97–98
character variables, converting

date values to 79–81
Chi-square test of

independence 151
chi-square tests 248–249
chi-squared (noncentral)

distribution 94
chisq_test() function, coin

package 285
chisq.test() function 151
chol() function 542
Choleski factorization 542
class() function 44, 464, 466
classification 389–413

accuracy 393
choosing a best predictive

solution 405–408
confusion matrix 393
decision trees 393–398
logistic regression 392–393
measures of predictive

accuracy 405
preparing the data 390–391
random forests 399–401
ROC (receiver operating char-

acteristic) curve 408
SVMs (support vector

machines) 401–405
CLI (command-line

interface) 535
close() function 41
cluster 369
cluster analysis 369–387

agglomerative hierarchical
clustering 374

average-linkage method
374–375

avoiding nonexistent
clusters 384–387

best number of clusters 376
calculating distances 371–374
centroid method 374
chaining 374
choosing attributes 371
common steps in 370–374
complete-linkage method 374

determining the number of
clusters 372

hierarchical 374–378
interpreting clusters 372
k-means clustering 378–382
obtaining cluster

solutions 372
partitioning 378–384
partitioning around medoids

(PAM) 382–384
scaling data 371
screening for outliers 371
selecting a clustering

algorithm 371
single-linkage method 374
validating the results 372
visualizing the results 372
Ward method 374
with mixed data types 373

cluster package 370
clv package 372
clValid package 372
cm.colors() function 53
cmdscale() function 338
cmh_test() function, coin

package 285
Cochran–Mantel–Haenszel

test 152
code editors 535
coef() function 304
coefficients() function 173, 304
Cohen’s kappa 153
coin package 281, 545

functions 282
permutation tests 282–286

col graphical parameter 52
col option 130
col.axis graphical parameter 52
col.lab graphical parameter 52
col.main graphical

parameter 52
col.sub graphical parameter 52
colfill vector 129
colMeans() function 480, 542
colon (:) operator 23
color vector 135
colorRampPalett() function 275
colors

graphical parameters 52–53
online chart 52

colors() function 52
colSums() function 480, 542
column center, calculating 93
column means 542
column sums 542

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX566

columns, adding 83
columns, data frames 26
command-line prompt 535
command-line prompt (>) 7
comments, # symbol 8
common factors 330–337

deciding number to
extract 331–332

extracting 332
rotating 333–336
scores 336–337

communalities, of
components 325

comparisons, multiple 219–222
complete-case analysis 426–428
complete.cases() function

418–419, 426
complete() function, mice

package 431
component plus residual

plots 187, 190
components 468
compressed files, reading 37
conditional execution 106–107

if-else construct 106
ifelse construct 107
switch construct 107

conditional inference tree
397–398

confint() function 173, 182,
304, 309

confounding factors 215
confusion matrix 393
contingency coefficient 152
contingency tables 144–153

generating 145–151
measures of association

152–153
multidimensional 149
one-way 146
tests of independence

151–152
two-way 146
visualizing results 153

continuous variables 28
contr.helmert 237
contr.poly 237
contr.SAS 237
contr.sum 237
contr.treatment 237
contrast variables 237
contrasts() function 237
control flow 105–107

conditional execution
106–107

repetition and looping
105–106

control structures 470–472
Cook, John 32
Cook’s distance 185, 196
coord_flip() function, ggplot2

package 456
cor.test() function 156
cor() function 154, 178
corr.test() function, psych

package 156
corrected sum of squares 93
correlation coefficients 153–158
correlations

in power analysis 245–246
partial 155
Pearson, Spearman, and

Kendall 153–155
polychoric 156
polyserial 155
testing for significance

156–157
tetrachoric 156
types of 153–156
using to explore missing

values 422–424
visualizing 158

corrgram package 272, 545
corrgram() function, corrgram

package 272
colors 275

corrgrams 271–276
corrperm package 545

permutation tests 291
cos() function 91
cosh() function 91
cov() function 154, 234
cov2cor() function 330
Cox proportional hazards

regression 169
cpars() function, glus

package 261
Cramer’s V 152
CRAN 7

download site 538
setting a default mirror

site 539
task views 533
uploading to 511

CRANberries 533
cross products 542
Cross Validated 534
cross-sectional data 340
cross-validation 206–208
crossprod() function 542

CrossTable() function, gmodels
package 148

crossval() function, bootstrap
package 207

crPlots() function, car
package 187, 190

ctree() function, party
package 397, 410

cut() function 76, 99
cutoff value 407
cutree() function 377

D

daisy() function, cluster
package 373

damping component 358
data

aggregating 110–111
classifying See classification
exporting of 540–541
melting 111
missing See missing data
restructuring 111
time-stamping 80

data analysis, typical steps 4
data frames 25–28

$ notation 26
adding rows to 84
applying functions to 99–101
attach(), detach(), and with()

functions 27–28
case identifiers 28
columns 26
definition of 22
identifying elements of 26
using SQL statements to

manipulate 87–88
variables 26

data input, efficient 479–480
data management 71–88

advanced 89–114
control flow 105–107
datasets 83–87
date values 79–81
example 71–73
functions 91–92, 94–101
missing values 77–79
restructuring 110–114
sorting 82–83
type conversions 81–82
user-written functions 107–109
using SQL statements to

manipulate data
frames 87–88

variables 73–77

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 567

data mining using the rattle
package 408–413

data objects
applying functions to 100
functions for working

with 43–45
data storage outside of

RAM 552–553
data structures 22–32

arrays 24–25
data frames 25, 27–28
factors 28–30
lists 30–32
matrices 23–24
vectors 22–23

data types 464–470
atomic vectors 464–466
converting one to another 82
generic vectors See data types
lists 466–468

data, long format 113
data.frame() function 25
data.table package 480, 553
data() function 11
dataset, transposing 110
datasets 21–45

annotating 43
data structures 22–32
description of 21–22
enormous, solutions for work-

ing with 553–554
functions for working with

data objects 43–45
input 32–34, 40–42
large 17–18, 551–554
long format 232
merging 83–84
subsetting 84–87
wide format 232

date formats 80
date values 79–81

converting to character
variables 81

date() function 80
DBI (database interface)-related

packages 42
DBI package 42
DBMSs (database management

systems), accessing 40–42
dcast() function 112–113
debug() function 484, 486
debugging 483–489

common error sources
483–484

session options for 486–489

debugging functions 484
debugging tools 484–486
decision trees 393–398

classical 393–397
conditional 397–398
terminal nodes 394

deletion
listwise 426
pairwise 432–433

delimited text files
exporting data to 540
importing data from 34–37

demo() function 10, 64
dendrograms 376
density() function 127
dependent variables 213
describe() function, Hmisc

package 140
describe() function, psych

package 141
describeBy() function, psych

package 143
descriptive statistics 138

generating by group 142–144
generating for data as a

whole 138–142
visualizing results 144

detach() function 27–28
dev.new() function 48
dev.next() function 48
dev.off() function 13, 48
dev.prev() function 48
dev.set() function 48
deviance() function 305
deviation contrasts 237
df.residual() function 305
diag() function 542
diagnostics

ANCOVA 225
ANOVA 222–223
generalized linear

models 305
regression 182–194

dichotomous variables 429
diff() function 93, 342, 361
difftime() function 81
dim() function 43, 466
dimensions of graphs and

margins 54–56
dimnames() function 466
dir.create() function 13
directory initialization file 538
discriminant function

analysis 429
dist() function 373

distribution functions,
normal 95

doBy package 545
calculating descriptive

statistics 143
documentation, creating for

packages 506–508
dollar sign ($) character 31
doParallel package 481, 545
dot plots 133–136
dotchart() function 133
dotchart2() function 136
double exponential model 352
dplyr package 480
dstats() function 143
dummy coding 237
Durbin–Watson test 187, 190
durbinWatsonTest()

function 190
durbinWatsonTest() function,

car package 187
dynamic reports 513–531

and reproducible
research 515

creating with R and
LaTeX 522–525

creating with R and
Markdown 517–521

creating with R and Microsoft
Word 527–531

creating with R and Open
Document 525–527

template approach 515–517

E

e1071 package 390
Eclipse with StatET plug-in 535
edit() function 33
EFA (exploratory factor

analysis) 319–322, 330–337
common factors 332–337
deciding number of common

factors to extract 331–332
FactoMineR package 337
FAiR package 337
GPArotation package 337
nFactors package 337
other latent variable

models 337
steps 321

effect size 242
effect() function, effects

library 224
effect() function, effects

package 181

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX568

effects library 224
effects package 181, 545
efficient code, writing 479–483

correctly sizing objects 481
efficient data input 479–480
parallelization 481–483
vectorization 480–481

eigen() function 542
eigenanalysis 482
eigenvalues 542

of components 325
eigenvectors 542
elementary imputation

methods 428
enclosures 475
end() function, stats

package 342, 345
enhanced scatter plot

matrixes 187
enhanced scatter plots 187
environment

customizing startup 538–539
environment, customizing

startup 538–539
environments 475–477

parent environment 475
errors

common sources of 483–484
independence of 190

ES.w2() function 248
escape character 12, 99
ESS (Emacs Speaks

Statistics) 535
ets() function 358–359
ets() function, forecast

package 342, 352
Euclidean distance 372
exact tests 281
Excel

exporting data to 540–541
importing data from 37

excluding
missing values from

analyses 78–79
variables 84–85

exp() function 91, 357
exponential distribution 94
exponential forecasting

models 352–359
Holt and Holt-Winters expo-

nential smoothing 355–357
simple exponential

smoothing 353–355
exporting data 540–541

delimited text file 540

Excel spreadsheet 540–541
for statistical applications 541

extracting common factors
332–333

F

F distribution 95
fa.diagram() function, psych

package 321
fa.parallel() function 323
fa.parallel() function, psych

package 321, 331
fa() function, psych

package 321, 332, 336
facet_grid() function, ggplot2

package 450
facet_wrap() function, ggplot2

package 450
faceted graphs 450
faceting variables 450–453
factanal() function 321
FactoMineR package 337, 545
factor analytic functions 321
factor intercorrelation

matrix 334
factor pattern matrix 334
factor structure matrix 334
factor.plot() function, psych

package 321, 335
factor() function 29, 43
factorial ANOVA design 214
factors 22, 28–30

definition of 22
levels, for character

vectors 29
numeric variables as 29

factors See common factors
FAiR package 337, 545
family graphical parameter 54
family-wise error rate 496
fan plots 124–125
fan.plot() function 124
fCalendar package 545
ff package 552–553
fg graphical parameter 52
fgui package 537
fig graphical parameter 68–70
figures, arrangements of 68–70
file() function 37
filehash package 552
.First() function 538–539
Fischer, Bernd 40
fisher.test() function 152
Fisher’s exact test 152

fitted() function 173
fitting ANOVA models 215–218
fitting regression models with

lm() function 172–173
fivenum() function 139
fix() function 44, 76
flexclust package 370, 382, 545
FlexMix package 337
Fligner-Killeen test 223
fligner.test() function 223
floor() function 91
fMultivar package 370
font characteristics,

specifying 54
font families, changing 54
font graphical parameter 54
font.axis graphical

parameter 54
font.lab graphical parameter 54
font.main graphical

parameter 54
font.sub graphical parameter 54
for loops 105–106, 471
for() function 471
foreach package 481, 545
forecast package 353, 545
forecast() function, forecast

package 342, 354, 357, 365
forecasting 341

automated 358–359
foreign package 38–39, 541, 545
formals() function 473
format() function 80
formulas

order of terms in 216–218
special symbols in 216

Fox, John 171
fpc package 372
frames 475

data 87–88, 99–101
frequency tables 144–153

generating 145–151
measures of association

152–153
multidimensional 149
one-way 146
tests of independence

151–152
two-way 146
visualizing results 153

frequency() function, stats
package 342, 345

Friedman test 162
friedman_test() function, coin

package 286

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 569

Friendly, Michael 276
ftable() function 145, 149
function closures 475
functions

applying to data objects 100
creating 473–474
environments 475
generic See generic functions
object scope 474
of normal distribution 95
precedence by package 141
syntax 473–474

G

gamma distribution 95
gap package 253
gclus package 15, 545
generalizability 168
generalized linear models

301–318
glm() function 302–306
logistic regression 306–312
model fit 305–306
regression diagnostics

305–306
generic functions 477–479
generic vectors See lists
geom functions, ggplot2

package 440, 443–447
combining 446
faceting variables 450–453
grouping variables 447–450
options 445

geom_bar() function, ggplot2
package 443

geom_boxplot() function,
ggplot2 package 443

geom_density() function,
ggplot2 package 443

geom_histogram() function,
ggplot2 package 443, 445

geom_hline() function, ggplot2
package 443

geom_jitter() function, ggplot2
package 443

geom_line() function, ggplot2
package 443

geom_point() function, ggplot2
package 440, 443

geom_rug() function, ggplot2
package 443

geom_smooth() function,
ggplot2 package 440, 443,
453

geom_text() function, ggplot2
package 443

geom_violin() function, ggplot2
package 443

geom_vline() function, ggplot2
package 443

geometric distribution 95
get() function 475
getAnywhere() function 478
getwd() function 11–12, 538
ggplot() function, ggplot2

package 386, 440
ggplot2 functions 438
ggplot2 package 370, 438–439,

545
adding smoothed lines to scat-

ter plots 453–455
faceted graphs 450
graph axes 455–456
graph legends 457–458
modifying graph

appearance 455–462
multiple graphs per

page 461–462
saving graphs 462
scales 458–460
stat functions 455
themes 460–461

ggsave() function, ggplot2
package 462

Gibbs sampling 428
ginv() function 543
glht() function, multcomp

package 221
glm() function 302–306, 390,

553
logistic regression 303
parameters 303
Poisson regression 304
supporting functions 304–305

glmperm package 545
permutation tests 291

glmRob() function, robust
package 311

global validation of linear model
assumption 193

gls() function, nlme
package 232

Glynn, Earl F. 52
gmodels package 148, 546
GPArotation package 337
gplots package 121, 219, 228,

546
graph dimensions 54–56
graphic output 13–14

graphical parameters 50–56
colors 52–53
graph and margin

dimensions 54–56
reference lines 60
symbols and lines 51–52
text characteristics 53–54

graphics 437
adding smoothed lines to scat-

ter plots 453–455
annotations 440
faceting variables 441, 450–453
four systems of 438
geom functions 443–447
ggplot2 package 439
grouping variables 441,

447–450
graphs 47–70, 117–136

absolute widths 67
adding elements to 59
axis and text options 56–64
bar plots 118–122
box plots 129–133
building 47
combining 64, 68–70
dot plots 133–136
formats 48
graphical parameters 50–56
histograms 125–127
intermediate See intermediate

graphs
kernel density plots 127–129
line types 51
multiple, accessing 48
pie charts 123–125
plot symbols 51
relative widths 67
rotating 265
saving 48
saving, in ggplot2

package 462
single enhanced 68

gray levels 53
gray() function 53
grep() function 38, 98
grid functions 438
grid graphics system 438
grid package 438, 546
grid.arrange() function, ggplot2

package 461
gridExtra package 546
Grömping, Ulrike 209
group differences

nonparametric tests of
160–163

visualizing 163

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX570

grouped bar plots 119–120
grouping variables 447–450
groups

more than two,
comparing 161–163

two, comparing 160–161
gsub() function 38
GUIs (graphical user

interfaces) 535
IDEs for 535–536

gvlma package 187, 193, 546
gvlma() function, gvlma

package 193
GWAS (Genome-wide associa-

tion studies) 252
gzfile() function 37

H

hat statistic 195
hclust() function 375
HDF5 (Hierarchical Data For-

mat) files, importing data
from 40

hdf5 package 546
head() function 44
heat.colors() function 53
height vector 118
help facilities 10–11
help.search() function 11
help.start() function 11
help() function 11, 16, 92
hetcor() function, polycor

package 155
hexbin package 262, 546
hexbin() function, hexbin

package 262
HH package 225, 229, 546
hierarchical agglomerative

clustering 370
hierarchical cluster analysis See

cluster analysis, hierarchical
high-density scatter plots

261–263
high-leverage observations

195–196
hist() function 48, 66
histograms 125–127
history() function 12
Hmisc package 38–39, 59, 136,

546
calculating descriptive

statistics 140
Holm correction 496
Holt exponential

smoothing 352, 355–357

Holt-Winters exponential
smoothing 352, 355–357

holt() function, forecast
package 353

HoltWinters() function 342,
352

homoscedasticity (statistical
assumption) 172, 184,
191–192

hov() function, HH
package 223

hsv() function 52
hw() function, forecast

package 353
hypergeometric distribution 95
hyperplanes 401
hypothesis testing 240–242

I

I() function 173, 175
IBM SPSS datasets, importing

data from 38–39
id.method option 258
identify() function 235
IDEs (integrated development

environments) 535–536
IDPmisc package 263
if() function 471
ifelse construct 106–107
ifelse() function 472, 480
Ihaka, Ross 438
importance, relative 208–211
importance() function 400
importing data

from connections 37
from delimited text file 34–37
from HDF5 files 40
from IBM SPSS datasets

38–39
from Microsoft Excel 37
from NetCDF files 40
from SAS datasets 39
from Stata datasets 40
from XML files 38
via Stat/Transfer

application 42
imputation

multiple 428
simple 433–434

independence (statistical
assumption) 171, 183, 190

independence of categorical
variables 285

independence_test() function,
coin package 286

independence, tests of 151–152
independent sample tests

285–286
indexing 468–470
indices 32
Inf symbol 78
infinity, positive and negative 78
influencePlot() function, car

package 187, 198
influential observations 185,

196–198
input 13, 32–42

accessing DBMSs 40–42
entering data from

keyboard 33–34
importing data 34–40, 42
importing data from

connections 37
importing data from IBM

SPSS datasets 38–39
importing data from

NetCDF 40
importing data from SAS 39
importing data from Stata 40
importing data from the

Web 38
importing data from XML

files 38
sources of 32
using output as 17

install.packages() function 15,
556

installation, updating 555–557
installed.packages()

function 15, 556
installr package 555
interaction effects 214
interaction.plot() function 227,

230
interaction2wt() function, HH

package 229
interactions

ANOVA with 214, 226–232
multiple linear regression

with 180–182
intermediate graphs 255

bubble plots 266–268
corrgrams 271–276
line charts 268–271
mosaic plots 276
scatter plots 256, 259,

261–268
internet files, accessing 37
ipairs() function, IDPmisc

package 263

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 571

is.character() function 82
is.data.frame() function 82
is.factor() function 82
is.infinite() function 78, 417
is.logical() function 82
is.matrix() function 82
is.na() function 77–78, 417
is.nan() function 78, 417
is.numeric() function 82
is.vector() function 82
ISOdatetime() function 81
isoMDS() function, MASS

package 338
isTRUE() operator 75

J

jackknifed residuals See studen-
tized residuals

jackknifing 207
JGR 535
JGR/Deducer 536
Journal of Statistical

Software 533
JPEG file, outputting 13
jpeg() function 13, 48

K

k-fold cross-validation 207
k-means clustering 378–382
kable() function, knitr

package 520
Kaiser-Harris criterion 323
kappa() function, vcd

package 153
Kendall’s tau 154
kepairs() function, Resource-

Selection package 261
kernel density plots 127–129
kernlab package 546
keyboard, entering data

from 33–34
kmeans() function 379, 381
kmi package 432, 546
knit() function, knitr

package 522
knit2pdf() function, knitr

package 522
knitr package 517, 522, 546
Kruskal-Wallis test 161, 495
ksvm() function, kernlab

package 403
kurtosis 139–140

L

labels, fitting in bar plots 121
labs() function, ggplot2

package 440, 450, 457
lag() function, stats

package 342
lagged differences,

calculating 93
lagging a time series 359
Lang, Duncan Temple 38
lapply() function 101
.Last() function 538–539
latent variable models 337–338
LaTeX 506

creating dynamic reports
with 522–525

lattice functions 438
lattice package 49, 438, 547
lavaan package 337, 547
layout() function 64, 66–68
lbl_test() function, coin

package 285
lcda package 337, 547
lcm() function 67
lcmm package 337
leaps package 204
legend.text parameter 120
legend() function 60, 128
legends 60–61

customizing for ggplot2 pack-
age graphs 457–458

Leishch, Friedrich 508
length() function 43, 99
leverage value, of

observations 185
lexical scoping 476
.libPaths() function 15
library 15
library() function 15
LibreOffice 525
line charts 268–271
line() function 59

adding to existing graph 59
linear algebra 542–543

R functions and
operators 542

linear decision surfaces 401
linear model assumption, global

validation of 193
linear models

generalized See generalized
linear models

in power analysis 246–247
linear regression

multiple 178–182
simple 173–175
vs. nonlinear 177

linearity (statistical
assumption) 171, 184,
190–191

lines
graphical parameters 51–52
reference 60
smoothed, adding to scatter

plots 453–455
lines() function 121, 126–127

vs. plot() function 270
Linux, updating R installation

on 557
list() function 30
lists 30–32, 464, 466–468

extracting components 468
indexing 468
specifying elements of 31

listwise deletion 79, 426–428
Little Jiffy 330
lm() function 172–173,

178–179, 237, 427, 553
fitting regression models

with 172–173
lme4 package 232
lmer() function, lme4

package 232
lmp() function, lmPerm

package 287–288
lmPerm package 281, 547

permutation tests 287–290
load() function 12
loadhistory() function 12
loadings, of components 325,

327
loess() function 257
log() function 91
log10() function 91
logical operators 75
logistic distribution 94
logistic regression 169, 303,

306–312, 392–393, 429
extensions and

variations 311–312
impact of predictors 309–310
interpreting model

parameters 309
multinomial 311
ordinal 311
overdispersion 310–311
permutation test for 291
robust 311

lognormal distribution 95

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX572

logregperm package 547
permutation tests 291

long format datasets 113, 232
longitudinal data 340
longitudinalData package 432,

547
longpower package 253
looping, repetition and 105–106
lowess() function 257
lrm() function, rms

package 311
.ls.objects() function 552
ls() function 12, 44
lsa package 337, 547
ltm package 337, 547
lty graphical parameter 51
lubridate package 81, 547
lwd graphical parameter 51

M

ma() function, forecast
package 342, 346

Mac OS X, updating R installa-
tion on 556

mad() function 92
magnitude, of correlations 153
mai graphical parameter 55
main effects 214
Mallows Cp statistic 204
MANCOVA (multivariate analy-

sis of covariance)
design 215

Mann–Whitney U test 160
MANOVA (multivariate analysis

of variance) 215, 232–236
assessing test

assumptions 234–235
robust 235–236

manova() function 234
mantelhaen.test() function 152
mar graphical parameter 55
margin dimensions 54–56
margin.table() function

145–146, 149
marginplot() function, VIM

package 421
Markdown

documents, creating and pro-
cessing with RStudio
520–521

R code chunks 519
syntax 518

MASS package 96, 338, 543, 547
math annotations 63–64

mathematical functions 91–92
matlab package 543
matrices 23–24, 465

applying functions to 99–101
combining 542–543
identifying elements of 24
inverse of 543
manipulating 542–543
of scatter plots 259
subscripts 24

matrix algebra 542–543
R functions and

operators 542
Matrix package 543
matrix() function 23
matrixplot() function, VIM

package 420
matrixStats package 480, 543
max() function 93
maximum, calculating 93
md.pattern() function, mice

package 419
MDS (multidimensional

scaling) 337
mean absolute error 355
mean absolute percentage

error 355
mean absolute scaled error 355
mean error 355
mean percentage error 355
mean substitution 433
mean values, bar plots for

120–121
mean, calculating 92
mean() function 92, 100, 103,

418
measures of association 152–153
median absolute deviation,

calculating 92
median, calculating 92
median() function 92
medoids 382
melt() function 113
melting data 111–112
merge() function 83
merging datasets 83–84

adding columns 83
adding rows 84

metafile format, Windows 48
methods

with xtable 517
methods() function 477
MI (multiple imputation)

428–432
mi package 428, 431

mice package 415, 419, 428
mice() function, mice

package 428
Microsoft Excel, importing data

from 37
Microsoft Word, creating

dynamic reports with
527–531

min() function 93
minimum, calculating 93
minor.tick() function 59
minus sign (-) 85
missing data 414

classification system for 416
complete-case analysis

426–428
exploring patterns 418–424
exploring visually 419–422
exploring with

correlations 422, 424
identifying 417–418
MAR (missing at

random) 416
MCAR (missing completely at

random) 416
MI (multiple

imputation) 428–432
NMAR (not missing at

random) 416
pairwise deletion 432–433
rational approaches for deal-

ing with 425–426
simple (nonstochastic)

imputation 433
sources and impact of

424–425
specialized methods for deal-

ing with 432–433
steps in dealing with 415–417
tabulating 419

missing values 77–79
excluding from analyses

78–79
recoding values to missing 78

mix package 432
mixed-model ANOVA

design 214
mlogit package 547
mlogit() function, mlogit

package 311
mode() function 44
Monte Carlo simulation 281
monthplot() function 351
monthplot() function, stats

package 342

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 573

Moore-Penrose Generalized
Inverse 543

mosaic plots 276
mosaic() function, vcd

library 276
mosaicplot() function 276
mtcars data frame 109
mtext() function 59, 61
multcomp package 221, 224,

547
multicollinearity 193–194
multilevel regression 169
multiline comments 32
multinomial distribution 94
multiple comparisons

methodology 222
multiple linear regression 169,

173, 178–180
with interactions 180–182

multiple regression 178,
288–289

multivariate analysis of
variance 232

multivariate normal data,
generating 96–97

multivariate regression 169
Murrell, Paul 438
mvnmle package 432, 547
mvoutlier package 235, 371, 547
mvrnorm() function 96
mystats() function 143

N

NA (not available) symbol 77,
417

na.omit function 426
na.omit() function 79
na.rm=TRUE option 79
names() function 44, 77, 466
NAN (not a number)

symbol 78, 417
NbClust package 370, 376, 548
NbClust() function, NbClust

package 372, 376, 381, 385
ncdf package 40, 548, 553
ncdf4 package 40, 548, 553
nchar() function 97
ncvTest() function, car

package 187, 191
ndiffs() function, forecast

package 343, 361
negative binomial

distribution 94
negative predictive value 406

nested model 202
NetCDF (Network Common

Data Form) files, importing
data from 40

NetCDF library 40
new.env() function 475
newobject 44
nFactors package 337, 548
NHST (null hypothesis signifi-

cance testing) 239
nlme package 232
nominal variables 28
nonlinear model, vs. linear

model 177
nonlinear regression 169
nonparametric analysis 492–496

comparing groups 494–496
nonparametric regression 169
nonstochastic imputation

433–434
normal data, generating

multivariate 96–97
normal distribution 94
normal distribution

functions 95
normality (statistical

assumption) 171, 183,
187–190

notched box plots 131
Notepad++ with NppToR 535
nuisance variables 215
null hypothesis 240
null hypothesis significance

testing 241
NULL vs. NA 85
numeric variables, indepen-

dence between 285

O

objects
definition of 22
indexing 468–470
names of, rules for 464
printing 44
scope 474
sizing correctly 481

oblique rotation 327
observations

deleting 199
deleting with na.omit ()

function 79
Euclidean distance

between 372
influential 185

outliers 184
selecting 85–86

ODBC (Open Database Connec-
tivity) interface 41–42

odbcConnect() function 41
odfTable() function, odfWeave

package 527
odfWeave package 525, 548

code chunk options 525
odfWeave() function, odfWeave

package 525
OLS (ordinary least squares)

regression 169, 171–182
fitting regression models with

lm() function 172–173
multiple linear

regression 178, 180–182
multiple linear regression

with interactions 180–182
polynomial regression 175,

178
scenarios for using 169–170
simple linear regression 173,

175
statistical assumptions 171,

183
one-way ANCOVA (analysis of

covariance) 223–226
assessing test assumptions 225
visualizing results 225–226

one-way ANOVA (analysis of
variance) 213, 218–223

assessing test
assumptions 222–223

multiple comparisons 219
one-way design 161
one-way within-groups ANOVA

design 214
OOP (object-oriented

programming) 477–479
generic functions 477–479

Open Document, creating
dynamic reports with
525–527

OpenMx package 337, 548
OpenOffice 525
openxlsx package 37
options() function 12, 238
Oracle R Enterprise 554
order of formula terms 216–218
order() function 83, 105
ordinal variables 28
orthogonal rotation 327, 333
out-of-bag (OOB) error

estimate 399

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX574

outer product 542
outlier observation 184
outliers 194–195

deleting 199
identifying 194

outlierTest() function, car
package 187, 194, 223

output
graphic 13–14
text 13
using as input 17

overdispersion 310–311

P

Pacf() function, forecast
package 342, 360

pacf() function, stats
package 360

packages 15–16
analytic 553–554
building 508–512
creating 491–512
description of 15
developing 496–506
documentation,

creating 506–508
for accessing large

datasets 552
in base installation 15
installing 15
learning about 16
list of 544–550
loading 15
reasons to create 491

pairs.mod() function, SMPracti-
cals package 261

pairs() function 259
pairs2() function, Teaching-

Demos package 261
pairwise deletion 432–433
PAM (partitioning around

medoids) 382–384
pam() function, cluster

package 373, 383
pamm package 253
pan package 432
Pandoc 517
par() function 50, 64, 122, 183
parallel analysis 323
parallel box plots, comparing

groups with 129–132
parallelization 481–483
parent.env() function 475
parentheses, in function call 16

partial autocorrelation 360
partial correlations 155
partitioning clustering 370
party package 390, 397, 548
partykit package 398
paste() function 84, 98
pastecs package 548

calculating descriptive
statistics 140

pbdR (Programming with Big
Data in R) project 554

PCA (principal components
analysis) 319, 322–330

other latent variable
models 337

principal components
327–330

selecting number of compo-
nents to extract 323–324

steps 321
pch graphical parameter 51
pcor.test() function, psych

package 157
pcor() function, ggm

package 155
PDF file, outputting 13
pdf() function 13, 48
Pearson product-moment

correlation 153
pedantics package 253
performance() function 406
period (.) character 31
perm package, permutation

tests 291
permutation tests 280–291

correlations with repeated
measures 291

dependent k-sample 286
dependent two-sample 286
exact tests 281
for generalized linear

models 291
for logistic regression 291
independence between

numeric variables 285–286
independence in contingency

tables 285
independent k-sample

283–285
independent two-

sample 283–285
multiple regression 288–289
one-way ANOVA and

ANCOVA 289–290
procedure 281

simple and polynomial
regression 287–288

two-way ANOVA 290
with coin package 282–286
with lmPerm package

287–290
phi coefficient 152
pie charts 123–125
pie3D() function 124
pin graphical parameter 55
Planet R 532
plot statement 27
plot symbols 51
plot() function 48–49, 119, 127,

173, 183, 186, 305, 342, 366
vs. lines() function 270

plot() function, leaps
package 204

plot3d() function, rgl
package 265

plotcp() function 395
plotmath() function 64
plotmeans() function, gplots

package 219, 228
plotrix package 124
plyr package 77, 480
pmm (predictive mean

matching) 430
PNG file, outputting 13
png() function 13, 48
points, plotting 51
Poisson distribution 94
Poisson regression 169, 304
poLC package 337
poLCA package 548
polygon() function 127
polynomial regression 169, 173,

175–178, 287–288
polytomous logistic

regression 429
polytomous variables 429
pool() function, mice

package 428
population 240
positive predictive value 406
PostScript file, outputting 13
postscript() function 13, 48
power 241
power analysis 239–254

effect size benchmarks 249
hypothesis testing 240–242
implementing with pwr

package 242–251
plots 251–252
specialized packages 252–254

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 575

powerGWASinteraction
package 253

powerMediation package 253
powerpkg package 253
powerSurvEpi package 253
powerTransform() function, car

package 199
predict() function 173, 305,

309, 393, 397, 407
predictive accuracy, measures

of 405
predictive mean matching 429
predictor variables

impact of 309
with nonsignificant

coefficients 393
pretty() function 99
principal components 322–324

communalities 325
eigenvalues 325
extracting 324–327
loadings 325
rotating 327–328
scores of 328–330
uniquenesses 325

principal diagonal 542
principal() function, psych

package 321, 324, 329
princomp() function 321
print() function 106
probability functions 94–97

generating multivariate nor-
mal data 96–97

setting seed for random num-
ber generation 96

pROC package 408
profr package 552
promax rotation 333
prooftools package 552
prop.table() function 145–146,

149
proportions, tests of 247–248
prp() function, rpart.plot

package 396
prune() function, rpart

package 394
ps graphical parameter 54
pseudo-random numbers 96
psych package 548

calculating descriptive
statistics 140, 143

factor analytic functions 321
publication-quality reports 513
pwr package 548

functions 242

implementing power analysis
with 242–251

pwr.2p.test() function, pwr
package 242, 247

pwr.2p2n.test() function, pwr
package 242

pwr.anova.test() function, pwr
package 242, 245, 250

pwr.chisq.test() function, pwr
package 242, 248

pwr.f2.test() function, pwr
package 242, 246

pwr.p.test() function, pwr
package 242

pwr.r.test() function, pwr
package 242, 245, 251

pwr.t.test() function, pwr
package 242–243

pwr.t2n.test() function, pwr
package 242, 244

PwrGSD package 253

Q

q() function 9, 12
qcc package 548
qqline() function 365
qqnorm() function 365
qqPlot() function 222
qqPlot() function, car

package 187
QR decomposition 543
qr() function 543
quadratic regression 178
quantile comparisons plot 187
quantile() function 92, 103
quantiles, calculating 92
quantitative variables, summa-

ries of 138–144
quartzFonts() function 54
Quick-R 534
quotation marks, using

correctly 16

R

R
control structures 470–472
data types 464–470
environments 475–477
functions 473–474
latest version, obtaining 556
review of the language

464–474

software, updating 555–557
R Analytic Flow 536
R Bloggers 532
R Commander 536
R Data Import/Export

manual 32
.R extension 16
R Journal 532
R language 4–19

batch processing 16–17
demonstrations 10
getting help 10–11
getting started 8–10
help functions 11
input 13
large datasets and 17–18
obtaining and installing 7
output 13–14, 17
packages 15
reasons to use 5–7
workspace 11–13

R programming, common mis-
takes in 16

R Project 532
R-Help mailing list 534
R-squared 204, 207
r.test() function, psych

package 157
R2wd package 527, 548

functions 528
radial basis function (RBF) 403
rainbow() function 53, 124
RAM (Random Access Memory),

storing data outside of
552–553

random forests 399–401
generating based on condi-

tional inference trees 400
random numbers, setting seed

for 87, 282
random samples 87
random sampling from observed

values 429
randomForest package 390,

399, 548
randomForest() function, ran-

domForest package 399
randomization tests See permu-

tation tests
randomLCA package 337, 548
range, calculating 92
range() function 92
Rattle (R Analytic Tool to Learn

Easily) 408–413, 536
rattle package 370, 408–413, 548

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX576

rbind() function 44, 84, 225,
543

Rcmdr package 549
RColorBrewer package 53
Rcpp package 552
RCurl package 38
.RData file 12
RDCOMClient package 527
re-randomization tests See per-

mutation tests
read.sas7bdat() function 39
read.spss() function 38
read.ssd() function 39
read.table() function 34, 479,

551
read.xlsx() function, xlsx

package 37
readLines() function 38
recode() function 76
recodeVar() function 76
recoding values to missing 78
recover() mode 487
rect.hclust() function 378
reference lines 60
regression 167–211

ANOVA as 236–238
cross-validation 206
measuring performance

206–211
nested model 202
OLS 171–182
relative importance of

variables 208–211
selecting model 201–206
varieties of 168–171

regression diagnostics 182–194
corrective measures 198–199,

201
functions in car package 187
unusual observations 194–198

regression influence plots 187
regsubsets() function, leaps

package 204
relaimpo package 209
relative importance of

variables 208–211
relative weights 209
rename() function 77
rep() function 99
repeat() function 472
repeated measures ANOVA

(analysis of variance) 214,
229–232

repetition and looping 105–106
ReporteRs package 531

reports
dynamic See dynamic reports
publication-quality 513

reproducible research 515
resampling statistics 87
research hypothesis 240
reshape2 package 111–114, 480,

549
casting 112–114
melting 112

residplot() function 189
residuals() function 173, 304
restructuring data

reshape2 package 111–114
transpose 110

return() function 473–474
Revolution R Enterprise 554
RevoScaleR package 554
Rfacebook package 38
Rflickr package 38
RGG (R GUI Generator) 536
rgl package 265, 549
RHadoop project 554
rhbase package 554
rhdf5 package 40
rhdfs package 554
RHIPE package 553
.Rhistory file 12
rJava package 37
RJDBC package 42, 549
Rkward 536
rm() function 12, 44, 552
rmarkdown package 517
rmr package 554
rms package 549
RMySQL package 42, 553
rnorm() function 489
rnorm2d() function, fMultivar

package 384
robust MANOVA design

235–236
robust package 549
robust regression 169
ROC (receiver operating charac-

teristic) curve 408
roclets 506
ROCR package 408
RODBC package 41, 549, 553

functions 41
rollmean() function, zoo

package 346
root mean squared error 355
ROracle package 42, 549, 553
rotating

3D scatter plots 265

common factors 333–336
principal components

327–328
round() function 91
.Rout extension 16
row means 543
row sums 543
row.names() function 466
rowMeans() function 480, 543
rownames 22
rows, adding to a data frame 84
rowSums() function 480, 543
roxygen2 package 506, 508, 546
roxygenize() function, roxygen2

package 509
rpart package 390, 549
rpart.plot package 390
rpart() function, rpart

package 394
RPostgreSQL package 42, 553
Rprof() function 483, 552
.Rprofile file 538
Rprofile.site file 538–539
rrcov package 236, 549
RSiteSearch() function 11
RSQLite package 42, 553
RStudio 535

creating and processing Mark-
down documents 520–521

rug plots 126
runif() function 96

S

S3 object model 479
S4 object model, compared to

S3 object model 479
sample data 240
sample size 241
sample() function 87
samples, random 87
sampling package 87, 549
sapply() function 101, 104, 139
Sarkar, Deepayan 438
SAS (Statistical Analysis System)

datasets, importing data
from 39

SAS Type III sums of
squares 290

sas.get() function 39
sas7bdat package 39
sas7bdat() function 39
save.image() function 12
save() function 12
savehistory() function 12

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 577

scalar values 32
scalars 464

definition of 23
scale_color_brewer() function,

ggplot2 package 459
scale_color_manual() function,

ggplot2 package 459
scale_fill_brewer() function,

ggplot2 package 459
scale_x_continuous() function,

ggplot2 package 455
scale_x_discrete() function,

ggplot2 package 456
scale_y_continuous() function,

ggplot2 package 455
scale_y_discrete() function,

ggplot2 package 456
scale() function 93–94, 209, 371
scales, customizing for ggplot2

package 458–460
scan() function 551
scatter plots 256–268

3D 263, 265
adding smoothed lines

to 453–455
high-density 261–263
matrices 259

scatter3d() function, car
package 266

scatterplot() function, car
package 177, 187, 257

scatterplot3d package 263, 549
scatterplot3d() function,

scatterplot3d package 263
scatterplotMatrix() function, car

package 6, 178, 187, 260
score test for nonconstant error

variance 187
scores

common factors 336–337
of principal

components 328–330
scree() function, psych

package 321
script file 13
sd() function 92
search() command 15
seasonplot() function, forecast

package 342, 351
seed, setting for random num-

ber generation 96
SELECT statements, SQL 87
selecting

observations 85–86
variables 84

SEM (structural equation
modeling) 337

sem package 337, 550
sensitivity 405
seq() function 99
SeqKnn package 432, 550
ses() function, forecast

package 353
set.seed() function 96, 282, 379
setwd() function 11–13
shadow matrix 422
Shapiro–Wilk test of

normality 141
Shiny 537
signif() function 91
significance level 240–241
simple exponential

smoothing 353–355
simple imputation 433–434
simple linear regression 169,

173–175
simple regression 287–288
sin() function 91
single enhanced graph 68
single exponential model 352
sinh() function 91
sink() function 13–14
site initialization file 538
skew 139
skewness 140
sm package 127–128, 550
sm.ancova() function, sm

package 225
sm.density.compare()

function 128
SMA() function, TTR

package 346
smoothScatter() function, base

package 262–263
solve() function 543
sorting data 82–83
source() function 13–14
spearman_test() function, coin

package 285
Spearman’s rank-order

correlation 153
specificity 405
speedglm package 553
sphericity form 232
spine() function 122
spinograms 122
split() function, bigtabulate

package 553
spread-level plots 187

spreadLevelPlot() function, car
package 187, 191, 200

spss.get() function 38
SQL (Structured Query

Language) 87
SQL statements, using to manip-

ulate data frames 87–88
sqldf package 87–88
sqldf() function 87
sqlDrop() function 41
sqlFetch() function 41
sqlQuery() function 41–42
sqlSave() function 41
sqrt() function 91
ssize.fdr package 253
stacked bar plots 119–120
standard deviation,

calculating 92
standardizing data 94
start() function 342, 345
startup environment,

customizing 538–539
stat functions, ggplot2

package 455
stat_smooth() function, ggplot2

package 455
stat.desc() function, pastecs

package 140
Stat/Transfer application,

importing data via 42
Stata datasets, importing data

from 40
statistical applications, exporting

data for 541
statistical functions 92–94

standardizing data 94
statistics

descriptive See descriptive sta-
tistics

resampling 279–298
stepAIC() function, MASS

package 203
stepwise regression 203–204
stl() function, stats package 342,

348–349
stop() function 109
storing data 552–553
str(object) function 30, 43
strftime function 81
strsplit() function 98, 103
studentized deleted residuals See

studentized residuals
studentized residuals 187
sub() function 98
subset() function 86–87

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX578

subsets() function, car
package 204

subsetting
datasets 84–87

subsetting datasets 84–87
substr() function 97
sum, calculating 92
sum() function 79, 92, 418
summary.aov() function 234
summary() function 30, 139,

173, 182, 304
summaryBy() function, doBy

package 143
summaryRprof() function 483,

552
survey package 87
svd() function 543
SVG file, outputting 14
svg() function 14
svm() function, e1071

package 403
SVMs (support vector

machines) 401–405
hyperplanes 401
margin 401
radial basis function

(RBF) 403
tuning 403–405

switch construct 107–108
switch() function 472
symbols, graphical

parameters 51–52
symbols() function 266
Sys.Date() function 80
Sys.getenv() function 538
system.time() function 480, 552

T

t distribution 95
t-tests 158–160

dependent 159–160
in power analysis 243–244
independent 158–159

t() function 110
matrix transpose 543

table() function 118–119,
145–146, 149

treatment of NAs 148
table() function, bigtabulate

package 553
tables

contingency See contingency
tables

frequency See frequency
tables

tabulating missing values 419
tail() function 44
tan() function 91
tanh() function 91
tapply() function, bigtabulate

package 553
TDT (transmission disequilib-

rium test) 253
template files 516
templates, using to generate

reports 515–517
terrain.colors() function 53
tests

MANOVA 234–235
one-way ANCOVA 225–226
one-way ANOVA 222–223

tests of independence 151–152
TeX 63
text characteristics, graphical

parameters 53–54
text files, delimited 34–37

exporting data to 540
text options

annotations 61, 63–64
legend 60–61
titles 56–57

text output 13
text size, specifying 53
text() function 61–62
themes, customizing for ggplot2

package 457, 460–461
threshold value 407
tick marks 59
tick.ratio 59
tiff() function 48
time series 340–367

ARIMA (autoregressive inte-
grated moving average)
forecasting models 359–367

ARMA models 361–367
autocorrelation 360
automated ARIMA

forecasting 366–367
automated forecasting

358–359
creating time-series

objects 343–345
damping component 358
differencing 360
ensuring stationarity 362–363
evaluating model fit 365
exponential forecasting

models 352–359
fitting models 364–365
functions for analysis of 342

Holt and Holt-Winters expo-
nential smoothing 355–357

identifying reasonable
models 363–364

irregular component 347
lagging 359
making forecasts 365
predictive accuracy

measures 355
seasonal component 347
seasonal decomposition

347–352
simple exponential

smoothing 353–355
smoothing with simple mov-

ing averages 345–346
stationary and non-

stationary 360
trend component 347

time-series objects 343–345
time-series regression 169
time-stamping data 80
timeDate package 81
Tinn-R 535
title() function 56–57, 121, 128
titles 56–57
tolower() function 98
topo.colors() function 53
toupper() function 98
trace() function 484
traceback() function 484
transform() function 74
transformations 200

of variables 199–200
transpose 110
trellis graphs 450
triple exponential model 352
trunc() function 91
ts() function, stats package 342,

344
tsp() function 466
Tukey’s five-number

summary 139
tune.svm() function, e1071

package 404
twiddler package 537
twitteR package 38
two-level normal

imputation 429
two-way factorial ANOVA

design 214, 226–229
type conversions 81–82

functions 82

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 579

U

unbalanced design 213
undebug() function 484
uniform distribution 95
unique sums of squares 290
uniquenesses, of

components 325
untrace() function 484
unz() function 37
update.packages() function 15,

555
url() function 37
user-written functions 107–109

V

value labels 43
values, assigning 32
var() function 92
variable labels 43
variables

adding or deleting 201
creating new 73–74
dichotomous 429
excluding 84–85
faceting 441, 450–453
grouping 441, 447–450
numeric, as factors 29
polytomous 429
quantitative, summaries

of 138–144
recoding 75–76
relative importance of

208–211
renaming 76–77
selecting 84, 203–206
transforming 199–200

variables, data frames 26
variance inflation factors 187
variance, calculating 92
varimax rotation 327
vcd library 276
vcd package 118, 122, 276, 550
vcov() function 173
vectorization 480–481
vectors 22–23

atomic See atomic vectors
character, factor levels of 29
generic See generic vectors

identifying elements of 23
vegan package 338, 550
VIF (variance inflation

factor) 194
vif() function, car package 187,

194
vignette() function 11
vignettes 11
VIM package 415, 419, 550
violin plots 132–133
vioplot package 132
vioplot() function 132–133
visualizing results 153

W

warning() function 109
wdGet() function, R2wd

package 528
wdGoToBookmark() function,

R2wd package 528
wdPlot() function, R2wd

package 528
wdQuit() function, R2wd

package 528
wdSave() function, R2wd

package 528
wdTable() function, R2wd

package 528
wdWrite() function, R2wd

package 528
Web, importing data from 38
webscraping 38
Weibull distribution 95
while loop 106
while() function 472
Wickham, Hadley 438
wide format datasets 232
wilcox.test() function 284
Wilcoxon rank-sum

distribution 95
Wilcoxon rank-sum test 160
Wilcoxon signed-rank

distribution 95
Wilcoxon–Mann–Whitney U

test 284
wilcoxsign_test() function, coin

package 286
Wilks.test() function, rrcov

package 235

win.metafile() function 14, 48
window() function, stats

package 342, 345
Windows metafile format 48
Windows metafile,

outputting 14
Windows, updating R installa-

tion on 555
windowsFont() function 54
with() function 27–28, 76
with() function, mice

package 428
within-groups factor 214
within() function 76
working directory 11
workspace 11–13

functions for managing 12
write.foreign() function, for-

eign package 541
write.table() function 540
write.xlsx() function, xlsx

package 540
writing efficient code 479–483

correctly sizing objects 481
efficient data input 479–480
parallelization 481–483
vectorization 480–481

wssplot() function 379–381,
385–386

X

xfig() function 48
XLConnect package 37
xlsx package 540–541, 550

importing Excel worksheets
into 37

xlsxjars package 37
XML files, importing data

from 38
XML package 38, 550
xtable package 517
xtable() function, xtable

package 517, 519
xtabs() function 145–146, 149
xysplom() function, HH

package 261
xzfile() function 37

www.it-ebooks.info

http://www.it-ebooks.info/

1

Bonus chapter
Advanced graphics with

the lattice package

In this book, you created a wide variety of graphs using base functions from the

graphics package included with R and specialized functions from author-contrib-

uted packages. In chapter 19, you learned a new syntax for creating graphs using

functions from the ggplot2 package. The ggplot2 package offers an alternative to

R’s base graphics and is particularly useful when creating complex plots.

 In this bonus chapter, we’ll look at the lattice package, written by Deepayan

Sarkar (2008); this package implements trellis graphics as outlined by Cleveland

(1985, 1993). The lattice package has grown beyond Cleveland’s original

approach to visualizing data and now provides a comprehensive system for creating

statistical graphics. Like ggplot2, lattice graphics has its own syntax, offers an

alternative to the base graphics, and excels at plotting complex data. Analysts tend

This chapter covers

■ An introduction to the lattice package

■ Grouping and conditioning

■ Adding information with panel functions

■ Customizing a lattice graph's appearance

www.it-ebooks.info

http://www.it-ebooks.info/

2 BONUS CHAPTER 23 Advanced graphics with the lattice package

to use either lattice or ggplot2, based on personal preference. Try them both and

see which one you prefer.

23.1 The lattice package

The lattice package provides a comprehensive graphical system for visualizing uni-

variate and multivariate data. In particular, many users turn to the lattice package

because of its ability to easily generate trellis graphs.

 A trellis graph displays the distribution of a variable, or the relationship between

variables, separately for each level of one or more other variables. Consider the follow-

ing question: How do the heights of singers in the New York Choral Society vary by their vocal

parts?

 Data on the heights and voice parts of choral members are provided in the singer

dataset contained in the lattice package. In the following code

library(lattice)
histogram(~height | voice.part, data = singer,
 main="Distribution of Heights by Voice Pitch",
 xlab="Height (inches)")

height is the dependent variable, voice.part is called the conditioning variable, and a

histogram is created for each of the eight voice parts. The graph is shown in figure

23.1. It appears that tenors and basses tend to be taller than altos and sopranos.

Distribution of Heights by Voice Pitch

Height (inches)

P
e

rc
e

n
t

o
f

To
ta

l

0

10

20

30

40

60 65 70 75

Bass 2 Bass 1

60 65 70 75

Tenor 2

Tenor 1 Alto 2

0

10

20

30

40

Alto 1

0

10

20

30

40

Soprano 2

60 65 70 75

Soprano 1

Figure 23.1 Trellis

graph of singer heights

by voice part

www.it-ebooks.info

http://www.it-ebooks.info/

3The lattice package

 In trellis graphs, a separate panel is created for each level of the conditioning vari-

able. If more than one conditioning variable is specified, a panel is created for each

combination of factor levels. The panels are arranged into an array to facilitate com-

parisons. A label is provided for each panel in an area called the strip. As you’ll see, the

user has control over the graph displayed in each panel, the format and placement of

the strip, the arrangement of the panels, the placement and content of legends, and

many other graphic features.

 The lattice package provides a wide variety of functions for producing univariate

(dot plots, kernel density plots, histograms, bar charts, box plots), bivariate (scatter

plots, strip plots, parallel box plots), and multivariate (3D plots, scatter plot matrices)

graphs.

 Each high-level graphing function follows the format

graph_function(formula, data=, options)

where

■ graph_function is one of the functions listed in the second column of table 23.1.
■ formula specifies the variable(s) to display and any conditioning variables.
■ data= specifies a data frame.
■ options are comma-separated parameters used to modify the content, arrange-

ment, and annotation of the graph. See table 23.2 for a description of common

options.

Let lowercase letters represent numeric variables and uppercase letters represent cate-

gorical variables (factors). The formula in a high-level graphing function typically

takes the form

y ~ x | A * B

where variables on the left side of the vertical bar are called the primary variables and

variables on the right are the conditioning variables. Primary variables map variables to

the axes in each panel. Here, y~x describes the variables to place on the vertical and

horizontal axes, respectively. For single-variable plots, replace y~x with ~x. For 3D

plots, replace y~x with z~x*y. Finally, for multivariate plots (scatter-plot matrix or par-

allel-coordinates plot), replace y~x with a data frame. Note that conditioning variables

are always optional.

 Following this logic, ~x|A displays numeric variable x for each level of factor A.

y~x|A*B displays the relationship between numeric variables y and x separately for

every combination of factor A and B levels. A~x displays categorical variable A on the

vertical axis and numeric variable x on the horizontal axis. ~x displays numeric vari-

able x alone. Other examples are shown in table 23.1.

 To gain a quick overview of lattice graphs, try running the code in listing 23.1. The

graphs are based on the automotive data (mileage, weight, number of gears, number

of cylinders, and so on) included in the mtcars data frame. You may want to vary the

formulas and view the results. (The resulting output has been omitted to save space.)

www.it-ebooks.info

http://www.it-ebooks.info/

4 BONUS CHAPTER 23 Advanced graphics with the lattice package

Note: In these formulas, lowercase letters represent numeric variables and uppercase letters represent categorical

variables.

library(lattice)
attach(mtcars)

gear <- factor(gear, levels=c(3, 4, 5),
 labels=c("3 gears", "4 gears", "5 gears"))
cyl <- factor(cyl, levels=c(4, 6, 8),
 labels=c("4 cylinders", "6 cylinders", "8 cylinders"))

densityplot(~mpg,
 main="Density Plot",
 xlab="Miles per Gallon")

densityplot(~mpg | cyl,
 main="Density Plot by Number of Cylinders",
 xlab="Miles per Gallon")

bwplot(cyl ~ mpg | gear,
 main="Box Plots by Cylinders and Gears",
 xlab="Miles per Gallon", ylab="Cylinders")

xyplot(mpg ~ wt | cyl * gear,
 main="Scatter Plots by Cylinders and Gears",
 xlab="Car Weight", ylab="Miles per Gallon")

cloud(mpg ~ wt * qsec | cyl,
 main="3D Scatter Plots by Cylinders")

Table 23.1 Graph types and corresponding functions in the lattice package

Graph type Function Formula examples

3D contour plot contourplot() z~x*y

3D level plot levelplot() z~y*x

3D scatter plot cloud() z~x*y|A

3D wireframe graph wireframe() z~y*x

Bar chart barchart() x~A or A~x

Box plot bwplot() x~A or A~x

Dot plot dotplot() ~x|A

Histogram histogram() ~x

Kernel-density plot densityplot() ~x|A*B

Parallel-coordinates plot parallelplot() dataframe

Scatter plot xyplot() y~x|A

Scatter-plot matrix splom() dataframe

Strip plots stripplot() A~x or x~A

Listing 23.1 Lattice plot examples

www.it-ebooks.info

http://www.it-ebooks.info/

5The lattice package

dotplot(cyl ~ mpg | gear,
 main="Dot Plots by Number of Gears and Cylinders",
 xlab="Miles Per Gallon")

splom(mtcars[c(1, 3, 4, 5, 6)],
 main="Scatter Plot Matrix for mtcars Data")

detach(mtcars)

High-level plotting functions in the lattice package produce graphic objects that

can be saved and manipulated. For example,

library(lattice)
mygraph <- densityplot(~height|voice.part, data=singer)

creates a trellis density plot and saves it as object mygraph. But no graph is displayed.

Issuing the statement plot(mygraph) (or simply mygraph) will display the graph.

 It’s easy to modify lattice graphs through the use of options. Common options are

given in table 23.2. You’ll see examples of many of these later in the chapter.

Table 23.2 Common options for lattice high-level graphing functions

Options Description

aspect A number specifying the aspect ratio (height/width) for the graph in each panel.

col, pch, lty, lwd Vectors specifying the colors, symbols, line types, and line widths to be used in

plotting, respectively.

group Grouping variable (factor).

index.cond List specifying the display order of the panels.

key (or auto.key) Function used to supply legend(s) for grouping variable(s).

layout Two-element numeric vector specifying the arrangement of the panels (number

of columns, number of rows). If desired, a third element can be added to indi-

cate the number of pages.

main, sub Character vectors specifying the main title and subtitle.

panel Function used to generate the graph in each panel.

scales List providing axis annotation information.

strip Function used to customize panel strips.

split, position Numeric vectors used to place more than one graph on a page.

type Character vector specifying one or more plotting options for scatter plots (p =

points, l = lines, r = regression line, smooth = loess fit, g = grid, and so on).

xlab, ylab Character vectors specifying horizontal and vertical axis labels.

xlim, ylim Two-element numeric vectors giving the minimum and maximum values for the

horizontal and vertical axes, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

6 BONUS CHAPTER 23 Advanced graphics with the lattice package

You can issue these options in the high-level function calls or within the panel func-

tions discussed in section 23.3.

 You can also use the update() function to modify a lattice graphic object. Con-

tinuing the singer example, the following

newgraph <- update(mygraph, col="red", pch=16,
 cex=.8, jitter=.05, lwd=2)

would modify mygraph using red curves and symbols (color="red"), filled dots

(pch=16), smaller (cex=.8) and more highly jittered points (jitter=.05), and lines

of double thickness (lwd=2). The resulting graph is saved as newgraph. Now that we’ve

reviewed the general structure of a high-level lattice function, let’s look at condition-

ing variables in more detail.

23.2 Conditioning variables

As you’ve seen, one of the most powerful features of lattice graphs is the ability to add

conditioning variables. If one conditioning variable is present, a separate panel is cre-

ated for each level. If two conditioning variables are present, a separate panel is cre-

ated for each combination of levels for the two variables. It’s rarely useful to include

more than two conditioning variables.

 Typically, conditioning variables are factors. But what if you want to condition on a

continuous variable? One approach would be to transform the continuous variable

into a discrete variable using R’s cut() function. Alternatively, the lattice package

provides functions for transforming a continuous variable into a data structure called

a shingle. Specifically, the continuous variable is divided into a series of (possibly) over-

lapping ranges. For example, the function

myshingle <- equal.count(x, number=n, overlap=proportion)

takes continuous variable x and divides it into n intervals with proportion overlap and

equal numbers of observations in each range, and returns it as the variable myshingle

(of class shingle). Printing or plotting this object (for example, plot(myshingle))

displays the shingle’s intervals.

 Once a continuous variable has been converted to a shingle, you can use it as a

conditioning variable. For example, let’s use the mtcars dataset to explore the rela-

tionship between miles per gallon and car weight conditioned on engine displace-

ment. Because engine displacement is a continuous variable, first let’s convert it to a

shingle variable with three levels:

displacement <- equal.count(mtcars$disp, number=3, overlap=0)

Next, use this variable in the xyplot() function:

xyplot(mpg~wt|displacement, data=mtcars,
 main = "Miles per Gallon vs. Weight by Engine Displacement",
 xlab = "Weight", ylab = "Miles per Gallon",
 layout=c(3, 1), aspect=1.5)

www.it-ebooks.info

http://www.it-ebooks.info/

7Panel functions

The results are shown in figure 23.2. Note that I also used options to modify the layout

of the panels (three columns and one row) and the aspect ratio (height/width) in

order to make comparisons among the three groups easier.

 You can see that the labels in the panel strips of figure 23.1 and figure 23.2 differ.

The representation in figure 23.2 indicates the continuous nature of the conditioning

variable, with the darker color indicating the range of values for the conditioning vari-

able in the given panel. In the next section, you’ll use panel functions to customize

the output further.

23.3 Panel functions

Each of the high-level plotting functions in table 23.1 employs a default function to

draw the panels. These default functions follow the naming convention panel

.graph_function, where graph_function is the high-level function. For example,

xyplot(mpg~wt|displacement, data=mtcars)

could also be written as

xyplot(mpg~wt|displacement, data=mtcars, panel=panel.xyplot)

This is a powerful feature because it allows you to replace the default panel function

with a customized function of your own design. You can incorporate one or more of

the 50+ default panel functions in the lattice package into your customized function

as well. Customized panel functions give you a great deal of flexibility in designing

output that meets your needs. Let’s look at some examples.

Miles per Gallon vs. Weight by Engine Displacement

Weight

M
ile

s
 p

e
r

G
a
llo

n

10

15

20

25

30

35

2 3 4 5

displacement

2 3 4 5

displacement

2 3 4 5

displacement

Figure 23.2 Trellis plot of miles per gallon vs. car weight conditioned on engine

displacement. Because engine displacement is a continuous variable, it has been

converted to three non-overlapping shingles with equal numbers of observations.

www.it-ebooks.info

http://www.it-ebooks.info/

8 BONUS CHAPTER 23 Advanced graphics with the lattice package

 In the previous section, you plotted gas mileage by automobile weight, condi-

tioned on engine displacement. What if you want to include regression lines, rug

plots, and grid lines? You can do this by creating your own panel function (see the fol-

lowing listing). The resulting graph is provided in figure 23.3.

library(lattice)
displacement <- equal.count(mtcars$disp, number=3, overlap=0)

mypanel <- function(x, y) {
 panel.xyplot(x, y, pch=19)
 panel.rug(x, y)
 panel.grid(h=-1, v=-1)
 panel.lmline(x, y, col="red", lwd=1, lty=2)
 }

xyplot(mpg~wt|displacement, data=mtcars,
 layout=c(3, 1),
 aspect=1.5,
 main = "Miles per Gallon vs. Weight by Engine Displacement",
 xlab = "Weight",
 ylab = "Miles per Gallon",
 panel = mypanel)

Here you wrap four separate building-block functions into your own mypanel() func-

tion and apply it within xyplot() through the panel= option b. The panel.xyplot()

function generates the scatter plot using a filled circle (pch=19). The panel.rug()

Listing 23.2 xyplot with custom panel function

Miles per Gallon vs. Weight by Engine Displacement

Weight

M
ile

s
 p

e
r

G
a

llo
n

10

15

20

25

30

35

2 3 4 5

displacement

2 3 4 5

displacement

2 3 4 5

displacement

Figure 23.3 Trellis plot of miles per gallon vs. car weight conditioned on engine displacement.

A custom panel function has been used to add regression lines, rug plots, and grid lines.

Customized panel functionb

www.it-ebooks.info

http://www.it-ebooks.info/

9Panel functions

function adds rug plots to both the x- and y-axes of each panel. panel.rug(x, FALSE)

or panel.rug(FALSE, y) would have added rugs to just the horizontal or vertical axis,

respectively. The panel.grid() function adds horizontal and vertical grid lines (using

negative numbers forces them to line up with the axis labels). Finally, the panel

.lmline() function adds a regression line that’s rendered as red (col="red"), dashed

(lty=2) lines, of standard thickness (lwd=1). Each default panel function has its own

structure and options. See the help page on each (for example, help(panel.lmline))

for further details.

 As a second example, you’ll graph the relationship between gas mileage and

engine displacement (considered as a continuous variable), conditioned on type of

automobile transmission. In addition to creating separate panels for automatic and

manual transmission engines, you’ll add smoothed fit lines and horizontal mean lines.

The code is given in the following listing.

library(lattice)
mtcars$transmission <- factor(mtcars$am, levels=c(0,1),
 labels=c("Automatic", "Manual"))

panel.smoother <- function(x, y) {
 panel.grid(h=-1, v=-1)
 panel.xyplot(x, y)
 panel.loess(x, y)
 panel.abline(h=mean(y), lwd=2, lty=2, col="darkgreen")
 }

xyplot(mpg~disp|transmission,data=mtcars,
 scales=list(cex=.8, col="red"),
 panel=panel.smoother,
 xlab="Displacement", ylab="Miles per Gallon",
 main="MPG vs Displacement by Transmission Type",
 sub = "Dotted lines are Group Means", aspect=1)

The graph produced by this code is provided in figure 23.4.

 There are several things to note in this new code. The panel.xyplot() function

plots the individual points, and the panel.loess() function plots nonparametric fit

lines in each panel. The panel.abline() function adds horizontal reference lines at

the mean mpg value for each level of the conditioning variable. (If you replaced

h=mean(y) with h=mean(mtcars$mpg), a single reference line would be drawn at the

mean mpg value for the entire sample.) The scales= option renders scale annotations

(the axis numbers and tick marks) in red and at 80% of the default font size.

 In the previous example, you could use scales=list(x=list(), y=list()) to

specify separate options for the horizontal and vertical axes. See help(xyplot) for

details on the many scale options available. In the next section, you’ll learn how to

superimpose data from groups of observations, rather than presenting them in sepa-

rate panels.

Listing 23.3 xyplot with a custom panel function and additional options

www.it-ebooks.info

http://www.it-ebooks.info/

10 BONUS CHAPTER 23 Advanced graphics with the lattice package

23.4 Grouping variables

When you include a conditioning variable in a lattice graph formula, a separate panel

is produced for each level of that variable. If you want to superimpose the results for

each level instead, you can specify the variable as a grouping variable.

 Let’s say that you want to display the distribution of gas mileage for cars with man-

ual and automatic transmissions using kernel-density plots. You can superimpose

these plots using this code:

library(lattice)
mtcars$transmission <- factor(mtcars$am, levels=c(0, 1),
 labels=c("Automatic", "Manual"))
densityplot(~mpg, data=mtcars,
 group=transmission,
 main="MPG Distribution by Transmission Type",
 xlab="Miles per Gallon",
 auto.key=TRUE)

The resulting graph is presented in figure 23.5. By default, the group= option super-

imposes the plots from each level of the grouping variable. Points are plotted as open

circles, lines are solid, and level information is distinguished by color. As you can see,

the colors are difficult to differentiate when printed in grayscale. Later you’ll learn

how to change these defaults.

 Note that legends and keys aren’t produced by default. The option auto.key=TRUE

creates a rudimentary legend and places it above the graph. You can make limited

changes to this automated key by specifying options in a list. For example,

auto.key=list(space="right", columns=1, title="Transmission")

places the legend to the right of the graph, presents the key values in a single column,

and adds a legend title.

MPG vs Displacement by Transmission Type

Dotted lines are Group Means
Displacement

M
ile

s
 p

e
r

G
a

llo
n

10

15

20

25

30

35

100 200 300 400

100 200 300 400

ManualAutomatic

Figure 23.4 Trellis graph

of miles per gallon vs.

engine displacement

conditioned on

transmission type.

Smoothed lines (loess),

grids, and group mean

levels have been added.

www.it-ebooks.info

http://www.it-ebooks.info/

11Grouping variables

If you want to exert greater control over the legend, you can use the key= option. An

example is given next. The resulting graph is shown in figure 23.6.

library(lattice)
mtcars$transmission <- factor(mtcars$am, levels=c(0, 1),
 labels=c("Automatic", "Manual"))

colors <- c("red", "blue")
lines <- c(1,2)
points <- c(16,17)

key.trans <- list(title="Transmission",
 space="bottom", columns=2,
 text=list(levels(mtcars$transmission)),
 points=list(pch=points, col=colors),
 lines=list(col=colors, lty=lines),
 cex.title=1, cex=.9)

densityplot(~mpg, data=mtcars,
 group=transmission,
 main="MPG Distribution by Transmission Type",
 xlab="Miles per Gallon",
 pch=points, lty=lines, col=colors,
 lwd=2, jitter=.005,
 key=key.trans)

Here, the plotting symbols, line types, and colors are specified as vectors b. The first

element of each vector is applied to the first level of the group variable, the second

element to the second level, and so forth. A list object is created to hold the legend

options c. These options place the legend below the graph in two columns and

Listing 23.4 Kernel-density plot with a group variable and customized legend

MPG Distribution by Transmission Type

Miles per Gallon

D
e

n
s
it
y

0.00

0.02

0.04

0.06

0.08

0.10

10 20 30 40

Automatic
Manual

Figure 23.5 Kernel-

density plots for miles

per gallon grouped by

transmission type.

Jittered points are

provided on the

horizontal axis.

Color, line, and point
specifications

b

Legend
customization

c

Density plot d

www.it-ebooks.info

http://www.it-ebooks.info/

12 BONUS CHAPTER 23 Advanced graphics with the lattice package

include the level names, point symbols, line types, and colors. The legend title is ren-

dered slightly larger than the text for the symbols.

 The same plot symbols, line types, and colors are specified in the densityplot()

function d. Additionally, the line width and jitter are increased to improve the

appearance of the graph. Finally, the key is set to use the previously defined list. This

approach to specifying a legend for the grouping variable gives you a great deal of

flexibility. In fact, you can create more than one legend and place them in different

areas of the graph (not shown here).

 Before completing this section, let’s consider an example that includes group and

conditioning variables in a single plot. The CO2 data frame, included with the base R

installation, describes a study of cold tolerance of the grass species Echinochloa crus-galli.

 The data describe carbon dioxide uptake rates (uptake) for 12 plants (Plant), at 7

ambient carbon dioxide concentrations (conc). Six plants were from Quebec and six

plants were from Mississippi. Three plants from each location were studied under

chilled conditions, and three plants were studied under non-chilled conditions. In

this example, Plant is the group variable and both Type (Quebec/Mississippi) and

Treatment (chilled/non-chilled) are conditioning variables. The following code pro-

duces the plot in figure 23.7.

library(lattice)
colors <- "darkgreen"
symbols <- c(1:12)
linetype <- c(1:3)

Listing 23.5 xyplot with group and conditioning variables and customized legend

MPG Distribution by Transmission Type

Miles per Gallon

D
e

n
s
it
y

0.00

0.02

0.04

0.06

0.08

0.10

10 20 30 40

Transmission

Automatic Manual

Figure 23.6 Kernel-density plots for miles per gallon grouped by transmission type.

Graphical parameters have been modified, and a customized legend has been added.

The custom legend specifies color, shape, line type, character size, and title.

www.it-ebooks.info

http://www.it-ebooks.info/

13Grouping variables

key.species <- list(title="Plant",
 space="right",
 text=list(levels(CO2$Plant)),
 points=list(pch=symbols, col=colors))

xyplot(uptake~conc|Type*Treatment, data=CO2,
 group=Plant,
 type="o",
 pch=symbols, col=colors, lty=linetype,
 main="Carbon Dioxide Uptake\nin Grass Plants",
 ylab=expression(paste("Uptake ",
 bgroup("(", italic(frac("umol","m"^2)), ")"))),
 xlab=expression(paste("Concentration ",
 bgroup("(", italic(frac(mL,L)), ")"))),
 sub = "Grass Species: Echinochloa crus-galli",
 key=key.species)

Note the use of \n to give you a two-line title and the use of the expression() func-

tion to add mathematical notation to the axis labels. Here, color is suppressed as a

group differentiator by specifying a single color in the col= option. In this case, add-

ing 12 different colors is overkill and distracts from the goal of easily visualizing the

Grass Species: Echinochloa crus−galli

Concentration
⎛

⎝
⎜
mL

L

⎞

⎠

U
p
ta

ke
 ⎛ ⎝⎜u

m
o
l

m
2

⎞ ⎠

10

20

30

40

200 400 600 800 1000

Quebec
nonchilled

Mississippi
nonchilled

Quebec
chilled

200 400 600 800 1000

10

20

30

40

Mississippi
chilled

Plant
Qn1
Qn2
Qn3
Qc1
Qc3
Qc2
Mn3
Mn2
Mn1
Mc2
Mc3
Mc1

Carbon Dioxide Uptake
in Grass Plants

Figure 23.7 xyplot showing the impact of ambient carbon dioxide concentrations on

carbon dioxide uptake for 12 plants in two treatment conditions and two types. Plant

is the group variable, and Treatment and Type are the conditioning variables.

www.it-ebooks.info

http://www.it-ebooks.info/

14 BONUS CHAPTER 23 Advanced graphics with the lattice package

relationships in each panel. Clearly, there’s something different about the Mississippi

grasses in the chilled condition.

 Up to this point, you’ve been modifying graphic elements in your charts through

options passed to either the high-level graph functions (for example, xyplot

(pch=17)) or the panel functions they use (for example, panel.xyplot(pch=17)).

But such changes are in effect only for the duration of the function call. In the next

section, you’ll review a method for changing graphical parameters that persists for the

duration of the interactive session or batch execution.

23.5 Graphic parameters

In chapter 3, you learned how to view and set default graphics parameters using the

par() function. Although this works for graphs produced with R’s native graphic sys-

tem, lattice graphs are unaffected by these settings. Instead, the graphic defaults used

by lattice functions are contained in a large list object that can be accessed with the

trellis.par.get() function and modified through the trellis.par.set() func-

tion. You can use the show.settings() function to display the current graphic set-

tings visually.

 As an example, let’s change the default symbol used for superimposed points (that

is, points in a graph that includes a group variable). The default is an open circle.

You’ll give each group its own symbol instead.

 First, view the current defaults

show.settings()

and save them into a list called mysettings:

mysettings <- trellis.par.get()

You can see the components of this list by using the names() function:

> names(mysettings)
 [1] "grid.pars" "fontsize" "background"
 [4] "panel.background" "clip" "add.line"
 [7] "add.text" "plot.polygon" "box.dot"
[10] "box.rectangle" "box.umbrella" "dot.line"
[13] "dot.symbol" "plot.line" "plot.symbol"
[16] "reference.line" "strip.background" "strip.shingle"
[19] "strip.border" "superpose.line" "superpose.symbol"
[22] "superpose.polygon" "regions" "shade.colors"
[25] "axis.line" "axis.text" "axis.components"
[28] "layout.heights" "layout.widths" "box.3d"
[31] "par.xlab.text" "par.ylab.text" "par.zlab.text"
[34] "par.main.text" "par.sub.text"

The defaults that are specific to superimposed symbols are contained in the super-

pose.symbol component:

> mysettings$superpose.symbol

$alpha

www.it-ebooks.info

http://www.it-ebooks.info/

15Customizing plot strips

[1] 1 1 1 1 1 1 1
$cex
[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8
$col
[1] "#0080ff" "#ff00ff" "darkgreen" "#ff0000" "orange"
[6] "#00ff00" "brown"
$fill
[1] "#CCFFFF" "#FFCCFF" "#CCFFCC" "#FFE5CC" "#CCE6FF" "#FFFFCC"
[7] "#FFCCCC"
$font
[1] 1 1 1 1 1 1 1
$pch
[1] 1 1 1 1 1 1 1

The symbol used for each level of a group variable is an open circle (pch=1). Seven

levels are defined, after which the symbols recycle.

 To change the default, issue the following statements:

mysettings$superpose.symbol$pch <- c(1:10)
trellis.par.set(mysettings)

You can see the effect of your changes by issuing the show.settings() function again.

Lattice graphs now use symbol 1 (open circle) for the first level of a group variable,

symbol 2 (open triangle) for the second, and so on. Additionally, symbols have been

defined for 10 levels of a grouping variable, rather than 7. The changes will remain in

effect until all graphic devices are closed. You can change any graphic setting in this

manner.

23.6 Customizing plot strips

The default background for the panel strip is peach colored for the first conditioning

variable, pale green for the second conditioning variable, and pale blue for the third.

Happily, you can customize the color, font, and other aspects of these strips. You can

use the method described in the previous section, or you can take greater control and

write a function to customize any aspect of the strip.

 Let’s start with the strip function. Just as the high-level graphing functions in lat-

tice allows you to specify a panel function for controlling the contents of each panel,

a strip function can be specified to control the appearance of each strip.

 Consider the graph shown earlier in figure 23.1. The graph displays the heights of

New York Choral Society singers by voice part. The background color is peach (or is it

salmon?). What if you want the strip to be light grey, the text of the strip to be black,

and the font to be italicized and shrunk by 20%? You can accomplish this with the fol-

lowing code:

library(lattice)
histogram(~height | voice.part, data = singer,
 strip = strip.custom(bg="lightgrey",
 par.strip.text=list(col="black", cex=.8, font=3)),
 main="Distribution of Heights by Voice Pitch",
 xlab="Height (inches)")

www.it-ebooks.info

http://www.it-ebooks.info/

16 BONUS CHAPTER 23 Advanced graphics with the lattice package

The resulting graph is presented in figure 23.8.
 The strip= option specifies the function used to set the appearance of the strip.

Although you can write a function from scratch (see ?strip.default), it’s often eas-

ier to change a few settings and leave the others at their default values. The
strip.custom() function allows you to do this. The bg option controls the back-

ground color, and par.strip.text lets you control the appearance of the strip text.

 The par.strip.text option uses a list to define text properties. The col and cex
options control the text color and size. The font option can take the value 1, 2, 3, or

4, for normal, bold, italics, and bold italics typefaces, respectively.

 The strip= option changes the appearance of the strips in the given graph. To
change the appearance for all lattice graphs created in an R session, you can use the

graphical parameters described in the previous section. The code

mysettings <- trellis.par.get()
mysettings$strip.background$col <- c("lightgrey", "lightgreen")
trellis.par.set(mysettings)

sets the strip background to lightgrey for the first conditioning variable and light-

green for the second. The change will be in effect for the remainder of the session, or

until the settings are changed again. Using graphical parameters is more convenient,

but using a strip function gives you more options and greater control.

Distribution of Heights by Voice Pitch

Height (inches)

P
e

rc
e
n
t
o
f
To

ta
l

0

10

20

30

40

60 65 70 75

Bass 2 Bass 1

60 65 70 75

Tenor 2

Tenor 1 Alto 2

0

10

20

30

40

Alto 1

0

10

20

30

40

Soprano 2

60 65 70 75

Soprano 1

Figure 23.8 A trellis

graph with a customized

strip (light grey

background, with a

smaller, italicized font).

www.it-ebooks.info

http://www.it-ebooks.info/

17Page arrangement

23.7 Page arrangement

In chapter 3, you learned how to place more than one graph on a page using the

par() function. Because lattice functions don’t recognize par() settings, you’ll need a

different approach for combining multiple lattice plots into a single graph. The easi-

est method involves saving your lattice graphs as objects and using the plot() func-

tion with either the split= or position= option specified.

 The split option divides a page into a specified number of rows and columns and

places graphs into designated cells of the resulting matrix. The format for the split

option is

split=c(x, y, nx, ny)

which says to position the current plot at the x, y position in a regular array of nx by

ny plots, where the origin is at the top left. For example, the following code

library(lattice)
graph1 <- histogram(~height | voice.part, data = singer,
 main = "Heights of Choral Singers by Voice Part")
graph2 <- bwplot(height~voice.part, data = singer)
plot(graph1, split = c(1, 1, 1, 2))
plot(graph2, split = c(1, 2, 1, 2), newpage = FALSE)

places the first graph directly above the second graph. Specifically, the first plot()

statement divides the page into one column (nx = 1) and two rows (ny = 2) and places

the graph in the first column and first row (counting top-down and left-right). The

Heights of Choral Singers by Voice Part

height

P
e

rc
e

n
t

o
f

To
ta

l

0

20

40

60 65 70 75

Bass 2 Bass 1

60 65 70 75

Tenor 2

Tenor 1 Alto 2

0

20

40
Alto 1

0

20

40
Soprano 2

60 65 70 75

Soprano 1

h
e

ig
h

t

60

65

70

75

Bass 2 Bass 1 Tenor 2 Tenor 1 Alto 2 Alto 1 Soprano 2 Soprano 1

Figure 23.9 Using

the split option to

combine graphs

www.it-ebooks.info

http://www.it-ebooks.info/

18 BONUS CHAPTER 23 Advanced graphics with the lattice package

second plot() statement divides the page the same way but places the graph in the

first column and second row. Because plot() starts a new page by default, you sup-

press this action by including the newpage=FALSE option. The plot is given in figure

23.9.

 You can gain more control of sizing and placement by using the position= option.

Consider the following code:

library(lattice)
graph1 <- histogram(~height | voice.part, data = singer,
 main = "Heights of Choral Singers by Voice Part")
graph2 <- bwplot(height~voice.part, data = singer)
plot(graph1, position=c(0, .3, 1, 1))
plot(graph2, position=c(0, 0, 1, .3), newpage=FALSE)

Here, position=c(xmin, ymin, xmax, ymax), where the x-y coordinate system for

the page is a rectangle with dimensions ranging from 0 to 1 on both the x- and y-axes

and the origin (0,0) at bottom left. The graph is displayed in figure 23.10. To learn

more about positioning graphs, see help(plot.trellis).

 You can also change the order of the panels in a lattice graph. The index.cond

option in a high-level lattice graph function specifies the order of the conditioning

variable levels. For the voice.part factor, the levels are

> levels(singer$voice.part)
[1] "Bass 2" "Bass 1" "Tenor 2" "Tenor 1" "Alto 2"
[6] "Alto 1" "Soprano 2" "Soprano 1"

Heights of Choral Singers by Voice Part

height

P
e
rc

e
n
t
o
f
To

ta
l

0

10

20

30

40

60 65 70 75

Bass 2 Bass 1

60 65 70 75

Tenor 2

Tenor 1 Alto 2

0

10

20

30

40

Alto 1
0

10

20

30

40

Soprano 2

60 65 70 75

Soprano 1

h
e
ig

h
t

60

65

70

75

Bass 2 Bass 1 Tenor 2 Tenor 1 Alto 2 Alto 1 Soprano 2 Soprano 1

Figure 23.10 Using

the position option

to combine graphs

with greater precision

www.it-ebooks.info

http://www.it-ebooks.info/

19Going further

Using this information,

histogram(~height | voice.part, data = singer,
 index.cond=list(c(2, 4, 6, 8, 1, 3, 5, 7)))

would place the 1 voice parts together (Bass 1, Tenor 1, …), followed by the 2 voice

parts (Bass 2, Tenor 2, …). When there are two conditioning variables, include two

vectors in the list. In listing 23.5, adding index.cond=list(c(1, 2), c(2, 1)) would

reverse the order of treatments in figure 23.7. The index.cond option is documented

in help(xyplot).

23.8 Going further

Lattice graphics offer a powerful and highly customizable approach to creating

graphs in R. A number of useful resources can help you learn more about them.

Deepayan Sarkar’s “Lattice Graphics: An Introduction” (2008, http://mng.bz/jXUG)

and William G. Jacoby’s “An Introduction to Lattice Graphics in R” (2010, http://

mng.bz/v4TO) offer excellent overviews. Sarkar’s (2008) Lattice: Multivariate Data

Visualization with R is the definitive book on the subject.

www.it-ebooks.info

http://mng.bz/v4TO
http://mng.bz/v4TO
http://mng.bz/jXUG
http://www.it-ebooks.info/

Robert I. Kabacoff

B
usiness pros and researchers thrive on data, and R speaks
the language of data analysis. R is a powerful program-
ming language for statistical computing. Unlike general-

purpose tools, R provides thousands of modules for solving
just about any data-crunching or presentation challenge you’re
likely to face. R runs on all important platforms and is used by
thousands of major corporations and institutions worldwide.

R in Action, Second Edition teaches you how to use the R
language by presenting examples relevant to scientifi c, techni-
cal, and business developers. Focusing on practical solutions,
the book offers a crash course in statistics, including elegant
methods for dealing with messy and incomplete data. You’ll
also master R’s extensive graphical capabilities for exploring
and presenting data visually. And this expanded second
edition includes new chapters on forecasting, data mining,
and dynamic report writing.

What’s Inside
● Complete R language tutorial
● Using R to manage, analyze, and visualize data
● Techniques for debugging programs and creating packages
● OOP in R
● Over 160 graphs

A background in mathematics and statistics is helpful but not
required. No prior experience with R is assumed.

Dr. Rob Kabacoff is a seasoned researcher and teacher who
specializes in data analysis. He also maintains the popular
Quick-R website at statmethods.net.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/RinActionSecondEdition

$59.99 / Can $68.99 [INCLUDING eBOOK]

R IN ACTION Second Edition

DATA/STATISTICS/PROGRAMMING

M A N N I N G

“Essential to anyone doing
data analysis with R, whether
 in industry or academia.”

—Cristofer Weber, NeoGrid

“A go-to reference for
general R and many

 statistics questions.”—George Gaines

KYOS Systems Inc.

“Accessible language,
realistic examples,

 and clear code.”
—Samuel D. McQuillin
University of Houston

“Offers a gentle learning
curve to those starting out

 with R for the fi rst time.”—Indrajit Sen Gupta
Mu Sigma Business Solutions

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	R in Action, Second Edition
	brief contents
	contents
	preface
	acknowledgments
	about this book
	What’s new in the second edition
	Who should read this book
	Roadmap
	Advice for data miners
	Code examples
	Code conventions
	Author Online
	About the author

	about the cover illustration
	Part 1 Getting started
	1 Introduction to R
	1.1 Why use R?
	1.2 Obtaining and installing R
	1.3 Working with R
	1.3.1 Getting started
	1.3.2 Getting help
	1.3.3 The workspace
	1.3.4 Input and output

	1.4 Packages
	1.4.1 What are packages?
	1.4.2 Installing a package
	1.4.3 Loading a package
	1.4.4 Learning about a package

	1.5 Batch processing
	1.6 Using output as input: reusing results
	1.7 Working with large datasets
	1.8 Working through an example
	1.9 Summary

	2 Creating a dataset
	2.1 Understanding datasets
	2.2 Data structures
	2.2.1 Vectors
	2.2.2 Matrices
	2.2.3 Arrays
	2.2.4 Data frames
	2.2.5 Factors
	2.2.6 Lists

	2.3 Data input
	2.3.1 Entering data from the keyboard
	2.3.2 Importing data from a delimited text file
	2.3.3 Importing data from Excel
	2.3.4 Importing data from XML
	2.3.5 Importing data from the web
	2.3.6 Importing data from SPSS
	2.3.7 Importing data from SAS
	2.3.8 Importing data from Stata
	2.3.9 Importing data from NetCDF
	2.3.10 Importing data from HDF5
	2.3.11 Accessing database management systems (DBMSs)
	2.3.12 Importing data via Stat/Transfer

	2.4 Annotating datasets
	2.4.1 Variable labels
	2.4.2 Value labels

	2.5 Useful functions for working with data objects
	2.6 Summary

	3 Getting started with graphs
	3.1 Working with graphs
	3.2 A simple example
	3.3 Graphical parameters
	3.3.1 Symbols and lines
	3.3.2 Colors
	3.3.3 Text characteristics
	3.3.4 Graph and margin dimensions

	3.4 Adding text, customized axes, and legends
	3.4.1 Titles
	3.4.2 Axes
	3.4.3 Reference lines
	3.4.4 Legend
	3.4.5 Text annotations
	3.4.6 Math annotations

	3.5 Combining graphs
	3.5.1 Creating a figure arrangement with fine control

	3.6 Summary

	4 Basic data management
	4.1 A working example
	4.2 Creating new variables
	4.3 Recoding variables
	4.4 Renaming variables
	4.5 Missing values
	4.5.1 Recoding values to missing
	4.5.2 Excluding missing values from analyses

	4.6 Date values
	4.6.1 Converting dates to character variables
	4.6.2 Going further

	4.7 Type conversions
	4.8 Sorting data
	4.9 Merging datasets
	4.9.1 Adding columns to a data frame
	4.9.2 Adding rows to a data frame

	4.10 Subsetting datasets
	4.10.1 Selecting (keeping) variables
	4.10.2 Excluding (dropping) variables
	4.10.3 Selecting observations
	4.10.4 The subset() function
	4.10.5 Random samples

	4.11 Using SQL statements to manipulate data frames
	4.12 Summary

	5 Advanced data management
	5.1 A data-management challenge
	5.2 Numerical and character functions
	5.2.1 Mathematical functions
	5.2.2 Statistical functions
	5.2.3 Probability functions
	5.2.4 Character functions
	5.2.5 Other useful functions
	5.2.6 Applying functions to matrices and data frames

	5.3 A solution for the data-management challenge
	5.4 Control flow
	5.4.1 Repetition and looping
	5.4.2 Conditional execution

	5.5 User-written functions
	5.6 Aggregation and reshaping
	5.6.1 Transpose
	5.6.2 Aggregating data
	5.6.3 The reshape2 package

	5.7 Summary

	Part 2 Basic methods
	6 Basic graphs
	6.1 Bar plots
	6.1.1 Simple bar plots
	6.1.2 Stacked and grouped bar plots
	6.1.3 Mean bar plots
	6.1.4 Tweaking bar plots
	6.1.5 Spinograms

	6.2 Pie charts
	6.3 Histograms
	6.4 Kernel density plots
	6.5 Box plots
	6.5.1 Using parallel box plots to compare groups
	6.5.2 Violin plots

	6.6 Dot plots
	6.7 Summary

	7 Basic statistics
	7.1 Descriptive statistics
	7.1.1 A menagerie of methods
	7.1.2 Even more methods
	7.1.3 Descriptive statistics by group
	7.1.4 Additional methods by group
	7.1.5 Visualizing results

	7.2 Frequency and contingency tables
	7.2.1 Generating frequency tables
	7.2.2 Tests of independence
	7.2.3 Measures of association
	7.2.4 Visualizing results

	7.3 Correlations
	7.3.1 Types of correlations
	7.3.2 Testing correlations for significance
	7.3.3 Visualizing correlations

	7.4 T-tests
	7.4.1 Independent t-test
	7.4.2 Dependent t-test
	7.4.3 When there are more than two groups

	7.5 Nonparametric tests of group differences
	7.5.1 Comparing two groups
	7.5.2 Comparing more than two groups

	7.6 Visualizing group differences
	7.7 Summary

	Part 3 Intermediate methods
	8 Regression
	8.1 The many faces of regression
	8.1.1 Scenarios for using OLS regression
	8.1.2 What you need to know

	8.2 OLS regression
	8.2.1 Fitting regression models with lm()
	8.2.2 Simple linear regression
	8.2.3 Polynomial regression
	8.2.4 Multiple linear regression
	8.2.5 Multiple linear regression with interactions

	8.3 Regression diagnostics
	8.3.1 A typical approach
	8.3.2 An enhanced approach
	8.3.3 Global validation of linear model assumption
	8.3.4 Multicollinearity

	8.4 Unusual observations
	8.4.1 Outliers
	8.4.2 High-leverage points
	8.4.3 Influential observations

	8.5 Corrective measures
	8.5.1 Deleting observations
	8.5.2 Transforming variables
	8.5.3 Adding or deleting variables
	8.5.4 Trying a different approach

	8.6 Selecting the “best” regression model
	8.6.1 Comparing models
	8.6.2 Variable selection

	8.7 Taking the analysis further
	8.7.1 Cross-validation
	8.7.2 Relative importance

	8.8 Summary

	9 Analysis of variance
	9.1 A crash course on terminology
	9.2 Fitting ANOVA models
	9.2.1 The aov() function
	9.2.2 The order of formula terms

	9.3 One-way ANOVA
	9.3.1 Multiple comparisons
	9.3.2 Assessing test assumptions

	9.4 One-way ANCOVA
	9.4.1 Assessing test assumptions
	9.4.2 Visualizing the results

	9.5 Two-way factorial ANOVA
	9.6 Repeated measures ANOVA
	9.7 Multivariate analysis of variance (MANOVA)
	9.7.1 Assessing test assumptions
	9.7.2 Robust MANOVA

	9.8 ANOVA as regression
	9.9 Summary

	10 Power analysis
	10.1 A quick review of hypothesis testing
	10.2 Implementing power analysis with the pwr package
	10.2.1 t-tests
	10.2.2 ANOVA
	10.2.3 Correlations
	10.2.4 Linear models
	10.2.5 Tests of proportions
	10.2.6 Chi-square tests
	10.2.7 Choosing an appropriate effect size in novel situations

	10.3 Creating power analysis plots
	10.4 Other packages
	10.5 Summary

	11 Intermediate graphs
	11.1 Scatter plots
	11.1.1 Scatter-plot matrices
	11.1.2 High-density scatter plots
	11.1.3 3D scatter plots
	11.1.4 Spinning 3D scatter plots
	11.1.5 Bubble plots

	11.2 Line charts
	11.3 Corrgrams
	11.4 Mosaic plots
	11.5 Summary

	12 Resampling statistics and bootstrapping
	12.1 Permutation tests
	12.2 Permutation tests with the coin package
	12.2.1 Independent two-sample and k-sample tests
	12.2.2 Independence in contingency tables
	12.2.3 Independence between numeric variables
	12.2.4 Dependent two-sample and k-sample tests
	12.2.5 Going further

	12.3 Permutation tests with the lmPerm package
	12.3.1 Simple and polynomial regression
	12.3.2 Multiple regression
	12.3.3 One-way ANOVA and ANCOVA
	12.3.4 Two-way ANOVA

	12.4 Additional comments on permutation tests
	12.5 Bootstrapping
	12.6 Bootstrapping with the boot package
	12.6.1 Bootstrapping a single statistic
	12.6.2 Bootstrapping several statistics

	12.7 Summary

	Part 4 Advanced methods
	13 Generalized linear models
	13.1 Generalized linear models and the glm() function
	13.1.1 The glm() function
	13.1.2 Supporting functions
	13.1.3 Model fit and regression diagnostics

	13.2 Logistic regression
	13.2.1 Interpreting the model parameters
	13.2.2 Assessing the impact of predictors on the probability of an outcome
	13.2.3 Overdispersion
	13.2.4 Extensions

	13.3 Poisson regression
	13.3.1 Interpreting the model parameters
	13.3.2 Overdispersion
	13.3.3 Extensions

	13.4 Summary

	14 Principal components and factor analysis
	14.1 Principal components and factor analysis in R
	14.2 Principal components
	14.2.1 Selecting the number of components to extract
	14.2.2 Extracting principal components
	14.2.3 Rotating principal components
	14.2.4 Obtaining principal components scores

	14.3 Exploratory factor analysis
	14.3.1 Deciding how many common factors to extract
	14.3.2 Extracting common factors
	14.3.3 Rotating factors
	14.3.4 Factor scores
	14.3.5 Other EFA-related packages

	14.4 Other latent variable models
	14.5 Summary

	15 Time series
	15.1 Creating a time-series object in R
	15.2 Smoothing and seasonal decomposition
	15.2.1 Smoothing with simple moving averages
	15.2.2 Seasonal decomposition

	15.3 Exponential forecasting models
	15.3.1 Simple exponential smoothing
	15.3.2 Holt and Holt-Winters exponential smoothing
	15.3.3 The ets() function and automated forecasting

	15.4 ARIMA forecasting models
	15.4.1 Prerequisite concepts
	15.4.2 ARMA and ARIMA models
	15.4.3 Automated ARIMA forecasting

	15.5 Going further
	15.6 Summary

	16 Cluster analysis
	16.1 Common steps in cluster analysis
	16.2 Calculating distances
	16.3 Hierarchical cluster analysis
	16.4 Partitioning cluster analysis
	16.4.1 K-means clustering
	16.4.2 Partitioning around medoids

	16.5 Avoiding nonexistent clusters
	16.6 Summary

	17 Classification
	17.1 Preparing the data
	17.2 Logistic regression
	17.3 Decision trees
	17.3.1 Classical decision trees
	17.3.2 Conditional inference trees

	17.4 Random forests
	17.5 Support vector machines
	17.5.1 Tuning an SVM

	17.6 Choosing a best predictive solution
	17.7 Using the rattle package for data mining
	17.8 Summary

	18 Advanced methods for missing data
	18.1 Steps in dealing with missing data
	18.2 Identifying missing values
	18.3 Exploring missing-values patterns
	18.3.1 Tabulating missing values
	18.3.2 Exploring missing data visually
	18.3.3 Using correlations to explore missing values

	18.4 Understanding the sources and impact of missing data
	18.5 Rational approaches for dealing with incomplete data
	18.6 Complete-case analysis (listwise deletion)
	18.7 Multiple imputation
	18.8 Other approaches to missing data
	18.8.1 Pairwise deletion
	18.8.2 Simple (nonstochastic) imputation

	18.9 Summary

	Part 5 Expanding your skills
	19 Advanced graphics with ggplot2
	19.1 The four graphics systems in R
	19.2 An introduction to the ggplot2 package
	19.3 Specifying the plot type with geoms
	19.4 Grouping
	19.5 Faceting
	19.6 Adding smoothed lines
	19.7 Modifying the appearance of ggplot2 graphs
	19.7.1 Axes
	19.7.2 Legends
	19.7.3 Scales
	19.7.4 Themes
	19.7.5 Multiple graphs per page

	19.8 Saving graphs
	19.9 Summary

	20 Advanced programming
	20.1 A review of the language
	20.1.1 Data types
	20.1.2 Control structures
	20.1.3 Creating functions

	20.2 Working with environments
	20.3 Object-oriented programming
	20.3.1 Generic functions
	20.3.2 Limitations of the S3 model

	20.4 Writing efficient code
	20.5 Debugging
	20.5.1 Common sources of errors
	20.5.2 Debugging tools
	20.5.3 Session options that support debugging

	20.6 Going further
	20.7 Summary

	21 Creating a package
	21.1 Nonparametric analysis and the npar package
	21.1.1 Comparing groups with the npar package

	21.2 Developing the package
	21.2.1 Computing the statistics
	21.2.2 Printing the results
	21.2.3 Summarizing the results
	21.2.4 Plotting the results
	21.2.5 Adding sample data to the package

	21.3 Creating the package documentation
	21.4 Building the package
	21.5 Going further
	21.6 Summary

	22 Creating dynamic reports
	22.1 A template approach to reports
	22.2 Creating dynamic reports with R and Markdown
	22.3 Creating dynamic reports with R and LaTeX
	22.4 Creating dynamic reports with R and Open Document
	22.5 Creating dynamic reports with R and Microsoft Word
	22.6 Summary

	afterword Into the rabbit hole
	appendix A Graphical user interfaces
	appendix B Customizing the startup environment
	appendix C Exporting data from R
	Delimited text file
	Excel spreadsheet
	Statistical applications

	appendix D Matrix algebra in R
	appendix E Packages used in this book
	appendix F Working with large datasets
	F.1 Efficient programming
	F.2 Storing data outside of RAM
	F.3 Analytic packages for out-of-memory data
	F.4 Comprehensive solutions for working with enormous datasets

	appendix G Updating an R installation
	G.1 Automated installation (Windows only)
	G.2 Manual installation (Windows and Mac OS X)
	G.3 Updating an R installation (Linux)

	references
	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Bonus chapter
	23 Advanced graphics with the lattice package
	23.1 The lattice package
	23.2 Conditioning variables
	23.3 Panel functions
	23.4 Grouping variables
	23.5 Graphic parameters
	23.6 Customizing plot strips
	23.7 Page arrangement
	23.8 Going further

	R in Action-back

